WorldWideScience

Sample records for babar silicon vertex

  1. Managing Bias Leakage Currents and High Data Rates in the BABAR Silicon Vertex Tracker

    CERN Document Server

    Garra-Tico, J; Bondioli, M; Bruinsma, M; Curry, S; Kirkby, D; Burke, S; Callahan, D; Campagnari, C; Cunha, A; Hale, D; Kyre, S; Richman, J; Beck, T; Eisner, A M; Kroseberg, J; Lockman, W S; Nesom, G; Seiden, A; Spradlin, P; Winstrom, L; Brown, D; Dardin, S; Goozen, F; Kerth, L T; Lynch, G; Roe, N A; Anderson, J; Chen, C; Lae, C K; Roberts, D; Simi, G; Tuggle, J; Lazzaro, A; Lombardo, V; Palombo, F; Ratti, L; Angelini, C; Batignani, G; Bettarini, S; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Mammini, P; Manfredi, P F; Marchiori, G; Mazur, M; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Walsh, J; Elmer, P; Long, O; Charles, E; Perazzo, A; Burchat, P; Edwards, A J; Miyashita, T S; Majewski, S; Petersen, B A; Bona, M; Bianchi, F; Gamba, D; Trapani, P; Bomben, M; Bosisio, L; Cartaro, C; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Gao, Y Y; Gritsan, A V; Guo, Z J

    2008-01-01

    The silicon vertex tracker at the BABAR experiment is the primary device used in measuring the distance between B0 and meson decay vertices for the extraction of CP asymmetries. It consists of five layers of double-sided, AC-coupled silicon modules, read out by custom integrated circuits. It has run well consistently for eight years. I report on three years of experience in managing problematic bias leakage currents in the fourth layer. In addition, I report on recent success in decreasing the data acquisition time by reducing the readout window.

  2. Belle II Silicon Vertex Detector

    CERN Document Server

    Mohanty, Gagan B

    2015-01-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by a vertex detector, which comprises two layers of pixelated silicon detector and four layers of silicon vertex detector. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector that is aimed to be commissioned towards the middle of 2017.

  3. Belle II silicon vertex detector

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  4. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  5. The SUPERB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Forti, F., E-mail: Francesco.Forti@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy)

    2011-04-21

    The SUPERB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents, allowing precision measurements in the flavour sector sensitive to New Physics. The conceptual design of the Silicon Vertex Tracker for the SUPERB Detector is presented, based on double-sided silicon strip detectors for the outer layers, with the addition of an innermost Layer 0 close to the interaction point, with low material budget and capable of sustaining a background rate of several MHz/cm{sup 2}.

  6. The CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  7. The superB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.i [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F. [INFN-Pisa and Universita di Pisa (Italy)

    2010-05-21

    The SuperB asymmetric e{sup +}-e{sup -} collider has been designed to deliver a luminosity greater than 10{sup 36}cm{sup -2}s{sup -1} with moderate beam currents. Comparing to current B-Factories, the reduced center of mass boost of the SuperB machine requires improved vertex resolution to allow precision measurements sensitive to New Physics. We present the conceptual design of the silicon vertex tracker (SVT) for the SuperB detector with the present status of the R and D on the different options under study for its innermost Layer0.

  8. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  9. The PHENIX Forward Silicon Vertex Detector

    CERN Document Server

    Aidala, C; Anderssen, LE; Bambaugh, A; Barron, A; Boissevain, J G; Bok, J; Boose, S; Brooks, M L; Butsyk, S; Cepeda, LM; Chacon, P; Chacon, S; Chavez, L; Cote, T; D'Agostino, C; Datta, A; DeBlasio, K; DelMonte, L; Desmond, E J; Durham, J M; Fields, D; Finger, M; Gingu, C; Gonzales, B; Haggerty, J S; Hawke, T; van Hecke, H W; Herron, M; Hoff, J; Huang, J; Jiang, X; Johnson, LT; Jonas, M; Kapustinsky, J; Key, A; Kunde, G J; LaBounty, J; Lee, D M; Lee, K B; Leitch, M J; Lenz, M; Lenz, W; Liu, M X; Lynch, D; Mannel, E; McGaughey, P L; Meles, A; Meredith, B; Nguyen, H; O'Brien, E; Pak, R; Papavassiliou, V; Pate, S; Pereira, H; Perera, G D N; Phillips, M; Pisani, R; Polizzo, S; Poncione, R J; Popule, J; Prokop, M; Purschke, M L; Purwar, A K; Ronzhina, N; Silva, C L; Slunecka, M; Smith, R; Sondheim, W E; Spendier, K; Stoffer, M; Tennant, E; Thomas, D; Tomasek, M; Veicht, A; Vrba, V; Wang, X R; Wei, F; Winter, D; Yarema, R; You, Z; Zimmerman, A; Zimmerman, T

    2013-01-01

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of $1.2<|\\eta|<2.2$ that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 $\\mu$m pitch in the radial direction and lengths in the $\\phi$ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au-Au collisions is approxim...

  10. The SVX II silicon vertex detector at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Worm, S. [New Mexico Univ., Albuquerque, NM (United States). New Mexico Center for Particle Physics; CDF Collaboration

    1996-09-01

    The CDF silicon vertex detector is being upgraded for use in Run II of the Fermilab collider. The increased luminosity in Run II, coupled with the desire for increased acceptance and secondary vertex triggering, necessitates a complete redesign of the previous generation tracker. Details of the design are described.

  11. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  12. W. K. H. Panofsky Prize Talk: The Silicon Vertex Trigger

    Science.gov (United States)

    Ristori, Luciano

    2009-05-01

    I will discuss the importance of real-time selection of events at a hadron collider, the ideas that led to the conception of the Silicon Vertex Trigger (SVT) and some historical notes on its construction and commissioning. I will also highlight some remarkable results obtained by CDF with the data selected by the SVT.

  13. The silicon vertex locator for the LHCb upgrade

    CERN Document Server

    Head, Tim

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.

  14. Silicon vertex detector upgrade in the ALPHA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others

    2013-12-21

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  15. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  16. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, M.A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gotra, Y., E-mail: gotra@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kurbatov, E. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Leffel, M.; Mandal, S.; McMullen, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Merkin, M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Raydo, B.; Teachey, W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tucker, R. [Arizona State University, Tempe, AZ (United States); Ungaro, M.; Yegneswaran, A.; Ziegler, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-12-21

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements. -- Highlights: •A Silicon Vertex Tracker has been designed for the central tracker of the CLAS12 experiment. •Using cantilevered module geometry allows minimizing amount of material in the tracking volume. •A dedicated Hybrid Flex Circuit Board has been developed to read out double sided module. •Module performance meets design goals of the CLAS12 Central Tracker.

  17. Movable radiation shields for the CLEO II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, D.J.; Ward, C.W.; Alexander, J.; Cherwinka, J.; Henderson, S. [Cornell Univ., Ithaca, NY (United States); Cinabro, D. [Harvard University, Cambridge, MA 02138 (United States); Fast, J. [Purdue University, Lafayette, IN 47907 (United States); Morrison, R. [University of California at Santa Barbara, Santa Barbara, CA 93106 (United States); O`Neill, M. [CRPP, Carleton University, Ottawa, Ont. (Canada)

    1998-02-11

    Two movable tungsten radiation shields were installed on the beam pipe during the upgrade of the CLEO II detector, operating at the Cornell electron storage ring (CESR). This upgrade included the installation of a silicon vertex detector (SVX) and the purpose of the shields is to protect the SVX readout electronics from synchrotron radiation produced during injection and non-high-energy physics operation of CESR. Shield motion is controlled remotely by cables, keeping the associated motors and controls outside the detection volume. We discuss the design and performance of the radiation shields and the associated control system. (orig.). 8 refs.

  18. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  19. The silicon vertex detector of the Belle II experiment

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  20. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, Mary Ann [JLAB; Boiarinov, Serguie; Bonneau, Peter R. [JLAB; Elouadrhiri, Latifa [JLAB; Eng, Brian J. [JLAB; Gotra, Yuri N. [JLAB; Kurbatov, Evgeny O. [Moscow State U.; Leffel, Mindy A. [JLAB; Mandal, Saptarshi [JLAB; McMullen, Marc E. [JLAB; Merkin, Mikhail M. [Moscow State U.; Raydo, Benjamin J. [JLAB; Teachey, Robert W, [JLAB; Tucker, Ross J. [Arizona State U.; Ungaro, Maurizio [JLAB; Yegneswaran, Amrit S. [JLAB; Ziegler, Veronique [JLAB

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  1. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universitá di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); Bozek, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); and others

    2016-07-11

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  2. The Belle II silicon vertex detector assembly and mechanics

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported.

  3. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  4. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  5. CDF Run II Silicon Vertex Detector Annealing Study

    CERN Document Server

    Stancari, M; Behari, S; Christian, D; Di Ruzza, B; Jindariani, S; Junk, T R; Mattson, M; Mitra, A; Mondragon, M N; Sukhanov, A

    2013-01-01

    Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron collider delivered 12~fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV to the Collider Detector at Fermilab (CDF). During that time, the CDF silicon vertex detector was subject to radiation doses of up to 12 Mrad. After the end of operations, the silicon detector was annealed for 24 days at $18^{\\circ}$C. In this paper, we present a measurement of the change in the bias currents for a subset of sensors during the annealing period. We also introduce a novel method for monitoring the depletion voltage throughout the annealing period. The observed bias current evolution can be characterized by a falling exponential term with time constant $\\tau_I=17.88\\pm0.36$(stat.)$\\pm0.25$(syst.) days. We observe an average decrease of $(27\\pm3)\\%$ in the depletion voltage, whose evolution can similarly be described by an exponential time constant of $\\tau_V=6.21\\pm0.21$ days. These results are consistent with the Ham...

  6. Performance of the ALEPH upgraded silicon vertex detector

    CERN Document Server

    Creanza, D; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O'Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell'Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P.

    1997-01-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 μm in the τ - φ view and 21 μm in the τ - z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final im...

  7. Performance of the Aleph Upgraded Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Creanza, D.; De Palma, M.; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O`Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.-G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell`Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P. [Bari Univ. (Italy). Dipt. di Fisica]|[INFN, Bari (Italy)]|[European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland)]|[Dipartimento di Fisica, Universita di Firenze, INFN Sezione di Firenze, 50125 Firenze (Italy)]|[Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)]|[Department of Physics, Imperial College, London SW7 2BZ (United Kingdom)]|[Department of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)]|[Centre de Physique des Particules, Faculte des Sciences de Luminy, IN2P3-CNRS, 13288 Marseille (France)]|[Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, 80805 Muenchen (Germany)]|[Dipartimento di Fisica dell`Universita e INFN Sezione di Pisa, 56010 Pisa (Italy)]|[Particle Physics Dept., Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)]|[Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    1997-03-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 {mu}m in the r-{phi} view and 21 {mu}m in the r-z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final impact parameter resolution. A better resolution has been achieved in the next run, when an initial period at the Z peak has been foreseen to calibrate and align the whole detector. (orig.).

  8. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  9. Error handling for the CDF online silicon vertex tracker

    CERN Document Server

    Bari, M; Cerri, A; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2001-01-01

    The online silicon vertex tracker (SVT) is composed of 104 VME 9U digital boards (of eight different types). Since the data output from the SVT (few MB/s) are a small fraction of the input data (200 MB/s), it is extremely difficult to track possible internal errors by using only the output stream. For this reason, several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams, and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named spy buffers, which act as built-in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be frozen at any time (e.g., on error detection) to take a snapshot of all data flowing through each SVT board. The spy buffers are coordinated at system level by the Spy Control Board. The architecture, design, and implementation of this system are described. (4 refs).

  10. TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)

    Energy Technology Data Exchange (ETDEWEB)

    PHENIX EXPERIMENT; OBRIEN,E.; PAK, R.; DREES, K.A.; (PHENIX EXPERIMENT COLLABORATORS)

    2007-08-01

    The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the {upsilon}{prime} and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality.

  11. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  12. The silicon drift vertex detector for the STAR experiment at RHIC

    CERN Document Server

    Pandey, S U; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2002-01-01

    The current status of the STAR Silicon Vertex Tracker (SVT) is presented. The performance of the Silicon Drift Detectors (SDD) is discussed. Results for a recent 15 layer SDD tracker which prototypes all components of the SVT are presented. The enhanced physics capabilities of the STAR detector due to the addition of the SVT are addressed.

  13. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (Scuola Normale Superiore, Pisa (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue Univ., Lafayette, IN (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  14. New Spectroscopy at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoni, M.A.; /INFN, Rome

    2007-04-18

    The Babar experiment at the SLAC B factory has accumulated a high luminosity that offers the possibility of systematic studies of quarkonium spectroscopy and of investigating rare new phenomena. Recent results in this field are presented. In recent times spectroscopy has become exciting again, after the discovery of new states that are not easily explained by conventional models. States such as the X(3872) and the Y(4260) could be new excited charmonium states, but require precise measurements for positive identification. The BaBar experiment [1] is installed at the asymmetric storage ring PEP-II. 90% of the data accumulated by BaBar are taken at the Y(4S) (10.58 GeV) and 10% just below (10.54 GeV). The BaBar detector includes a 5-layer, double-sided silicon vertex tracker and a 40-layer drift chamber in a 1.5 T solenoidal magnetic field, which detect charged particles and measures their momenta and ionization energy losses. Photons, electrons, and neutral hadrons are detected with a CsI(Tl)-crystal electromagnetic calorimeter. An internally reflecting ring-imaging Cherenkov is also used for particle id. Penetrating muon and neutral hadrons are identified by an array of resistive-plate chambers embedded in the steel of the flux return. The detector allows good track and vertex resolution, good particle id and good photon detection so it is especially suited for spectroscopy studies.

  15. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  16. The Silicon Vertex Tracker for the Heavy Photon Search Experiment

    CERN Document Server

    Adrian, Per Hansson

    2015-01-01

    The Heavy Photon Search (HPS) is a new, dedicated experiment at Thomas Jefferson National Accelerator Facility (JLab) to search for a massive vector boson, the heavy photon (a.k.a. dark photon, \\Aprimebold{}), in the mass range 20-500~MeV/c$^{2}$ and with a weak coupling to ordinary matter. An \\Aprimebold{} can be radiated from an incoming electron as it interacts with a charged nucleus in the target, accessing a large open parameter space where the \\Aprimebold{} is relatively long-lived, leading to displaced vertices. HPS searches for these displaced \\Aprimebold{} to e$^+$e$^-$ decays using actively cooled silicon microstrip sensors with fast readout electronics placed immediately downstream of the target and inside a dipole magnet to instrument a large acceptance with a relatively small detector. With typical particle momenta of 0.5-2~GeV/c, the low material budget of 0.7\\% $\\mathbf{X_0}$ per tracking layer is key to limiting the dominant multiple scattering uncertainty and allowing efficient separation of ...

  17. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Science.gov (United States)

    Kang, K. H.; Jeon, H. B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Joo, C. W.; Kandra, J.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor "Origami" method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force.

  18. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M, E-mail: irmler@hephy.oeaw.ac.a [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2010-12-15

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10{sup 35}cm{sup -2}s{sup -1}, which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  19. Study of gluing and wire bonding for the Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hara, K. [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [Kavli IPMU (WPI), The University of Tokyo, Kashiwa no ha 5-1-5, Kashiwa city, Chiba 277 8583 (Japan); Hyun, H.J.; Jeon, H.B. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Joo, C.W. [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Kah, D.H. [CBRN Directorate, Agency for Defense Development, Daejeon 305-600 (Korea, Republic of); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Mibe, T. [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Onuki, Y. [Faculty of Science, The University of Tokyo, Department of Physics, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Park, H., E-mail: sunshine@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400-005 (India); Sato, N. [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimizu, N. [Faculty of Science, The University of Tokyo, Department of Physics, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Tanida, K. [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Tsuboyama, T. [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Uozumi, S. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-11-01

    This paper describes an investigation into gluing and wire bonding for assembling the Silicon Vertex Detector (SVD) for the Belle II experiment at KEK in Japan. Optimizing the gluing of the silicon microstrip sensors, the support frame, and the readout flex cables is important for achieving the required mechanical precision. The wire bonding between the sensors and the readout electronic chips also needs special care to maximize the physics capability of the SVD. The silicon sensors and signal fan out flex circuits (pitch adapters) are glued and connected using wire bonding. We determine that gluing quality is important for achieving good bonding efficiency. The standard deviation in the glue thickness for the best result is measured to be 3.11 μm. Optimal machine parameters for wire bonding are determined to be 70 mW power, 20 gf force, and 20 ms for the pitch adapter and 60 mW power, 20 gf force, and 20 ms for the silicon strip sensors; these parameters provide a pull force of (10.92±0.72) gf. With these settings, 75% of the pitch adapters and 25% of the strip sensors experience the neck-broken type of break.

  20. Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology

    Science.gov (United States)

    Nouicer, R.

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed

  1. Thin pixel development for the SuperB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy); and others

    2011-09-11

    The high luminosity SuperB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10-15{mu}m in both coordinates, low material budget (<1% X0), and able to withstand a background rate of several tens of MHz/cm{sup 2}. The ambitious goal of designing a thin pixel device with these stringent requirements is being pursued with specific R and D programs on different technologies: hybrid pixels, CMOS MAPS and pixel sensors developed with vertical integration technology. The latest results on the various pixel options for the SuperB SVT will be presented.

  2. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    CERN Document Server

    Nomerotski, A; Collins, P; Dumps, R; Greening, E; John, M; Mapelli, A; Leflat, A; Li, Y; Romagnoli, G; Verlaat, B

    2013-01-01

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  3. CVD Diamonds in the BaBar Radiation Monitoring System

    CERN Document Server

    Bruinsma, M; Edwards, A J; Kagan, H; Kass, R; Kirkby, D; Petersen, B A

    2006-01-01

    To prevent excessive radiation damage to its Silicon Vertex Tracker, the BaBar experiment at SLAC uses a radiation monitoring and protection system that triggers a beam abort whenever radiation levels are anomalously high. The existing system, which employs large area Si PIN diodes as radiation sensors, has become increasingly difficult to operate due to radiation damage. We have studied CVD diamond sensors as a potential alternative for these silicon sensors. Two diamond sensors have been routinely used since their installation in the Vertex Tracker in August 2002. The experience with these sensors and a variety of tests in the laboratory have shown CVD diamonds to be a viable solution for dosimetry in high radiation environments. However, our studies have also revealed surprising side-effects.

  4. Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    CERN Document Server

    Dannheim, D; Coldewey, C; Fretwurst, E; Garfagnini, A; Klanner, Robert; Martens, J; Koffeman, E; Tiecke, H G; Carlin, R

    2003-01-01

    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and Co-60 photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV equivalent neutrons / cm^2) are well described by empirical formulae for bulk damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO_2-Si interface, a large shift of the flatband voltage and a decrease of the hol...

  5. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H.; Jeon, H.B. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H., E-mail: sunshine@knu.ac.kr [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Uozumi, S. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); and others

    2016-09-21

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  6. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    Science.gov (United States)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  7. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  8. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  9. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    Science.gov (United States)

    Rihl, M.

    2017-02-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam-gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam-beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam-gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam-gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  10. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    CERN Document Server

    Rihl, M

    2016-01-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam–gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam–beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam–gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam–gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  11. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Onuki, Y. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Smiljic, D. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-08-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO{sub 2} cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii.

  12. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  13. Silicon Vertex Tracker for PHENIX Upgrade at RHIC: Capabilities and Detector Technology

    CERN Document Server

    Nouicer, Rachid

    2008-01-01

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at \\sqrt{s_{NN}} = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 x 10^26 cm^-2 s^-1 for Au+Au, and 2 x 10^32 cm^-2 s^-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon V...

  14. Production of high energy {eta}' in B meson decays from BaBar experiment; Etude de la production de {eta}' de haute impulsion dans les desintegrations du meson B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hicheur, A

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the {upsilon}(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy {eta}' in B decays has been studied through the two main contributions, B{yields} {eta}' X{sub s} coming from the rare decay b {yields} sg*, and B-bar{sup 0} {yields} {eta}'D{sup 0} coming from the internal tree color suppressed decay b {yields} cud. The improvement of the measurement of the process B {yields} {eta}'X-s and the first. observation of the decay B-bar{sup 0} {yields} {eta}'D{sup 0} have led to the conclusion that the {eta}' production is dominated by the decay b {yields} sg* and enables to constrain its quark content. (author)

  15. Measurement of D0 lifetime with the BaBar detector

    Energy Technology Data Exchange (ETDEWEB)

    Simi, Gabriele [Univ. of Pisa (Italy)

    2009-01-01

    This work is the result of the researchers carried out during a three years Ph.D. period in the BABAR experiment. The first chapter consists in an introduction to the theoretical aspects of the D0 meson lifetime determination and CP violation parameters, as well as an overview of the CP violation in the B sector, which is the main topic of the experiment. The description of the experimental apparatus follows with particular attention to the Silicon Vertex Tracker detector, the most critical detector for the determination of decay vertices and thus of lifetimes and time dependent CP violation asymmetries. In the fourth chapter the operation and running of the vertex detector is described, as a result from the experience as Operation Manager of the SVT, with particular attention to the safety of the device and the data quality assurance. The last chapter is dedicated to the determination of the D0 meson lifetime with the BABAR detector, which is the main data analysis carried out by the candidate. The analysis is characterized by the selection of an extremely pure sample of D0 mesons for which the decay flight length and proper time is reconstructed. The description of the unbinned maximum likelihood fit follows, as well as the discussion of the possible sources of systematic uncertainties. In the appendix is also presented a preliminary study of a possible development regarding the determination of mixing and CP violation parameters for the D0 meson.

  16. The first year of the BABAR experiment at PEP-II

    CERN Document Server

    Aubert, Bernard

    2000-01-01

    The BABAR detector, situated at the SLAC PEP-II asymmetric e^+e^- collider, has been recording data at energies on and around the Upsilon(4S) resonance since May 1999. In this paper, we briefly describe the PEP-II B Factory and the BABAR detector. The performance presently achieved by the experiment in the areas of tracking, vertexing, calorimetry and particle identification is reviewed. Analysis concepts that are used in the various papers submitted to this conference are also discussed.

  17. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    Science.gov (United States)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  18. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  19. Vertexing and Tracking Software at LHCb

    CERN Document Server

    Bowen, Espen Eie

    2015-01-01

    The LHCb experiment is a dedicated heavy flavour experiment at the LHC. Its primary goal is to search for indirect evidence of New Physics in CP violation and rare decays of beauty and charm hadrons. The detector includes a high granularity silicon-strip vertex detector, a silicon-strip detector upstream of the magnet and three stations of silicon-strip detectors and straw drift tubes downstream of the magnet. The software used to perform the track reconstruction and primary vertex reconstruction is described in detail along with a discussion of its performance.

  20. Charm mixing from BABAR

    Institute of Scientific and Technical Information of China (English)

    N.Neri

    2008-01-01

    We present recent results from BABAR experiment for D0-D0 mixing measurements. Mixing parameters can be measured in different ways using different D0 decay modes, here we discuss the most sensitive analyses such as DO→K+π- where we had the first evidence of charm mixing, the measurement of the ratio of lifetimes of the decays DO→K+K-and DO→π- relative to D0→K-π+, the time dependent Dalitz plot analysis of D0→K+π-π0.New limits on CP-violating time-integrated asymmetries in D0→K+K- and D0→π+π- are also discussed. The analyses presented are based on 384 fb-1 data collected with the BABAR detector at the PEP-Ⅱ asymmetric B Factory.

  1. Track and Vertex Reconstruction in CMS

    CERN Document Server

    Adam, W

    2006-01-01

    The CMS experiment relies on a Silicon pixel and micro-strip tracker for the reconstruction of tracks and vertices of charged particles in the harsh environment of proton and heavy-ion collisions at the LHC at CERN. An outline of the basic track and vertex reconstruction algorithms used in CMS is given and their performance is described. Results of more advanced algorithms like the Gaussian Sum Filter for electron reconstruction and robust vertex fitters are shown.

  2. Recent BABAR Results

    CERN Document Server

    Eigen, Gerald

    2015-01-01

    We present herein the most recent BABAR results on direct CP asymmetry measurements in B -> Xs gamma, on partial branching fraction and CP asymmetry measurements in B -> Xs l+l-, on a search for B -> pi/eta l+l- decays, on a search for lepton number violation in B -> X-l+l'+ modes and a study of B-> omega omega and B-> omega phi decays.

  3. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  4. Recent BABAR Results

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, Gerald [University of Bergen, Bergen (Norway). Dept. of Physics

    2015-04-29

    We present herein the most recent BABAR results on direct CP asymmetry measurements in B → Xsγ, on partial branching fraction and CP asymmetry measurements in B → Xs+-, on a search for B → π/ηℓ+- decays, on a search for lepton number violation in B+ → X-+ℓ'+ modes and a study of B0 →ωω and B0 → ωφ decays.

  5. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  6. Xic' Production at BABAR

    CERN Document Server

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H; al, et

    2006-01-01

    Using 232 fb-1 of data collected by the BABAR detector, the Xic'+ and Xic'0 baryons are reconstructed through the decays: Xic'+ -> Xic+ gamma and Xic'0 -> Xic0 gamma, where Xic+ -> Xi- pi+ pi+ and Xic0 -> Xi- pi+. By measuring the efficiency-corrected yields in different intervals of the center-of-mass momentum, the production rates from B decays and from the continuum are extracted. For production from B decays, the branching fractions are found to be B(B -> Xic'+ X) x B(Xic+ -> Xi- pi+ pi+) = [ 1.69 +- 0.17 (exp.) +- 0.10 (model) ] x 10^-4 and B(B -> Xic'0 X) x B(Xic0 -> Xi- pi+) = [ 0.67 +- 0.07 (exp.) +- 0.03 (model) ] x 10^-4. For production from the continuum the cross-sections are found to be sigma(e+ e- -> Xic'+ X) x B(Xic+ -> Xi- pi+ pi+) = 141 +- 24 (exp.) +- 19 (model) fb and sigma(e+ e- -> Xic'0 X) x B(Xic0 -> Xi- pi+) = 70 +- 11 (exp.) +- 6 (model) fb. The helicity angle distributions of Xic' decays are studied and found to be consistent with J = 1/2.

  7. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  8. The Orbifold Topological Vertex

    CERN Document Server

    Bryan, Jim; Young, Ben

    2010-01-01

    We define Donaldson-Thomas invariants of Calabi-Yau orbifolds and we develop a topological vertex formalism for computing them. The basic combinatorial object is the orbifold vertex, a generating function for the number of 3D partitions asymptotic to three given 2D partitions and colored by representations of a finite Abelian group G acting on C^3. In the case where G=Z_n acting on C^3 with transverse A_{n-1} quotient singularities, we give an explicit formula for the vertex in terms of Schur functions. We discuss applications of our formalism to the Donaldson-Thomas Crepant Resolution Conjecture and to the orbifold Donaldson-Thomas/Gromov-Witten correspondence. We also explicitly compute the Donaldson-Thomas partition function for some simple orbifold geometries: the local football and the local BZ_2 gerbe.

  9. Cohomological vertex operators

    CERN Document Server

    Viña, Andrés

    2016-01-01

    Given a Calabi-Yau manifold and considering the $B$-branes on it as objects in the derived category of coherent sheaves, we identify the vertex operators for strings between two branes with elements of the cohomology groups of Ext sheaves. We define the correlation functions for these general vertex operators. Strings stretching between two coherent sheaves are studied as homological extensions of the corresponding branes. In this context, we relate strings between different pairs of branes when there are maps between these branes. We also interpret some strings with ghost number $k$ as obstructions for lifts or extensions of strings with ghost number $k-1$.

  10. The ARGUS vertex trigger

    CERN Document Server

    Koch, N; Kolanoski, H; Siegmund, T; Bergter, J; Eckstein, P; Schubert, Klaus R; Waldi, R; Imhof, M; Ressing, D; Weiss, U; Weseler, S

    1995-01-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5\\,mm radius.

  11. DIRC, the Particle Identification System for BABAR

    CERN Document Server

    Schwiening, J; Aleksan, Roy; Aston, D; Benkebil, M; Bernard, D; Bonneaud, G R; Brochard, F; Brown, D N; Bourgeois, P; Chauveau, J; Cohen-Tanugi, J; Convery, M; De Domenico, G; de Lesquen, A; Emery, S; Ferrag, S; Gaidot, A; Geld, T L; Hamel de Monchenault, G; Hast, C; Höcker, A; Kadel, R W; Kadyk, J A; Lacker, H M; London, G W; Lu, A; Lutz, A M; Lynch, G; Mancinelli, G; Martínez-Vidal, F; Mayer, N; Meadows, B T; Müller, D; Plaszczynski, S; Pripstein, M; Ratcliff, B N; Roos, L; Roussot, E; Schune, M H; Shelkov, V; Sokoloff, M D; Spanier, S M; Stark, J; Telnov, A V; Thiebaux, C; Vasileiadis, G; Vasseur, G; Vavra, J; Verderi, M; Wenzel, W A; Wilson, R J; Wormser, G; Yéche, C; Yellin, S; Zito, M; Schwiening, Jochen

    2001-01-01

    The DIRC, a novel type of Cherenkov ring imaging device, is the primary hadronic particle identification system for the BABAR detector at the asymmetric B-factory, PEP-II at SLAC. BABAR began taking data with colliding beams mode in late spring 1999. This paper describes the performance of the DIRC during the first 16 months of operation.

  12. Radiation damage in the LHCb Vertex Locator

    OpenAIRE

    Affolder, A; Akiba, K.; Alexander, M.; Ali, S.; Artuso, M.; Benton, J.; van Beuzekom, M.; Bjørnstad, P M; Bogdanova, G; Borghi, S.; Bowcock, T. J. V.; Brown, H.; Buytaert, J.; Casse, G.; Collins, P.

    2013-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately $\\rm{45 \\times 10^{12}\\,1\\,MeV}$ neutron equivalent ($\\rm{1\\,MeV\\,n_{eq}}$). At the operational sensor temperature of approximately $-7\\,^{\\circ}\\rm{C}$, the average rate of sensor cu...

  13. BABAR

    DEFF Research Database (Denmark)

    Andersson, Per; Köpsén, Susanne; Gross, Marin

    This report presents the results from a comparative study of the qualification of adult educators in the Nordic-Baltic region. The study involved Denmark, Estonia and Sweden. The rationale behind the study is a growing interest in adult education resulting from a focus on lifelong learning in the...

  14. Adaptive Vertex Fitting

    CERN Document Server

    Frühwirth, R; Vanlaer, Pascal

    2007-01-01

    Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns out to perform well in a wide range of applications. The tuning of the annealing schedule and of the cut-off parameter is described, using simulated data from the CMS experiment. Finally, the adaptive property of the method is illustrated in two examples.

  15. EMC studies for the vertex detector of the Belle II experiment

    Science.gov (United States)

    Thalmeier, R.; Iglesias, M.; Arteche, F.; Echeverria, I.; Friedl, M.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Cervenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnicka, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Moser, H. G.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Rummel, S.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-01-01

    The upgrade of the Belle II experiment plans to use a vertex detector based on two different technologies, DEPFET pixel (PXD) technology and double side silicon microstrip (SVD) technology. The vertex electronics are characterized by the topology of SVD bias that forces to design a sophisticated grounding because of the floating power scheme. The complex topology of the PXD power cable bundle may introduce some noise inside the vertex area. This paper presents a general overview of the EMC issues present in the vertex system, based on EMC tests on an SVD prototype and a study of noise propagation in the PXD cable bundle based on Multi-conductor transmission line theory.

  16. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  17. First Results from the LHCb Vertex Locator

    CERN Multimedia

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The VELO is the silicon detector surrounding the interaction point, and is the closest LHC vertex detector to the interaction point, located only 7 mm from the LHC beam during normal operation. The detector will operate in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 micron thick half disc sensors with R-measuring and Phi-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with one n-on-p module. The detectors are operated in vacuum and a...

  18. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  19. The design and performance of the ZEUS micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Polini, A. [Bologna Univ. (Italy)]|[INFN Bologna (Italy); Brock, I.; Goers, S. [Bonn Univ. (DE). Physikalisches Institut] (and others)

    2007-08-15

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m{sup 2} of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  20. The STAR Vertex Position Detector

    CERN Document Server

    Llope, W J; Nussbaum, T; Hoffmann, G W; Asselta, K; Brandenburg, J D; Butterworth, J; Camarda, T; Christie, W; Crawford, H J; Dong, X; Engelage, J; Eppley, G; Geurts, F; Hammond, J; Judd, E; McDonald, D L; Perkins, C; Ruan, L; Scheblein, J; Schambach, J J; Soja, R; Xin, K; Yang, C

    2014-01-01

    The 2x3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2x19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  1. Some finite properties for vertex operator superalgebras

    OpenAIRE

    Dong, Chongying; Han, Jianzhi

    2011-01-01

    Vertex operator superalgebras are studied and various results on rational Vertex operator superalgebras are obtained. In particular, the vertex operator super subalgebras generated by the weight 1/2 and weight 1 subspaces are determined. It is also established that if the even part $V_{\\bar 0}$ of a vertex operator superalgebra $V$ is rational, so is $V.$

  2. The weighted vertex PI index

    CERN Document Server

    c, Aleksandar Ili\\'

    2011-01-01

    The vertex PI index is a distance--based molecular structure descriptor, that recently found numerous chemical applications. In order to increase diversity of this topological index for bipartite graphs, we introduce weighted version defined as $PI_w (G) = \\sum_{e = uv \\in E} (deg (u) + deg (v)) (n_u (e) + n_v (e))$, where $deg (u)$ denotes the vertex degree of $u$ and $n_u (e)$ denotes the number of vertices of $G$ whose distance to the vertex $u$ is smaller than the distance to the vertex $v$. We establish basic properties of $PI_w (G)$, and prove various lower and upper bounds. In particular, the path $P_n$ has minimal, while the complete tripartite graph $K_{n/3, n/3, n/3}$ has maximal weighed vertex $PI$ index among graphs with $n$ vertices. We also compute exact expressions for the weighted vertex PI index of the Cartesian product of graphs. Finally we present modifications of two inequalities and open new perspectives for the future research.

  3. Vertex detectors: The state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C.J.S. [Rutherford Appleton Laboratory, Didcot (United Kingdom)

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.

  4. Collins fragmentation function measurements at BABAR

    Science.gov (United States)

    Brown, David Norvil

    2016-05-01

    We present the results of the measurement of Collins asymmetries in electron-positron annihilation events with the BABAR detector in the process e+e- → h1h2X, for charged hadrons where h1h2 = KK, Kπ, or ππ. Using 468 fb-1 of data collected by BABAR at the SLAC PEP-II B factory, we observe distinct azimuthal asymmetries for hadrons in opposite thrust hemispheres of events, with the asymmetries increasing in proportion to the hadron energies. We find Kπ asymmetries similar to those for ππ pairs, with the high-energy KK asymmetries generally larger.

  5. The upgrade of the LHCb Vertex Locator

    CERN Document Server

    Bird, T

    2014-01-01

    The LHCb experiment is set for a significant upgrade, which will be ready for Run~3 of the LHC in 2020. This upgrade will allow LHCb to run at a significantly higher instantaneous luminosity and collect an integrated luminosity of $50\\,\\text{fb}^{-1}$ by the end of Run~4. In this process the Vertex locator (VELO) detector will be upgraded to a pixel-based silicon detector. The upgraded VELO will improve upon the current detector by being closer to the beam and having lower material modules with microchannel cooling and a thinner RF-foil. Simulations have shown that it will maintain its excellent performance, even after the radiation damage caused by collecting an integrated luminosity of $50\\,\\text{fb}^{-1}$.

  6. Measurement of the angle alpha at BABAR

    CERN Document Server

    Pérez, A

    2009-01-01

    We present recent measurements of the CKM angle alpha using data collected by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory, operating at the Upsilon(4S) resonance. We present constraints on alpha from B->pipi, B->rhorho and B->rhopi decays.

  7. Recent results on semileptonic decays at BABAR

    Science.gov (United States)

    Serrano, J.; Babar Collaboration

    2009-01-01

    Some recent BABAR results on semileptonic decays are presented. They focus on the determination of the CKM matrix elements |V| and |V| in inclusive and exclusive b→uℓν and b→cℓν decays, and on form factors measurement in exclusive c→sℓν decays.

  8. Radiation damage in the LHCb Vertex Locator

    CERN Document Server

    Affolder, A; Alexander, M; Ali, S; Artuso, M; Benton, J; van Beuzekom, M; Bjørnstad, P M; Bogdanova, G; Borghi, S; Bowcock, T J V; Brown, H; Buytaert, J; Casse, G; Collins, P; De Capua, S; Dossett, D; Eklund, L; Farinelli, C; Garofoli, J; Gersabeck, M; Gershon, T; Gordon, H; Harrison, J; Heijne, V; Hennessy, K; Hutchcroft, D; Jans, E; John, M; Ketel, T; Lafferty, G; Latham, T; Leflat, A; Liles, M; Moran, D; Mous, I; Oblakowska-Mucha, A; Parkes, C; Patel, G D; Redford, S; Reid, M M; Rinnert, K; Rodrigues, E; Schiller, M; Szumlak, T; Thomas, C; Velthuis, J; Volkov, V; Webber, A D; Whitehead, M; Zverev, E

    2013-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately $\\rm{45 \\times 10^{12}\\,1\\,MeV}$ neutron equivalent ($\\rm{1\\,MeV\\,n_{eq}}$). At the operational sensor temperature of approximately $-7\\,^{\\circ}\\rm{C}$, the average rate of sensor current increase is 18$\\mu$ A per $\\rm{fb^{-1}}$, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of $E_{g}=1.16\\pm0.03\\pm0.04\\,\\rm{eV}$ obtained. The first observation of n-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around $15 \\times 10 ^{12}$ of $1\\,\\rm{MeV\\,n_{eq}}$. The only n-on-p sensors in use at the LHC have also been studied. With an initial fluence of ap...

  9. Hadron Physics in BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lafferty, G.D.; /Manchester U.

    2005-08-29

    Some recent results in hadron physics from the BaBar experiment are discussed. In particular, the observation of two new charmed states, the D*{sub sJ}{sup +}(2317) and the D*{sub sJ}{sup +}(2457), is described, and results are presented on the first measurement of the rare decay mode of the B meson, B{sup 0} {pi}{sup 0}{pi}{sup 0}.

  10. Semileptonic and Electroweak Penguin Results from BABAR

    CERN Document Server

    Walsh, J; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Feltresi, E; Hauke, A; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di, E; Marco; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De, N; De Groot, J G H; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Graziani, G; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S; Thompson, J M; Vavra, J; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, Patricia R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della, G; Ricca; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Martínez-Vidal, F; Panvini, R S; Banerjee, S; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Pan, Y; Prepost, R; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H; Walsh, John

    2005-01-01

    We report recent results from the BABAR experiment on semileptonic charmless B-meson decays and electroweak penguin processes. Semileptonic charmless decays are used to determine |Vub| and the exclusive modes considered here also begin to constrain QCD-lattice form factor calculations. Radiative penguin decays are both sensitive to physics beyond the Standard Model and can be used to extract Heavy Quark parameters related to the b-quark mass and its motion inside the hadron.

  11. Measurement of the angle alpha at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; /Orsay, LAL

    2009-06-25

    The authors present recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory, operating at the {Upsilon}(4S) resonance. They present constraints on {alpha} from B {yields} {pi}{pi}, B {yields} {rho}{rho} and B {yields} {rho}{pi} decays.

  12. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  13. OPAL Central Detector (Including vertex, jet and Z chambers)

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the different parts of the tracking system. (This piece includes the vertex, jet and Z chambers) In the picture above, the central detector is the piece being removed to the right.

  14. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    Buchanan, Emma

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  15. Electronics cooling of Phenix multiplicity and vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed.

  16. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    Science.gov (United States)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  17. Spinfoam Cosmology with the Proper Vertex

    Science.gov (United States)

    Vilensky, Ilya

    2017-01-01

    A modification of the EPRL vertex amplitude in the spin-foam framework of quantum gravity - so-called ``proper vertex amplitude'' - has been developed to enable correct semi-classical behavior to conform to the classical Regge calculus. The proper vertex amplitude is defined by projecting to the single gravitational sector. The amplitude is recast into an exponentiated form and we derive the asymptotic form of the projector part of the action. This enables us to study the asymptotics of the proper vertex by applying extended stationary phase methods. We use the proper vertex amplitude to investigate transition amplitudes between coherent quantum boundary states of cosmological geometries. In particular, Hartle-Hawking no-boundary states are computed in the proper vertex framework. We confirm that in the classical limit the Hartle-Hawking wavefunction satisfies the Hamiltonian constraint. Partly supported by NSF grants PHY-1205968 and PHY-1505490.

  18. Status of the LHCb VErtex LOcator

    CERN Document Server

    Palacios, J P

    2003-01-01

    LHCb is a single arm spectrometer at the LHC. It is dedicated to the study of CP violation in the B-hadron system. The VErtex LOcator (VELO) is a silicon microstrip detector providing accurate measurements of event primary and secondary vertices, impact parameters, and tracks. The second level trigger decision of LHCb is mainly based on information from a full readout of the VELO. This document gives a general introduction to LHCb as a context for a more extensive description of the VELO. The VELO design emphasises the need for precise reconstruction of tracks down to momenta of a few GeV. The VELO operates inside the LHC beam-pipe, and the sensors, the hybrids, and the foil separating the primary and secondary vacuua must be built with the minimum possible material. The R-$\\phi$ strip layout is optimised for efficient trigger operation and precise measurements at the smallest radii. The performance must be maintained in the harsh radiation environment close to the LHC beams. These issues have led to a choice...

  19. Performance of the LHCb Vertex Locator

    CERN Document Server

    Aaij, R; Akiba, K; Alexander, M; Ali, S; Appleby, R B; Artuso, M; Bates, A; Bay, A; Behrendt, O; Benton, J; van Beuzekom, M; Bjornstad, P M; Bogdanova, G; Borghi, S; Borgia, A; Bowcock, T J V; van den Brand, J; Brown, H; Buytaert, J; Callot, O; Carroll, J; Casse, G; Collins, P; De Capua, S; Doets, M; Donleavy, S; Dossett, D; Dumps, R; Eckstein, D; Eklund, L; Farinelli, C; Farry, S; Ferro-Luzzi, M; Frei, R; Garofoli, J; Gersabeck, M; Gershon, T; Gong, A; Gong, H; Gordon, H; Haefeli, G; Harrison, J; Heijne, V; Hennessy, K; Hulsbergen, W; Huse, T; Hutchcroft, D; Jaeger, A; Jalocha, P; Jans, E; John, M; Keaveney, J; Ketel, T; Korolev, M; Kraan, M; Lastovicka, T; Lafferty, G; Latham, T; Lefeuvre, G; Leflat, A; Liles, M; van Lysebetten, A; MacGregor, G; Marinho, F; McNulty, R; Merkin, M; Moran, D; Mountain, R; Mous, I; Mylroie-Smith, J; Needham, M; Nikitin, N; Noor, A; Oblakowska-Mucha, A; Papadelis, A; Pappagallo, M; Parkes, C; Patel, G D; Rakotomiaramanana, B; Redford, S; Reid, M; Rinnert, K; Rodrigues, E; Saavedra, A F; Schiller, M; Schneider, O; Shears, T; Silva Coutinho, R; Smith, N A; Szumlak, T; Thomas, C; van Tilburg, J; Tobin, M; Velthuis, J; Verlaat, B; Viret, S; Volkov, V; Wallace, C; Wang, J; Webber, A; Whitehead, M; Zverev, E

    2014-01-01

    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means ...

  20. The vacuum system of the LHCb vertex detector

    CERN Document Server

    Van den Brand, J F J; Kraan, M G; Klous, S; Kaan, A P

    2002-01-01

    An overview of the design of the vertex detector of the LHCb experiment in the future Large Hadron Collider at CERN will be given. The application of silicon detectors close to the beam implies the isolation of the materials with a high desorption rate from the accelerator vacuum. The aluminium containment has a complicated shape and a thickness of 250 mu m in order to minimize the multiple scattering. Alignment, safety and precision problems have been solved in the design and are being tested. (1 refs).

  1. Monitoring the Stability of the ALEPH Vertex Detector

    CERN Document Server

    Sguazzoni, G; De Palma, M; Maggi, G; Raso, G; Selvaggi, G; Silvestris, L; Tempesta, P; Burns, M; Frank, M; Maley, P; Morel, M; Wagner, A; Focardi, E; Parrini, G; Scarlini, E; Halley, A W; O'Shea, V; Raine, C; Barber, G J; Cameron, W; Dornan, Peter J; Gentry, D; Moutoussi, A; Nash, J; Price, D; Stacey, A M; Toudup, L W; Williams, M I; Billault, M; Blanc, P E; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Curtil, C; Destelle, J J; Diaconu, C A; Fouchez, D; Karst, P; Payre, P; Rousseau, D; Thulasidas, M; Dietl, H; Ganis, G; Moser, H G; Settles, Ronald; Seywerd, H C J; Waltermann, G; Bosi, F; Bozzi, C; Dell'Orso, R; Profeti, A; Rizzo, G; Verdini, P G; Bizzell, J P; Thompson, J C; Black, S; Dann, J H; Kim, H Y; Konstantinidis, N P; Taylor, G; Bosisio, L; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Walsh, J

    1999-01-01

    The ALEPH Silicon Vertex Detector features an optical fibre laser system to monitor its mechanical stability. The operating principle and the general performance of the laser system are described. The experience obtained during 1997 and 1998 operations confirms the important role that such a system can have with respect to the detector alignment requirements. In particular, the laser system has been used to monitor short-term temperature-related effects and long-term movements. These results and a description of the laser-based alignment correction applied to the 1998 data are presented.

  2. Monitoring the stability of the ALEPH vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Sguazzoni, G.; Creanza, D.; De Palma, M.; Maggi, G.; Raso, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Burns, M.; Frank, M.; Maley, P.D.; Morel, M.; Wagner, A.; Focardi, E.; Parrini, G.; Scarlini, E.; Halley, A.; O' Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Blanc, P.E.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Curtil, C.; Destelle, J.J.; Diaconu, C.; Fouchez, D.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Ganis, G.; Moser, H.G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bosi, F.; Bozzi, C.; Dell' Orso, R.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Bizzell, J.P.; Thompson, J.C.; Black, S.; Dann, J.; Kim, H.Y.; Konstantinidis, N.; Taylor, G.; Bosisio, L.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.; Elmer, P.; Walsh, J

    1999-08-01

    The ALEPH Silicon Vertex Detector features an optical fibre laser system to monitor its mechanical stability. The operating principle and the general performance of the laser system are described. The experience obtained during 1997 and 1998 operations confirms the important role that such a system can have with respect to the detector alignment requirements. In particular, the laser system has been used to monitor short-term temperature-related effects and long-term movements. These results and a description of the laser-based alignment correction applied to the 1998 data are presented.

  3. B Counting at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Grant Duncan

    2008-12-16

    In this thesis we examine the method of counting B{bar B} events produced in the BABAR experiment. The original method was proposed in 2000, but improvements to track reconstruction and our understanding of the detector since that date make it appropriate to revisit the B Counting method. We propose a new set of cuts designed to minimize the sensitivity to time-varying backgrounds. We find the new method counts B{bar B} events with an associated systematic uncertainty of {+-} 0.6%.

  4. CP Violation at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Christophe; /DSM, DAPNIA, Saclay

    2011-11-15

    We report recent measurements of the three CKM angles of the Unitarity Triangle using about 383 millions b{bar b} pairs collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The results of the angles ({beta}, {alpha}, {gamma}) of the unitarity triangle are consistent with Belle results, and with other CKM constraints such as the measurement of {epsilon}{sub K}, the length of the sides of the unitarity triangle determined from the measurements of {Delta}m{sub d}, {Delta}m{sub s}, |V{sub ub}|. This is an impressive confirmation of Standard Model in quark-flavor sector.

  5. Search for Muonic Dark Forces at BABAR

    CERN Document Server

    Godang, Romulus

    2016-01-01

    Many models of physics beyond Standard Model predict the existence of light Higgs states, dark photons, and new gauge bosons mediating interactions between dark sectors and the Standard Model. Using a full data sample collected with the BABAR detector at the PEP-II $e^+e^-$ collider, we report searches for a light non-Standard Model Higgs boson, dark photon, and a new muonic dark force mediated by a gauge boson ($Z'$) coupling only to the second and third lepton families. Our results significantly improve upon the current bounds and further constrain the remaining region of the allowed parameter space.

  6. Bottomonium Results from BABAR and BELLE

    OpenAIRE

    Marks, Joerg; Collaboration, for the BABAR

    2009-01-01

    After nine years of operation the BABAR experiment at the B factory PEPII (Standford Linear Accelerator Center) stopped data taking in April 2008. The last three month of data taking were devoted to e+e- collisions at center of mass energies of the Upsilon(2S), Upsilon(3S) and to an energy scan above the Upsilon(4S). Besides the observation of the bottomonium ground state eta_b, the center of mass energy dependent e+e- -> b bbar cross section was measured in the energy range from 10.54 to 11....

  7. The BABAR detector: Upgrades, operation and performance

    OpenAIRE

    Barate, R.; Boutigny, D.; Couderc, F; Sanchez, PDA; Gaillard, J-M; Hicheur, A.; Karyotakis, Y; Lees, JP; Poireau, V.; Prudent, X.; Wogsland, BJ; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.

    2013-01-01

    This article is the Preprint version of the final published article which can be accessed at the link below. The BaBar detector operated successfully at the PEP-II asymmetric e+e− collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking. This work has b...

  8. CLIC vertex detector R&D

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2015-01-01

    A vertex-detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a chal- lenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an over- view of recent R&D achievements in the domains of sensor, readout, powering and cooling.

  9. CLIC vertex detector R&D

    Science.gov (United States)

    Alipour Tehrani, Niloufar

    2016-07-01

    A vertex detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a challenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensor, readout, powering and cooling.

  10. Charm and Charmonium Spectroscopy in BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Negrini, M.; /Ferrara U.

    2008-02-06

    The BABAR experiment at the PEP-II B-factory offers excellent opportunities in charm and charmonium spectroscopy. The recent observation of new states in the D{sub s} and in the charmonium mass regions revived the interest in this field. Recent BABAR results are presented.

  11. Two- and Three-Body Charmless B Decays at BABAR

    OpenAIRE

    Stracka, Simone; Collaboration, for the BABAR

    2009-01-01

    We report recent measurements of rare charmless B decays performed by BaBar. The results are based on the final BaBar dataset of 424 fb^{-1} collected at the PEP-II $B$-factory based at the SLAC National Accelerator Laboratory.

  12. A new construction for vertex decomposable graphs

    Directory of Open Access Journals (Sweden)

    Nasser Hajisharifi

    2016-09-01

    Full Text Available Let G be a finite simple graph on the vertex set V(G and let S⊆V(G. Adding a whisker to G at x means adding a new vertex y and edge xy to G where x∈V(G. The graph G∪W(S is obtained from G by adding a whisker to every vertex of S. We prove that if G∖S is either a graph with no chordless cycle of length other than 3 or 5, chordal graph or C5, then G∪W(S is a vertex decomposable graph.

  13. New vertex reconstruction algorithms for CMS

    CERN Document Server

    Frühwirth, R; Prokofiev, Kirill; Speer, T.; Vanlaer, P.; Chabanat, E.; Estre, N.

    2003-01-01

    The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding'') and a statistical problem (``vertex fitting''). We briefly review classical methods. We introduce novel approaches and motivate them in the framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels

  14. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  15. Search For New Physics at BABAR*

    Directory of Open Access Journals (Sweden)

    Godang Romulus

    2013-05-01

    Full Text Available Using a full BABAR data sample of 426 fb−1, we present improved measurements of the ratio ℛ(D(∗ = ℬ(B̅ → D(∗τ−ν̅τ/ ℬ(B̅ → D(∗ℓℓ−ν̅ℓ, where ℓ is either electron or muon. We measure ℛ(D = 0.440±0.058±0.042 and ℛ(D∗ = 0.332±0.024±0.018. These ratios exceed the Standard Model predictions by 2:0σ and 2:7σ, respectively. The results disagree with the Standard Model predictions at the level of 3:4σ. The ratios are sensitive to new physics contributions in the form of a charged Higgs boson. However, the access cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  16. Inclusive Semileptonic B Decays at BABAR

    Science.gov (United States)

    Langenegger, U.

    2002-04-01

    We present measurements of the inclusive semileptonic branching fractions of charged and neutral B mesons using 20.6 fb-1 of data measured at the Upsilon(4S) with the BABAR detector. Events are tagged with a fully reconstructed hadronic decay of a B meson. The correlation between the flavor of the tag B meson and the electron charge allows the separation of prompt semileptonic B decays and cascade semileptonic charm decays. We obtain the preliminary inclusive semileptonic branching fraction of charged B mesons b+ = 0.103 plus or minus 0.006 plus or minus 0.005, neutral B mesons bo = 0.104 plus or minus 0.008 plus or minus 0.005, their average b = 0.104 plus or minus 0.005 plus or minus 0.004, and their ratio b+/bo = 0.99 plus or minus 0.10 plus or minus 0.03.

  17. Inclusive Semileptonic B Decays at BABAR

    CERN Document Server

    Langenegger, U

    2001-01-01

    We present measurements of the inclusive semileptonic branching fractions of charged and neutral B mesons using 20.6 fb-1 of data measured at the Upsilon(4S) with the BABAR detector. Events are tagged with a fully reconstructed hadronic decay of a B meson. The correlation between the flavor of the tag B meson and the electron charge allows the separation of prompt semileptonic B decays and cascade semileptonic charm decays. We obtain the preliminary inclusive semileptonic branching fraction of charged B mesons b+ = 0.103+/-0.006+/-0.005, neutral B mesons b0 = 0.104+/-0.008+/-0.005, their average b = 0.104+/-0.005+/-0.004, and their ratio b+/b0 = 0.99+/-0.10+/-0.03.

  18. Studies of CP Violation at BABAR

    Science.gov (United States)

    Ryd, Anders

    2001-04-01

    BABAR has studied the time-dependent asymmetries in the decays B 0→J/ψK S0 and B 0→ψ(2S)K S0 in a data set of 9.0 fb-1 taken at the ϒ(4S) resonance. In these channels we reconstruct 168 events of which 120 are flavor tagged and used in a likelihood fit where we determine sin 2 β. The flavor of the other neutral B mesons is tagged using information primarily from identified leptons and Kaons. A neural network is used to recover events without any clear Kaon or lepton signature. A preliminary result of sin 2 β=0.12±0.37±0.09 is obtained.

  19. Bottomonium Results from BABAR and BELLE

    CERN Document Server

    Marks, Joerg

    2009-01-01

    After nine years of operation the BABAR experiment at the B factory PEPII (Standford Linear Accelerator Center) stopped data taking in April 2008. The last three month of data taking were devoted to e+e- collisions at center of mass energies of the Upsilon(2S), Upsilon(3S) and to an energy scan above the Upsilon(4S). Besides the observation of the bottomonium ground state eta_b, the center of mass energy dependent e+e- -> b bbar cross section was measured in the energy range from 10.54 to 11.20 GeV. BELLE observed an enhancement in the production cross section for e+e- -> Upsilon(nS) pi+ pi- -> mu+ mu- pi+ pi- in an energy scan from 10.83 to 11.02 GeV.

  20. Light Higgs And Dark Photon Searches at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez Perez, Alejandro [INFN, Pisa (Italy)

    2015-02-06

    Several new-physics (NP) models predict the existence of low-mass Higgs states and light dark matter candidates. Previous BABAR searches have given null results for these new states and have excluded large regions of the NP models parameter space. We report on new searches on light Higgs and light dark matter at BABAR using the 516 fb-1 of data collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory

  1. The DELPHI silicon tracker

    CERN Document Server

    Pernegger, H

    1997-01-01

    The DELPHI collaboration has upgraded the Silicon Vertex Detector in order to cope with the physics requirements for LEP200. The new detector consists of a barrel section with three layers of microstrip detectors and a forward extension made of hybrid pixel and large pitch strip detectors. The layout of the detector and the techniques used for the different parts of the new silicon detector shall be described.

  2. Vertex finding with deformable templates at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, N. [European Organization for Nuclear Research, Geneva (Switzerland); Khanov, A. [European Organization for Nuclear Research, Geneva (Switzerland)

    1997-04-11

    We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, ``elastic hedgehogs`` rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance. (orig.).

  3. Recursively arbitrarily vertex-decomposable suns

    Directory of Open Access Journals (Sweden)

    Olivier Baudon

    2011-01-01

    Full Text Available A graph \\(G = (V,E\\ is arbitrarily vertex decomposable if for any sequence \\(\\tau\\ of positive integers adding up to \\(|V|\\, there is a sequence of vertex-disjoint subsets of \\(V\\ whose orders are given by \\(\\tau\\, and which induce connected graphs. The aim of this paper is to study the recursive version of this problem on a special class of graphs called suns. This paper is a complement of [O. Baudon, F. Gilbert, M. Woźniak, Recursively arbitrarily vertex-decomposable graphs, research report, 2010].

  4. DEPFET Vertex Detectors: Status and Plans

    CERN Document Server

    Simon, Frank

    2010-01-01

    DEPFET active pixel sensors are a well-developed technology for vertex detectors at future colliders. Extensive test beam campaigns have proven the excellent performance of these devices, and their radiation hardness has been thoroughly tested. For the Belle-II experiment at the SuperKEKB collider, a new vertex detector based on DEPFET technology is being developed, using sensors thinned down to 75 \\mu m. We give an overview over recent results with test devices using ILC pixel geometries as well as the concepts and challenges for the Belle-II pixel vertex tracker and discuss how the R&D for the ILC VXD can take advantage of these developments.

  5. Results on Charmonium-like States at BaBar

    OpenAIRE

    Santoro, Valentina; Collaboration, for the BABAR

    2012-01-01

    We present recent results on charmonium and charmonium-like states from the BaBar B-factory located at the PEP-II asymmetric energy $e^{+}e^{-}$ storage ring at the SLAC National Accelerator Laboratory.

  6. Vertex-antimagic Labelings of Regular Graphs

    Institute of Scientific and Technical Information of China (English)

    Ali AHMAD; Kashif ALI; Martin BA(C)A; Petr KOV(A)(R); Andrea SEMANI(C)OV(A)-FE(N)OV(C)(I)KOV(A)

    2012-01-01

    Let G =(V,E) be a finite,simple and undirected graph with p vertices and q edges.An (a,d)-vertex-antimagic total labeling of G is a bijection f from V(G).∪E(G) onto the set of consecutive integers 1,2,...,p + q,such that the vertex-weights form an arithmetic progression with the initial term a and difference d,where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x.Such labeling is called super if the smallest possible labels appear on the vertices.In this paper,we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0,1,...,r + 1.

  7. The Perfect Quark-Gluon Vertex Function

    CERN Document Server

    Orginos, K; Brower, Richard C; Chandrasekharan, S; Wiese, U J

    1998-01-01

    We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.

  8. Spinfoam cosmology with the proper vertex amplitude

    CERN Document Server

    Vilensky, Ilya

    2016-01-01

    The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.

  9. Recursively arbitrarily vertex-decomposable graphs

    Directory of Open Access Journals (Sweden)

    Olivier Baudon

    2012-01-01

    Full Text Available A graph \\(G = (V;E\\ is arbitrarily vertex decomposable if for any sequence \\(\\tau\\ of positive integers adding up to \\(|V|\\, there is a sequence of vertex-disjoint subsets of \\(V\\ whose orders are given by \\(\\tau\\, and which induce connected graphs. The main aim of this paper is to study the recursive version of this problem. We present a solution for trees, suns, and partially for a class of 2-connected graphs called balloons.

  10. BABAR IFR Replacement R and D

    CERN Document Server

    Berry, M

    2003-01-01

    The Instrumented Flux Return (IFR) of the BaBar detector will soon need to be replaced by a more robust muon detection system. Scintillator bars with embedded Wavelength Shifting (WLS) fibers and Limited Streamer Tubes are two replacement technology options. The scintillator bars are tested for attenuation length; and causes for the large width of the Photo Multiplier Tube (PMT) signal are analyzed by Monte Carlo simulation. Cooling techniques for Avalanche Photo Diodes (APD) are investigated. The fairly high attenuation length coupled with the narrow PMT signal make the scintillator a viable option for a muon detecting system. Continuing work will focus on increasing timing resolution using an APD to read the signal from the WLS fibers, and investigating the lifetime of the APD. The ability to read a signal from the LST on external copper strips is tested and signals are found to be clearly distinguishable from noise. The voltage is compared to count rate to find that the optimal operating voltage for the LS...

  11. First CP Violation Results from BABAR

    CERN Document Server

    Hitlin, D G

    2000-01-01

    We present a preliminary measurement of time-dependent CP-violating asymmetries in B^0-->J/psi K_S and B^0-->psi(2S) K_S decays recorded by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. The data sample consists of 9.0 fb-1 collected at the Upsilon(4S) resonance and 0.8 fb-1 off-resonance. One of the neutral B mesons, produced in pairs at the Upsilon(4S), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The time difference between the decays is determined by measuring the distance between the decay vertices. Wrong-tag probabilities and the time resolution function are measured with samples of fully-reconstructed semileptonic and hadronic neutral B final states. The value of the asymmetry amplitude, sin(2*beta), is determined from a maximum likelihood fit to the time distribution of 120 tagged B^0-->J/psi K_S and B^0-->psi(2S) K_S candidates: sin(2*beta) = 0.12+/-0.37(stat)+/-0.09(syst).

  12. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Baracchini, Elisabetta; /Rome U. /INFN, Rome

    2011-11-10

    We will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)}{nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be paid in order to perform a model independent analysis. A B-Factory provides an unique environment to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  13. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Monorchio, Diego; /INFN, Naples /Naples U.

    2011-09-13

    The authors will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)} {nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be payed in order to perform a model independent analysis. A B-Factory provides an unique environment where to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  14. First results with prototype ISIS devices for ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C., E-mail: c.damerell@rl.ac.u [RAL, Oxon OX11 0QX (United Kingdom); Zhang, Z. [RAL, Oxon OX11 0QX (United Kingdom); Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A. [Oxford U (United Kingdom); Holland, A.; Seabroke, G. [Centre for Electronic Imaging, Open U (United Kingdom); Havranek, M. [Czech Technical University in Prague (Czech Republic); Stefanov, K. [Sentec Ltd, Cambridge (United Kingdom); Kar-Roy, A. [Jazz Semiconductors, California (United States); Bell, R.; Burt, D.; Pool, P. [e2V Technologies, Chelmsford (United Kingdom)

    2010-12-11

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 {mu}m square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 {mu}m imaging CMOS process, instead of a conventional CCD process.

  15. The FIRST experiment: interaction region and MAPS vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Spiriti, E. [INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); De Napoli, M.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy)

    2011-06-15

    The improvement of the precision of the measurement of the nuclear cross-section, in order to fulfill the requirements of the actual Monte Carlo simulations for hadrontherapy and space radioprotection, is the main goal of the FIRST experiment. After a brief introduction on the treatment planning in hadrontherapy, this paper describes main characteristics and components of the experiment. The features of the interaction region detectors and their main needs (low material budget, high angular coverage, two tracks resolution and large trigger rate) are discussed. Special emphasis is devoted in discussing the new silicon pixel vertex detector, in particular its new developed data acquisition and its characterization with the first test results obtained with a prototype of the detector.

  16. The FIRST experiment: interaction region and MAPS vertex detector

    Science.gov (United States)

    Spiriti, E.; de Napoli, M.; Romano, F.; FIRST Collaboration

    2011-06-01

    The improvement of the precision of the measurement of the nuclear cross-section, in order to fulfill the requirements of the actual Monte Carlo simulations for hadrontherapy and space radioprotection, is the main goal of the FIRST experiment. After a brief introduction on the treatment planning in hadrontherapy, this paper describes main characteristics and components of the experiment. The features of the interaction region detectors and their main needs (low material budget, high angular coverage, two tracks resolution and large trigger rate) are discussed. Special emphasis is devoted in discussing the new silicon pixel vertex detector, in particular its new developed data acquisition and its characterization with the first test results obtained with a prototype of the detector.

  17. Vertex stability and topological transitions in vertex models of foams and epithelia

    CERN Document Server

    Spencer, Meryl A; Lubensky, David K

    2016-01-01

    In computer simulations of dry foams and of epithelial tissues, vertex models are often used to describe the shape and motion of individual cells. Although these models have been widely adopted, relatively little is known about their basic theoretical properties. For example, while fourfold vertices in real foams are always unstable, it remains unclear whether a simplified vertex model description has the same behavior. Here, we study vertex stability and the dynamics of T1 topological transitions in vertex models. We show that, when all edges have the same tension, stationary fourfold vertices in these models do indeed always break up. In contrast, when tensions are allowed to depend on edge orientation, fourfold vertices can become stable, as is observed in some biological systems. More generally, our formulation of vertex stability leads to an improved treatment of T1 transitions in simulations and paves the way for studies of more biologically realistic models that couple topological transitions to the dy...

  18. Hot Topics from the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gritsan, A.V.; /Johns Hopkins U.

    2007-06-15

    With a sample of about 384 million B{bar B} pairs recorded with the BABAR detector, we search for the flavor-changing charged current transition B{sup {+-}} {yields} {tau}{+-}{upsilon} and perform an amplitude analysis of the effective flavor-changing neutral current transition B{sup {+-}} {yields} {var_phi}(1020)K*(892){+-}. We also extend our search for other K* final states in the decay B{sup 0} {yields} {var_phi}(1020)K*0 with a large K*0 {yields} K{sup +}{pi}{sup -} invariant mass. Two samples of events with one reconstructed hadronic B decay or one reconstructed semileptonic B decay are selected, and in the recoil a search for B{sup {+-}} {yields} {tau}{+-}{upsilon} is performed. We find a 2.6 {sigma} (3.2 {sigma} not including expected background uncertainty) excess in data which can be converted to a preliminary branching fraction central value of {beta}(B{sup {+-}} {yields} {tau}{+-}{upsilon}) = (1.20{sup +0.40+0.29}{sub -0.38-0.30} {+-} 0.22) x 10{sup -4}. With the decay B{sup {+-}} {yields} {var_phi}(1020)K*(892){sup {+-}}, twelve parameters are measured, where our measurements of f{sub L} = 0.49 {+-} 0.05 {+-} 0.03, f{sub {perpendicular}} = 0.21 {+-} 0.05 {+-} 0.02, and the strong phases point to the presence of a substantial helicity-plus amplitude from a presently unknown source.

  19. Trace Identities for the Topological Vertex

    CERN Document Server

    Bryan, Jim; Young, Benjamin

    2016-01-01

    The topological vertex is a universal series which can be regarded as an object in combinatorics, representation theory, geometry, or physics. It encodes the combinatorics of 3D partitions, the action of vertex operators on Fock space, the Donaldson-Thomas theory of toric Calabi-Yau threefolds, or the open string partition function of $\\mathbb{C}^3$. We prove several identities in which a sum over terms involving the topological vertex is expressed as a closed formula, often a product of simple terms, closely related to Fourier expansions of Jacobi forms. We use purely combinatorial and representation theoretic methods to prove our formulas, but we discuss applications to the Donaldson-Thomas invariants of elliptically fibered Calabi-Yau threefolds at the end of the paper.

  20. Vertex Operators and Moduli Spaces of Sheaves

    CERN Document Server

    Carlsson, Erik

    2009-01-01

    The Nekrasov partition function in supersymmetric quantum gauge theory is mathematically formulated as an equivariant integral over certain moduli spaces of sheaves on a complex surface. In ``Seiberg-Witten Theory and Random Partitions'', Nekrasov and Okounkov studied these integrals using the representation theory of ``vertex operators'' and the infinite wedge representation. Many of these operators arise naturally from correspondences on the moduli spaces, such as Nakajima's Heisenberg operators, and Grojnowski's vertex operators. In this paper, we build a new vertex operator out of the Chern class of a vector bundle on a pair of moduli spaces. This operator has the advantage that it connects to the partition function by definition. It also incorporates the canonical class of the surface, whereas many other studies assume that the class vanishes. When the moduli space is the Hilbert scheme, we present an explicit expression in the Nakajima operators, and the resulting combinatorial identities. We then apply...

  1. Open string amplitudes of closed topological vertex

    CERN Document Server

    Takasaki, Kanehisa

    2016-01-01

    The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.

  2. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  3. On spectral theory of quantum vertex operators

    CERN Document Server

    Etingof, P

    1994-01-01

    In this note we prove the Davies-Foda-Jimbo-Miwa-Nakayashiki conjecture on the asymptotics of the composition of n quantum vertex operators for the quantum affine algebra U_q(\\hat sl_2), as n goes to infinity. For this purpose we define and study the leading eigenvalue and eigenvector of the product of two components of the quantum vertex operator. This eigenvector and the corresponding eigenvalue were recently computed by M.Jimbo. The results of his computation are given in Section 4.

  4. Vertex operators in solvable lattice models

    CERN Document Server

    Foda, O E; Miwa, T; Miki, K; Nakayashiki, A; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Miki, Kei; Nakayashiki, Atsushi

    1994-01-01

    We formulate the basic properties of q-vertex operators in the context of the Andrews-Baxter-Forrester (ABF) series, as an example of face-interaction models, derive the q-difference equations satisfied by their correlation functions, and establish their connection with representation theory. We also discuss the q-difference equations of the Kashiwara-Miwa (KM) series, as an example of edge-interaction models. Next, the Ising model--the simplest special case of both ABF and KM series--is studied in more detail using the Jordan-Wigner fermions. In particular, all matrix elements of vertex operators are calculated.

  5. Primary Vertex Reconstruction at the ATLAS Experiment

    CERN Document Server

    Grimm, Kathryn; The ATLAS collaboration

    2017-01-01

    These proceedings present the method and performance of primary vertex reconstruction at the ATLAS experiment during Runs 1 and 2 at the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of $\\sqrt{s} = 8$ TeV, and during 2015-2016 at $\\sqrt{s} = 13$ TeV. Some predictions toward future runs are also presented. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed.

  6. On deformation theory of quantum vertex algebras

    CERN Document Server

    Grosse, H; Grosse, Harald; Schlesinger, Karl-Georg

    2005-01-01

    We study an algebraic deformation problem which captures the data of the general deformation problem for a quantum vertex algebra. We derive a system of coupled equations which is the counterpart of the Maurer-Cartan equation on the usual Hochschild complex of an assocative algebra. We show that this system of equations results from an action principle. This might be the starting point for a perturbative treatment of the deformation problem of quantum vertex algebras. Our action generalizes the action of the Kodaira-Spencer theory of gravity and might therefore also be of relevance for applications in string theory.

  7. Results on conventional and exotic charmonium at BaBar

    CERN Document Server

    Bernard, Denis

    2013-01-01

    The B factories provide a unique playground for studying the properties of conventional and exotic charmonium states. We present recent results in initial state radiation and two-photon fusion, obtained using the full data set collected by the BaBar experiment. Amongst BaBar 's harvest presented in this talk, the determination of the quantum numbers of the X(3915) resonance, a body of concording evidence pointing to JPC = 1++ for the X(3872), and updates on the family of the Y resonance to the full integrated luminosity.

  8. Xic' Production at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2006-09-26

    Using 232 fb{sup -1} of data collected by the BABAR detector, the {Xi}'{sub c}{sup +} and {Xi}'{sub c}{sup 0} baryons are reconstructed through the decays: {Xi}'{sub c}{sup +} {yields} {Xi}{sub c}{sup +}{gamma} and {Xi}'{sub c}{sup 0} {yields} {Xi}{sub c}{sup 0}{gamma}, where {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} and {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}. By measuring the efficiency-corrected yields in different intervals of the center-of-mass momentum, the production rates from B decays and from the continuum are extracted. For production from B decays, the branching fractions are found to be {Beta}(B {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = [1.69 {+-} 0.17 (exp.) {+-} 0.10 (model)] x 10{sup -4} and {Beta}(B {yields} {Xi}'{sub c}{sup 0}X) x {Beta} {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +} = [0.67 {+-} 0.07 (exp.) {+-} 0.03 (model)] x 10{sup -4}. For production from the continuum the cross-sections are found to be {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup +}) = 141 {+-} 24 (exp.) {+-} 19 (model) fb and {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup 0}X) x {Beta}({Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}) = 70 {+-} 11 (exp.) {+-} 6 (model) fb. The helicity angle distributions of {Xi}'{sub c} decays are studied and found to be consistent with J = 1/2.

  9. Search for the Z(4430)- at BABAR

    Science.gov (United States)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.

    2009-06-01

    We report the results of a search for Z(4430)- decay to J/ψπ- or ψ(2S)π- in B-,0→J/ψπ-K0,+ and B-,0→ψ(2S)π-K0,+ decays. The data were collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e+e- collider operating at center-of-mass energy 10.58 GeV, and the sample corresponds to an integrated luminosity of 413fb-1. Each Kπ- mass distribution exhibits clear K*(892) and K2*(1430) signals, and the efficiency-corrected spectrum is well described by a superposition of the associated Breit-Wigner intensity distributions, together with an S-wave contribution obtained from the LASS I=1/2 Kπ- scattering amplitude measurements. Each Kπ- angular distribution varies significantly in structure with Kπ- mass, and is represented in terms of low-order Legendre polynomial moments. We find that each J/ψπ- or ψ(2S)π- mass distribution is well described by the reflection of the measured Kπ- mass and angular distribution structures. We see no significant evidence for a Z(4430)- signal for any of the processes investigated, neither in the total J/ψπ- or ψ(2S)π- mass distribution, nor in the corresponding distributions for the regions of Kπ- mass for which observation of the Z(4430)- signal was reported. We obtain branching-fraction upper limits B(B-→Z- Kmacr 0,Z-→J/ψπ-)<1.5×10-5, B(B0→Z-K+,Z-→J/ψπ-)<0.4×10-5, B(B-→Z- Kmacr 0,Z-→ψ(2S)π-)<4.7×10-5, and B(B0→Z-K+,Z-→ψ(2S)π-)<3.1×10-5 at 95% confidence level, where the Z(4430)- mass and width have been fixed to the reported central values.

  10. Search for the Z(4430) at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2009-01-12

    We report the results of a search for Z(4430){sup -} decay to J/{psi}{pi}{sup -} or {psi}(2S){pi}{sup -} in B{sup -,0} {yields} J/{psi}{pi}{sup -} K{sup 0,+} and B{sup -,0} {yields} {psi}(2S){pi}{sup -}K{sup 0,+} decays. The data were collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider operating at center of mass energy 10.58 GeV, and the sample corresponds to an integrated luminosity of 413 fb{sup -1}. Each K{pi}{sup -} mass distribution exhibits clear K*(892) and K*{sub 2}(1430) signals, and the efficiency-corrected spectrum is well-described by a superposition of the associated Breit-Wigner intensity distributions, together with an S-wave contribution obtained from the LASS I = 1/2 K{pi}{sup -} scattering amplitude measurements. Each K{pi}{sup -} angular distribution varies significantly in structure with K{pi}{sup -} mass, and is represented in terms of low-order Legendre polynomial moments. We find that each J/{psi}{pi}{sup -} or {psi}(2S){pi}{sup -} mass distribution is well-described by the reflection of the measured K{pi}{sup -} mass and angular distribution structures. We see no significant evidence for a Z(4430){sup -} signal for any of the processes investigated, neither in the total J/{psi}{pi}{sup -} or {psi}(2S){pi}{sup -} mass distribution, nor in the corresponding distributions for the regions of K{pi}{sup -} mass for which observation of the Z(4430){sup -} signal was reported. We obtain branching fraction upper limits {Beta}(B{sup -} {yields} Z{sup -}{bar K}{sup 0}, Z{sup -} {yields} J/{psi}{pi}{sup -}) < 1.5 x 10{sup -5}, {Beta}(B{sup 0} {yields} Z{sup -}K{sup +},Z{sup -} {yields} J/{psi}{pi}{sup -}) < 0.4 x 10{sup -5}, {Beta}(B{sup -} {yields} Z{sup -} {bar K}{sup 0}, Z{sup -} {yields} {psi}(2S){pi}{sup -}) > 4.7 x 10{sup -5}, and {Beta}(B{sup 0} {yields} Z{sup -} K{sup +}, Z{sup -} {yields} {psi}(2S){pi}{sup -}) < 3.1 x 10{sup -5} at 95% confidence level, where the Z(4430){sup -} mass and width have

  11. MEG II drift chamber characterization with the silicon based cosmic ray tracker at INFN Pisa

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M., E-mail: marco.venturini@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baracchini, E. [ICEPP, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cei, F.; D' Onofrio, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dussoni, S.; Galli, L.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Signorelli, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2016-07-11

    High energy physics experiments at the high intensity frontier place ever greater demands on detectors, and in particular on tracking devices. In order to compare the performance of small size tracking prototypes, a high resolution cosmic ray tracker has been assembled to provide an external track reference. It consists of four spare ladders of the external layers of the Silicon Vertex Tracker of the BaBar experiment. The test facility, operating at INFN Sezione di Pisa, provides the detector under test with an external track with an intrinsic resolution of 15–30 μm. The MEG II tracker is conceived as a unique volume wire drift chamber filled with He–isobutane 85–15%. The ionization density in this gas mixture is about 13 clusters/cm and this results in a non-negligible bias of the impact parameters for tracks crossing the cell close to the anode wire. We present the telescope performance in terms of tracking efficiency and resolution and the results of the characterization of a MEG II drift chamber prototype.

  12. MEG II drift chamber characterization with the silicon based cosmic ray tracker at INFN Pisa

    Science.gov (United States)

    Venturini, M.; Baldini, A. M.; Baracchini, E.; Cei, F.; D`Onofrio, A.; Dussoni, S.; Galli, L.; Grassi, M.; Nicolò, D.; Signorelli, G.

    2016-07-01

    High energy physics experiments at the high intensity frontier place ever greater demands on detectors, and in particular on tracking devices. In order to compare the performance of small size tracking prototypes, a high resolution cosmic ray tracker has been assembled to provide an external track reference. It consists of four spare ladders of the external layers of the Silicon Vertex Tracker of the BaBar experiment. The test facility, operating at INFN Sezione di Pisa, provides the detector under test with an external track with an intrinsic resolution of 15-30 μm. The MEG II tracker is conceived as a unique volume wire drift chamber filled with He-isobutane 85-15%. The ionization density in this gas mixture is about 13 clusters/cm and this results in a non-negligible bias of the impact parameters for tracks crossing the cell close to the anode wire. We present the telescope performance in terms of tracking efficiency and resolution and the results of the characterization of a MEG II drift chamber prototype.

  13. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xun

    2009-01-21

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e{sup +}e{sup -} collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis

  14. CLIC vertex detector R&D

    CERN Document Server

    Redford, S

    2014-01-01

    In order to achieve its primary objectives of heavy-flavour tagging and tau lepton identification, the CLIC vertex detector must precisely reconstruct displaced vertices. This re- quires accurate determination of the impact parameter and charge of tracks originating from the secondary vertex. Excellent spatial resolution must therefore be provided down to low polar angles, whilst maintaining low occupancy, low mass and low power dissipation. These requirements chal- lenge current technological limits, and demand a broad programme of R&D. A detector concept is currently under development, comprising a hybrid pixel detector of small-pitch readout ASICs implemented in 65nm CMOS technology (CLICpix) combined with ultra-thin sensors. The read- out chips are low-power, and power-pulsing is used to reduce further their power dissipation. This enables a forced gas cooling system in the vertex detector region. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on se...

  15. Primary Vertex Reconstruction at the ATLAS Experiment

    CERN Document Server

    Grimm, Kathryn; The ATLAS collaboration

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in an LHC collision is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. New methods have been developed by the ATLAS experiment to reconstruct vertices in such environments. Advances in vertex seeding include methods taken from medical imaging, which allow for reconstruction of multiple vertices with small spatial separation. The adoption of this new seeding algorithm within the ATLAS adaptive vertex finding and fitting procedure will be discussed, and the first results of the new techniques from Run-2 data will be presented. Additionally, data-driven methods to evaluate vertex resolution will be presented with special focus on correct methods to evaluate the effect of the beam spot constraint; results from these methods in Ru...

  16. Vertex Algebra Sheaf Structure on Torus

    Institute of Scientific and Technical Information of China (English)

    SUN Yuan-yuan

    2016-01-01

    In this paper, we first give a 1-1 corresponds between torus C/Λand cubic curve C in P2C. As complex manifold, they are isomorphic, therefore we can treat C/Λas a variety and construction a vertex algebra sheaf on it.

  17. The micro vertex detector for the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Simone [Forschungszentrum Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The anti PANDA detector is one of the main experiments at the upcoming Facility for Antiproton and Ion Research (FAIR), which is under construction in Darmstadt, Germany. The fixed-target experiment will explore anti pp annihilations with intense, phase space-cooled beams with momenta between 1.5 and 15 GeV/c. One aim of the detector is to perform high precision measurements of particles like excited charmonium and D mesons. Essential for background suppression is the tagging of D mesons by measuring their decay point. Therefore, a Micro Vertex Detector (MVD) is planned at anti PANDA as the innermost tracking detector. The MVD aims to reconstruct vertices with a resolution better than 100 μm to cope with the decay length of the D{sup ±} mesons (cτ=315 μm) produced with a mean βγ=2. The detector consists of silicon pixel and double-sided silicon strip detectors, arranged in four barrel layers and six disk layers. An overview of the MVD is given in this talk. Recent developments like laboratory and testbeam results of the current pixel front-end ASIC prototype ToPix 4 are shown. The concept of the newly developed strip front-end ASIC PASTA is presented.

  18. ILC Vertex Tracker R&D

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac

    2007-10-01

    This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department

  19. Studies of Radiative Penguin B Decays at BABAR

    CERN Document Server

    Hamel de Monchenault, G

    2003-01-01

    We summarize results on a number of observations of penguin dominated radiative decays of the B meson. Such decays are forbidden at tree level and proceed via electroweak loops. As such they may be sensitive to physics beyond the standard model. The observations have been made at the BaBar experiment at PEPII, the asymmetric B factory at SLAC.

  20. CP Violation Results from B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Biassoni, Pietro; /Milan U. /INFN, Milan

    2011-08-22

    In the present paper we review recent experimental results from the BABAR experiment concerning the measurement of the CKM angles. A particular highlight is given to the novel independent determination of the angle {alpha} from B{sup 0} {yields} a{sub 1}(1260){sup {+-}}{pi}{sup {-+}} and to the recent full-luminosity updates of several angle {gamma} measurements.

  1. Analysis of "Babar Loses His Crown." Technical Report No. 169.

    Science.gov (United States)

    Green, G. M.; And Others

    This report presents the text analysis of "Babar Loses His Crown," a story for beginning readers. (The techniques used in arriving at the analysis are presented in a Reading Center Technical Report, Number 168, "Problems and Techniques of Text Analysis.") Tables are given for a statistical lexical analysis and for a syntactic…

  2. Studies of radiative penguin B decays at BaBar

    Indian Academy of Sciences (India)

    John M LoSecco; BaBar Collaboration

    2004-03-01

    We summarize results on a number of observations of penguin dominated radiative decays of the meson. Such decays are forbidden at tree level and proceed via electroweak loops. As such they may be sensitive to physics beyond the standard model. The observations have been made at the BaBar experiment at PEP-II, the asymmetric factory at SLAC.

  3. Proton and kaon timelike form factors from BABAR

    CERN Document Server

    Serednyakov, S I

    2015-01-01

    The latest BABAR results on the proton and kaon timelike form factors (FF) are presented. The special emphasize is made on comparison of the spacelike and timelike FFs and the rise of the proton FF near threshold. The behavior of the cross section of e+e- annihilation into hadrons near the nucleon-antinucleon threshold is discussed.

  4. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  5. Silicon Sensors for HEP Experiments

    CERN Document Server

    Dierlamm, Alexander Hermann

    2017-01-01

    With increasing luminosity of accelerators for experiments in High Energy Physics the demands on the detectors increase as well. Especially tracking and vertexing detectors made of silicon sensors close to the interaction point need to be equipped with more radiation hard devices. This article introduces the different types of silicon sensors, describes measures to increase radiation hardness and provides an overview of present upgrade choices of HEP experiments.

  6. CPLEAR et BABAR, all aspects of CP violation; CPLEAR et BABAR la violation de CP dans tous ses etats

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Ch

    2003-06-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K{sup 0} {yields} {pi}{sup +} {pi}{sup -} decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; {delta}m{sub d} measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B{sup 0} {yields} {rho}{sup {+-}} {pi}{sup {+-}} and B{sup 0} {yields} {pi}{sup {+-}} K{sup {+-}} decays. (author)

  7. Measurement of the double-vertex reconstruction efficiency of the inclusive vertex finder with accidentally overlapping b-jets in ttbar events

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Ivan; Nowatschin, Dominik; Ott, Jochen; Schmidt, Alexander; Tholen, Heiner [University of Hamburg (Germany)

    2015-07-01

    In LHC Run II, CMS b-tagging algorithms will employ a new core algorithm, named Inclusive Vertex Finder (IVF). The IVF is designed to perform decay vertex reconstruction of long-lived particles, such as B hadrons. Using only tracks from the silicon tracker, it does not depend on jet clustering and allows for higher reconstruction efficiency of decay vertices, which particularly applies to topologies with two or more decay vertices at low distance. Thus, the IVF will offer increased sensitivity for SM measurements (e.g. angular correlations), but also for the search of BSM physics (e.g. final states with boosted Higgs bosons decaying into b-quarks). For the first time, the dependence of the IVF reconstruction efficiency on the distance of vertices in the η-φ plane is investigated with a data-driven approach. We use a clean set of top quark pair events, selected from data recorded in 2012 in pp-collisions at 8 TeV with the CMS detector, and perform a template fit to a 2D-distribution of the masses of the vertices in an event. Correction factors are derived for the application to simulated events. We conclude that our technique will enable precise calibration of double vertexing with the IVF in the LHC Run II.

  8. CLIQUE IRREDUCIBILITY AND CLIQUE VERTEX IRREDUCIBILITY OF GRAPHS

    OpenAIRE

    Vijayakumar, A.; Aparna Lakshmanan S.

    2009-01-01

    A graphs G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irreducibility and clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two g...

  9. Optimized Vertex Method and Hybrid Reliability

    Science.gov (United States)

    Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.

    2002-01-01

    A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.

  10. Hypergraph Partitioning through Vertex Separators on Graphs

    CERN Document Server

    Kayaaslan, Enver; Catalyurek, Umit V; Aykanat, Cevdet

    2011-01-01

    The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inherently more complicated than those on graphs, which sometimes translate to nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs, nor the runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should be how to cleverly trade-off between the two. This work addresses one method for this trade-off by solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its net intersection graph (NIG), where each net of the hyperg...

  11. Primary vertex reconstruction with the ATLAS detector

    CERN Document Server

    Meloni, Federico; The ATLAS collaboration

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in a LHC collision is essential for determining the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. The algorithms developed by the ATLAS experiments to reconstruct multiple vertices with small spatial separation are presented.

  12. Bimodules associated to vertex operator superalgebras

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Let V be a vertex operator superalgebra and m,n ∈ 21Z+. We construct an An(V ) -Am(V )-bimodule An,m(V ) which characterizes the action of V from the level m subspace to level n subspace of an admissible V -module. We also construct the Verma type admissible V -module from an Am(V )-module by using bimodules

  13. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  14. Nonperturbative study of the four gluon vertex

    CERN Document Server

    Binosi, D; Papavassiliou, J

    2014-01-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergen...

  15. B Decay Charm Counting Via Topological Vertexing

    CERN Document Server

    Chou, Aaron Sze Ting

    2002-01-01

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z0 decays collected during the SLD/SLC 97–98 run. The analysis takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BRB→0D X=3.7±1.1 stat±2.1 syst% BRB→2D X=17.9±1.4 stat±3.3 syst% where B, and D represent mixtures of open b and open c hadrons. The corresponding charm count, Nc = 1.188 ± 0.010 ± 0.040 ± 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  16. Search for Rare B Meson Decays at the BABAR Experiment

    Science.gov (United States)

    Cheaib, R.; BABAR Collaboration

    2016-11-01

    b → s transitions are flavour-changing neutral current (FCNC) processes that play an important role in the search for physics beyond the Standard Model (SM). Contributions from virtual particles in the loop are predicted to deviate observables, such as the branching fraction, from their SM expectations. Using data from the BaBar experiment, we present the first search for the rare decay B + → K+ τ+τ-. The BABAR results on the measurement of the angular asymmetries of B → K* l + l -, where l = e or μ, are also reported. In addition, using a time-dependent analysis of B → K s 0π+π-γ, the mixing induced CP-asymmetry for the radiative FCNC decay, B → K s 0ργ, is measured, along with an amplitude analysis of the mKπ and mKππ spectrum.

  17. Monitoring the BaBar Data Acquisition System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The BaBar data acquisition system(DAQ)transports data from the detector front end eletronics to short term disk storage.A monitoring application(VMON)has been developed to monitor the one hundred and ninety computers in the dataflow system.Performance information for each CPU is collected and multicast across the existing data transport network.The packets are currently collected by a single UNIX workstation and archived.A ROOT based GUI provides control and displays the DAQ performance in real time.The same GUI is reused to recover archived VMON data,VMON has been deployed and constantly monitors the BaBar dataflow system.It has been used for diagnostics and provides input to models projecting future performance.The application has no measurable impact on data taking ,responds instantaneously on the human timescale to requests for information display,and uses only 3% of a 300MHz Sun Ultra5 CPU.

  18. Studies of B decays to Charmonium at BABAR

    CERN Document Server

    Calderini, G

    2001-01-01

    Using 22.7 million BBbar events recorded with the BABAR detector, the inclusive branching fractions for the production of J/psi, psi(2S) and Chi_c in B decays are presented. Combining the charmonium state with a K+-, K0, K*+-, K*0 or neutral pion, B decays are reconstructed exlusively and branching fractions are determined. A preliminary study is also presented fot the B --> eta_c K decay mode.

  19. Recent results on hadronic final states from Babar

    Directory of Open Access Journals (Sweden)

    Gary J. William

    2015-01-01

    Full Text Available Two recent studies from the Babar Collaboration at SLAC are presented on the production of hadrons at low energies. The first is a study of exclusive K+K− production in e+e− annihilation events with initial-state photon radiation. The second is a study of ηc production in two-photon interactions and a three-body Dalitz-plot analysis searching for intermediate scalar meson production in ηc decays.

  20. Measurements of the CKM angle gamma at BABAR

    OpenAIRE

    BaBaR Collaboration; Latour, Emmanuel

    2007-01-01

    We report on our recent measurements of the Cabibbo-Kobayashi-Maskawa CP-violating phase gamma and of related CP-asymmetries and branching fraction ratios. The measurements have been performed on samples of up to 465 million BBbar pairs collected by the BaBar detector at the SLAC PEP-II asymmetric-energy B factory in the years 1999-2007.

  1. Electroweak Penguin and Leptonic Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, F.; /Pisa U. /INFN, Pisa

    2005-08-26

    Recent BABAR results on electroweak penguin and leptonic decays are reviewed. In particular, the measurements of B {yields} K{sup (*)}l{sup +}l{sup -} and the preliminary results on B {yields} X{sub s}l{sup +}l{sup -} are presented. Also summarized are the preliminary limits on B{sup +} {yields} l{sup +}{nu} (l = e,{mu}) and B{sup +} {yields} K{sup +}{nu}{bar {nu}}.

  2. BaBar Level 1 Drift Chamber Trigger Upgrade

    CERN Document Server

    Halyo, V

    2002-01-01

    As PEP-II is exceeding the original design luminosity, BaBar is currently upgrading its Level 1 Drift Chamber Trigger (DCT) to reduce the rate of background Level 1 triggers by more than 50% while preserving the high Level 1 trigger physics efficiency. New Z-Pt-Discriminator VME boards (ZPD) utilizing the stereo hit information from the drift chamber are being built to extract the track z coordinate at the beam line with a resolution of a few centimeters.

  3. The CDF-II silicon tracking system

    CERN Document Server

    Nelson, T K

    2002-01-01

    The CDF silicon tracking system for Run II of the Fermilab Tevatron consists of eight layers arranged in cylinders spanning radii from 1.35 to 28 cm, and lengths from 90 cm to nearly 2 m for a total of 6 m sup 2 of silicon and 722,000 readout channels. With an innermost layer (Layer 00) utilizing radiation tolerant p sup + -in-n silicon and low-mass readout cables between the sensors and readout electronics, double-sided vertexing layers (SVXII) designed for use with a deadtimeless secondary-vertex trigger, and outermost layers (Intermediate Silicon Layers) utilizing mass-producible modules attached to a carbon fiber spaceframe, this system is a starting point for the next generation of silicon trackers for the LHC and Tevatron.

  4. Automatised Data Quality Monitoring of the LHCb Vertex Locator

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and flags issues whenever they arise. An unbiased subset of the detector data are processed about once per hour by monitoring algorithms. The new analysis framework then analyses the plots that are prod...

  5. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  6. The upgrade of the LHCb Vertex Locator (VELO)

    CERN Document Server

    van Beuzekom, M

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will enable the detector to run at a luminosity of 2 x 10$^{33}$ cm$^{-22}$s$^{-1}$ and explore New Physics effects in the beauty and charm sector with unprecedented precision. To achieve this, the entire readout will be transformed into a triggerless system operating at 40 MHz, where the event selection algorithms will be executed by high-level software in the CPU farm. The upgraded silicon vertex detector (VELO) must be lightweight, radiation hard, vacuum compatible, and has to drive data to the data acquisition system at speeds of up to 3 Tbit/s. This challenge will be met with a new VELO design based on hybrid pixel detectors, positioned to within 5 mm of the LHC colliding beams. The sensors have 55 x 55 $\\mu$m$^2$ square pixels and the VeloPix ASIC, which is being developed for the readout, is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with integrated hit rates of up to 900 MHz which translates to a bandwidth of m...

  7. TGV32: A 32-channel preamplifier chip for the multiplicity vertex detector at PHENIX

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L. Jr.; Ericson, M.N.; Frank, S.S. [and others

    1997-12-31

    The TGV32, a 32-channel preamplifier-multiplicity discriminator chip for the Multiplicity Vertex Detector (MVD) at PHENIX, is a unique silicon preamplifier in that it provides both an analog output for storage in an analog memory and a weighted summed-current output for conversion to a channel multiplicity count. The architecture and test results of the chip are presented. Details about the design of the preamplifier, discriminator, and programmable digital-analog converters (DACs) performance as well as the process variations are presented. The chip is fabricated in a 1.2-{micro}m, n-well, CMOS process.

  8. Extended technicolor contribution to the Zbb vertex

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Kitazawa, Noriaki

    1995-01-01

    We show that the flavor-diagonal gauge boson of the extended technicolor theory contributes with opposite sign to the standard model correction for the Zbb vertex. This mechanism can naturally explain the deviation of the LEP result from the standard model prediction for the partial width \\Gamma(Z \\rightarrow b{\\bar b}). A smaller value of the QCD coupling, \\alpha_s(m_Z) \\simeq 0.115, is then preferred by the \\Gamma(Z \\rightarrow \\mbox{hadron}) data, which is consistent with both the recent Lattice-QCD estimate and the Particle Data Group average.

  9. The Mark II Vertex Drift Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  10. Quasi-lisse vertex algebras and modular linear differential equations

    CERN Document Server

    Arakawa, Tomoyuki

    2016-01-01

    We introduce a notion of quasi-lisse vertex algebras, which generalizes admissible affine vertex algebras. We show that the normalized character of an ordinary module over a quasi-lisse vertex operator algebra has a modular invariance property, in the sense that it satisfies a modular linear differential equation. As an application we obtain the explicit character formulas of simple affine vertex algebras associated with the Deligne exceptional series at level $-h^{\\vee}/6-1$, which expresses the homogeneous Schur limit of the superconformal index of 4d SCFTs studied by Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees, as quasi-modular forms.

  11. The LHCb level 1 vertex trigger

    CERN Document Server

    Koratzinos, M

    1999-01-01

    Summary form only given. The Level 1 Vertex trigger of LHCb has certain features that make it unique amongst the LHC experiment trigger schemes: The problem it addresses is a reduction factor of 25 for minimum bias events while retaining good efficiency for signal B events. The best way to achieve such reduction factors is to rely on the most striking property of those B events, the long decay time of the B particles. The trigger therefore has to reconstruct the event around the interaction region and tag signal events using topological criteria. An accurate vertex detector is one of the key components of LHCb and a natural choice for providing the data for such a triggering scheme. The algorithm for the reconstruction of the event is complicated and not readily parallelisable in its totality. We are therefore proposing an architecture that resembles a high-level trigger architecture, where the event building function is performed by a switch network and each event is processed by a single processor, part of ...

  12. Markov branching in the vertex splitting model

    CERN Document Server

    Stefansson, Sigurdur Orn

    2011-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree $D$, we find a one parameter model, with parameter $\\alpha \\in [0,1]$ which has a so--called Markov branching property. When $D=\\infty$ we find a two parameter model with an additional parameter $\\gamma \\in [0,1]$ which also has this feature. In the case $D = 3$, the model bears resemblance to Ford's $\\alpha$--model of phylogenetic trees and when $D=\\infty$ it is similar to its generalization, the $\\alpha\\gamma$--model. For $\\alpha = 0$, the model reduces to the well known model of preferential attachment. In the case $\\alpha > 0$, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is $1/\\alpha$. When $\\gamma = 0$ the model reduces to a model of ...

  13. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  14. The Construction of Spin Foam Vertex Amplitudes

    CERN Document Server

    Bianchi, Eugenio

    2012-01-01

    Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. They fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4 dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barret and Crane and Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  15. Tracking and Alignment Performance of the LHCb silicon detectors

    CERN Document Server

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector efficiencies, as well as on the overall track reconstruction performance and the alignment status, are reported.

  16. B→ (ρ/ω) γ at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Koeneke, Karsten [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2007-06-01

    This document describes the measurements of the branching fractions and isospin violations of the radiative electroweak penguin decays B→ (ρ/ω) γ at the asymmetric-energy e+e- PEP-II collider with the BABAR detector. Together with the previously measured branching fractions of the decays B→ K*γ the ratio of CKM-matrix elements |V td/Vts| are extracted and the length of the far side of the unitarity triangle is determined.

  17. Recent BaBar Results on $B$ Decays

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; /Edinburgh U.

    2011-11-15

    Several recent key results from the BABAR experiment are presented, most using 383.6 fb{sup -1} of data. In particular, the search for B{sup +} {yields} {tau}{sup +}{nu}, inclusive and exclusive measurements of |V{sub ub}|, measurements of b {yields} d{gamma} decays and new observations of rare charmless hadronic decays. The new results provide important experimental constraints on the Standard Model and new physics models. Keywords: B decays; flavor; leptonic; semi-leptonic, radiative, hadronic.

  18. Measurements related to CKM angle alpha in BABAR

    CERN Document Server

    Roos, L

    2004-01-01

    The BABAR collaboration measurements of the B -> pipi, B -> rhopi and B -> rhorho decays are presented. New results, from a 113 fb-1 data sample, on the time-dependent CP asymmetries of the longitudinally polarized component of the B0 -> rho+rho- channel are S_{rhorho,long}=-0.19 +/- 0.33 +/- 0.11 and C_{rhorho,long}=-0.23 +/- 0.24 +/- 0.14. Constraints on the Unitarity Triangle angle alpha from the pipi and the rhorho systems are derived.

  19. Penguin and rare decays in BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Simon [Univ. Denis, Paris (France)

    2015-04-29

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xs+ inclusive decays.

  20. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  1. On-shell two-loop three-gluon vertex

    CERN Document Server

    Davydychev, A I

    1999-01-01

    The two-loop three-gluon vertex is calculated in an arbitrary covariant gauge, in the limit when two of the gluons are on the mass shell. The corresponding two-loop results for the ghost-gluon vertex are also obtained. It is shown that the results are consistent with the Ward-Slavnov-Taylor identities.

  2. Unquenching the three-gluon vertex: A status report

    CERN Document Server

    Blum, Adrian L; Huber, Markus Q; Windisch, Andreas

    2015-01-01

    We discuss unquenching of the three-gluon vertex via its Dyson-Schwinger equation. We review the role of Furry's theorem and present first results for the quark triangle diagrams using non-perturbatively calculated dressing functions for the quark propagator and the quark-gluon vertex.

  3. Fermion-Boson Vertex at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; FENG Hong-Tao; HOU Feng-Yao; SUN Wei-Min

    2007-01-01

    Based on the Ward-Takahashi identity at finite chemical potential and Lorentz structure analysis, we generalize the Ball-Chiu vertex to the case of nonzero chemical potential and obtain the general form of the fermionboson vertex in QED at finite chemical potential.

  4. Subgraphs in vertex neighborhoods of K-free graphs

    DEFF Research Database (Denmark)

    Bang-Jensen, J.; Brandt, Stephan

    2004-01-01

    In a K-free graph, the neighborhood of every vertex induces a K-free subgraph. The K-free graphs with the converse property that every induced K-free subgraph is contained in the neighborhood of a vertex are characterized, based on the characterization in the case r = 3 due to Pach [8]. © 2004...

  5. Graphs with No Induced Five-Vertex Path or Antipath

    DEFF Research Database (Denmark)

    Chudnovsky, Maria; Esperet, Louis; Lemoine, Laetitia

    2017-01-01

    We prove that a graph G contains no induced five-vertex path and no induced complement of a five-vertex path if and only if G is obtained from 5-cycles and split graphs by repeatedly applying the following operations: substitution, split unification, and split unification in the complement, where...

  6. Searches for low-mass Higgs and dark bosons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Oberhof, Benjamin, E-mail: benjamin.oberhof@pi.infn.it [INFN sezione di Pisa and Universitá di Pisa, Polo Fibonacci - Edificio C, Largo B. Pontecorvo 3, 56125 - Pisa (Italy)

    2013-01-15

    We present BaBar latest results for the direct search of a light CP-odd Higgs boson using radiative decays of the ϒ(nS) (n=1,2,3) resonances in different final states. We also present the results for the search of a hidden sector gauge and Higgs bosons using the full BaBar datasample.

  7. Search for low-mass Higgs and dark bosons at BaBar

    OpenAIRE

    Oberhof, Benjamin; Collaboration, for the BABAR

    2012-01-01

    I present BaBar latest results for the direct search of a light CP-odd Higgs boson using radiative decays of the Y(nS) (n=1,2,3) resonances in different final states. I also present the results for the search of a hidden sector gauge and Higgs bosons using the full BaBar datasample.

  8. LHCb: Performance and Radiation Damage Effects in the LHCb Vertex Locator

    CERN Multimedia

    Carvalho Akiba, K

    2014-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the LHC. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO), hence the detector is critical for both the trigger and offline physics analyses. The VELO is the retractable silicon-strip detector surrounding the LHCb interaction point. It is located only 7 mm from the LHC beam during normal LHC operation, once moved into its closed position for each LHC fill when stable beams are obtained. During insertion the detector is centred around the LHC beam by the online reconstruction of the primary vertex position. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 $\\mu$m thick half-disc sensors with R-measuring and $\\phi$-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with the only n-on-p sensors operating at the LHC. The detectors are operated in ...

  9. Performance, Radiation Damage Effects and Upgrade of the LHCb Vertex Locator

    CERN Document Server

    De Capua, S

    2013-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC). Heavy hadrons are identified through their flight distance in the VELO, the retractable silicon-strip vertex detector surrounding the LHCb interaction point at only 7 mm from the beam during normal LHC operation. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 µm thick half-disc sensors with R- and phi-measuring geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 µm. The detector is also equipped with the only n-on-p module operating at the LHC. The performance of the VELO in its three years of successful operation during the LHC physics runs will be presented. Highlights will include alignment, cluster finding efficiency, single hit resolution, and impact parameter and vertex resolutions. The VELO module sensors receive a large and non-uniform radiation dose having inner and outer radii of only 7 and 42...

  10. The Lorentzian proper vertex amplitude: Asymptotics

    CERN Document Server

    Engle, Jonathan; Zipfel, Antonia

    2015-01-01

    In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.

  11. Vertex Nomination via Content and Context

    CERN Document Server

    Coppersmith, Glen A

    2012-01-01

    If I know of a few persons of interest, how can a combination of human language technology and graph theory help me find other people similarly interesting? If I know of a few people committing a crime, how can I determine their co-conspirators? Given a set of actors deemed interesting, we seek other actors who are similarly interesting. We use a collection of communications encoded as an attributed graph, where vertices represents actors and edges connect pairs of actors that communicate. Attached to each edge is the set of documents wherein that pair of actors communicate, providing content in context - the communication topic in the context of who communicates with whom. In these documents, our identified interesting actors communicate amongst each other and with other actors whose interestingness is unknown. Our objective is to nominate the most likely interesting vertex from all vertices with unknown interestingness. As an illustrative example, the Enron email corpus consists of communications between ac...

  12. Primary Vertex Reconstruction for Upgrade at LHCb

    CERN Document Server

    Wanczyk, Joanna

    2016-01-01

    The aim of the LHCb experiment is the study of beauty and charm hadron decays with the main focus on CP violating phenomena and searches for physics beyond the Standard Model through rare decays. At the present, the second data taking period is ongoing, which is called Run II. After 2018 during the long shutdown, the replacement of signicant parts of the LHCb detector is planned. One of main changes is upgrade of the present software and hardware trigger to a more rapid full software trigger. Primary Vertex (PV) is a basis for the further tracking and it is sensitive to the LHC running conditions, which are going to change for the Upgrade. In particular, the center-of-mass collision energy should reach the maximum value of 14 TeV. As a result the quality of the reconstruction has to be studied and the reconstruction algorithms have to be optimized.

  13. Artificial Spin-Ice and Vertex Models

    Science.gov (United States)

    Cugliandolo, Leticia F.

    2017-01-01

    In classical and quantum frustrated magnets the interactions in combination with the lattice structure impede the spins to order in optimal configurations at zero temperature. The theoretical interest in their classical realisations has been boosted by the artificial manufacture of materials with these properties, that are of flexible design. This note summarises work on the use of vertex models to study bidimensional spin-ices samples, done in collaboration with R. A. Borzi, M. V. Ferreyra, L. Foini, G. Gonnella, S. A. Grigera, P. Guruciaga, D. Levis, A. Pelizzola and M. Tarzia, in recent years. It is an invited contribution to a J. Stat. Mech. special issue dedicated to the memory of Leo P. Kadanoff.

  14. Searches for New Physics in CP Violation from BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Palombo, Fernando [Universita di Milano, Dipartimento di Fisica, Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy). et al.

    2015-05-12

    Results of recent searches for new physics in CP violation in charm decays from the BABAR experiment are presented. These results include a measurement of D0 - anti D0 mixing and searches for CP violation in two-body D0 decays, a search for CP violation in the charm decays D± → KS0K ± and D s± → KS0K± , KS0π± , and a search for direct CP violation in the singly-Cabibbo suppressed D± → K+K-π±decays. These studies are based on the final dataset collected by BABAR at the PEP-II B factory at SLAC in the period 1999-2008. No evidence of CP violation is found in these charm decays. The measured mixing parameter yCP = [0.72 ± 0.18(stat) ± 0.12(syst)]% excludes the no-mixing null hypothesis with a significance of 3.3σ .

  15. BaBar computing - From collisions to physics results

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The BaBar experiment at SLAC studies B-physics at the Upsilon(4S) resonance using the high-luminosity e+e- collider PEP-II at the Stanford Linear Accelerator Center (SLAC). Taking, processing and analyzing the very large data samples is a significant computing challenge. This presentation will describe the entire BaBar computing chain and illustrate the solutions chosen as well as their evolution with the ever higher luminosity being delivered by PEP-II. This will include data acquisition and software triggering in a high availability, low-deadtime online environment, a prompt, automated calibration pass through the data SLAC and then the full reconstruction of the data that takes place at INFN-Padova within 24 hours. Monte Carlo production takes place in a highly automated fashion in 25+ sites. The resulting real and simulated data is distributed and made available at SLAC and other computing centers. For analysis a much more sophisticated skimming pass has been introduced in the past year, ...

  16. Locking mechanisms in degree-4 vertex origami structures

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  17. Quark-gluon vertex in arbitrary gauge and dimension

    CERN Document Server

    Davydychev, A I; Saks, L

    2001-01-01

    One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.

  18. Search for a muonic dark force at BABAR

    CERN Document Server

    ,

    2016-01-01

    Many models of physics beyond the Standard Model predict the existence of new Abelian forces with new gauge bosons mediating interactions between "dark sectors" and the Standard Model. We report a search for a dark boson Z' coupling only to the second and third generations of leptons in the reaction e+e- -> mu+mu- Z', Z' -> mu+mu- using 514 fb-1 of data collected by the BABAR experiment. No significant signal is observed for Z' masses in the range 0.212 - 10 GeV. Limits on the coupling parameter g' as low as 7x10^-4 are derived, leading to improvements in the bounds compared to those previously derived from neutrino experiments.

  19. Search for a muonic dark force at BaBar

    Science.gov (United States)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Shuve, B.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2016-07-01

    Many models of physics beyond the standard model predict the existence of new Abelian forces with new gauge bosons mediating interactions between "dark sectors" and the standard model. We report a search for a dark boson Z' coupling only to the second and third generations of leptons in the reaction e+e-→μ+μ-Z',Z'→μ+μ- using 514 fb-1 of data collected by the BABAR experiment. No significant signal is observed for Z' masses in the range 0.212-10 GeV. Limits on the coupling parameter g' as low as 7 ×10-4 are derived, leading to improvements in the bounds compared to those previously derived from neutrino experiments.

  20. The BaBar Experiment's Distributed Computing Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to face the expected increase in statistics between now and 2005,the Babar experiment at SLAC is evolving its computing model toward a distributed multitier system.It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center,A unifrom computing enviromment is being deployed in the centers,the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of -100 TB of data per year,In parallel,smaller Tier-B and C sites receive subsets of data,presently in Kanga-Root[1] format and later in Objectivity[2] format,GRID tools will be used for remote job submission.

  1. Selected Topics in Tau Physics from BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Paramesvaran, S.; /Royal Holloway, U. of London

    2012-04-06

    Selected results from {tau} analyses performed using the BABAR detector at the SLAC National Accelerator Laboratory are presented. A precise measurement of the {tau} mass and the {tau}{sup +}{tau}{sup -} mass difference is undertaken using the hadronic decay mode {tau}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}{nu}{sub {tau}}. In addition an investigation into the strange decay modes {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{pi}{sup 0}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{nu}{sub {tau}} is also presented, including a fit to the {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{nu}{sub {tau}} invariant mass spectrum. Precise values for M(K*(892)) and {Lambda}(K*(892)) are obtained.

  2. First Measurement of the CP-Violating Asymmetries with BABAR

    CERN Document Server

    Kolomensky, Yu G

    2001-01-01

    We report on a preliminary measurement of time-dependent CP-violating asymmetries in B0 --> J/psi K0S and B0 --> psi(2S) K0S decays recorded by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. The data sample consisted of 9.0 fb-1 collected at the Y(4S) resonance and 0.8 fb-1 off-resonance. One of the pair of neutral B mesons produced at the Y(4S) was fully reconstructed, while the flavor of the other neutral B meson was tagged at the time of its decay. The value of the asymmetry amplitude, sin(2beta), was determined from a maximum likelihood fit to the time distribution of 120 tagged candidates to be sin(2beta) = 0.12 +- 0.37 (stat.) +- 0.09 (syst.) (preliminary).

  3. CP Violation, Mixing and Lifetime Results from BaBar

    CERN Document Server

    Payne, D

    2003-01-01

    The BaBar collaboration has analysed 60M BB_ pairs collected at the Upsilon (4S) resonance at the PEP II asymetric collider at SLAC. Using this data sample we have measured the CP violation parameters sin (2beta)=0.75+/- 0.09 (STAT) +/-0.04 (SYST) and lambda =0.92+/- 0.06 (STAT) +/- 0.02 (SYST) from B0 to cc_+K*0 + c.c. decays. From charmless 2-body B decays we measure A_Kpi =-0.05 +/- 0.06 +/- 0.01(-0.14,+0.05), S_pipi = -0.01 +/- 0.37 +/- 0.07(-0.66,+0.62), C_pipi =-0.02 +/- 0.29 +/- 0.07(-0.54,+0.48). A number of B lifetime and mixing parameters, extracted from subsamples of this data set, are also presented.

  4. Measurement of the Spin of the Omega^- Hyperon at BABAR

    CERN Document Server

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le, F; Diberder; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z

    2006-01-01

    A measurement of the spin of the Omega^- hyperon produced through the exclusive process Xi_c^0 --> Omega^- K^+ is presented using a total integrated luminosity of 116 fb^-1 recorded with the BABAR detector at the e^+ e^- asymmetric-energy B-Factory at SLAC. Under the assumption that the Xi_c^0 has spin 1/2, the angular distribution of the Lambda from Omega^- --> Lambda K^- decay is inconsistent with all half-integer Omega^- spin values other than 3/2. Lower statistics data for the process Omega_c^0 --> Omega^- pi^+ from a 230 fb^-1 sample are also found to be consistent with Omega^- spin 3/2. If the Xi_c^0 spin were 3/2, an Omega^- spin of 5/2 cannot be excluded.

  5. Search for a Light Higgs Boson at BaBar

    CERN Document Server

    Banerjee, Swagato

    2009-01-01

    We search for evidence of a light Higgs boson (A0) in the radiative decays of the narrow Upsilon(3S) resonance: Upsilon(3S) -> gamma A0, where A0 -> invisible or A0 -> mu+mu-. Such an object appears in extensions of the Standard Model, where a light CP-odd Higgs boson naturally couples strongly to b-quarks. We find no evidence for such processes in a sample of 122 million Upsilon(3S) decays collected by the BaBar collaboration at the PEP II B-factory, and set 90% C.L. upper limits on the product of the corresponding branching fractions. We also set a limit on the di-muon branching fraction of the recently discovered eta_b meson.

  6. Failure Scenarios and Mitigations for the BABAR Superconducting Solenoid

    Science.gov (United States)

    Thompson, EunJoo; Candia, A.; Craddock, W. W.; Racine, M.; Weisend, J. G.

    2006-04-01

    The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.

  7. Calibration of the BABAR CsI (Tl) calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Joerg, E-mail: marks@physi.uni-heidelberg.d [Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)

    2009-04-01

    After nine years of operation, the BABAR experiment at the e{sup +}e{sup -} B factory PEP-II (Standford Linear Accelerator Center) stopped data taking in April 2008. An important part of the experiment is the electromagnetic calorimeter which consists of 6580 CsI crystals doped with thallium and read out by Si-PIN photodiodes. The light yield of the CsI crystals is changing in time due to radiation exposure. In addition to the changing light yield, passive material in front of and between the crystals as well as signal thresholds during the reconstruction influence the reconstructed energies. This requires a time-dependent calibration of the calorimeter. The calibration issues are reviewed and the calibration results obtained from various data samples are presented.

  8. Calibration of the BABAR CsI (Tl) calorimeter

    Science.gov (United States)

    Marks, Jörg; Calorimeter Group of BARBAR Collaboration

    2009-04-01

    After nine years of operation, the BABAR experiment at the e+e- B factory PEP-II (Standford Linear Accelerator Center) stopped data taking in April 2008. An important part of the experiment is the electromagnetic calorimeter which consists of 6580 CsI crystals doped with thallium and read out by Si-PIN photodiodes. The light yield of the CsI crystals is changing in time due to radiation exposure. In addition to the changing light yield, passive material in front of and between the crystals as well as signal thresholds during the reconstruction influence the reconstructed energies. This requires a time-dependent calibration of the calorimeter. The calibration issues are reviewed and the calibration results obtained from various data samples are presented.

  9. Recent Results on T and CP Violation at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez Perez, Alejandro [Istituto Nazionale di Fisica Nucleare (INFN), Pisa (Italy).

    2015-02-06

    CP-violation (CPV) and Time-reversal violation (TRV) are intimately related through the CPT theorem: if one of these discrete symmetries is violated the other one has to be violated in such a way to conserve CPT. Although CPV in the B0B0-bar system has been established by the B-factories, implying indirectly TRV, there is still no direct evidence of TRV. We report on the observation of TRV in the B-meson system performed with a dataset of 468 × 106 BB-bar pairs produced in Υ(4S) decays collected by the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We also report on other CPV measurements recently performed on the B-meson system

  10. Torus Knots and the Topological Vertex

    CERN Document Server

    Jockers, Hans; Soroush, Masoud

    2012-01-01

    We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S^3. The key role is played by the SL(2,Z) transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Marino. Comparing to the recent proposal by Aganagic and Vafa for knots on S^3, we demonstrate that the disk amplitude of the A-brane associated to any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.

  11. Dynamical Vertex Approximation for the Hubbard Model

    Science.gov (United States)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  12. Vertex micromagnetic energy in artificial square ice

    Science.gov (United States)

    Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas

    2016-10-01

    Artificial arrays of interacting magnetic elements provide an uncharted arena in which the physics of magnetic frustration and magnetic monopoles can be observed in real space and in real time. These systems offer the formidable opportunity to investigate a wide range of collective magnetic phenomena with a lab-on-chip approach and to explore various theoretical predictions from spin models. Here, we study artificial square ice systems numerically and use micromagnetic simulations to understand how the geometrical parameters of the individual magnetic elements affect the energy levels of an isolated square vertex. More specifically, we address the question of whether the celebrated square ice model could be made relevant for artificial square ice systems. Our work reveals that tuning the geometry alone should not allow the experimental realization of the square ice model when using nanomagnets coupled through the magnetostatic interaction. However, low-aspect ratios combined with small gaps separating neighboring magnetic elements of moderated thickness might permit approaching the ideal case where the degeneracy of the ice rule states is recovered.

  13. Monte-Carlo Analysis of the Flavour Changing Neutral Current B \\to Gamma at Babar

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. [Imperial College, London (United Kingdom)

    2001-09-01

    The main theme of this thesis is a Monte-Carlo analysis of the rare Flavour Changing Neutral Current (FCNC) decay b→sγ. The analysis develops techniques that could be applied to real data, to discriminate between signal and background events in order to make a measurement of the branching ratio of this rare decay using the BaBar detector. Also included in this thesis is a description of the BaBar detector and the work I have undertaken in the development of the electronic data acquisition system for the Electromagnetic calorimeter (EMC), a subsystem of the BaBar detector.

  14. Study of the flavour changing neutral current beta-s gamma at BaBar

    CERN Document Server

    Smith, D

    2002-01-01

    The main theme of this thesis, is a monte-carlo analysis of the rare Flavour Changing Neutral Current (FCNC) decay b -> s gamma. The analysis develops techniques that could be applied to real data, to discriminate between signal and background events in order to make a measurement of the branching ratio of this rare decay using the BaBar detector. Also included in this thesis is a description of the BaBar detector and the work I have undertaken in the development of the electronic data acquisition system for the Electromagnetic Calorimeter (EMC), a subsystem of the BaBar detector.

  15. Assembling the last module of the vertex locator for LHCb

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The 42nd and final vertex locator module is assembled in the LHCb clean room. This will be used to measure the point at which two protons in the beam collide from the tracks of particles produced in the collision.

  16. A new method for counting trees with vertex partition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A direct and elementary method is provided in this paper for counting trees with vertex partition instead of recursion, generating function, functional equation, Lagrange inversion, and matrix methods used before.

  17. The $\\omega DD$ vertex in a Sum Rule approach

    CERN Document Server

    Holanda, L B; Mihara, A

    2007-01-01

    The study of charmonium dissociation in heavy ion collisions is generally performed in the framework of effective Lagrangians with meson exchange. Some studies are also developed with the intention of calculate form factors and coupling constants related with charmed and light mesons. These quantities are important in the evaluation of charmonium cross sections. In this paper we present a calculation of the $\\omega DD$ vertex that is a possible interaction vertex in some meson-exchange models spread in the literature. We used the standard method of QCD Sum Rules in order to obtain the vertex form factor as a function of the transferred momentum. Our results are compatible with the value of this vertex form factor (at zero momentum transfer) obtained in the vector-meson dominance model.

  18. On vertex-coloring edge-weighting of graphs

    Institute of Scientific and Technical Information of China (English)

    Honglian LU; Xu YANG; Qinglin YU

    2009-01-01

    A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1,..., k}, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining e(u) = ∑eЭuw(e) for every u ∈ V(G). A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, I.e., c(u)≠c(v) for any edge uv ∈ E(G). When k ≡ 2 (mod 4)and k≥ 6, we prove that if G is k-colorable and 2-connected, δ(G) ≥ k - 1, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.

  19. Vertex models: from cell mechanics to tissue morphogenesis

    Science.gov (United States)

    Alt, Silvanus; Ganguly, Poulami

    2017-01-01

    Tissue morphogenesis requires the collective, coordinated motion and deformation of a large number of cells. Vertex model simulations for tissue mechanics have been developed to bridge the scales between force generation at the cellular level and tissue deformation and flows. We review here various formulations of vertex models that have been proposed for describing tissues in two and three dimensions. We discuss a generic formulation using a virtual work differential, and we review applications of vertex models to biological morphogenetic processes. We also highlight recent efforts to obtain continuum theories of tissue mechanics, which are effective, coarse-grained descriptions of vertex models. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348254

  20. Vertex Reconstruction in the ATLAS Experiment at the LHC

    CERN Document Server

    Bouhova-Thacker, E; The ATLAS collaboration; Kostyukhin, V; Liebig, W; Limper, M; Piacquadio, G; Lichard, P; Weiser, C; Wildauer, A

    2009-01-01

    In the harsh environment of the Large Hadron Collider at CERN (design luminosity of $10^{34}$ cm$^{-2}$ s$^{-1}$) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper are the strategies for vertex reconstruction used in the ATLAS experiment and their implementation in the software framework Athena. The algorithms for the reconstruction of primary and secondary vertices as well as for finding of photon conversions and vertex reconstruction in jets are described. A special emphasis is made on the vertex fitting with application of additional constraints. The implementation of mentioned algorithms follows a very modular design based on object-oriented C++ and use of abstract interfaces. The user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.

  1. Factorial Schur functions via the six vertex model

    CERN Document Server

    McNamara, Peter J

    2009-01-01

    For a particular set of Boltzmann weights and a particular boundary condition for the six vertex model in statistical mechanics, we compute explicitly the partition function and show it to be equal to a factorial Schur function.

  2. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  3. R&D Challenges of a CLIC Vertex Detector

    CERN Document Server

    van der Kraaij, E

    2010-01-01

    The Compact Linear Collider (CLIC) is a concept for an electron-positron collider with a center- of-mass energy of up to 3 TeV. Given the unprecedented experimental conditions at CLIC none of the technologies available today can fulfill all requirements set for the vertex detector. At the conference these conditions and the challenges they pose for the R&D of a CLIC vertex detector were presented.

  4. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  5. DISTRIBUTED VERTEX COVER ALGORITHMS FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Vedat Kavalci

    2014-01-01

    Full Text Available Vertex covering has important applications for wireless sensor networks such as monitoring link failures, facility location, clustering, and data aggregation. In this study, we designed three algorithms for constructing vertex cover in wireless sensor networks. The first algorithm, which is an adaption of the Parnas & Ron’s algorithm, is a greedy approach that finds a vertex cover by using the degrees of the nodes. The second algorithm finds a vertex cover from graph matching where Hoepman’s weighted matching algorithm is used. The third algorithm firstly forms a breadth-first search tree and then constructs a vertex cover by selecting nodes with predefined levels from breadth-first tree. We show the operation of the designed algorithms, analyze them, and provide the simulation results in the TOSSIM environment. Finally we have implemented, compared and assessed all these approaches. The transmitted message count of the first algorithm is smallest among other algorithms where the third algorithm has turned out to be presenting the best results in vertex cover approximation ratio.

  6. B Mixing and Lifetime Measurements with the BaBar Detector

    OpenAIRE

    Bozzi, C.

    2001-01-01

    Recent BaBar measurements on lifetime and mixing of B mesons are reported. Various techniques are used, ranging from the full reconstruction of hadronic B decays, to partial reconstruction techniques, and to a totally inclusive approach with dilepton events. The results presented are based on a data sample collected by BaBar during the 1999-2000 data taking, and should be considered as preliminary.

  7. Thermal mock-up studies of the DEPFET pixel vertex detector for Belle II

    CERN Document Server

    Ye, H; Stever, R; Gadow, K; Camien, C

    2016-01-01

    The Belle II experiment currently under construction at the $e^+e^-$-collider SuperKEKB in Japan is designed to explore new physics beyond the standard model with an approximately 50 times larger data sample compared to its predecessor. The vertex detector (VXD), comprising a two layer DEPFET pixel detector (PXD) surrounded by four layers of double sided silicon strip detector (SVD), is indispensable for the accurate determination of the decay point of $B$ or $D$ mesons as well as track reconstruction of low momentum particles. In order to guarantee acceptable operation conditions for the VXD and the surrounding Belle II drift-chamber (CDC) the cooling system must be capable of removing a total heat load from the very confined VXD volume of about 1~kW plus some heat intake arising from the SuperKEKB beam pipe. Evaporative two-phase CO$_2$ cooling in combination with forced air flow has been chosen as technology for the VXD cooling system. To verify and optimize the vertex detector cooling concept, a full-size...

  8. Online track and vertex reconstruction on GPUs for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment searches for the lepton flavour violating decay μ → eee, aiming at a branching ratio sensitivity better than 10{sup -16}.To reach this sensitivity, muon rates above 10{sup 9} μ/s are required. A high precision silicon tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in the target to suppress background. The trigger-less readout system will deliver about 100 GB/s of zero-suppressed data. A network of optical links and switching FPGAs sends the complete detector data for a time slice to one node of the filter farm. An FPGA inside the filter farm PC transfers the event data to the GPU via PCIe direct memory access. The GPU finds and fits tracks using a 3D tracking algorithm for multiple scattering dominated resolution. In a second step, a three track vertex fit is performed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background. The talk discusses the data flow from the FPGA to the GPU as well as the implementation and performance of the track and vertex fits on the GPU.

  9. A 32-channel preamplifier chip for the multiplicity vertex detector at PHENIX

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L. Jr.; Clonts, L.G.; Ericson, M.N.; Frank, S.S.; Moore, J.A.; Simpson, M.L.; Young, G.R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States); Smith, R.S. [Cadence Design Systems, Cary, North Carolina 27511 (United States); Boissevain, J.; Hahn, S.; Kapustinsky, J.S.; Simon-Gillo, J.; Sullivan, J.P.; van Hecke, H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-03-01

    The TGV32, a 32-channel preamplifier{endash}multiplicity discriminator chip for the multiplicity vertex detector (MVD) at PHENIX, is a unique silicon preamplifier in that it provides both an analog output for storage in an analog memory and a weighted summed-current output for conversion to a channel multiplicity count. The architecture and test results of the chip are presented. Details about the design of the preamplifier, discriminator, and programmable digital{endash}analog converters performance as well as the process variations are presented. The chip is fabricated in a 1.2 {mu}m, {ital n}-well, complementary metal{endash}oxide{endash}semiconductor process. {copyright} {ital 1999 American Institute of Physics.}

  10. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2016-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  11. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  12. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    AUTHOR|(CDS)2070112; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  13. VERTEX: manganese transport through oxygen minima

    Science.gov (United States)

    Martin, John H.; Knauer, George A.

    1984-01-01

    Manganese transport through a well-developed oxygen minimum was studied off central Mexico (18°N, 108°W) in October-November 1981 as part of the VERTEX (Vertical Transport and Exchange) research program. Refractory, leachable and dissolved Mn fractions associated with particulates caught in traps set at eight depths (120-1950 m) were analyzed. Particles entering the oxygen minimum had relatively large Mn loads; however, as the particulates sank further into the minimum, total Mn fluxes steadily decreased from 190 nmol m -2 day -1 at 120 m to 36 nmol m -2 day -1 at 400 m. Manganese fluxes then steadily increased in the remaining 800-1950 m, reaching rates of up to 230 nmol m -2 day -1 at 1950 m. Manganese concentrations were also measured in the water column. Dissolved Mn levels Rate-of-change estimates based on trap flux data yield regeneration rates of up to 0.44 nmol kg -1 yr -1 in the upper oxygen minimum (120-200 m). However, only 30% of the dissolved Mn in the oxygen minimum appears to be from sinking particulate regeneration; the other 70% probably results from continental-slope-release-horizontal-transport processes. Dissolved Mn scavenges back onto particles as oxygen levels begin to increase with depth. Scavenging rates ranging from -0.03 to -0.09 nmol kg -1 yr -1 were observed at depths from 700 to 1950 m. These scavenging rates result in Mn residence times of 16-19 years, and scavenging rate constants on the order of 0.057 yr -1. Manganese removal via scavenging on sinking particles below the oxygen minimum is balanced by Mn released along continental boundaries and transported horizontally via advective-diffusive processes. Manganese appears to be very weakly associated with particulates. Nevertheless, the amounts of Mn involved with sinking biogenic particles are large, and the resulting fluxes are on the same order of magnitude as those necessary to explain the excess Mn accumulating on the sea floor. The overall behavior of Mn observed in this, and

  14. Hessian and graviton propagator of the proper vertex

    CERN Document Server

    Shirazi, Atousa Chaharsough; Vilensky, Ilya

    2015-01-01

    The proper spin-foam vertex amplitude is obtained from the EPRL vertex by projecting out all but a single gravitational sector, in order to achieve correct semi-classical behavior. In this paper we calculate the gravitational two-point function predicted by the proper spin-foam vertex to lowest order in the vertex expansion. We find the same answer as in the EPRL case in the `continuum spectrum' limit, so that the theory is consistent with the predictions of linearized gravity in the regime of small curvature. The method for calculating the two-point function is similar to that used in prior works: we cast it in terms of an action integral and to use stationary phase methods. Thus, the calculation of the Hessian matrix plays a key role. Once the Hessian is calculated, it is used not only to calculate the two-point function, but also to calculate the coefficient appearing in the semi-classical limit of the proper vertex amplitude itself. This coefficient is the effective discrete "measure factor" encoded in th...

  15. Directed Subset Feedback Vertex Set is Fixed-Parameter Tractable

    CERN Document Server

    Chitnis, Rajesh; Hajiaghayi, MohammadTaghi; Marx, Dániel

    2012-01-01

    Given a graph $G$ and an integer $k$, the \\textsc{Feedback Vertex Set} (\\textsc{FVS}) problem asks if there is a vertex set $T$ of size at most $k$ that hits all cycles in the graph. Bodlaender (WG '91) gave the first fixed-parameter algorithm for \\textsc{FVS} in undirected graphs. The fixed-parameter tractability status of \\textsc{FVS} in directed graphs was a long-standing open problem until Chen et al. (STOC '08) showed that it is fixed-parameter tractable by giving an $4^{k}k!n^{O(1)}$ algorithm. In the subset versions of this problems, we are given an additional subset $S$ of vertices (resp. edges) and we want to hit all cycles passing through a vertex of $S$ (resp. an edge of $S$). Indeed both the edge and vertex versions are known to be equivalent in the parameterized sense. Recently the \\textsc{Subset Feedback Vertex Set} in undirected graphs was shown to be FPT by Cygan et al. (ICALP '11) and Kakimura et al. (SODA '12). We generalize the result of Chen et al. (STOC '08) by showing that \\textsc{Subset...

  16. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  17. On trees with total domination number equal to edge-vertex domination number plus one

    Indian Academy of Sciences (India)

    B Krishnakumari; Y B Venkatakrishnan; Marcin Krzywkowski

    2016-05-01

    An edge $e \\in E(G)$ dominates a vertex $v \\in V(G)$ if $e$ is incident with $v$ or $e$ is incident with a vertex adjacent to $v$. An edge-vertex dominating set of a graph $G$ is a set $D$ of edges of $G$ such that every vertex of $G$ is edge-vertex dominated by an edge of $D$. The edge-vertex domination number of a graph $G$ is the minimum cardinality of an edge-vertex dominating set of $G$. A subset $D \\subseteq V(G)$ is a total dominating set of $G$ if every vertex of $G$ has a neighbor in $D$. The total domination number of $G$ is the minimum cardinality of a total dominating set of $G$. We characterize all trees with total domination number equal to edge-vertex domination number plus one.

  18. Measurements of the CKM Angle Alpha at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-04

    The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

  19. The BABAR Database:Challenges,Trends and Projections

    Institute of Scientific and Technical Information of China (English)

    I.Gaponenko; A.Adesanya; 等

    2001-01-01

    The BABAR database,based upon the Objectivity OO database management system,has been in production since early 1999,It has met its initial design requirements which were to accommodate a 100Hz event rate from the experiment at a scale of 200TB per year.However,with increased luminosity and changes in the physics requirements,these requirements have increased significantly for the current running period and will again increase in the future.New capabilities in the underlying ODBMS product,in particular those of multiple federation and read-only database support,have been incorporated into a new design that is backwards compatible with existing application code while offering scaling into the multi-petabyte size regime.Other optimizations,including the increased use of thghtly coupled CORBA servers and an improved awareness of space inefficiencies,are also playing a part in meeting the new scaling requirements.We discuss these optimizations and the prospects for further scaling enhancements to address the longer-term needs of the experiment.

  20. Initial State Radiation Studies at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, A.; /Dresden, Tech. U.

    2007-04-16

    We present results from BABAR on events containing a hard radiated photon from the e{sup +}e{sup -} initial state and several exclusive final states. For the {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} final state the cross section is measured for center-of-mass energies from 0.6 to 4.5 GeV. Resonant structures are studied and confirmed to be dominated by the a{sub 1}(1260){pi}, with a contribution from f{sub 2}(1270){rho}(770). Similar studies are shown for {pi}{sup +}{pi}{sup -}K{sup +}K{sup -} and K{sup +}K{sup -}K{sup +}K{sup -} from their respective thresholds up to 4.5 GeV. From the {pi}{sup +}{pi}{sup -}{pi}{sup 0} final state the products of the branching fractions of the {omega} and {phi} mesons have been obtained and the cross section is measured from 1.05 to 3.00 GeV. In addition the J/{psi} branching fractions to all four final states have been measured.

  1. Results from the BABAR Fully Inclusive Measurement of B? Xs?

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-09-20

    We present preliminary results from a lepton-tagged fully-inclusive measurement of B {yields} X{sub s}{gamma} decays, where X{sub s} is any strange hadronic state. Results are based on a BABAR data set of 88.5 million B{bar B} pairs at the {Upsilon}(4S) resonance. We present a reconstructed photon energy spectrum in the {Upsilon}(4S) frame, and partial branching fractions above minimum reconstructed photon energies of 1.9, 2.0, 2.1 and 2.2 GeV. We then convert these to measurements of partial branching fractions and truncated first and second moments of the true photon energy distribution in the B rest frame, above the same minimum photon energy values. The full correlation matrices between the first and second moments are included to allow fitting to any parameterized theoretical calculation. We also measure the direct CP asymmetry {Alpha}{sub CP}(B {yields} X{sub s+d{gamma}}) (based on the charge of the tagging lepton) above a reconstructed photon energy of 2.2 GeV.

  2. Production and decay of Xic0 at BABAR

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schröder, T; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Zhang, L; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De, R; Sangro; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Vavra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martínez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihályi, A; Pan, Y; Prepost, R; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-01-01

    Using 116.1 fb^-1 of data collected by the BABAR detector, we present an analysis of Xic0 production in B decays and from the ccbar continuum, with the Xic0 decaying into Omega- K+ and Xi- pi+ final states. We measure the ratio of branching fractions B(Xic0 -> Omega- K+)/B(Xic0 -> Xi- pi+) to be 0.294 +- 0.018 +- 0.016, where the first uncertainty is statistical and the second is systematic. The Xic0 momentum spectrum is measured on and 40 MeV below the Upsilon(4S) resonance. From these spectra the branching fraction product B(B -> Xic0 X) x B(Xic0 -> Xi- pi+) is measured to be (2.11 +- 0.19 +- 0.25) x 10^-4 and the cross-section product sigma(e+ e- -> Xic0 X) x B(Xic0 -> Xi- pi+) from the continuum is measured to be (388 +- 39 +- 41) fb at a center-of-mass energy of 10.58 GeV.

  3. Production and decay of xi(c)(0) at BABAR.

    Science.gov (United States)

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Andreassen, R; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Klose, V; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Chai, X; Charles, M J; Grenier, G J; Mallik, U; Mohapatra, A K; Ziegler, V; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Suzuki, K; Thompson, J M; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-09-30

    Using 116.1 fb(-1) of data collected by the BABAR detector, we present an analysis of xi(c)(0) production in B decays and from the cc continuum, with the xi(c)(0) decaying into omega- K+ and xi- pi+ final states. We measure the ratio of branching fractions B(xi(c)(0) --> omega- K+)/B(xi(c)(0) --> xi- pi+) spectrum is measured on and 40 MeV below the upsilon(4S) resonance. From these spectra the branching fraction product B(B --> xi(c)(0)X) x B(xi(c)(0) --> xi- pi+) is measured to be (2.11 +/- 0.19 +/- 0.25) x 10(-4), and the cross-section product sigma(e+ e- --> xi(c)(0)X) x B(xi(c)(0) --> xi- pi+) from the continuum is measured to be (388 +/- 39 +/- 41) fb at a center-of-mass energy of 10.58 GeV.

  4. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Giacomo, E-mail: gcontin@lbl.gov

    2016-09-21

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark–Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm{sup 2} power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √s{sub NN}=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT. - Highlights: • First MAPS-based vertex detector in a collider experiment. • Achieved low material budget of 0.39% of radiation length per detector layer. • Track pointing resolution to the primary vertex better than 10⊕24 GeV/p×c μm. • Gain in significance for the topological reconstruction of the D{sup 0}−>K+π decay in STAR. • Observed latch-up induced damage of MAPS sensors.

  5. Study of the breaking of the CP symmetry in the BABAR experiment; Etude de la violation de la symetrie CP dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ganjour, S

    2007-09-15

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e{sup +}e{sup -} asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B{sup 0} {yields} D{sub s}{sup *} + D{sup *-} decays; measurement of CP violation in the B{sup 0} {yields} D{sup *{+-}}{pi}{sup {+-}} decays and constraint on the Unitary Triangle parameter sin(2{beta} + {gamma}) using these decays. (author)

  6. On the uniqueness of d-vertex magic constant

    Directory of Open Access Journals (Sweden)

    Arumugam S.

    2014-05-01

    Full Text Available Let G = (V,E be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v = {u ∈ V : d(u, v ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v f(u is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4.

  7. Plethystic Vertex Operators and Boson-Fermion Correspondences

    CERN Document Server

    Fauser, Bertfried; King, Ronald C

    2016-01-01

    We study the algebraic properties of plethystic vertex operators, introduced in J. Phys. A: Math. Theor. 43 405202 (2010), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape \\pi. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each \\pi, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  8. Plethystic vertex operators and boson-fermion correspondences

    Science.gov (United States)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  9. Vertex-centred Method to Detect Communities in Evolving Networks

    CERN Document Server

    Canu, Maël; d'Allonnes, Adrien Revault

    2016-01-01

    Finding communities in evolving networks is a difficult task and raises issues different from the classic static detection case. We introduce an approach based on the recent vertex-centred paradigm. The proposed algorithm, named DynLOCNeSs, detects communities by scanning and evaluating each vertex neighbourhood, which can be done independently in a parallel way. It is done by means of a preference measure, using these preferences to handle community changes. We also introduce a new vertex neighbourhood preference measure, CWCN, more efficient than current existing ones in the considered context. Experimental results show the relevance of this measure and the ability of the proposed approach to detect classical community evolution patterns such as grow-shrink and merge-split.

  10. Fatigue crack shape prediction based on vertex singularity

    Directory of Open Access Journals (Sweden)

    Hutař P.

    2008-11-01

    Full Text Available Due to the existence of vertex singularity at the point where the crack intersects the free surface, stress distribution around the crack tip and the type of the singularity is changed. In the interior of the specimen the classical singular behaviour of the crack is dominant and can be described using analytic equations. Contrary to this, at the free surface or in the boundary layer close to free surface the vertex singularity is significant. The influence of vertex singularity on crack behaviour and a crack shape for a three-dimensional structure is described in this paper. The results presented make it possible to estimate fatigue crack growth rate and crack shape using the concept of the generalized stress intensity factor. The estimated fatigue crack shape can help to provide a more reliable estimation of the fatigue life of the structures considered.

  11. Semiclassical correlation functions of Wilson loops and local vertex operators

    CERN Document Server

    Hernandez, Rafael

    2012-01-01

    We analyze correlation functions of Wilson loop observables and local vertex operators within the strong-coupling regime of the AdS/CFT correspondence. When the local operator corresponds to a light string state with finite conserved charges the correlation function can be evaluated in the semiclassical approximation of large string tension, where the contribution from the light vertex can be neglected. We consider the cases where the Wilson loops are described by two concentric surfaces and the local vertices are the superconformal chiral primary scalar or a singlet massive scalar operator.

  12. On vertex-coloring 13-edge-weighting

    Institute of Scientific and Technical Information of China (English)

    Tao WANG; Qinglin YU

    2008-01-01

    L. Addario-Berry et al. [Discrete Appl. Math., 2008, 156:1168-1174] have shown that there exists a 16-edge-weighting such that the induced vertex coloring is proper. In this note, we improve their result and prove that there exists a 13-edge-weighting of a graph G, such that itsinduced vertex coloring of G is proper. This result is one step close to the original conjecture posed by M. Karofiski et al. [J. Combin. Theory, Set. B, 2004, 91: 151-157].

  13. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the current status of R&D on sensors, readout and detector integration is presented.

  14. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors (planar or active HV-CMOS) via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced air flow. In this contribution the CLIC vertex-detector requirements are reviewed and the current status of R&D on readout and sensors is presented.

  15. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  16. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  17. A measurement of the CP parameter sine two beta using fully reconstructed b to ccbar decays at the BaBar experiment

    Science.gov (United States)

    Charles, Eric Andre

    This dissertation presents a measurement of the time-dependent CP -violating asymmetries in the neutral B-meson system performed with data collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample used consists of 29.7 fb-1 collected at the Upsilon(4S) resonance and 3.9 fb-1 collected off-resonance. We analyze three samples of fully-reconstructed B-meson decays: a sample of decays to CP eigenstates in the modes J/ yK0S , y (2S) K0S , chic1 K0S , and J/ y K*0 (822 events); as well as both charged (14304 events) and neutral (10457 events) B decays to flavor-eigenstates including D(*) and pi/rho/a1. In all cases, the proper decay time difference between the reconstructed B-meson and the recoiling B-meson is determined by measuring the separation of the two decay vertices. Furthermore, the flavor of the recoiling B-meson is tagged using a neural network algorithm. We use the flavor-eigenstate samples to calibrate both the vertexing and tagging performance. We measure the amplitude of the CP asymmetry, sin2beta = 0.61 +/- 0.14(stat) +/- 0.06(syst). These results indicate the existence of indirect CP violation in the B-meson system.

  18. The target silicon detector for the FOCUS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Reyes, M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Goebel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; O' Reilly, B.; Ramirez, J.E.; Segoni, I.; Butler, J.N.; Cheung, H.W.K.; Chiodini, G.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Benussi, L.; Bianco, S.; Fabbri, F.L.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; D' Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Milazzo, L.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport III, T.F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Riccardi, C.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Purohit, M.; Copty, N.; Wilson, J.R.; Handler, T.; Mitchell, R.; Engh, D.; Helms, R.W.; Hosack, M.; Johns, W.E. E-mail: will.johns@vanderbilt.edu; Nehring, M.; Sheldon, P.D.; Stenson, K.; Webster, M.; Sheaff, M

    2004-01-11

    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.

  19. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  20. Two-loop and n-loop eikonal vertex corrections

    OpenAIRE

    Kidonakis, Nikolaos

    2003-01-01

    I present calculations of two-loop vertex corrections with massive and massless partons in the eikonal approximation. I show that the $n$-loop result for the UV poles can be given in terms of the one-loop calculation.

  1. A Remark on Newest Vertex Bisection in Any Space Dimension

    NARCIS (Netherlands)

    D. Gallistl; M. Schedensack; R.P. Stevenson

    2014-01-01

    With newest vertex bisection, there is no uniform bound on the number of n-simplices that need to be refined to arrive at the smallest conforming refinement T′ of a conforming partition T in which one simplex has been bisected. In this note, we show that the difference in levels between any T′∈T′ an

  2. Self-locking degree-4 vertex origami structures

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Wang, K. W.

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  3. The role of geometry in 4-vertex origami mechanics

    Science.gov (United States)

    Waitukaitis, Scott; Dieleman, Peter; van Hecke, Martin

    Origami offers an interesting design platform metamaterials because it strongly couples mechanics with geometry. Even so, most research carried out so far has been limited to one or two particular patterns. I will discuss the full geometrical space of the most common origami building block, the 4-vertex, and show how exotic geometries can have dramatic effects on the mechanics.

  4. R&D for the Vertexing at CLIC

    CERN Document Server

    Redford, S

    2015-01-01

    The Compact Linear Collider is a candidate to be the next high-energy particle physics collider. Using a novel acceleration technique, electrons and positrons would be brought into collision with a centre-of-mass energy of up to 3 TeV. Despite challenging levels of beam-induced background, this would provide a relatively clean environment in which to perform precision physics measurements. The vertex detector would be crucial in achieving this, and would need to provide accurate particle tracking information to facilitate secondary vertex reconstruction and jet flavour-tagging. With this goal in mind, current technological limits are being stretched to design a low occupancy, low mass and low-power dissipation vertex detector for CLIC. A concept comprising thin hybrid pixel detectors coupled to high- performance readout ASICs, power-pulsing and air-flow cooling is under development. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on sensors, readout, powerin...

  5. New representation of the two-loop crossed vertex function

    Energy Technology Data Exchange (ETDEWEB)

    Frink, A. [Mainz Univ. (Germany). Inst. fuer Physikalische Chemie; Kilian, U. [Mainz Univ. (Germany). Inst. fuer Physikalische Chemie; Kreimer, D. [Mainz Univ. (Germany). Inst. fuer Physikalische Chemie

    1997-03-17

    We calculate the two-loop vertex function for the crossed topology, and for arbitrary masses and external momenta. We derive a double integral representation, suitable for a numerical evaluation by a Gaussian quadrature. Real and imaginary parts of the diagram can be calculated separately. (orig.).

  6. New representation of two-loop propagator and vertex functions

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, A. (Mainz Univ. (Germany). Inst. fuer Physik); Kilian, U. (Mainz Univ. (Germany). Inst. fuer Physik); Kreimer, D. (Department of Physics, University of Tasmania, G.P.O. Box 252C, Hobart, 7001 (Australia))

    1995-01-09

    We present a new method of calculating scalar propagator and vertex functions in the two-loop approximation, for arbitrary masses of particles. It is based on a double integral representation, suitable for numerical evaluation. Real and imaginary parts of the diagrams are calculated separately, so that there is no need to use complex arithmetics in the numerical program. ((orig.))

  7. Vertex deviation maps to bracked the Milky Way resonant radius

    Science.gov (United States)

    Roca-Fàbrega, S.; Antoja, T.; Figueras, F.; Valenzuela, O.; Romero-Gómez, M.; Pichardo, B.

    2015-05-01

    We map the kinematics of stars in simulated galaxy disks with spiral arms using the velocity ellipsoid vertex deviation (l_v). We use test particle simulations, and for the first time, fully self-consistent high resolution N-body models. We compare our maps with the Tight Winding Approximation model analytical predictions. We see that for all barred models spiral arms rotate closely to a rigid body manner and the vertex deviation values correlate with the density peaks position bounded by overdense and underdense regions. In such cases, vertex deviation sign changes from negative to positive when crossing the spiral arms in the direction of disk rotation, in regions where the spiral arms are in between corotation (CR) and the Outer Lindblad Resonance (OLR). By contrast, when the arm sections are inside the CR and outside the OLR, l_v changes from negative to positive.We propose that measurements of the vertex deviations pattern can be used to trace the position of the main resonances of the spiral arms. We propose that this technique might exploit future data from Gaia and APOGEE surveys. For unbarred N-body simulations with spiral arms corotating with disk material at all radii, our analysis suggests that no clear correlation exists between l_v and density structures.

  8. A cohomology theory of grading-restricted vertex algebras

    CERN Document Server

    Huang, Yi-Zhi

    2010-01-01

    We introduce a cohomology theory of grading-restricted vertex algebras. To construct the "correct" cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to "rational functions valued in the algebraic completion of a module for the algebra," instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such "rational functions valued in the algebraic completion of a module" is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each $n\\in \\N$, we have an inverse system $\\{H^{n}_{m}(V, W)\\}_{m\\in \\Z_{+}}$ of $n$-th cohomologies and an additional $n$-th cohomology $H_{\\infty}^{n}(V, W)$ of a grading-restricted vertex algebra $V$ with coefficients in a $V$-module $W$ such that $H_{\\infty}^{n}(V, W)$ is isomorphic to the inverse limit of the inverse system $\\{H^{n}_{m}(V, W)\\}_{m\\in \\Z_{+}}$. In the case of $n=2$, there is an addit...

  9. One vertex spin-foams with the Dipole Cosmology boundary

    CERN Document Server

    Kisielowski, Marcin; Puchta, Jacek

    2012-01-01

    We find all the spin-foams contributing in the first order of the vertex expansion to the transition amplitude of the Bianchi-Rovelli-Vidotto Dipole Cosmology model. Our algorithm is general and provides spin-foams of arbitrarily given, fixed: boundary and, respectively, a number of internal vertices. We use the recently introduced Operator Spin-Network Diagrams framework.

  10. Approximation Algorithms for Edge Partitioned Vertex Cover Problems

    CERN Document Server

    Bera, Suman Kalyan; Kumar, Amit; Roy, Sambuddha

    2011-01-01

    In the Partial Vertex Cover (PVC) problem we are given an undirected graph G = (V, E), a positive cost associated with each vertex and a positive integer k and the goal is to find a minimum cost subset of vertices S such that atleast k edges of the graph are covered. In this paper we consider two new generalization of the PVC problem. In the first variation which we call Partition Vertex Cover (Partition-VC) problem, the edges of the graph G are divided into n disjoint partitions $P_1, P_2... P_n$ and we have to select a minimum cost subset of vertices S such that atleast $k_i$ edges are covered from partition $P_i$. In the second variation which we call Knapsack Partition Vertex Cover (KPVC) problem, in addition to the previous conditions, each edge e has a profit $\\pi_{e}$ associated with it and we have an added knapsack constraint that the total profit of the covered edges in partition $P_i$ should be atleast $\\Pi_i$. We give an $O(log n)$ approximation for both the problems using a combination of determin...

  11. Track and vertex finding performance with the CMS inner tracker

    CERN Document Server

    Caner, A; Khanov, A I; Stepanov, N

    1999-01-01

    The Compact Muon Solenoid (CMS) Tracker Collaboration has recently finalised the design of the tracking detector. After characterising the detector layout, we review in detail the algorithms developed for track and vertex reconstruction. We discuss the reconstruction capability for several benchmark event topologies and assess the projected performance of the CMS tracking detector. (12 refs).

  12. A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems

    NARCIS (Netherlands)

    Ciftci, B.B.; Tijs, S.H.

    2007-01-01

    In this paper we consider spanning tree problems, where n players want to be connected to a source as cheap as possible. We introduce and analyze (n!) vertex oriented construct and charge procedures for such spanning tree situations leading in n steps to a minimum cost spanning tree and a cost shari

  13. Anomalous $\\omega$-$Z$-$\\gamma$ Vertex from Hidden Local Symmetry

    CERN Document Server

    Harada, Masayasu; Yamawaki, Koichi

    2011-01-01

    We formulate the general form of omega-Z-gamma vertex in the framework based on the hidden local symmetry (HLS), which arises from the gauge invariant terms for intrinsic parity-odd (IP-odd) part of the effective action. Those terms are given as the homogeneous part of the general solution (having free parameters) to the Wess-Zumino (WZ) anomaly equation and hence are not determined by the anomaly, in sharp contrast to the Harvey-Hill-Hill (HHH) action where the relevant vertex is claimed to be uniquely determined by the anomaly. We show that, even in the framework that HHH was based on, the omega-Z-gamma vertex is actually not determined by the anomaly but by the homogeneous (anomaly-free) part of the general solution to the WZ anomaly equation having free parameters in the same way as in the HLS formulation: The HHH action is just a particular choice of the free parameters in the general solution. We further show that the omega-Z-gamma vertex related to the neutrino (nu) - nucleon (N) scattering cross secti...

  14. Recent Results on Charm and Tau Physics from BaBar And Belle

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, Fabrizio F.; /Royal Holloway, U. of London

    2007-10-15

    Recent results on charm and tau physics obtained at the BABAR and Belle experiments are presented in this article. The charm section will be focused on the most recent results on D{sup 0}{bar D}{sup 0} mixing at Belle and on the measurement of the pseudoscalar decay constant f{sub Ds} using charm tagged e+e- events at BABAR. In the tau section the recent results on Lepton Flavor Violation from tau decays will be discussed, as well as the recent result on the rare decay {tau}{sup -} {yields} 3{pi}{sup -}2{pi}{sup +}2{pi}{sup 0}{nu}{sub {tau}} at BABAR and the measurement of the {tau} lepton mass at Belle.

  15. Final Report BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    CERN Document Server

    Judd, D J

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas.

  16. Production of BaBar Skimmed Analysis Datasets Using the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Brew, C.A.J.; /Rutherford; Wilson, F.F.; /Rutherford; Castelli, G.; /Rutherford; Adye, T.; /Rutherford; Roethel, W.; /Rutherford; Luppi, E.; /INFN, Ferrara; Andreotti, D.; /INFN, Ferrara; Smith, D.; /SLAC; Khan, A.; /Brunel U.; Barrett, M.; /Brunel U.; Barlow, R.; /Manchester U.; Bailey, D.; /Manchester U.

    2011-11-10

    The BABAR Collaboration, based at Stanford Linear Accelerator Center (SLAC), Stanford, US, has been performing physics reconstruction, simulation studies and data analysis for 8 years using a number of compute farms around the world. Recent developments in Grid technologies could provide a way to manage the distributed resources in a single coherent structure. We describe enhancements to the BABAR experiment's distributed skimmed dataset production system to make use of European Grid resources and present the results with regard to BABAR's latest cycle of skimmed dataset production. We compare the benefits of a local and Grid-based systems, the ease with which the system is managed and the challenges of integrating the Grid with legacy software. We compare job success rates and manageability issues between Grid and non-Grid production.

  17. The BaBar Event Building and Level-3 Trigger Farm Upgrade

    CERN Document Server

    Luitz, S; Dasu, S; Dubois-Felsmann, G P; Franek, B J; Hamilton, J; Jacobsen, R; Kotturi, D; Narsky, I; O'Grady, C; Perazzo, A; Rodríguez, R; Rosenberg, E I; Salnikov, A; Weaver, M; Wittgen, M; Group, for the BaBar Computing

    2003-01-01

    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system.

  18. Development of carbon fiber staves for the strip part of the PANDA micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Quagli, Tommaso; Brinkmann, Kai-Thomas [II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Fracassi, Vincenzo; Grunwald, Dirk; Rosenthal, Eberhard [ZEA-1, Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    PANDA is a key experiment of the future FAIR facility, under construction in Darmstadt, Germany. It will study the collisions between an antiproton beam and a fixed proton or nuclear target. The Micro Vertex Detector (MVD) is the innermost detector of the apparatus and is composed of four concentric barrels and six forward disks, instrumented with silicon hybrid pixel detectors and double-sided silicon microstrip detectors; its main task is the identification of primary and secondary vertices. The central requirements include high spatial and time resolution, trigger-less readout with high rate capability, good radiation tolerance and low material budget. Because of the compact layout of the system, its integration poses significant challenges. The detectors in the strip barrels will be supported by a composite structure of carbon fiber and carbon foam; a water-based cooling system embedded in the mechanical supports will be used to remove the excess heat from the readout electronics. In this contribution the design of the barrel stave and the ongoing development of some hardware components related to its integration will be presented.

  19. Measurement of the e+e- Multihadronic Cross Sections below 4.5 GeV with BaBar

    OpenAIRE

    Achim Denig representing the BaBar collaboration

    2006-01-01

    We present a summary of the hadronic cross section measurements performed with BaBar at the PEP-II collider via radiative return. BaBar has performed measurements of exclusive final states containing 3, 4 and 6 hadrons via this complementary method, as well as a measurement of the proton form factor.

  20. Future trends of 3D silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Da Vià, Cinzia, E-mail: cinzia.da.via@cern.ch [School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Haughton, Iain [School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB) E-08193, Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Christopher [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Povoli, Marco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Tzhnevyi, Vladislav; Watts, Stephen J. [School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2013-12-11

    Vertex detectors for the next LHC experiments upgrades will need to have low mass while at the same time be radiation hard and with sufficient granularity to fulfil the physics challenges of the next decade. Based on the gained experience with 3D silicon sensors for the ATLAS IBL project and the on-going developments on light materials, interconnectivity and cooling, this paper will discuss possible solutions to these requirements.

  1. Proposed proper Engle-Pereira-Rovelli-Livine vertex amplitude

    Science.gov (United States)

    Engle, Jonathan

    2013-04-01

    As established in a prior work of the author, the linear simplicity constraints used in the construction of the so-called “new” spin-foam models mix three of the five sectors of Plebanski theory as well as two dynamical orientations, and this is the reason for multiple terms in the asymptotics of the Engle-Pereira-Rovelli-Livine vertex amplitude as calculated by Barrett et al. Specifically, the term equal to the usual exponential of i times the Regge action corresponds to configurations either in sector (II+) with positive orientation or sector (II-) with negative orientation. The presence of the other terms beyond this cause problems in the semiclassical limit of the spin-foam model when considering multiple 4-simplices due to the fact that the different terms for different 4-simplices mix in the semiclassical limit, leading in general to a non-Regge action and hence non-Regge and nongravitational configurations persisting in the semiclassical limit. To correct this problem, we propose to modify the vertex so its asymptotics include only the one term of the form eiSRegge. To do this, an explicit classical discrete condition is derived that isolates the desired gravitational sector corresponding to this one term. This condition is quantized and used to modify the vertex amplitude, yielding what we call the “proper Engle-Pereira-Rovelli-Livine vertex amplitude.” This vertex still depends only on standard SU(2) spin-network data on the boundary, is SU(2) gauge-invariant, and is linear in the boundary state, as required. In addition, the asymptotics now consist in the single desired term of the form eiSRegge, and all degenerate configurations are exponentially suppressed. A natural generalization to the Lorentzian signature is also presented.

  2. Domination parameters of a graph with added vertex

    Directory of Open Access Journals (Sweden)

    Maciej Zwierzchowski

    2004-01-01

    Full Text Available Let \\(G=(V,E\\ be a graph. A subset \\(D\\subseteq V\\ is a total dominating set of \\(G\\ if for every vertex \\(y\\in V\\ there is a vertex \\(x\\in D\\ with \\(xy\\in E\\. A subset \\(D\\subseteq V\\ is a strong dominating set of \\(G\\ if for every vertex \\(y\\in V-D\\ there is a vertex \\(x\\in D\\ with \\(xy\\in E\\ and \\(\\deg _{G}(x\\geq\\deg _{G}(y\\. The total domination number \\(\\gamma _{t}(G\\ (the strong domination number \\(\\gamma_{S}(G\\ is defined as the minimum cardinality of a total dominating set (a strong dominating set of \\(G\\. The concept of total domination was first defined by Cockayne, Dawes and Hedetniemi in 1980 [Cockayne E. J., Dawes R. M., Hedetniemi S. T.: Total domination in graphs. Networks 10 (1980, 211–219], while the strong domination was introduced by Sampathkumar and Pushpa Latha in 1996 [Pushpa Latha L., Sampathkumar E.: Strong weak domination and domination balance in a graph. Discrete Mathematics 161 (1996, 235–242]. By a subdivision of an edge \\(uv\\in E\\ we mean removing edge \\(uv\\, adding a new vertex \\(x\\, and adding edges \\(ux\\ and \\(vx\\. A graph obtained from \\(G\\ by subdivision an edge \\(uv\\in E\\ is denoted by \\(G\\oplus u_{x}v_{x}\\. The behaviour of the total domination number and the strong domination number of a graph \\(G\\oplus u_{x}v_{x}\\ is developed.

  3. A quantum hybrid with a thin antenna at the vertex of a wedge

    Science.gov (United States)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  4. Limit theorems for vertex-reinforced jump processes on regular trees

    CERN Document Server

    Collevecchio, Andrea

    2009-01-01

    Consider a vertex-reinforced jump process defined on a regular tree, where each vertex has exactly $b$ children, with $b \\ge 3$. We prove the strong law of large numbers and the central limit theorem for the distance of the process from the root. Notice that it is still unknown if vertex-reinforced jump process is transient on the binary tree.

  5. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  6. Charm and Beauty Production from Secondary Vertexing at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Paul [University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2010-07-01

    Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA Inclusive charm and beauty cross sections are measured in e{sup -} p and e{sup +}p neutral current collisions at HERA in the kinematic region of photon virtuality 5 < Q{sup 2} < 2000 GeV{sup 2} and Bjorken scaling variable 0.0002 < x < 0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. Measurement of Charm and Beauty Jets in Deep Inelastic Scattering at HERA Measurements of the charm and beauty jet cross sections have been made in deep inelastic scattering at HERA for the kinematic region of photon virtuality Q{sup 2} > 6 GeV{sup 2} and elasticity variable 0.07 < y < 0.625 for jets in the laboratory frame with transverse energy E{sub T}{sup jet} > 6 GeV and pseudorapidity -1.0 < {eta}{sup jet} < 1.5. Measurements are also made requiring a jet in the Breit frame with E{sub T}{sup jet} > 6 GeV. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The number of charm and beauty jets are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are compared with QCD predictions and with previous measurements obtained using muon tagging. Charm and beauty production in deep inelastic scattering from inclusive secondary vertexing at ZEUS Charm and beauty production in deep inelastic scattering has been measured with the ZEUS detector using the full HERA II data set. The charm and beauty contents

  7. On the zero crossing of the three-gluon vertex

    CERN Document Server

    Athenodorou, A; Boucaud, Ph; De Soto, F; Papavassiliou, J; Rodriguez-Quintero, J; Zafeiropoulos, S

    2016-01-01

    We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  8. Diagonalization of the XXZ Hamiltonian by Vertex Operators

    CERN Document Server

    Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi

    1993-01-01

    We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.

  9. Integrable mixing of A_{n-1} type vertex models

    CERN Document Server

    Grillo, S

    2002-01-01

    Given a family of monodromy matrices {T_u; u=1,...,K} corresponding to integrable anisotropic vertex models of A_{n_u-1}-type, we build up a related mixed vertex model by means of gluing the lattices on which they are defined, in such a way that integrability property is preserved. Algebraically, the gluing process is implemented through one dimensional representations of rectangular matrix algebras A(R_p,R_q), where R_n indicates the R-matrix associated to the standard Hopf algebra deformation of the simple Lie algebra A_{n-1}. We show that algebraic Bethe ansatz can be applied, and the resulting nested equations are identical to the ones corresponding to an A_{n-1} quasi- periodic model with n=min{n_u; u=1,...,K}.

  10. 3-state Hamiltonians associated to solvable 33-vertex models

    Science.gov (United States)

    Crampé, N.; Frappat, L.; Ragoucy, E.; Vanicat, M.

    2016-09-01

    Using the nested coordinate Bethe ansatz, we study 3-state Hamiltonians with 33 non-vanishing entries, or 33-vertex models, where only one global charge with degenerate eigenvalues exists and each site possesses three internal degrees of freedom. In the context of Markovian processes, they correspond to diffusing particles with two possible internal states which may be exchanged during the diffusion (transmutation). The first step of the nested coordinate Bethe ansatz is performed providing the eigenvalues in terms of rapidities. We give the constraints ensuring the consistency of the computations. These rapidities also satisfy Bethe equations involving 4 × 4 R-matrices, solutions of the Yang-Baxter equation which implies new constraints on the models. We solve them allowing us to list all the solvable 33-vertex models.

  11. Exploratory study of the 3-gluon vertex on the lattice

    CERN Document Server

    Parrinello, C

    1994-01-01

    We define and evaluate on the lattice the amputated 3-gluon vertex function in momentum space. We give numerical results for 16^3 \\times 40 and 24^3 \\times 40 quenched lattices at \\beta=6.0. A good numerical signal is obtained, at the price of enforcing the gauge-fixing condition with high accuracy. By comparing results from two different lattice volumes, we try to investigate the crucial issue of finite volume effects. We also outline a method for the lattice evaluation of the QCD running coupling constant as defined from the 3-gluon vertex, while being aware that a realistic calculation will require larger \\beta values and very high statistics.

  12. On the zero crossing of the three-gluon vertex

    Directory of Open Access Journals (Sweden)

    A. Athenodorou

    2016-10-01

    Full Text Available We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  13. On the zero crossing of the three-gluon vertex

    Science.gov (United States)

    Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2016-10-01

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  14. K-vertex-connectivity minimum augmentation for undirected unweighted graphs

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For an undirected unweighted graph G0=(V0,E0) and a positive integer K, the K-vertex-connectivity minimum augmentation problem (K-VCMAP) is to find a minimum set of edges Emin such that the graph H0=(V0,E0∪Emin) is K-vertex-connected. Results in the literature have given polynomial time algorithms for K-VCMAP in several special cases such as where k≤3, or G0 is a tree. However, it still remains open whether or not there exist polynomial time algorithms for K-VCMAP for any graph G0 and any integer K. In this paper, we settle the problem by describing an efficient algorithm (KUCA) with time-complexity of O(K|V(G0)|5) for the K-VCMAP for any G0 and any positive integer K.

  15. Worldline calculation of the three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, N.; Schubert, C. [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna Via Irnerio 46, I-40126 Bologna (Italy); Instituto de Fisica y Matematicas Universidad Michoacana de San Nicolas de Hidalgo Apdo. Postal 2-82 C.P. 58040, Morelia, Michoacan (Mexico)

    2012-10-23

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  16. Six-vertex models and the GUE-corners process

    CERN Document Server

    Dimitrov, Evgeni

    2016-01-01

    In this paper we consider a class of probability distributions on the six-vertex model from statistical mechanics, which originate from the higher spin vertex models of https://arxiv.org/abs/1601.05770. We define operators, inspired by the Macdonald difference operators, which extract various correlation functions, measuring the probability of observing different arrow configurations. The development of our operators is largely based on the properties of a remarkable family of symmetric rational functions, which were previously studied in https://arxiv.org/abs/1410.0976. For the class of models we consider, the correlation functions can be expressed in terms of multiple contour integrals, which are suitable for asymptotic analysis. For a particular choice of parameters we analyze the limit of the correlation functions through a steepest descent method. Combining this asymptotic statement with some new results about Gibbs measures on Gelfand-Tsetlin cones and patterns, we show that the asymptotic behavior of o...

  17. Kinematic Fit for the Radiative Bhabha Calibration of BaBar's Electromagnetic Calorimeter

    OpenAIRE

    2000-01-01

    For the radiative Bhabha calibration of BaBar's electromagnetic calorimeter, the measured energy of a photon cluster is being compared with the energy obtained via a kinematic fit involving other quantities from that event. The details of the fitting algorithm are described in this note, together with its derivation and checks that ensure that the fitting routine is working properly.

  18. Rare Decays and Search for New Physics with BaBar

    OpenAIRE

    2006-01-01

    Rare B decays permit stringent tests of the Standard Model and allow searches for new physics. Several rare radiative-decay studies of the B meson from the BaBar collaboration are described. So far no sign for new physics was discovered.

  19. Search for Physics Beyond the Standard Model at BaBar and Belle

    Directory of Open Access Journals (Sweden)

    Calderini G.

    2012-06-01

    Full Text Available Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different γ resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

  20. Measurements of Exclusive B -> Xc l nubar Decays and |Vcb| at BaBar

    CERN Document Server

    Pegna, David Lopes

    2008-01-01

    We present recent results on exclusive Bbar -> Xc l- nubar_l decays and measurements of the CKM matrix element |Vcb| based on data collected at the Upsilon(4S) resonance with the babar detector at the PEP-II e+e- storage rings.

  1. Study of the D0 --> pi+ pi- pi0 decay at BABAR

    CERN Document Server

    Gaspero, Mario

    2010-01-01

    The Dalitz-plot of the Decay D0 --> pi+ pi- pi0 measured by the BABAR Collaboration shows the structure of a final state having quantum numbers IG JPC = 0- 0--. An isospin analysis of the Daliz-plot finds that the I = 0 contribution is about 96%. This high I = 0 contribution is unexpected because the weak interaction violates the isospin.

  2. Q-operators in the six-vertex model

    Directory of Open Access Journals (Sweden)

    Vladimir V. Mangazeev

    2014-09-01

    Here we use a different strategy and construct Q-operators as integral operators with factorized kernels based on the original Baxter's method used in the solution of the eight-vertex model. We compare this approach with the method developed in [1] and find the explicit connection between two constructions. We also discuss a reduction to the case of finite-dimensional representations with (half-integer spins.

  3. Vertex Operators for Irregular Conformal Blocks: Supersymmetric Case

    CERN Document Server

    Polyakov, Dimitri

    2016-01-01

    We construct supersymmetric irregular vertex operators of arbitrary rank, appearing in the colliding limit of primary fields. We find that the structure of the supersymmetric irregular vertices differs significantly from the bosonic case: upon supersymmetrization, the irregular operators are no longer the eigenstates of positive Virasoro and $W_N$ generators but block-diagonalize them. We relate the block-diagonal structure of the irregular vertices to contributions of the Ramond sector to the colliding limit.

  4. Factorized domain wall partition functions in trigonometric vertex models

    CERN Document Server

    Foda, O; Zuparic, M

    2007-01-01

    We obtain factorized domain wall partition functions for two sets of trigonometric vertex models: 1. The N-state Deguchi-Akutsu models, for N = {2, 3, 4} (and conjecture the result for all N >= 5), and 2. The sl(r+1|s+1) Perk-Schultz models, for {r, s = \\N}, where (given the symmetries of these models) the result is independent of {r, s}.

  5. Vertex-based diffusion for 3-D mesh denoising.

    Science.gov (United States)

    Zhang, Ying; Ben Hamza, A

    2007-04-01

    We present a vertex-based diffusion for 3-D mesh denoising by solving a nonlinear discrete partial differential equation. The core idea behind our proposed technique is to use geometric insight in helping construct an efficient and fast 3-D mesh smoothing strategy to fully preserve the geometric structure of the data. Illustrating experimental results demonstrate a much improved performance of the proposed approach in comparison with existing methods currently used in 3-D mesh smoothing.

  6. Recent status of FPCCD vertex detector R&D

    CERN Document Server

    Murai, S; Sanuki, T; Miyamoto, A; Sugimoto, Y; Constantino, C; Sato, H; Ikeda, H; Hitoshi, H

    2016-01-01

    The Fine Pixel CCD (FPCCD) is one of the candidate sensor technologies for the ILC vertex detector. It will be located near interaction point and require high radiation tolerance. It will thus be operated at -40 degree C to improve radiation tolerance. In this paper, we report on the status of neutron radiation tests, on a cooling system using two-phase CO2 with a gas compressor for circulation, and on the mechanical structure of the FPCCD ladders.

  7. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  8. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  9. Flattening single-vertex origami: the non-expansive case

    CERN Document Server

    Panina, Gaiane

    2010-01-01

    A single-vertex origami is a piece of paper with straight-line rays called creases emanating from a fold vertex placed in its interior or on its boundary. The Single-Vertex Origami Flattening problem asks whether it is always possible to reconfigure the creased paper from any configuration compatible with the metric, to a flat, non-overlapping position, in such a way that the paper is not torn, stretched and, for rigid origami, not bent anywhere except along the given creases. Streinu and Whiteley showed how to reduce the problem to the carpenter's rule problem for spherical polygons. Using spherical expansive motions, they solved the cases of open < \\pi and closed <= 2\\pi spherical polygons. Here, we solve the case of open polygons with total length between [\\pi, 2\\pi), which requires non-expansive motions. Our motion planning algorithm works in a finite number of discrete steps, for which we give precise bounds depending on both the number of links and the angle deficit.

  10. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  11. A neural network z-vertex trigger for Belle II

    CERN Document Server

    Neuhaus, Sara; Abudinén, Fernando; Chen, Yang; Feindt, Michael; Frühwirth, Rudolf; Heck, Martin; Kiesling, Christian; Knoll, Alois; Paul, Stephan; Schieck, Jochen

    2014-01-01

    We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D ($r - \\varphi$) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural ...

  12. Development of vertexing and lifetime triggers and a study of B(s) mixing using hadronic decays at D0

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Christopher P

    2005-03-01

    The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of B{sub s} oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay B{sub s} {yields} D{sub s}{pi}. This important mode provides the best proper time resolution for B{sub s} mixing and is reconstructed for the first time at D0. Projections on the sensitivity to B{sub s} oscillations are then presented.

  13. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  14. A Measurement of Neutral B Mixing using Di-Lepton Events with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardane, Naveen [Imperial College, London (United Kingdom)

    2000-12-01

    This thesis reports on a measurement of the neutral B meson mixing parameter, Δmd, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software.

  15. LHCb Vertex Locator: Performance and radiation damage in LHC Run 1 and preparation for Run 2

    Science.gov (United States)

    Szumlak, T.; Obła˛kowska-Mucha, A.

    2016-07-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 μm thick half-disc silicon sensors with R- and Φ-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 ×1014 1 MeV neutron equivalent cm-2 during the first LHC run. Silicon type-inversion has been observed in regions close to the interaction point. The preparations for LHC Run 2 are well under way and the VELO has already recorded tracks from injection line tests. The current status and plans for new operational procedures addressing the non-uniform radiation damage are shortly discussed.

  16. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    Science.gov (United States)

    Contin, Giacomo

    2016-09-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark-Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √sNN=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT.

  17. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, R., E-mail: regina.rescigno@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Finck, Ch.; Juliani, D. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Spiriti, E. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma 3 (Italy); Baudot, J. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Abou-Haidar, Z. [CNA, Sevilla (Spain); Agodi, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Alvarez, M.A.G. [CNA, Sevilla (Spain); Aumann, T. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Battistoni, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Milano (Italy); Bocci, A. [CNA, Sevilla (Spain); Böhlen, T.T. [European Organization for Nuclear Research CERN, Geneva (Switzerland); Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Boudard, A. [CEA-Saclay, IRFU/SPhN, Gif sur Yvette Cedex (France); Brunetti, A.; Carpinelli, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Cagliari (Italy); Università di Sassari (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Cortes-Giraldo, M.A. [Departamento de Fisica Atomica, Molecular y Nuclear, University of Sevilla, 41080-Sevilla (Spain); Cuttone, G.; De Napoli, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); and others

    2014-12-11

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  18. Track and vertex reconstruction on GPUs for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom; Kozlinskiy, Alexandr [Physikalisches Institut, Universitaet Heidelberg (Germany); Berger, Niklaus [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: Mu3e-Collaboration

    2015-07-01

    The Mu3e experiment searches for the lepton flavour violating decay μ → eee, aiming at a branching ratio sensitivity better than 10{sup -16}. To reach this sensitivity, muon rates above 10{sup 9} μ/s are required. A high precision silicon pixel tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in the target to suppress background. The trigger-less readout system will deliver about 100 GB/s of zero-suppressed data. A network of optical links and switching FPGAs sends the complete detector data for a time slice to one node of the filter farm. An FPGA inside the filter farm PC transfers the event data to the GPU via PCIe direct memory access. The GPU finds and fits tracks using a 3D tracking algorithm for multiple scattering dominated resolution. In a second step, a three track vertex fit is performed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background. The talk discusses the implementation of the fits on the GPU, which processes 10{sup 10} combinations of hits from three layers per second.

  19. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Science.gov (United States)

    Rescigno, R.; Finck, Ch.; Juliani, D.; Spiriti, E.; Baudot, J.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Tropea, S.; Vanstalle, M.; Younis, H.

    2014-12-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  20. A multiplicity-vertex detector for the PHENIX experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, J.; Boissevain, J. [Los Alamos National Lab., NM (United States); Bosze, E. [and others

    1997-06-21

    A multiplicity-vertex detector (MVD) has been designed, and is in construction for the PHENIX experiment at the relativistic heavy ion collider (RHIC). The 35 000 channel silicon detector is a two-layer barrel comprised of 112 strip detectors, and two disk-shaped endcaps comprised of 24 wedge-shaped pad detectors. The support structure of the MVD is very low mass, only 0.4% of a radiation length in the central barrel. The detector front-end electronics are a custom CMOS chip set containing preamplifier, discriminator, analog memory unit, and analog-to-digital converter. The system has pipelined acquisition, performs in simultaneous read/write mode, and is clocked by the 10 MHz beam crossing rate at RHIC. These die, together with a pair of commercial FPGAs that are used for control logic, are packaged in a multichip-module (MCM). The MCM will be fabricated in the high-density-interconnect (HDI) process. The prototype MCM design layout is described. (orig.).

  1. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Science.gov (United States)

    Ono, Shun; Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei; Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori

    2017-02-01

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm2 pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  2. Transverse Ward-Takahashi Relation for the Vector Vertex in Quantum Field Theory

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2001-01-01

    The transverse Ward-Takahashi (W-T) relation for the vector vertex in quantum field theory is derived by calculating the curl of the time-ordered product of the three-point function including the vector current operator. This provides the constraint on the transverse part of the vertex. By combining the transverse and normal (longitudinal)W-T identities, we obtain the expression for the full vector vertex function.``

  3. Approximation of quantum graph vertex couplings by scaled Schr\\"odinger operators on thin branched manifolds

    OpenAIRE

    2008-01-01

    We discuss approximations of vertex couplings of quantum graphs using families of thin branched manifolds. We show that if a Neumann type Laplacian on such manifolds is amended by suitable potentials, the resulting Schr\\"odinger operators can approximate non-trivial vertex couplings. The latter include not only the delta-couplings but also those with wavefunctions discontinuous at the vertex. We work out the example of the symmetric delta'-couplings and conjecture that the same method can be ...

  4. Freely generated vertex algebras and non-linear Lie conformal algebras

    OpenAIRE

    De Sole, Alberto; Kac, Victor

    2003-01-01

    We introduce the notion of a non--linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a non--linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.

  5. A DNA computer model for solving vertex coloring problem

    Institute of Scientific and Technical Information of China (English)

    XU Jin; QIANG Xiaoli; FANG Gang; ZHOU Kang

    2006-01-01

    A special DNA computer was designed to solve the vertex coloring problem. The main body of this kind of DNA computer was polyacrylamide gel electrophoresis which could be classified into three parts: melting region, unsatisfied solution region and solution region. This polyacrylamide gel was connected with a controllable temperature device, and the relevant temperature was Tm1, Tm2 and Tm3, respectively. Furthermore, with emphasis on the encoding way, we succeeded in performing the experiment of a graph with 5 vertices. In this paper we introduce the basic structure, the principle and the method of forming the library DNA sequences.

  6. New Hybrid Genetic Algorithm for Vertex Cover Problems

    Institute of Scientific and Technical Information of China (English)

    霍红卫; 许进

    2003-01-01

    This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.

  7. Vertex Operators Arising from Jacobi-Trudi Identities

    Science.gov (United States)

    Jing, Naihuan; Rozhkovskaya, Natasha

    2016-09-01

    We give an interpretation of the boson-fermion correspondence as a direct consequence of the Jacobi-Trudi identity. This viewpoint enables us to construct from a generalized version of the Jacobi-Trudi identity the action of a Clifford algebra on the polynomial algebras that arrive as analogues of the algebra of symmetric functions. A generalized Giambelli identity is also proved to follow from that identity. As applications, we obtain explicit formulas for vertex operators corresponding to characters of the classical Lie algebras, shifted Schur functions, and generalized Schur symmetric functions associated to linear recurrence relations.

  8. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  9. A new tool for constrained vertex fitting in ATLAS

    CERN Document Server

    Colijn, Auke Pieter; Limper, Maaike; Prokofiev, Kirill

    2009-01-01

    The precise reconstruction of trajectories of charged and neutral particles and their decay vertices is crucial for many physics analyses. Studying the tracking performance on well known benchmark channels helps to understand the properties of the ATLAS detector during the initial phase of the LHC. In order to exploit the correlations between reconstructed parameters of final state tracks having the same mother particle, a new tool for vertex fitting with possibility of simultaneous application of kinematic constraints has been developed. Using this tool on a benchmark channel such as J/psi to μ+μ− helps to correct shifts in the reconstructed curvature induced by systematic deformations of the detector.

  10. W-symmetry, topological vertex and affine Yangian

    CERN Document Server

    Procházka, Tomáš

    2015-01-01

    We discuss the representation theory of non-linear chiral algebra $\\mathcal{W}_{1+\\infty}$ of Gaberdiel and Gopakumar and its connection to Yangian of $\\hat{\\mathfrak{u}(1)}$ whose presentation was given by Tsymbaliuk. The characters of completely degenerate representations of $\\mathcal{W}_{1+\\infty}$ are for generic values of parameters given by the topological vertex. The Yangian picture provides an infinite number of commuting charges which can be explicitly diagonalized in $\\mathcal{W}_{1+\\infty}$ highest weight representations. Many properties that are difficult to study in $\\mathcal{W}_{1+\\infty}$ picture turn out to have a simple combinatorial interpretation.

  11. Spontaneous polarization of spin 1 analogue of the eight-vertex model

    CERN Document Server

    Quano, Yas-Hiro

    2013-01-01

    The spin 1 analogue of the eight-vertex model is considered on the basis of free field representations of vertex operators in the $2\\times 2$-fold fusion SOS model and vertex-face transformation. The spontaneous polarization of the model is obtained in terms of one-fold integral formula. Some limiting cases are discussed in order to examine the validity of the formula. Furthermore, we also present the integral formulae of the one-point function for the inhomogeneous twenty-one-vertex model.

  12. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-Qing; YANG Qiu-Ying; CHEN Tian-Lun

    2008-01-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.

  13. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    CERN Document Server

    Blum, Adrian L; Huber, Markus Q; Windisch, Andreas

    2016-01-01

    Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (``unquenching'') change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three-gluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.

  14. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    Science.gov (United States)

    Blum, Adrian L.; Alkofer, Reinhard; Huber, Markus Q.; Windisch, Andreas

    2017-03-01

    Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks ("unquenching") change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the threegluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.

  15. Search for exotics in the rare decay B → J/ψKKK at BABAR

    Directory of Open Access Journals (Sweden)

    Prencipe Elisabetta

    2015-01-01

    Full Text Available One of the most intriguing puzzles in hadron spectroscopy are the numerous charmonium-like states observed in the last decade, including charged states that are manifestly exotic. Over the years, the experiment BABAR has extensively studied those in B meson decays, initial state radiation processes and two photon reactions. We report in this paper a new study on some of those states, performed using the entire data sample collected by BABAR in e+e− collisions, at center of mass energies near 10.58 GeV/c2. The study of the process B → J/ψϕK will be presented, and the search for the resonant states X(4140 and X(4270 in their decays to J/ψϕ, will be highlighted.

  16. Recent results on exclusive hadronic cross sections measurements at BaBar

    Science.gov (United States)

    Barlow, Roger

    2017-01-01

    The BaBar Collaboration has an intensive program studying hadronic cross sections in low-energy e+e‑ annihilations, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for shedding light on the current 3 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state, and other final state are currently under investigation. We report here on the most recent results obtained by analysing the entire BaBar dataset, including the , and other final states.

  17. The Event Browser:An Intutive Approach to Browsing BaBar Object Databases

    Institute of Scientific and Technical Information of China (English)

    AdeyemiAdesanya

    2001-01-01

    Providing efficient access to more than 300TB of experiment data is the responsibility of the BaBar1 Databases Group.Unlike generic tools,The Event Browser presents users with an abstraction of the BaBar data model.Multithreaded CORBA2 servers perform database operations using small transactions in an effort to avoid lock contention issues and provide adequate response times.The GUI client is implemented in Java and can be easily deployed throughout the community in the form of a web applet.The browser allows users to examine collections of related physics events and identify associations between the collections and the physical files in which they reside,helping administrators distribute data to other sites worldwide,This paper discusses the various aspects of the Event Browser including requirements,design challenges and key features of the current implementation.

  18. Search for rare B meson decays at the BaBar experiment

    CERN Document Server

    Cheaib, Racha

    2016-01-01

    b to s transitions are flavour-changing neutral current (FCNC) processes that play an important role in the search for physics beyond the Standard Model (SM). Contributions from virtual particles in the loop are predicted to deviate observables, such as the branching fraction, from their SM expectations. Using data from the BaBar experiment, we present the first search for the rare decay B to K tau tau. The BABAR results on the measurement of the angular asymmetries of B to Kstar l l, where l is an electron or muon, are also reported. In addition, using a time-dependent analysis of B to KS0 pi pi gamma, the mixing induced CP-asymmetry for the radiative FCNC decay, B to KS0 rho gamma, is measured, along with an amplitude analysis of the m (K pi) and m (K pi pi) spectrum.

  19. Development of a Data Acquisition System for the BaBar CP Violation Experiment

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C P; Russell, J J

    1999-01-01

    Experiences developing data acquisition system for the BaBar CP violation experiment located at the Stanford Linear Accelerator Center are presented. The BaBar detector consists of multiple independent subdetectors joined with a data acquisition system consisting of a large number of embedded PowerPC single board computers residing in VME crates. The data acquisition software is layered on the VxWorks real-time operating system. It is partitionable to allow subsystems (as well as test stands) to operate independently. Data is assimilated into events through a combination of shared memory and a high performance network. This system presents data to a UNIX farm via a high speed non-blocking ethernet switch at a rate of 2 KHz. Topics such as bootstrapping and loading 200 processors, NFS file access for these processors and software development and deployment are discussed.

  20. A Measurement of the Exclusive Branching Fraction for B → π K at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aspinwall, Marie Louise [Imperial College, London (United Kingdom)

    2002-02-01

    This thesis presents an exclusive measurement of the branching fraction B for the rare charmless hadronic B decays to πK final states. A sample of 22.57±0.36 million BB pairs was collected with the BaBar detector at the Stanford Linear Accelerator Center's PEP-II B Factory, during the Run 1 data taking period (1999-2000).

  1. The RPC-based IFR system at BaBar experiment preliminary results

    CERN Document Server

    Piccolo, D; Bagnasco, S; Baldini, R; Band, H R; Bionta, R; Buzzo, A; Calcaterra, A; Cavallo, N; Contri, R; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Fabozzi, F; Falciai, D; Finocchiaro, G; Gatto, C; Johnson, J; Lista, L; Lo Vetere, M; Macri, M; Monge, R; Palano, A; Paolucci, P; Passaggio, S; Patrignani, C; Patteri, P; Peruzzi, I; Piccolo, M; Robutti, E; Santroni, A; Sciacca, C; Wright, D; Yu, Z; Zallo, A

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported.

  2. Final Report, CONTRIBUTIONS TO STUDIES OF CP VIOLATION AND HADRONIC PHYSICS WITH THE BABAR COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [University of Louisville

    2013-07-25

    The University of Louisville High Energy Physics group has undertaken a long-term effort in understanding baryon production in elementary particle processes in the 10 GeV energy region. We have contributed significantly to the broad program of the BaBar Collaboration, particularly in support of computing, data visualization, and simulation. We report here on progress in the areas of service to the Collaboration and understanding of baryon production via measurement of inclusive hadronic particle spectra.

  3. Applying object-oriented software engineering at the BaBar collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, B. [California Univ., Berkeley (United States). Dept. of Physics; BABAR Collaboration

    1997-04-11

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery. (orig.).

  4. Measurements of the Collins asymmetries for kaons and pions in e+e- annihilations at BABAR

    Science.gov (United States)

    Filippi, A.

    2016-07-01

    New measurements of the Collins asymmetries were performed by BABAR exploiting inclusive e+e- → h1h2 X annihilations (with h1,2 = π and/or K) mainly at the energy of the ϒ(4S), which corresponds to a squared transferred momentum Q2 ~ 110 GeV2c4. For the first time asymmetries following strange quarks fragmentation could be derived as a function of the fractional energy carried out by inclusively emitted hadron pairs.

  5. Distributing File—based Data to Remote sites within the BABAR Collaboration

    Institute of Scientific and Technical Information of China (English)

    TimAdye; AlviseDorigo; 等

    2001-01-01

    BABAR[1] uses two formats for its data:Objectivity database and ROOT[1] files.This poster concerns the distribution of the latter-for Objectivity data see [3].The BABAR analysis data is stored in ROOT files-one per physics run and analysis selection channel-maintained in a large directory tree,Currently BABAR has more than 4.5 TBytes in 200,000 ROOT files.This data is (mostly)produced at SLAC,but is required for analysis at universities and research centres throughout the US and Europe.Two basic problems confront us when we seek to import bulk data from SLAC to an institute's local storage via the network.We must determine which files must be imported (depending on the local site requirements and which files have already been imported),and we must make the optimum use of the network when transferring the data,Basic ftp-like tools(ftp,scp,etc)do not attempt to solve the first problem.More sophisticated tools like rsync[4],the widely-used mirror/synchronisation program,compare local and remote file systems,checking for changes(based on file date,size and,if desired,an elaborate checksum)in order to only copy new or modified files,However rsync allows for only limited file selection.Also when,as in BABAR,an extremely large directory structure must be scanned,rsync can take several hours just to determine which files need to be copied.Although rsync(and scp)provides on -the=fly compression,it does not allow us to optimise the network transfer by using multiple streams,abjusting the TCP window size or separating encrypted authentication from unencrypted data channels.

  6. Study of charmonium decays of B mesons in the Babar experiment; Etude des desintegrations charmonium des mesons B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe

    2006-04-15

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e{sup +}e{sup -} collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2{beta}) 0.722 {+-} 0.040 {+-} 0.023; {alpha} = (103 + 11 - 9) degrees; {gamma} = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes.

  7. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    Hynds, Daniel

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X0 per layer for the vertex region and ~1% X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hy- brid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tracking region,...

  8. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  9. Two- and Three-Body Charmless B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-05

    We report recent measurements of rare charmless B decays performed by BaBar. The results are based on the final BaBar dataset of 424 fb{sup -1} collected at the PEP-II B-factory based at the SLAC National Accelerator Laboratory. The study of rare B decays is a key ingredient to meet two of the main goals of the B-factories: assessing the validity of the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP-violation by precisely measuring the elements of the Unitarity Triangle (UT), and searching for hints of New Physics (NP), or otherwise constraining NP scenarios, in processes which are suppressed in the Standard Model (SM). In loop processes, in particular, NP at some higher energy scale may manifest itself in the low energy effective theory as new couplings, such as those introduced by new very massive virtual particles in the loop. In NP searches hadronic uncertainties can play a major role, expecially for branching fraction measurements. Many theoretical uncertainties cancel in ratios of amplitudes, and most NP probes are therefore of this kind. In the following sections we report recent measurements, performed by the BaBar Collaboration, that are relevant to NP searches in charmless hadronic B decays.

  10. On the path-avoidance vertex-coloring game

    CERN Document Server

    Mütze, Torsten

    2011-01-01

    For any graph $F$ and any integer $r\\geq 2$, the \\emph{online vertex-Ramsey density of $F$ and $r$}, denoted $m^*(F,r)$, is a parameter defined via a deterministic two-player Ramsey-type game (Painter vs.\\ Builder). This parameter was introduced in a recent paper \\cite{mrs11}, where it was shown that the online vertex-Ramsey density determines the threshold of a similar probabilistic one-player game (Painter vs.\\ the binomial random graph $G_{n,p}$). For a large class of graphs $F$, including cliques, cycles, complete bipartite graphs, hypercubes, wheels, and stars of arbitrary size, a simple greedy strategy is optimal for Painter and closed formulas for $m^*(F,r)$ are known. In this work we show that for the case where $F=P_\\ell$ is a (long) path, the picture is very different. It is not hard to see that $m^*(P_\\ell,r)= 1-1/k^*(P_\\ell,r)$ for an appropriately defined integer $k^*(P_\\ell,r)$, and that the greedy strategy gives a lower bound of $k^*(P_\\ell,r)\\geq \\ell^r$. We construct and analyze Painter strat...

  11. The Lorentzian proper vertex amplitude: Classical analysis and quantum derivation

    CERN Document Server

    Engle, Jonathan

    2015-01-01

    Spin foam models, an approach to defining the dynamics of loop quantum gravity, make use of the Plebanski formulation of gravity, in which gravity is recovered from a topological field theory via certain constraints called simplicity constraints. However, the simplicity constraints in their usual form select more than just one gravitational sector as well as a degenerate sector. This was shown, in previous work, to be the reason for the "extra" terms appearing in the semiclassical limit of the Euclidean EPRL amplitude. In this previous work, a way to eliminate the extra sectors, and hence terms, was developed, leading to the what was called the Euclidean proper vertex amplitude. In the present work, these results are extended to the Lorentzian signature, establishing what is called the Lorentzian proper vertex amplitude. This extension is non-trivial and involves a number of new elements since, for Lorentzian bivectors, the split into self-dual and anti-self-dual parts, on which the Euclidean derivation was b...

  12. SPARTex: A Vertex-Centric Framework for RDF Data Analytics

    KAUST Repository

    Abdelaziz, Ibrahim

    2015-08-31

    A growing number of applications require combining SPARQL queries with generic graph search on RDF data. However, the lack of procedural capabilities in SPARQL makes it inappropriate for graph analytics. Moreover, RDF engines focus on SPARQL query evaluation whereas graph management frameworks perform only generic graph computations. In this work, we bridge the gap by introducing SPARTex, an RDF analytics framework based on the vertex-centric computation model. In SPARTex, user-defined vertex centric programs can be invoked from SPARQL as stored procedures. SPARTex allows the execution of a pipeline of graph algorithms without the need for multiple reads/writes of input data and intermediate results. We use a cost-based optimizer for minimizing the communication cost. SPARTex evaluates queries that combine SPARQL and generic graph computations orders of magnitude faster than existing RDF engines. We demonstrate a real system prototype of SPARTex running on a local cluster using real and synthetic datasets. SPARTex has a real-time graphical user interface that allows the participants to write regular SPARQL queries, use our proposed SPARQL extension to declaratively invoke graph algorithms or combine/pipeline both SPARQL querying and generic graph analytics.

  13. [Posterior atlantoaxial fixation using vertex multiaxial screw system].

    Science.gov (United States)

    Zhong, Dejun; Song, Yueming

    2007-06-01

    This study aims to assess the effectiveness and advantages of Vertex multiaxial screw system in use for stabilizing the atlanto-axial junction. The entry point of the atlas was located 18-20 mm lateral to the midline and 2.0 mm superior to the inferior border of posterior arch, and the direction of screw was chosen to be about 10 degrees medial to the sagittal plane and about 5 degrees cephalad to the transverse plane. In odontoid vertebra (C2), the direction of the drill bit was guided directly by the medial and superior aspect of the individual C2 pedicle. All screws were placed properly without incidence of nerve or blood vessel injury, and no complication appeared in operation and after surgery. All cases were followed up for an average of 9 months, all cases achieved well reposition and fixation of atlantoaxial joint, average JOA grade was 9.6 before preoperation and 15.9 after operation. Fixation of the atlantoaxial complex using Vertex multiaxial screw system seemed to be a reliable technique and should be considered a good alternative in atlantoaxial fusion. The technique could be used in young patiens.

  14. Colour-independent partition functions in coloured vertex models

    CERN Document Server

    Foda, O

    2013-01-01

    We study lattice configurations related to S_n, the scalar product of an off-shell state and an on-shell state in rational A_n integrable vertex models, n = {1, 2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A_n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S_2 [1, 2]. Namely, 1. S_2 which depends on two sets of Bethe roots, b_1 and b_2, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit b_1 -> infinity, and/or b_2 -> infinity, into a product of determinants, 2. Each of the la...

  15. Natural constraints on the gluon-quark vertex

    CERN Document Server

    Binosi, Daniele; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D

    2016-01-01

    In principle, the strong-interaction sector of the Standard Model is characterised by a unique renormalisation-group-invariant (RGI) running interaction and a unique form for the dressed--gluon-quark vertex, $\\Gamma_\\mu$; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles both top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansaetze for $\\Gamma_\\mu$. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Plainly, therefore, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansaetze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.

  16. Natural constraints on the gluon-quark vertex

    Science.gov (United States)

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D.

    2017-02-01

    In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluon-quark vertex, Γμ; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansätze for Γμ. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansätze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.

  17. A $z$-Vertex Trigger for Belle II

    CERN Document Server

    Skambraks, Sebastian; Chen, Yang; Feindt, Michael; Frühwirth, Rudolf; Heck, Martin; Kiesling, Christian; Knoll, Alois; Neuhaus, Sara; Paul, Stephan; Schieck, Jochen

    2014-01-01

    The Belle II experiment will go into operation at the upgraded SuperKEKB collider in 2016. SuperKEKB is designed to deliver an instantaneous luminosity $\\mathcal{L}=8\\times10^{35}\\,\\mathrm{cm}^{-2}\\,\\mathrm{s}^{-1}$. The experiment will therefore have to cope with a much larger machine background than its predecessor Belle, in particular from events outside of the interaction region. We present the concept of a track trigger, based on a neural network approach, that is able to suppress a large fraction of this background by reconstructing the $z$ (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger uses the hit information from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum ("sectors"), and estimates the $z$-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input fro...

  18. Quark-gluon vertex: A perturbation theory primer and beyond

    Science.gov (United States)

    Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.

    2017-02-01

    There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.

  19. Guarding curvilinear art galleries with vertex or point guards

    CERN Document Server

    Karavelas, Menelaos I

    2008-01-01

    One of the earliest and most well known problems in computational geometry is the so-called art gallery problem. The goal is to compute the minimum possible number guards placed on the vertices of a simple polygon in such a way that they cover the interior of the polygon. In this paper we consider the problem of guarding an art gallery which is modeled as a polygon with curvilinear walls. Our main focus is on polygons the edges of which are convex arcs pointing towards the exterior or interior of the polygon (but not both), named piecewise-convex and piecewise-concave polygons. We prove that, in the case of piecewise-convex polygons, if we only allow vertex guards, $\\lfloor\\frac{4n}{7}\\rfloor-1$ guards are sometimes necessary, and $\\lfloor\\frac{2n}{3}\\rfloor$ guards are always sufficient. Moreover, an $O(n\\log{}n)$ time and $O(n)$ space algorithm is described that produces a vertex guarding set of size at most $\\lfloor\\frac{2n}{3}\\rfloor$. When we allow point guards the afore-mentioned lower bound drops down ...

  20. The Vertex-Rainbow Index of A Graph

    Directory of Open Access Journals (Sweden)

    Mao Yaping

    2016-08-01

    Full Text Available The k-rainbow index rxk(G of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G in this paper. In this paper, sharp upper and lower bounds of rvxk(G are given for a connected graph G of order n, that is, 0 ≤ rvxk(G ≤ n − 2. We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph G of order n, and show that rvx3(G + rvx3(Ḡ = 4 for n = 4 and 2 ≤ rvx3(G + rvx3(Ḡ ≤ n − 1 for n ≥ 5. Let t(n, k, ℓ denote the minimal size of a connected graph G of order n with rvxk(G ≤ ℓ, where 2 ≤ ℓ ≤ n − 2 and 2 ≤ k ≤ n. Upper and lower bounds on t(n, k, ℓ are also obtained.

  1. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  2. Quarkonium Spectroscopy And Search for New States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G.

    2011-11-04

    The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the mass values suggest that they could be conventional charmonia, but also other interpretations like D{sup 0}{bar D}*{sup 0} molecule or diquark-antidiquark states among many other models have been advanced. Reviews can be found in Refs. [1][2]. In all cases the picture is not completely clear. This situation could be remedied by a coherent search of the decay pattern to D{bar D}, search for production in two-photon fusion and ISR, and of course improving the statistical precision upon the current measurements. The BaBar experiment at the PEP-II asymmetric collider, designed to perform precision measurement of CP violation in the B meson system, has an extensive quarkonium spectroscopy program. Recent

  3. W. K. H. Panofsky Prize Talk: The Silicon vertex detector at CDF

    Science.gov (United States)

    Menzione, Aldo

    2009-05-01

    I will make an historical overview of the conception and design of the device and some more details on the construction and commissioning of the detector. Then I will point out some highlights on the physics that has been done with it, in particular the role of the system in the discovery of the top quark.

  4. Production and performance of the silicon sensor and readout electronics for the PHENIX FVTX tracker

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, Jon Steven [Los Alamos National Laboratory

    2009-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap is comprised of four silicon disks covering opening angles from 10 to 35 degrees to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 {micro}m radial pitch and proj ective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low power design.

  5. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, Jon S., E-mail: jonk@lanl.go [Los Alamos National Laboratory, Mailstop H846, PO Box 1663, Los Alamos, 87545 New Mexico (United States)

    2010-05-21

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10{sup o} to 35{sup o} to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 {mu}m radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  6. Consistent off-shell pi NN vertex and nucleon self-energy

    NARCIS (Netherlands)

    Kondratyuk, S; Scholten, O

    1999-01-01

    We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by the pseudovector coupling, while at large nucleon invariant masses we find a siz

  7. Consistent off-shell πNN vertex and nucleon self-energy

    NARCIS (Netherlands)

    Kondratyuk, S.; Scholten, O.

    1999-01-01

    We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by the pseudovector coupling, while at large nucleon invariant masses we find a siz

  8. Lambda: A Mathematica-package for operator product expansions in vertex algebras

    CERN Document Server

    Ekstrand, Joel

    2010-01-01

    We give an introduction to the Mathematica package Lambda, designed for calculating {\\lambda}-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of {\\lambda}-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation.

  9. Non-perturbative model for the half-off-shell $gamma N N$ vertex

    NARCIS (Netherlands)

    Kondratyuk, S.; Scholten, O.

    1999-01-01

    Submitted to: Phys. Rev. C Abstract: Form factors in the nucleon-photon vertex with one off-shell nucleon are calculated by dressing the vertex with pion loops up to infinite order. Cutting rules and dispersion relations are implemented in the model. Using the prescription of minimal substitution we

  10. Instanton-induced Effective Vertex in the Seiberg-Witten Theory with Matter

    CERN Document Server

    Lee, B K; Lee, ByungKoo; Nam, Soonkeon

    1997-01-01

    The instanton-induced effective vertex is derived for N=2 supersymmetric QCD (SQCD) with arbitrary mass matter hypermultiplets for the case of SU(2). The leading term of the low energy effective lagrangian obtained from this vertex agrees with one-instanton effective term of the Seiberg-Witten result.

  11. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  12. NLO corrections to the gluon induced forward jet vertex from the high energy effective action

    CERN Document Server

    Chachamis, Grigorios; Madrigal, Jose Daniel; Vera, Agustin Sabio

    2012-01-01

    We determine both real and virtual next-to-leading order corrections to the gluon induced forward jet vertex, from the high energy effective action proposed by Lipatov. For these calculations we employ the same regularization and subtraction formalism developed in our previous work on the quark-initiated vertex. We find agreement with previous results in the literature.

  13. Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs

    Institute of Scientific and Technical Information of China (English)

    Qian WANG; Shuang Liang TIAN

    2011-01-01

    An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors. We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path, a path and a wheel, a path and a fan, and a path and a star.

  14. Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED

    CERN Document Server

    Fernandez-Rangel, L Albino; Gutierrez-Guerrero, L X; Concha-Sanchez, Y

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infnite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the non perturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability (MR) of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations (LKFTs), (ii) has the same transformatio...

  15. The scalar-photon 3-point vertex in massless quenched scalar QED

    Science.gov (United States)

    Concha-Sánchez, Y.; Gutiérrez-Guerrero, L. X.; Fernández-Rangel, L. A.

    2016-10-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex.

  16. An integrable nineteen vertex model lying on a hypersurface

    Directory of Open Access Journals (Sweden)

    M.J. Martins

    2015-03-01

    Full Text Available We have found a family of solvable nineteen vertex model with statistical configurations invariant by the time reversal symmetry within a systematic study of the respective Yang–Baxter relation. The Boltzmann weights sit on a degree seven algebraic threefold which is shown birationally equivalent to the three-dimensional projective space. This permits to write parameterized expressions for both the transition operator and the R-matrix depending on three independent affine spectral parameters. The Hamiltonian limit tells us that the azimuthal magnetic field term is connected with the asymmetry among two types of spectral variables. The absence of magnetic field defines a physical submanifold whose geometrical properties are remarkably shown to be governed by a quartic K3 surface. This expands considerably the class of irrational manifolds that could emerge in the theory of quantum integrable models.

  17. Performance of the ALICE secondary vertex b-tagging algorithm

    CERN Document Server

    INSPIRE-00262232

    2016-01-01

    The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i.e. their long lifetime, large mass and large multiplicity of decay products. In this work, the b-tagging algorithm based on displaced secondary-vertex topologies is described. We present Monte Carlo based performance studies of the algorithm for charged jets reconstructed with the ALICE tracking system in p-Pb collisions at $\\sqrt{s_\\text{NN}}$ = 5.02 TeV. The tagging efficiency, rejection rate and the correction of the smearing effects of non-ideal detector response are presented.

  18. New limits on anomalous contributions to the $Wtb$ vertex

    CERN Document Server

    Birman, J L; Fiolhais, M C N; Onofre, A; Pease, C M

    2016-01-01

    The latest and most precise top quark measurements at the LHC and Tevatron are used to establish new limits on the $Wtb$ vertex. Recent results on the measurements of the $W$-boson helicity fractions and single top quark production cross section are combined in order to establish new limits at 95% CL (confidence level). The allowed regions for these limits are presented, for the first time, in three-dimensional graphics, for both real and imaginary components of the different anomalous couplings, providing a new perspective on the impact of the combination of different physics observables. These results are also combined with the prospected future measurement of the single top quark production cross section and $W$-boson helicity fractions at the LHC.

  19. Studying the $Wtb$ vertex structure using recent LHC results

    CERN Document Server

    Bernardo, César; Fiolhais, Miguel C N; Gonçalves, Hugo; Guerra, André G C; Oliveira, Miguel; Onofre, A

    2014-01-01

    The $Wtb$ vertex structure and the search for new anomalous couplings is studied using top quark measurements obtained at the LHC, for a centre-of-mass energy of 8 TeV. By combining the latest and most precise results on the single top quark production cross section and the measurements of the $W$-boson helicity fractions ($F_0$ and $F_L$), it is possible to set new limits, at 95% CL (confidence level), on the real and imaginary components of the new couplings. The combination of the LHC observables clearly improves the limits obtained when using the individual results alone. The updated measurements of the $W$-boson helicity fractions and the $s+t$-channels electroweak single top quark production, at the Tevatron, improve the LHC limits, when a world combination of all observables (LHC+Tevatron) is performed.

  20. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  1. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  2. A vertex similarity index for better personalized recommendation

    Science.gov (United States)

    Chen, Ling-Jiao; Zhang, Zi-Ke; Liu, Jin-Hu; Gao, Jian; Zhou, Tao

    2017-01-01

    Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.

  3. A dynamical system connected with inhomogeneous 6-vertex model

    CERN Document Server

    Korepanov, I G

    1994-01-01

    A completely integrable dynamical system in discrete time is studied by means of algebraic geometry. The system is associated with factorization of a linear operator acting in a direct sum of three linear spaces into a product of three operators, each acting nontrivially only in a direct sum of two spaces, and the following reversing of the order of factors. There exists a reduction of the system interpreted as a classical field theory in 2+1-dimensional space-time, the integrals of motion coinciding, in essence, with the statistical sum of an inhomogeneous 6-vertex free-fermion model on the 2-dimensional Kagomé lattice (here the statistical sum is a function of two parameters). Thus, a connection with the "local", or "generalized", quantum Yang-Baxter equation is revealed.

  4. Computing the Tutte Polynomial in Vertex-Exponential Time

    DEFF Research Database (Denmark)

    Björklund, Andreas; Husfeldt, Thore; Kaski, Petteri;

    2008-01-01

    The deletion–contraction algorithm is perhapsthe most popular method for computing a host of fundamental graph invariants such as the chromatic, flow, and reliability polynomials in graph theory, the Jones polynomial of an alternating link in knot theory, and the partition functions of the models...... algorithm that computes the Tutte polynomial—and hence, all the aforementioned invariants and more—of an arbitrary graph in time within a polynomial factor of the number of connected vertex sets. The algorithm actually evaluates a multivariate generalization of the Tutte polynomial by making use...... of an identity due to Fortuin and Kasteleyn. We also provide a polynomial-space variant of the algorithm and give an analogous result for Chung and Graham's cover polynomial....

  5. Cutaneous paraganglioma of the vertex in a child.

    Science.gov (United States)

    Kim; Lee, Il Jae; Park, Myong Chul; Kim, Joo Hyoung; Lim, Hyoseob

    2012-07-01

    Paraganglioma is a neuroendocrine neoplasm that may develop at various body sites, including the head, neck, thorax, and abdomen. Approximately 85% of paragangliomas develop on the abdomen, 12% develop on the chest, and only 3% develop on the head and neck. These tumors are found in locations that parallel the sympathetic chain ganglion in the thoracolumbar regions and parasympathetic nervous system in craniosacral regions, and all head and neck paragangliomas arise from the parasympathetic nervous system. Although the skin has a rich neural network, it is devoid of ganglia. There has been only 1 report of a paraganglioma on the scalp of a child. We describe a 3-year-old child with a primary cutaneous paraganglioma of the vertex scalp and review the literature on paragangliomas.

  6. Vertex partitions of r-edge-colored graphs

    Institute of Scientific and Technical Information of China (English)

    JIN Ze-min; LI Xue-liang

    2008-01-01

    Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors' previous work,it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P = NP. In this paper the authors show that for any fixed integer r ≥ 5,if the edges of a graph G are colored by r colors,called an r-edge-colored graph,the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore,to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting.A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given.

  7. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  8. BaBar technical design report: Chapter 9, Magnet coil and flux return

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, T.; The BaBar Collaboration

    1995-03-01

    The BaBar magnet is a thin, 1.5 T superconducting solenoid with a hexagonal flux return. This chapter discusses the physics requirements and performance goals for the magnet, describes key interfaces, and summarizes the projected magnet performance. It also presents the design of the superconducting solenoid, including magnetic design, cold mass design, quench protection and stability, cold mass cooling, cryostat design, and coil assembly and transportation. The cryogenic supply system and instrumentation are described briefly, and the flux return is described.

  9. Observation of Y(3940) --> J/psiomega in B --> J/psiomegaK at BABAR.

    Science.gov (United States)

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2008-08-22

    We present a study of the decays B;{0,+}-->J/psiomegaK;{0,+} using 383x10;{6} BB[over ] events obtained with the BABAR detector at PEP-II. We observe Y(3940)-->J/psiomega, with mass 3914.6_{-3.4};{+3.8}(stat)+/-2.0(syst) MeV/c;{2}, and width 34_{-8};{+12}(stat)+/-5(syst) MeV. The ratio of B0 and B+ decay to YK is 0.27_{-0.23};{+0.28}(stat)-0.01+0.04(syst), and the relevant B0 and B+ branching fractions are reported.

  10. Analysis of BaBar data for three meson tau decay modes using the Tauola generator

    Directory of Open Access Journals (Sweden)

    Shekhovtsova Olga

    2014-01-01

    Full Text Available The hadronic current for the τ− → π−π+π−ντ decay calculated in the framework of the Resonance Chiral Theory with an additional modification to include the σ meson is described. Implementation into the Monte Carlo generator Tauola and fitting strategy to get the model parameters using the one-dimensional distributions are discussed. The results of the fit to one-dimensional mass invariant spectrum of the BaBar data are presented. This paper is based on [1].

  11. Search for Lepton Flavor Violating Decays τ-→l-Ks0 with the BABAR Experiment

    Science.gov (United States)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Vetere, M. Lo; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Höcker, A.; Diberder, F. Le; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; George, K. A.; Lodovico, F. Di; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Sanchez, P. Del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.

    2009-01-01

    A search for the lepton flavor violating decays τ-→l-KS0 (l=e or μ) has been performed using a data sample corresponding to an integrated luminosity of 469fb-1, collected with the BABAR detector at the SLAC PEP-II e+e- asymmetric energy collider. No statistically significant signal has been observed in either channel and the estimated upper limits on branching fractions are B(τ-→e-KS0)<3.3×10-8 and B(τ-→μ-KS0)<4.0×10-8 at 90% confidence level.

  12. Measurements of the τ mass and the mass difference of the τ+ and τ- at BABAR

    Science.gov (United States)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolku, P.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.

    2009-11-01

    We present the result from a precision measurement of the mass of the τ lepton, Mτ, based on 423fb-1 of data recorded at the Υ(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68±0.12(stat)±0.41(syst)MeV. We also measure the mass difference between the τ+ and τ-, and obtain (Mτ+-Mτ-)/MAVGτ=(-3.4±1.3(stat)±0.3(syst))×10-4, where MAVGτ is the average value of Mτ+ and Mτ-.

  13. Search for the D_(sJ)(2632)^+ at BaBar

    CERN Document Server

    Aubert, B; Abrams, G S; Adye, T; Ahmed, S; Alam, M S; Albert, J; Aleksan, Roy; Allison, J; Allmendinger, T; Altenburg, D; Andreotti, M; Angelini, C; Anulli, F; Aston, D; Azzolini, V; Baak, M; Back, J J; Bailey, S; Baldini-Ferroli, R; Band, H R; Banerjee, Sw; Barate, R; Bard, D J; Barlow, N R; Barlow, R J; Barrett, M; Bartoldus, R; Batignani, G; Bauer, J M; Beck, T W; Behera, P K; Bellini, F; Benayoun, M; Berger, N; Bernard, D; Berryhill, J W; Best, D; Bettarini, S; Bettoni, D; Bevan, A J; Bhimji, W; Bianchi, F; Biasini, M; Blanc, F; Blaylock, G; Blinov, A E; Blinov, V E; Bloom, P; Bóna, M; Bondioli, M; Bonneaud, G R; Borgland, A W; Bosisio, L; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyd, J T; Bozzi, C; Brandenburg, G; Brandt, T; Brau, J E; Breon, A B; Briand, H; Brochard, F; Brose, J; Brown, C L; Brown, C M; Brown, D; Brown, D N; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmüller, O L; Bugg, W; Bulten, H; Burchat, Patricia R; Button-Shafer, J; Buzzo, A; Côté, D; Cahn, R N; Calabrese, R; Calcaterra, A; Calderini, G; Campagnari, C; Capra, R; Carpinelli, M; Cartaro, C; Cavallo, N; Cavoto, G; Chaisanguanthum, K S; Chao, M; Charles, E; Charles, M J; Chauveau, J; Chavez, C A; Chen, A; Chen, E; Chen, J C; Chen, S; Cheng, B; Cheng, C H; Chevalier, N; Christ, S; Cibinetto, G; Clark, P J; Claus, R; Cochran, J; Colecchia, F; Coleman, J P; Contri, R; Convery, M R; Cormack, C M; Cossutti, F; Cottingham, W N; Couderc, F; Covarelli, R; Cowan, G; Cowan, R; Crawley, H B; Cremaldi, L M; Cristinziani, M; Crosetti, G; Çuhadar-Dönszelmann, T; Dahmes, B; Dallapiccola, C; Danielson, N; Dasu, S; Datta, M; Dauncey, P D; David, P; Davier, M; Davis, C L; Day, C T; De Groot, N; De Nardo, Gallieno; Del Buono, L; Della Ricca, G; Di Lodovico, F; Dickopp, M; Dittongo, S; Dong, D; Dorfan, J; Dorigo, A; Druzhinin, V P; Dubitzky, R S; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Dvoretskii, A; Eckmann, R; Edwards, A J; Egede, U; Eichenbaum, A M; Eigen, G; Eisner, A M; Elmer, P; Elsen, E E; Emery, S; Ernst, J A; Eschenburg, V; Eschrich, I; Fabozzi, F; Faccini, R; Fan, S; Farbin, A; Feltresi, E; Ferrarotto, F; Ferroni, F; Field, R C; Finocchiaro, G; Flack, R L; Flächer, H U; Flood, K T; Ford, K E; Ford, W T; Forster, I J; Forti, F; Fortin, D; Foulkes, S D; Franek, B J; Frey, R; Fritsch, M; Fry, J R; Gabathuler, Erwin; Gaidot, A; Gaillard, J M; Gaillard, J R; Galeazzi, F; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Ganzhur, S F; Gary, J W; Gaspero, M; Gatto, C; Geddes, N I; Gill, M S; Giorgi, M A; Giraud, P F; Giroux, X; Gladney, L; Glanzman, T; Godang, R; Goetzen, K; Golubev, V B; Gopal, G P; Gowdy, S J; Graham, M; Grancagnolo, S; Green, M G; Greene, M G; Grenier, G J; Grenier, P; Gritsan, A V; Grosdidier, G; Groysman, Y; Guo, Q H; Hadavand, H K; Hadig, T; Haire, M; Halyo, V; Hamel de Monchenault, G; Hamon, O; Harrison, P F; Harrison, T J; Hart, A J; Hart, P A; Hartfiel, B L; Harton, J L; Hast, C; Hauke, A; Hawkes, C M; Hearty, C; Held, T; Hertzbach, S S; Heusch, C A; Hicheur, A; Hill, E J; Hitlin, D G; Höcker, A; Hodgkinson, M C; Hollar, J J; Honscheid, K; Hrynóva, T; Hufnagel, D; Hulsbergen, W D; Hutchcroft, D E; Igonkina, O; Innes, W R; Ivanchenko, V N; Izen, J M; Jackson, P D; Jackson, P S; Jacobsen, R G; Jawahery, A; Jayatilleke, S M; Jessop, C P; John, M J J; Johnson, J R; Judd, D; Kadel, R W; Kadyk, J; Kagan, H; Karyotakis, Yu; Kass, R; Kelly, M P; Kelsey, M H; Kerth, L T; Khan, A; Kim, H; Kim, P; Kirkby, D; Kitayama, I; Knecht, N S; Koch, H; Kocian, M L; Kofler, R; Kolomensky, Yu G; Koptchev, V B; Kovalskyi, D; Kowalewski, R V; Kozanecki, Witold; Kravchenko, E A; Krishnamurthy, M; Kroeger, R; Kroseberg, J; Kukartsev, G; Kutter, P E; Kyberd, P; Lacker, H M; Lae, C K; Lafferty, G D; Lamsa, J; Lanceri, L; Lange, D J; Langenegger, U; Lankford, A J; Laplace, S; Latham, T E; Lau, Y P; Lavin, D; Lazzaro, A; Le Diberder, F R; Lees, J P; Legendre, M; Leith, D W G S; Lepeltier, V; Leruste, P; Lewandowski, B; Li Gioi, L; Li, H; Libby, J; Lillard, V; Lista, L; Liu, R; LoSecco, J M; Lo Vetere, M; Lockman, W S; Lombardo, V; London, G W; Long, O; Lou, X C; Lu, A; Lü, C; Luitz, S; Luppi, E; Lusiani, A; Lüth, V; Lutz, A M; Lynch, G; Lynch, H L; Lyon, A J; MacFarlane, D B; Macri, M; Malcles, J; Mallik, U; Mancinelli, G; Mandelkern, M A; Manfredi, P F; Mangeol, D J J; Marchiori, G; Margoni, M; Marsiske, H; Martínez-Vidal, F; Mattison, T S; Mayer, B; Mazur, M A; Mazzoni, M A; McKenna, J A; McMahon, T R; Meadows, B T; Messner, R; Meyer, T I; Meyer, W T; Miftakov, V; Mihályi, A; Mir, L M; Mohanty, G B; Mohapatra, A K; Mommsen, R K; Monge, M R; Monorchio, D; Moore, T B; Morandin, M; Morgan, S E; Morganti, M; Morganti, S; Morii, M; Morton, G W; Muheim, F; Müller, D R; Müller-Pfefferkorn, R; Narsky, I; Nash, J A; Nauenberg, U; Neal, H; Negrini, M; Neri, N; Nesom, G; Nicholson, H; Nikolich, M B; Nogowski, R; O'Grady, C P; Ocariz, J; Oddone, P J; Ofte, I; Olaiya, E O; Olivas, A; Olsen, J; Onuchin, A P; Orimoto, T J; Otto, S; Ozcan, V E; Paar, H P; Paick, K; Palano, A; Palombo, F; Pan, Y; Panetta, J; Panvini, R S; Paoloni, E; Paolucci, P; Parry, R J; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pelizaeus, M; Perazzo, A; Perl, M; Peruzzi, I M; Petersen, B A; Petersen, T C; Petrak, S; Petzold, A; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Pierini, M; Pioppi, M; Piredda, G; Pivk, M; Plaszczynski, S; Playfer, S; Pompili, A; Poropat, P; Porter, F C; Posocco, M; Potter, C T; Prell, S; Prepost, R; Pripstein, M; Pulliam, T; Purohit, M V; Qi, N D; Rahatlou, S; Rahimi, A M; Rama, M; Rankin, P; Ratcliff, B N; Raven, G; Re, V; Reidy, J; Ricciardi, S; Richman, J D; Ritchie, J L; Rizzo, G; Roat, C; Roberts, D A; Robertson, S H; Robutti, E; Roe, N A; Röthel, W; Ronan, Michael T; Roney, J M; Rong, G; Roodman, A; Roos, L; Rosenberg, E I; Rotondo, M; Rubin, A E; Ryd, A; Saeed, M A; Safai-Tehrani, F; Saleem, M; Salnikov, A A; Salvatore, F; Samuel, A; Sanders, D A; Sandrelli, F; Santroni, A; Saremi, S; Sarti, A; Satpathy, A; Schalk, T; Schindler, R H; Schott, G; Schrenk, S; Schubert, J; Schubert, Klaus R; Schumm, B A; Schune, M H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Seiden, A; Sekula, S J; Serednyakov, S I; Sharma, V; Shelkov, V G; Shen, B C; Simani, M C; Simi, G; Simonetto, F; Sinev, N B; Skovpen, Yu I; Sloane, R J; Smith, A J S; Smith, J G; Snoek, H L; Snyder, A; Sobie, R J; Soffer, A; Soha, A; Sokoloff, M D; Solodov, E P; Spaan, B; Spanier, S M; Spradlin, P; Stängle, H; Steinke, M; Stelzer, J; Stoker, D P; Stroili, R; Strom, D; Stugu, B; Su, D; Sullivan, M K; Summers, D J; Sundermann, J E; T'Jampens, S; Tan, P; Tantot, L; Taras, P; Taylor, F; Taylor, G P; Telnov, A V; Teodorescu, L; Ter-Antonian, R; Therin, G; Thiebaux, C; Thiessen, D; Tiozzo, G; Tisserand, V; Toki, W H; Torrence, E; Tosi, S; Touramanis, C; Treadwell, E; Vasileiadis, G; Vasseur, G; Vavra, J; Verderi, M; Verkerke, W; Vitale, L; Voci, C; Voena, C; Vuagnin, G; Wagner, G; Wagner, S R; Wagoner, D E; Waldi, R; Walsh, J; Wang, K; Wang, P; Wappler, F R; Watson, A T; Weaver, M; Weidemann, A W; Weinstein, A J R; Wenzel, W A; Wilden, L; Williams, D C; Williams, J C; Willocq, S; Wilson, F F; Wilson, J R; Wilson, M G; Wilson, R J; Winter, M A; Wisniewski, W J; Wittgen, M; Won, E; Wong, Q K; Wormser, G; Wright, D H; Wright, D M; Wu, J; Wu, S L; Xie, Y; Yamamoto, R K; Yang, S; Yarritu, A K; Ye, S; Yéche, C; Yi, J; Young, C C; Yu, Z; Yumiceva, F X; Yushkov, A N; Zallo, A; Zeng, Q; Zghiche, A; Zhang, J; Zhang, L; Zhao, H W; Zhu, Y S; Zito, M; De Sangro, R; Del Re, D; La Vaissière, C de

    2004-01-01

    We have performed a search for the $D^*_{sJ}(2632)^+$ state recently reported by the SELEX Collaboration at FNAL. This preliminary analysis makes use of an integrated luminosity of 125 ${\\rm fb}^{-1}$ collected by the BaBar detector at the PEP-II asymmetric-energy $e^+e^-$ collider. The resulting $D_s \\eta$ and $D^0 K^+$ mass spectra show no evidence for the $D^*_{sJ}(2632)^+$ state. In addition, no signal is observed in the $D^{*+} K_S$ mass spectrum.

  14. A Search for the rare decay B0 --> tau+tau- at BABAR

    CERN Document Server

    Aubert, B; Abrams, G S; Adye, T; Ahmed, M; Ahmed, S; Alam, M S; Albert, J; Aleksan, Roy; Allen, M T; Allison, J; Allmendinger, T; Altenburg, D; Andreassen, R; Andreotti, M; Angelini, C; Anulli, F; Arnaud, N; Aston, D; Azzolini, V; BULA, R; Baak, M; Back, J J; Baldini-Ferroli, R; Band, H R; Banerjee, Sw; Barate, R; Bard, D J; Barlow, N R; Barlow, R J; Barrett, M; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Beck, T W; Behera, P K; Bellini, F; Benayoun, M; Benelli, G; Berger, N; Bernard, D; Berryhill, J W; Best, D; Bettarini, S; Bettoni, D; Bevan, A J; Bhimji, W; Bhuyan, B; Bianchi, F; Biasini, M; Biesiada, J; Blanc, F; Blaylock, G; Blinov, A E; Blinov, V E; Bloom, P; Bomben, M; Bondioli, M; Bonneaud, G R; Bosisio, L; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyd, J T; Bozzi, C; Brandenburg, G; Brandt, T; Brau, J E; Breon, A B; Briand, H; Brose, J; Brown, C L; Brown, C M; Brown, D; Brown, D N; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmüller, O L; Bugg, W; Bukin, A D; Bulten, H; Burchat, P R; Burke, J P; Button-Shafer, J; Buzzo, A; Bóna, M; Cahn, R N; Calabrese, R; Calcaterra, A; Calderini, G; Campagnari, C; Capra, R; Carpinelli, M; Cartaro, C; Cavallo, N; Cavoto, G; Cenci, R; Chaisanguanthum, K S; Chao, M; Charles, E; Charles, M J; Chauveau, J; Chavez, C A; Chen, A; Chen, C; Chen, E; Chen, J C; Chen, S; Chen, X; Cheng, B; Cheng, C H; Chevalier, N; Cibinetto, G; Clark, P J; Claus, R; Cochran, J; Coleman, J P; Contri, R; Convery, M R; Cormack, C M; Cossutti, F; Cottingham, W N; Couderc, F; Covarelli, R; Cowan, G; Cowan, R; Crawley, H B; Cremaldi, L; Cristinziani, M; Cunha, A; Curry, S; Côté, D; D'Orazio, A; Dahmes, B; Dallapiccola, C; Danielson, N; Dasu, S; Datta, M; Dauncey, P D; David, P; Davier, M; Davis, C L; Day, C T; De Groot, N; De Nardo, Gallieno; De Sangro, R; Del Buono, L; Del Re, D; Della Ricca, G; Di Lodovico, F; Di Marco, E; Dickopp, M; Dingfelder, J C; Dittongo, S; Dong, D; Dorfan, J; Druzhinin, V P; Dubitzky, R S; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Dvoretskii, A; Eckhart, E A; Eckmann, R; Edgar, C L; Edwards, A J; Egede, U; Eichenbaum, A M; Eigen, G; Eisner, A M; Elmer, P; Emery, S; Ernst, J A; Eschenburg, V; Eschrich, I; Eyges, V; Fabozzi, F; Faccini, R; Fan, S; Feltresi, E; Ferrarotto, F; Ferroni, F; Field, R C; Finocchiaro, G; Flacco, C J; Flack, R L; Flächer, H U; Flood, K T; Ford, K E; Ford, W T; Forster, Ian J; Forti, F; Fortin, D; Foulkes, S D; Franek, B; Frey, R; Fritsch, M; Fry, J R; Fulsom, B G; Gabathuler, E; Gaidot, A; Gaillard, J R; Galeazzi, F; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Ganzhur, S F; Gary, J W; Gaspero, M; Gatto, C; George, K A; Gill, M S; Giorgi, M A; Giraud, P F; Giroux, X; Gladney, L; Glanzman, T; Godang, R; Goetzen, K; Golubev, V B; Gopal, G P; Gowdy, S J; Gradl, W; Graham, M; Grancagnolo, S; Graugès-Pous, E; Graziani, G; Green, M G; Grenier, P; Gritsan, A V; Grosdidier, G; Groysman, Y; Guo, Q H; Hadavand, H K; Hadig, T; Haire, M; Halyo, V; Hamano, K; Hamel de Monchenault, G; Hamon, O; Harrison, P F; Harrison, T J; Hart, A J; Hartfiel, B L; Harton, J L; Hast, C; Hauke, A; Hawkes, C M; Hearty, C; Held, T; Hertzbach, S S; Heusch, C A; Hill, E J; Hirschauer, J F; Hitlin, D G; Hodgkinson, M C; Hollar, J J; Hong, T M; Honscheid, K; Hopkins, D A; Hrynóva, T; Hufnagel, D; Hulsbergen, W D; Hutchcroft, D E; Höcker, A; Igonkina, O; Innes, W R; Izen, J M; Jackson, P D; Jackson, P S; Jacobsen, R G; Jawahery, A; Jessop, C P; John, M J J; Johnson, J R; Judd, D; Kadel, R W; Kadyk, J; Kagan, H; Karyotakis, Yu; Kass, R; Kelly, M P; Kelsey, M H; Kerth, L T; Khan, A; Kim, H; Kim, P; Kirkby, D; Kitayama, I; Klose, V; Knecht, N S; Koch, H; Kocian, M L; Koeneke, K; Kofler, R; Kolomensky, Yu G; Koptchev, V B; Kovalskyi, D; Kowalewski, R V; Kozanecki, Witold; Kravchenko, E A; Kreisel, A; Krishnamurthy, M; Kroeger, R; Kroseberg, J; Kukartsev, G; Kutter, P E; Kyberd, P; LI, X; LU, M; La Vaissière, C de; Lacker, H M; Lae, C K; Lafferty, G D; Lanceri, L; Lange, D J; Langenegger, U; Lankford, A J; Latham, T E; Lau, Y; Lazzaro, A; Le Diberder, F R; Lees, J P; Legendre, M; Leith, D W G S; Lepeltier, V; Leruste, P; Lewandowski, B; Li Gioi, L; Li, H; Libby, J; Lista, L; Liu, R; Lo Vetere, M; LoSecco, J M; Lockman, W S; Lombardo, V; London, G W; Long, O; Lou, X C; Luitz, S; Lund, P; Luppi, E; Lusiani, A; Lutz, A M; Lynch, G; Lynch, H L; Lü, C; Lüth, V; MacFarlane, D B; Macri, M; Mader, W F; Majewski, S A; Malcles, J; Mallik, U; Mancinelli, G; Mandelkern, M A; Marchiori, G; Margoni, M; Marks, J; Marsiske, H; Martínez-Vidal, F; Mattison, T S; Mayer, B; Mazur, M A; Mazzoni, M A; McKenna, J A; McMahon, T R; Meadows, B T; Mellado, B; Menges, W; Messner, R; Meyer, W T; Mihályi, A; Mir, L M; Mohanty, G B; Mohapatra, A K; Mommsen, R K; Monge, M R; Monorchio, D; Moore, T B; Morandin, M; Morgan, S E; Morganit, M; Morganti, S; Morii, M; Morton, G W; Muheim, F; Müller, D R; Naisbit, M T; Narsky, I; Nash, J A; Nauenberg, U; Neal, H; Negrini, M; Neri, N; Nesom, G; Nicholson, H; Nikolich, M B; Nogowski, R; O'Grady, C P; Ocariz, J; Oddone, P J; Ofte, I; Olaiya, E O; Olivas, A; Olsen, J; Onuchin, A P; Orimoto, T J; Otto, S; Oyanguren, A; Ozcan, V E; Paar, H P; Pacetti, S; Palano, A; Palombo, F; Pan, Y; Panetta, J; Panvini, R S; Paoloni, E; Paolucci, P; Pappagallo, M; Parry, R J; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pelizaeus, M; Perazzo, A; Perl, M; Peruzzi, I M; Peters, K; Petersen, B A; Petersen, T C; Petzold, A; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Pierini, M; Pioppi, M; Piredda, G; Plaszczynski, S; Playfer, S; Poireau, V; Polci, F; Pompili, A; Porter, F C; Posocco, M; Potter, C T; Prell, S; Prepost, R; Pripstein, M; Pulliam, T; Purohit, M V; Qi, N D; Rahatlou, S; Rahimi, A M; Rama, M; Rankin, P; Ratcliff, B N; Raven, G; Reidy, J; Ricciardi, S; Richman, J D; Ritchie, J L; Rizzo, G; Roat, C; Roberts, D A; Robertson, S H; Robutti, E; Rodier, S; Roe, N A; Ronan, M T; Roney, J M; Rong, G; Roodman, A; Roos, L; Rosenberg, E I; Rotondo, M; Roudeau, P; Rubin, A E; Ruddick, W O; Ryd, A; Röthel, W; Sacco, R; Saeed, M A; Safai-Tehrani, F; Saleem, M; Salnikov, A A; Salvatore, F; Samuel, A; Sanders, D A; Santroni, A; Saremi, S; Satpathy, A; Schalk, T; Schenk, S; Schindler, R H; Schofield, K C; Schott, G; Schrenk, S; Schröder, T; Schröder, H; Schubert, J; Schubert, K R; Schumm, B A; Schune, M H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Seiden, A; Sekula, S J; Serednyakov, S I; Sharma, V; Shen, B C; Simani, M C; Simi, G; Simonetto, F; Sinev, N B; Skovpen, Yu I; Smith, A J S; Smith, J G; Snoek, H L; Snyder, A; Sobie, R J; Soffer, A; Sokoloff, M D; Solodov, E P; Spaan, B; Spanier, S M; Spitznagel, M; Spradlin, P; Steinke, M; Stelzer, J; Stocchi, A; Stoker, D P; Stroili, R; Strom, D; Strube, J; Stugu, B; Stängle, H; Su, D; Sullivan, M K; Summers, D J; Sundermann, J E; Suzuki, K; Swain, S K; Tan, P; Taras, P; Taylor, F; Taylor, G P; Telnov, A V; Teodorescu, L; Ter-Antonian, R; Therin, G; Thiebaux, C; Thompson, J M; Tisserand, V; Toki, W H; Torrence, E; Tosi, S; Touramanis, C; Ulmer, K A; Uwer, U; Van Bakel, N; Vasileiadis, G; Vasseur, G; Vavra, J; Vazquez, W P; Verderi, M; Verkerke, W; Viaud, B; Vitale, L; Voci, C; Voena, C; Von Wimmersperg-Töller, J H; Wagner, G; Wagner, S R; Wagoner, D E; Waldi, R; Walsh, J; Wang, K; Wang, P; Wappler, F R; Watson, A T; Weaver, M; Weidemann, A W; Weinstein, A J R; Wenzel, W A; Wilden, L; Williams, D C; Williams, J C; Willocq, S; Wilson, F F; Wilson, J R; Wilson, M G; Wilson, R J; Wisniewski, W J; Wittgen, M; Won, E; Wong, Q K; Wormser, G; Wright, D H; Wright, D M; Wu, J; Wu, S L; Xie, Y; Yamamoto, R K; Yarritu, A K; Ye, S; Yi, J; Yi, K; Young, C C; Yu, Z; Yumiceva, F X; Yushkov, A N; Yéche, C; Zain, S B; Zallo, A; Zeng, Q; Zghiche, A; Zhang, J; Zhang, L; Zhao, H W; Zhu, Y S; Zito, M; Çuhadar-Dönszelmann, T

    2006-01-01

    We present the results of a search for the decay B0 --> tau+tau- in a data sample of (232 +- 3) x 10^6 Upsilon(4S) --> BBbar decays using the BABAR detector. Certain extensions of the Standard Model predict measurable levels of this otherwise rare decay. We reconstruct fully one neutral B meson and seek evidence for the signal decay in the rest of the event. We find no evidence for signal events and obtain B(B0 --> tau+tau-) < 3.2 x 10^-3 at the 90% confidence level.

  15. Search for B+ --> mu+ nu_mu With Inclusive Reconstruction at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, Antimo; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, Bjarne; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-08-01

    We search for the purely leptonic decay B{sup {+-}} {yields} {mu}{sup {+-}}{nu}{sub {mu}} in the full BABAR dataset, having an integrated luminosity of approximately 426 fb{sup -1}. We adopt a fully inclusive approach, where the signal candidate is identified by the highest momentum lepton in the event and the companion B is inclusively reconstructed without trying to identify its decay products. We set a preliminary upper limit on the branching fraction of {Beta}(B{sup {+-}} {yields} {mu}{sup {+-}}{nu}{sub {mu}}) < 1.3 x 10{sup -6} at the 90% confidence level, using a Bayesian approach.

  16. Search for the rare decay B0-->tau+tau- at BABAR.

    Science.gov (United States)

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yeche, Ch; Zito, M; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Martinez-Vidal, F; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Vazquez, W P; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Forster, Ian J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Edgar, C L; Hodgkinson, M C; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote, D; Taras, P; Viaud, B; Nicholson, H; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissiere, C; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganit, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Neal, H; Schott, G

    2006-06-23

    We present the results of a search for the decay B0-->tau+tau- in a data sample of (232+/-3)x10(6) Upsilon(4S)-->BB decays using the BABAR detector. Certain extensions of the standard model predict measurable levels of this otherwise rare decay. We reconstruct fully one neutral B meson and seek evidence for the signal decay in the rest of the event. We find no evidence for signal events and obtain Beta(B0->tau+tau-)<4.1x10(-3) at the 90% confidence level.

  17. Silicon pixel R&D for CLIC

    Science.gov (United States)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e‑ Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1–2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm–500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  18. Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin Wang; Xiao-Shuang Xu; Jian-Er Chen

    2008-01-01

    The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant ∈ > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (ku, kl), our algorithm constructs a vertex cover of size (ku*, kl*), satisfying max{ku*/ku, kl*/kl} ≤ 1 + ∈.

  19. Transverse Vector Vertex Function and Transverse Ward-Takahashi Relations in QED

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2006-01-01

    The transverse vector vertex function in momentum space in four-dimensional QED is derived in terms of a set of transverse Ward-Takahashi relations for the vector and the axial-vector vertices in the case of massless fermion.It is demonstrated explicitly that the transverse vector vertex function derived this way to one-loop order leads to the same result as one obtained in perturbation theory. This provides a basic approach to determine the transverse part of basic vertex function from the symmetry relations of the system.

  20. Progress toward the Determination of Complete Vertex Operators for The IIB Matrix Model

    CERN Document Server

    Kitazawa, Y; Saito, O; Kitazawa, Yoshihisa; Mizoguchi, Shun'ya; Saito, Osamu

    2006-01-01

    We report on progress in determining the complete form of vertex operators for the IIB matrix model. The exact expressions are obtained for those emitting massless IIB supergravity fields up to sixth order in the light-cone superfield, in which the conjugate gravitino and conjugate two-form vertex operators are newly determined. We also provide a consistency check by computing the kinematical factor of a four-point graviton amplitude in a D-instanton background. We conjecture that the low-energy effective action of the IIB matrix model at large N is given by tree-level supergravity coupled to the vertex operators.

  1. Low-energy hadronic cross sections measurements at BaBar, and implication for the g-2 of the muon

    CERN Document Server

    Bernard, Denis

    2016-01-01

    The BaBar Collaboration has an intensive program studying the cross sections of hadron production in low-energy e+e- annihilation, accessible via initial-state radiation. Our measurements allow a significant improvement in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for shedding light on the current > 3 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state, and other final states are currently under investigation. We report here on the most recent results obtained by analysing the entire Babar dataset.

  2. Optimizing Parallel Access to the BaBar Database System Using CORBA Servers

    Institute of Scientific and Technical Information of China (English)

    JacekBecla; IgorGaponenko

    2001-01-01

    The BaBar Experiment collected around 20 TB of data during its first 6 months of running.Now,after 18 months,data size exceeds 300 TB,and according to prognosis,it is a small fraction of the size of data coming in the next few months,In order to keep up with the data significant effort was put into tuning the database system,It led to great performance improvements,as well as to inevitable system expansion-450 simultaneous processing nodes alone used for data reconstruction.It is believed,that further growth beyond 600 nodes will happen soon.In such an environment,many complex operations are executed simultaneously on hundreds of machines,putting a huge load on data servers and increasing network traffic Introducing two CORBA servers halved startup time,and dramatically offloaded database servers:data servers as well as lock servers The paper describes details of design and implementation of two servers recently in troduced in the Babar system:conditions OID server and Clustering Server,The first experience of using these servers is discussed.A discussion on a Collection Server for data analysis,currently being designed is included.

  3. Studies of charmonium production in e+e- annihilation and B decays at BABAR

    Science.gov (United States)

    Garzia, Isabella

    2016-05-01

    In an e+e- B factory, charmonium states can be produced through different mechanisms, e.g. direct production in e+e- annihilation, double charmonium production, and in B-meson decays. Prompt production of J/ψ or ψ(2S) in association with a second charmonium states has been observed by both the BABAR and the Belle experiments. These processes provide an opportunity to study both perturbative and non perturbative effects in QCD and to search for new charmonium states recoiling against the reconstructed J/ψ or ψ(2S). Using the full BABAR data set collected at the ϒ(4S) resonance, we measure the absolute branching fractions of the two-body decays of B mesons (B → KXc), where Xc is a charmonium state. For events in which a B is fully reconstructed, the charmonium spectrum can be observed in an unbiased way by looking at the distribution of the K momentum in the rest frame of the recoiling B. We present also Dalitz plot analysis for the decays of B mesons to D- D0 K+ and D¯ 0 D0 K+, and we report about the observation of the Ds1 * (2700)+ resonance in these two channels, and obtain measurements of the mass and width.

  4. Search for Invisible Decays of Dark Photons and Low Mass Higgs Bosons at BaBar

    Science.gov (United States)

    Giuffrida, Alexander; BaBar Collaboration

    2017-01-01

    The BaBar detector at the PEP-II asymmetric B-Factory collected a large dataset of e+e-collisions at the center-of-mass energies near Upsilon mesons. We use the BaBar dataset recorded in 2007-2008 to search for events that produce a high energy photon and no other visible decay products. Such invisible decays may occur through the process ϒ -> γ A, where Ais a light CP-odd Higgs scalar, or e+e- -> γ A', where A' is a Dark Photon vector particle. This search takes advantage ofa high energy single photon trigger, so that such events would be recorded despite the lack of visible charged tracks. We have tuned our selection on 10% of the data collected with the single photon triggers. Our analysis uses machine learning techniques to enhance the selection efficiencies and suppress the backgrounds. For the final results, we apply our selection to the full data set of approximately 60 fb-1. We observed no significant signal, and set the upper limits on the branching ratio of ϒ -> γ A and cross section of e+e- -> γ A'. For the A' mode, our upper limits on the mixing strength parameter rule out the Dark Photon as an explanation for the aμ anomaly. Rose Hills Foundation.

  5. A neural network z-vertex trigger for Belle II

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, Sara; Skambraks, Sebastian; Chen, Yang [Technische Universitaet Muenchen (Germany); Abudinen, Fernando; Kiesling, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    In the Belle II experiment the efficiency of the track trigger could be increased by reconstructing the z-coordinate of track vertices at the first trigger level and rejecting tracks not coming from the interaction region, which form a large part of the machine background. The presented method employs neural networks to estimate the z-vertex without explicit track reconstruction. Input data is taken from the central drift chamber, using both the wire coordinates and the drift times for each hit. Neural networks are general function approximators that can learn nonlinear dependencies from real data without the need of an explicit model. However, using a priori knowledge about the track in a meaningful way can help to train more efficient networks, in terms of both prediction quality and network size. Such input information is provided by the Belle II 2D track trigger and is used explicitly in the calculation of the input values for the neural network. The algorithms for the input representation are presented together with estimations for the trigger efficiency and the rejection capability.

  6. 19-vertex version of the fully frustrated XY model

    Science.gov (United States)

    Knops, Yolanda M. M.; Nienhuis, Bernard; Knops, Hubert J. F.; Blöte, Henk W. J.

    1994-07-01

    We investigate a 19-vertex version of the two-dimensional fully frustrated XY (FFXY) model. We construct Yang-Baxter equations for this model and show that there is no solution. Therefore we have chosen a numerical approach based on the transfer matrix. The results show that a coupled XY Ising model is in the same universality class as the FFXY model. We find that the phase coupling over an Ising wall is irrelevant at criticality. This leads to a correction of earlier determinations of the dimension x*h,Is of the Ising disorder operator. We find x*h,Is=0.123(5) and a conformal anomaly c=1.55(5). These results are consistent with the hypothesis that the FFXY model behaves as a superposition of an Ising model and an XY model. However, the dimensions associated with the energy, xt=0.77(3), and with the XY magnetization xh,XY~=0.17, refute this hypothesis.

  7. Jet Vertex Charge Reconstruction Poster for LHCP 2015

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    B-jet reconstruction algorithms used so far in ATLAS data analyses do not provide the b-jet charge information, which could potentially play a major role in reducing the combinatorial backgrounds in final states with multiple b-jets. This missing point is addressed by the newly developed JetVertexCharge (JVC) algorithm presented in this poster. Inspired by the decay chain of B-hadrons, the JVC algorithm provides a multi-variate b-jet charge estimate relying on tracks, displaced vertices and muons contained in the jet. In this algorithm, the established concept of estimating jet charge as a transverse momentum weighted sum of track charges is used to reconstruct the charge of the jet as whole, as well as the charges of up to two displaced vertices in the jet, using the corresponding sets of associated tracks. The charge of the associated muon is interpreted as the same-sign or opposite-sign relative to the b-jet charge, according to its transverse momentum and geometrical match to vertices. Jets are divided in...

  8. On the complexity of the balanced vertex ordering problem

    Directory of Open Access Journals (Sweden)

    Jan Kara

    2007-01-01

    Full Text Available We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27--48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an `almost balanced' ordering.

  9. A DEPFET pixel system for the ILC vertex detector

    CERN Document Server

    Trimpl, M; Kohrs, R; Krüger, H; Lodomez, P; Reuen, L; Sandow, C; Toerne, E; Velthuis, J J; Wermes, N; Andricek, L; Moser, H G; Richter, R H; Lutz, Gerhard; Giesen, F; Fischer, P; Peric, I

    2006-01-01

    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 pixel matrix and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6keV to 60keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.

  10. Towards Petaflops Capability of the VERTEX Supernova Code

    CERN Document Server

    Marek, Andreas; Hanke, Florian; Janka, Hans-Thomas

    2014-01-01

    The VERTEX code is employed for multi-dimensional neutrino-radiation hydrodynamics simulations of core-collapse supernova explosions from first principles. The code is considered state-of-the-art in supernova research and it has been used for modeling for more than a decade, resulting in numerous scientific publications. The computational performance of the code, which is currently deployed on several high-performance computing (HPC) systems up to the Tier-0 class (e.g. in the framework of the European PRACE initiative and the German GAUSS program), however, has so far not been extensively documented. This paper presents a high-level overview of the relevant algorithms and parallelization strategies and outlines the technical challenges and achievements encountered along the evolution of the code from the gigaflops scale with the first, serial simulations in 2000, up to almost petaflops capabilities, as demonstrated lately on the SuperMUC system of the Leibniz Supercomputing Centre (LRZ). In particular, we sh...

  11. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-03-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  12. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  13. The quark-gluon vertex in Landau gauge bound-state studies

    Science.gov (United States)

    Williams, Richard

    2015-05-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.

  14. Lattice Landau gauge quark propagator and the quark-gluon vertex

    CERN Document Server

    Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G

    2016-01-01

    We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.

  15. Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta

    CERN Document Server

    Aguilar, A C; Ferreira, M N; Papavassiliou, J

    2016-01-01

    We determine the non-Abelian version of the four longitudinal form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. The potential phenomenological impact of these results is evaluated through the study of special renormalization-point-independent combinations, which quantify the strength of the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations.

  16. Calculating the vertex unknowns of nine point scheme on quadrilateral meshes for diffusion equation

    Institute of Scientific and Technical Information of China (English)

    YUAN GuangWei; SHENG ZhiQiang

    2008-01-01

    In the construction of nine point scheme, both vertex unknowns and cell-centered unknowns are introduced, and the vertex unknowns are usually eliminated by using the interpolation of neighboring cell-centered unknowns, which often leads to lose accuracy. Instead of using interpolation,here we propose a different method of calculating the vertex unknowns of nine point scheme, which are solved independently on a new generated mesh. This new mesh is a Voronoi mesh based on the vertexes of primary mesh and some additional points on the interface. The advantage of this method is that it is particularly suitable for solving diffusion problems with discontinuous coefficients on highly distorted meshes, and it leads to a symmetric positive definite matrix. We prove that the method has first-order convergence on distorted meshes. Numerical experiments show that the method obtains nearly second-order accuracy on distorted meshes.

  17. The quark-gluon vertex in Landau gauge bound-state studies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)

    2015-05-15

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)

  18. Experimental study of heat generation at the vertex of a fatigue crack

    Science.gov (United States)

    Terekhina, A. I.; Bannikov, M. V.; Plekhov, O. A.; Plekhova, E. V.

    2012-08-01

    The process of heat generation at the vertex of a fatigue crack in VT-6 titanium alloy under conditions of cyclic loading has been studied by infrared thermography. The spatial and temporal variations of temperature at the crack vertex have been measured, the shape of the zone of heat evolution has been determined, and the intensity of heat generation has been evaluated. Comparison of the obtained experimental data to the relations of the linear theory of elasticity shows that neither the observed shape of the plastic deformation zone nor the measured dynamics of heat evolution at the crack vertex is consistent with predictions of the linear theoretical models. The experimental results revealed a time delay between the moments of maximum applied stress and maximum intensity of heat evolution at the vertex of a fatigue crack.

  19. A spin-foam vertex amplitude with the correct semiclassical limit

    CERN Document Server

    Engle, Jonathan

    2012-01-01

    Spin-foam models are hoped to provide a dynamics for loop quantum gravity. All 4-d spin-foam models of gravity start from the Plebanski formulation, in which gravity is recovered from a topological field theory, BF theory, by the imposition of constraints, which, however, select not only the gravitational sector, but also unphysical sectors. We show that this is the root cause for terms beyond the required Feynman-prescribed exponential of i times the action in the semiclassical limit of the EPRL spin-foam vertex. By quantizing a condition isolating the gravitational sector, we modify the EPRL vertex, yielding what we call the proper EPRL vertex amplitude. This provides at last a vertex amplitude for loop quantum gravity with the correct semiclassical limit.

  20. Asymmetric 6-vertex model and classical Ruijsenaars-Schneider system of particles

    CERN Document Server

    Liashyk, A; Zabrodin, A; Zotov, A

    2016-01-01

    We discuss the correspondence between models solved by Bethe ansatz and classical integrable systems of Calogero type. We illustrate the correspondence by the simplest example of the inhomogeneous asymmetric 6-vertex model parametrized by trigonometric (hyperbolic) functions.

  1. Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates

    Directory of Open Access Journals (Sweden)

    F. Tonon

    2005-01-01

    Full Text Available The inertia tensor of a tetrahedron is composed of its moments of inertia. This study presents explicit exact formulas for the moments of inertia of a 3-D tetrahedron as simple polynomials of its vertex coordinates.

  2. Calculating the vertex unknowns of nine point scheme on quadrilateral meshes for diffusion equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the construction of nine point scheme,both vertex unknowns and cell-centered unknowns are introduced,and the vertex unknowns are usually eliminated by using the interpolation of neighboring cell-centered unknowns,which often leads to lose accuracy.Instead of using interpolation,here we propose a different method of calculating the vertex unknowns of nine point scheme,which are solved independently on a new generated mesh.This new mesh is a Vorono¨i mesh based on the vertexes of primary mesh and some additional points on the interface.The advantage of this method is that it is particularly suitable for solving diffusion problems with discontinuous coeffcients on highly distorted meshes,and it leads to a symmetric positive definite matrix.We prove that the method has first-order convergence on distorted meshes.Numerical experiments show that the method obtains nearly second-order accuracy on distorted meshes.

  3. Precise Numerical Results of IR-vertex and box integration with Extrapolation Method

    CERN Document Server

    Yuasa, F; Fujimoro, J; Hamaguchi, N; Ishikawa, T; Shimizu, Y

    2007-01-01

    We present a new approach for obtaining very precise integration results for infrared vertex and box diagrams, where the integration is carried out directly without performing any analytic integration of Feynman parameters. Using an appropriate numerical integration routine with an extrapolation method, together with a multi-precision library, we have obtained integration results which agree with the analytic results to 10 digits even for such a very small photon mass as $10^{-150}$ GeV in the infrared vertex diagram.

  4. Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment

    Science.gov (United States)

    Gornushkin, Yu. A.; Dmitrievsky, S. G.; Chukanov, A. V.

    2015-01-01

    The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.

  5. NLO Vertex for a Forward Jet plus a Rapidity Gap at High Energies

    CERN Document Server

    Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-01-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  6. NLO vertex for a forward jet plus a rapidity gap at high energies

    Science.gov (United States)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  7. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  8. DFT Predictions on Structures and Stabilities of Eleven-vertex nido-and cioso-Heteroboranes

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2009-01-01

    Based on the octadecahedron of eleven-vertex closo-borane,the eleven-vertex closo-heteroborane was suggested with nonmetallic atoms instead of the different nonequivalent boron,and the stabilities were predicted at G96PW91/6-31+G(3d,2p) level.The small heteroatoms,C,N,O,preferentially occupy vertex 2 with the absolutely lowest relative energy to form the high stabilization closo-heteroboranes.They cap four-membered rings to satisfy the geometrical demand of short B-Z bonds.The electron attractions from the vicinal boron atoms make the frameworks shrink.Differently,Si and Ge preferentially substitute for boron at vertex 1 with six tight B-Z bonds and form stabilized molecules.P,As,S,and Se tend to occupy vertex 4 and the optimized structures belong to the nido configurations,in contrast to high electronegative heteroatoms,S and Se transfer less negative charges to framework and the electropositive heteroatoms,Si and Ge transfer more negative charges to framework to form the delocalization structures.The HOMO-LUMO gaps show that most of predicted clusters possess chemical stabilities.The substitutions of heteroatoms for boron atoms in eleven-vertex closo-hcteroboranes are consistent with the topological charge stabilization rule proposed by Gimarc.

  9. Silicon spintronics.

    Science.gov (United States)

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  10. VERTEX: Manganese transport with CaCO 3

    Science.gov (United States)

    Martin, John H.; Knauer, George A.

    1983-04-01

    Manganese transport was studied off central California in August and September 1981 as part of the VERTEX (Vertica l Transport and Exchange) research program. Refractory, leachable, and dissolved Mn fractions associated with particles caught in traps set at 11 depths (50 to 2000 m) were analyzed. Through intentional and unintentional CaCO 3 dissolution 'experiments', it was learned that the weakly leachable Mn was originally in association with the carbonate phase. Adsorption on surfaces rather than absorption in CaCO 3 matrices was indicated by the finding that Mn was not released in proportion to the CaCo 3 dissolved, instead it appeared to keep readsorbing to the dissolving surface. Ultimately, Mn went into solution when the particulate CaCO 3 was essentially depleted, suggesting that sufficient sites for adsorption were no longer available. Manganese fluxes with CaCO 3 were low near the surface (0.1 mg cm -2 ky -1), but increased rapidly in the 50 to 200-m depth interval, and then became more or less constant (1.3 mg cm -2 ky -1 for the remainder of the water column (300 to 2000 m). Rate-of-change estimates indicate that Mn is rapidly scavenged in near-surface waters (-130 ng 1 -1 y -1) and slowly regenerated at depth (2.7 ng 1 -1 y -1) in our near-shore study area. Residence times for dissolved Mn were estimated at 1.2 y for surface waters and 17 y at depth. The implications of Mn transport with CaCO 3 in relation to open-ocean sediment excess Mn are discussed.

  11. Development of vertexing and lifetime triggers and a study of Bs mixing using hadronic decays at D0

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Christopher P. [Imperial College, London (United Kingdom)

    2005-03-01

    The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of Bs oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay Bs → Dsπ. This important mode provides the best proper time resolution for Bs mixing and is reconstructed for the first time at D0. Projections on the sensitivity to Bs oscillations are then presented.

  12. Lepton Universality Test in Upsilon(1S) Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Guido, Elisa; /Genoa U. /INFN, Genoa

    2012-04-10

    Using a sample of 122 million {Upsilon}(3S) decays collected with the BABAR detector at the PEP-II asymmetric energy collider at the SLAC National Accelerator Laboratory, we measure the ratio R{sub {tau}{mu}} = BR({Upsilon}(1S) {yields} {tau}{sup +}{tau}{sup -})/BR({Upsilon}(1S) {yields} {mu}{sup +}{mu}{sup -}); the measurement is intended as a test of lepton universality and as a possible search for a light pseudoscalar Higgs boson in Next to Minimal Supersymmetric Standard Model (NMSSM) scenarios. Such a boson could appear in a deviation of the ratio R{sub {tau}{mu}} from the Standard Model expectation, that is 1, except for small lepton mass corrections. The analysis exploits the decays {Upsilon}(3S) {yields} {Upsilon}(1S){pi}{sup +}{pi}{sup -}, {Upsilon}(1S) {yields} l{sup +}l{sup -}, where l = {mu},{tau}.

  13. Measurement of Collins asymmetry in inclusive production of pion pairs at BaBar

    Directory of Open Access Journals (Sweden)

    Garzia Isabella

    2015-01-01

    Full Text Available We present a measurement of the azimuthal asymmetries induced by the Collins effect in inclusive production of pion pairs in the e+e− → ππX annihilation process, where two charged pion pairs are produced in opposite hemispheres. The data collected by the BABAR detector at the SLAC Linear Accelerator Laboratory allows the determination of the Collins fragmentation function as a function of the pion fractional energies and transverse momenta, as well as the determination of its behavior in a 4-dimensional space. These results can be combined with semi-inclusive deep inelastic scattering data to extract the transversity parton distribution function, which is the least known leading-twist component of the QCD description of the nucleon.

  14. Search for a dark photon in e(+)e(-) collisions at BABAR.

    Science.gov (United States)

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Stugu, B; Brown, D N; Feng, M; Kerth, L T; Kolomensky, Yu G; Lee, M J; Lynch, G; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Khan, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Mandelkern, M; Dey, B; Gary, J W; Long, O; Campagnari, C; Franco Sevilla, M; Hong, T M; Kovalskyi, D; Richman, J D; West, C A; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Schumm, B A; Seiden, A; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Andreassen, R; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Bloom, P C; Ford, W T; Gaz, A; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Spaan, B; Bernard, D; Verderi, M; Playfer, S; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Piemontese, L; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Bhuyan, B; Prasad, V; Adametz, A; Uwer, U; Lacker, H M; Dauncey, P D; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Derkach, D; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Roudeau, P; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Fry, J R; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Bougher, J; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Hamilton, B; Jawahery, A; Roberts, D A; Cowan, R; Sciolla, G; Cheaib, R; Patel, P M; Robertson, S H; Neri, N; Palombo, F; Cremaldi, L; Godang, R; Sonnek, P; Summers, D J; Simard, M; Taras, P; De Nardo, G; Onorato, G; Sciacca, C; Martinelli, M; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Feltresi, E; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Leruste, Ph; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Pacetti, S; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Perez, A; Rizzo, G; Walsh, J J; Lopes Pegna, D; Olsen, J; Smith, A J S; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Hartmann, T; Hess, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Olaiya, E O; Wilson, F F; Emery, S; Vasseur, G; Anulli, F; Aston, D; Bard, D J; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Lewis, P; Lindemann, D; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Muller, D R; Neal, H; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Snyder, A; Su, D; Sullivan, M K; Va'vra, J; Wisniewski, W J; Wulsin, H W; Purohit, M V; White, R M; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Ruland, A M; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Villanueva-Perez, P; Albert, J; Banerjee, Sw; Beaulieu, A; Bernlochner, F U; Choi, H H F; King, G J; Kowalewski, R; Lewczuk, M J; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Band, H R; Dasu, S; Pan, Y; Prepost, R; Wu, S L

    2014-11-14

    Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A^{'}), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e^{+}e^{-}→γA^{'}, A^{'}→e^{+}e^{-}, μ^{+}μ^{-} using 514  fb^{-1} of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10^{-4}-10^{-3} for dark photon masses in the range 0.02-10.2  GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.

  15. Semileptonic B Decays, B Mixing And Magnitudes of CKM Elements at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cote, D.; /Montreal U.

    2005-10-11

    The value of |V{sub cb}| has been measured recently from a simultaneous fit to moments of the hadronic-mass and lepton-energy distributions in inclusive semileptonic B-mesons decays with a precision of 2%. Both exclusive and inclusive measurements of |V{sub ub}| have also been carried out in B {yields} X{sub u}{ell}{nu} decays. Precision measurements of the mixing parameter, {Delta}m{sub d}, have been obtained. In addition, direct limits on the total decay-rate difference {Delta}{Lambda} between the two B{sup 0} mass eigenstates and on CP, T and CPT violation due exclusively to oscillations have recently been provided by BaBar.

  16. Failure Scenarios and Mitigations and for the BaBar Superconducting Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, EunJoo; Candia, A.; Craddock, W.W.; Racine, M.; Weisend, J.G., II; /SLAC

    2005-12-13

    The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.

  17. Search for Doubly Charmed Baryons Xi_cc^+ and Xi_cc^++ in BABAR

    CERN Document Server

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yu, K; Todyshev; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, 2C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z

    2006-01-01

    We search for the production of doubly charmed baryons in e^+e^- annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 232 fb^-1 recorded with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. We search for Xi_cc^+ baryons in the final states Lambda_c^+K^-pi^+ and Xi_c^0pi^+, and Xi_cc^++ baryons in the final states Lambda_c^+K^-pi^+pi^+ and Xi_c^0pi^+pi^+. We find no evidence for the production of doubly charmed baryons.

  18. Inclusive Semileptonic B Decays at BaBar and Extraction of HQE parameters

    CERN Document Server

    Flächer, H U

    2004-01-01

    A measurement of the first four moments of the hadronic mass distribution in B->Xc lv decays is presented for minimum lepton momenta varying between 0.9 and 1.6 GeV, using data recorded with the BaBar detector. Furthermore, a measurement of the inclusive electron energy spectrum for semileptonic B decays together with a measurement of its first, second and third moments for minimum electron energies between 0.6 and 1.5 GeV is reported. We determine the inclusive B->Xc lv branching fraction, B_clv, the CKM matrix element |V_cb|, and other heavy-quark parameters from a simultaneous fit to the measured moments.

  19. Calibration of the BaBar CsI(Tl) Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Jorg; Marks, Joerg; /Heidelberg U.

    2011-11-23

    After nine years of operation, the BABAR experiment at the e{sup +}e{sup -} B factory PEP-II (Standford Linear Accelerator Center) stopped data taking in April 2008. An important part of the experiment is the electromagnetic calorimeter which consists of 6580 CsI crystals doped with thallium and read out by Si-PIN photodiodes. The light yield of the CsI crystals is changing in time due to radiation exposure. In addition to the changing light yield, passive material in front of and between the crystals as well as signal thresholds during the reconstruction influence the reconstructed energies. This requires a time-dependent calibration of the calorimeter. The calibration issues are reviewed and the calibration results obtained from various data samples are presented.

  20. Study of High-multiplicity 3-prong and 5-prong Tau Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.P

    2012-06-01

    We present measurements of the branching fractions of 3-prong and 5-prong {tau} decay modes using a sample of 430 million {tau} lepton pairs, corresponding to an integrated luminosity of 468 fb{sup -1}, collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings. The {tau}{sup -} {yields} (3{pi}){sup -} {eta}{nu}{sub {tau}}, {tau}{sup -} {yields} (3{pi}){sup -} {yields} {omega}{nu}{sub {tau}} and {tau}{sup -} {yields} {pi}{sup -} f{sub 1}(1285){nu}{sub {tau}} branching fractions are presented as well as a new limit on the branching fraction of the isospin-forbidden, second-class current {tau}{sup -} {yields} {pi}{sup -} {eta}{prime}(958){nu}{sub {tau}} decay. We find no evidence for charged kaons in these decay modes and place the first upper limits on their branching fractions.

  1. Measurements of the tau Mass and Mass Difference of the tau^+ and tau^- at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-30

    The authors present the result of a precision measurement of the mass of the {tau} lepton, M{sub {tau}}, based on 423 fb{sup -1} of data recorded at the {Upsilon}(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, they determine the mass to be 1776.68 {+-} 0.12(stat) {+-} 0.41(syst) MeV. They also measure the mass difference between the {tau}{sup +} and {tau}{sup -}, and obtain (M{sub {tau}{sup +}} - M{sub {tau}{sup -}})/M{sub AVG}{sup {tau}} = (-3.4 {+-} 1.3(stat) {+-} 0.3(syst)) x 10{sup -4}, where M{sub AVG}{sup {tau}} is the average value of M{sub {tau}{sup +}} and M{sub {tau}{sup -}}.

  2. Charmless Hadronic B Decays into Vector, Axial Vector and Tensor Final States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Gandini, Paolo; /Milan U. /INFN, Milan

    2012-04-06

    We present experimental measurements of branching fraction and longitudinal polarization fraction in charmless hadronic B decays into vector, axial vector and tensor final states with the final dataset of BABAR. Measurements of such kind of decays are a powerful tool both to test the Standard Model and search possible sources of new physics. In this document we present a short review of the last experimental results at BABAR concerning charmless quasi two-body decays in final states containing particles with spin 1 or spin 2 and different parities. This kind of decays has received considerable theoretical interest in the last few years and this particular attention has led to interesting experimental results at the current b-factories. In fact, the study of longitudinal polarization fraction f{sub L} in charmless B decays to vector vector (VV), vector axial-vector (VA) and axial-vector axial-vector (AA) mesons provides information on the underlying helicity structure of the decay mechanism. Naive helicity conservation arguments predict a dominant longitudinal polarization fraction f{sub L} {approx} 1 for both tree and penguin dominated decays and this pattern seems to be confirmed by tree-dominated B {yields} {rho}{rho} and B{sup +} {yields} {Omega}{rho}{sup +} decays. Other penguin dominated decays, instead, show a different behavior: the measured value of f{sub L} {approx} 0.5 in B {yields} {phi}K* decays is in contrast with naive Standard Model (SM) calculations. Several solutions have been proposed such as the introduction of non-factorizable terms and penguin-annihilation amplitudes, while other explanations invoke new physics. New modes have been investigated to shed more light on the problem.

  3. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  4. A Laser Testing Facility for the Characterization of Silicon Strip Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    Silicon strip detectors are used for high-precision tracking systems in particle physics experiments. During the 12 GeV upgrade to the accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The University of New Hampshire is part of the collaboration designing and building CLAS12. Among the detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is vital to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before installation in CLAS12. UNH is designing and building a laser testing facility to perform this task. The design consists of an infrared laser system and a precision computer-controlled positioning system that scans the laser light on the detector. The detector signals are read out by a data acquisition system for analysis. The facility includes a cleanroom area and a dry storage containment system. The facility allows the characterization of the large number of detectors before the final assembly of the silicon vertex tracker.

  5. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  6. Towards a high performance vertex detector based on 3D integration of deep N-well MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Re, V, E-mail: valerio.re@unibg.i [University of Bergamo, Department of Industrial Engineering, Viale Marconi 5, 24044 Dalmine (Italy)

    2010-06-15

    The development of deep N-Well (DNW) CMOS active pixel sensors was driven by the ambitious goal of designing a monolithic device with similar functionalities as in hybrid pixel readout chips, such as pixel-level sparsification and time stamping. The implementation of the DNW MAPS concept in a 3D vertical integration process naturally leads the designer towards putting more intelligence in the chip and in the pixels themselves, achieving novel device structures based on the interconnection of two or more layers fabricated in the same technology. These devices are read out with a data-push scheme that makes it possible to use pixel data for the generation of a flexible level 1 track trigger, based on associative memories, with short latency and high efficiency. This paper gives an update of the present status of DNW MAPS design in both 2D and 3D versions, and presents a discussion of the architectures that are being devised for the Layer 0 of the SuperB Silicon Vertex Tracker.

  7. Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end

    CERN Document Server

    Yang, Wen-Li; Feng, Jun; Hao, Kun; Shi, Kang-Jie; Sun, Cheng-Yi; Yang, Zhan-Ying; Zhang, Yao-Zhong

    2011-01-01

    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we obtain the explicit determinant expression of the partition function of the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Our result shows that, contrary to the eight-vertex model without a reflection end, the partition function can be expressed as a single determinant.

  8. Silicon pixel-detector R&D for CLIC

    Science.gov (United States)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  9. A silicon detector for neutrino physics

    CERN Document Server

    Kokkonen, J

    2002-01-01

    In order to demonstrate the feasibility of conducting future muon neutrino - tau neutrino oscillation searches using a high-resolution, large-area silicon microstrip detector, the Silicon TARget (STAR) detector was built. STAR was installed in the NOMAD short baseline neutrino oscillation experiment at the CERN SPS neutrino beam, where it recorded approximately 10000 neutrino interactions during the operation of the detector in the period 1997-98. It consists of five layers of silicon detectors interleaved with four layers of passive boron carbide as the target. The target mass is 45 kg, while the total silicon surface area is 1.14 square-meters and contains 32000 readout channels. The individual modules have a length of 72 cm, the longest built to date. The detection of tau particles, produced in tau neutrino charged-current interactions, would require a tracking detector with a precision of a few tens of microns in order to measure the position of the neutrino interaction vertex as well as the impact parame...

  10. Silicon detectors for neutrino oscillation experiments

    CERN Document Server

    do Couto e Silva, E

    1998-01-01

    This note describes the technique of using a target equipped with high resolution silicon microstrip detectors for the detection of the topological signature of decays in neutrino oscillation ex periments. Two detectors are presented. The first detector is installed in the NOMAD spectrometer at the CERN SPS neutrino beam. The target consists of four layers passive boron carbide plate s (total mass of 45 kg) interleaved with five layers of silicon microstrip detectors. A total of 600 single--sided silicon microstrip detectors are used amounting to a total area of 1.14 m$^2$. The silicon tracker is made with the longest ladders built to date (72 cm). During the 1997 run about 8000 charged current interactions were estimated to have occurred in the target and data tak ing will continue in 1998. For these events it will be possible to perform a precise measurement of both vertex and kinematical variables. The second detector was installed in September 1997 in a CERN PS pion beam to investigate the possibility of ...

  11. The eta'g sup * g sup ( sup * sup ) vertex including the eta'-meson mass

    CERN Document Server

    Ali, A

    2003-01-01

    The eta'g sup * g sup ( sup * sup ) effective vertex function is calculated in the QCD hard-scattering approach, taking into account the eta'-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment for both the quark-antiquark and the gluonic light-cone distribution amplitudes for the eta'-meson is kept. The vertex function with one off-shell gluon is shown to have the form (valid for vertical stroke q sub 1 sup 2 vertical stroke >m subeta sub ' sup 2) F subeta sub ' sub g sub sup * sub g (q sub 1 sup 2 ,0,m subeta sub ' sup 2)=m subeta sub ' sup 2 H(q sub 1 sup 2)/(q sub 1 sup 2 -m subeta sub ' sup 2), where H(q sub 1 sup 2) is a slowly varying function, derived analytically in this paper. The resulting vertex function is in agreement with the phenomenologically inferred form of this vertex obtained from an analysis of the CLEO data on the eta'-meson energy spectrum in the decay UPSILON(1S)-> eta'X. We also present an interpolating formula for the vertex function F subeta sub...

  12. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  13. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  14. X-ray powder crystallography with vertex instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Chatzisotiriou, V. [NCSR Demokritos, X-Ray Lab., Institute of Material Science, 15310 Aghia Paraskevi (Greece); Christofis, I. [General Machining S.A., 183 46 Moshato Attiki (Greece); Dimitriou, N.; Karvelas, S.; Karydas, A.G.; Loukas, D.; Pavlidis, A.; Spirou, S. [NCSR Demokritos, Institute of Nuclear Physics, 15310 Aghia Paraskevi (Greece); Dre, C. [Intracom S.A., 19002 Peania Attika (Greece); Haralabidis, N.; Misiakos, K.; Tsoi, E. [NCSR Demokritos, Institute of Microelectronics, 15310 Aghia Paraskevi (Greece); Perdikatsis, V. [Institute of Geology and Mineral Exploration, 115 27 Athens (Greece); Psycharis, V.; Terzis, A. [NCSR Demokritos, X-Ray Lab., Institute of Material Science, 15310 Aghia Paraskevi (Greece); Turchetta, R. [LEPSI, 67037 Strasbourg (France)

    1998-11-21

    An X-ray Diffractometer for Powder Crystallography is described along with experimental results and future plans. This is an intermediate instrument toward a long linear array system. Three channels of a silicon microstrip detector, are the detecting elements in the present instrument. Each detector channel is followed by a VLSI readout chain, which consists of a charge preamplifier with pulse shaping circuitry, a discriminator, and a 16-bit counter. Control and data acquisition is performed with a custom made PC readout card. A motorized goniometer scans the angle range of interest. Calibration of the system is done with reference samples and data which are captured with a one-channel conventional NaI detector. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. The quark-gluon vertex in Landau gauge bound-state studies

    CERN Document Server

    Williams, Richard

    2014-01-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.

  16. A new efficient RLF-like algorithm for the vertex coloring problem

    Directory of Open Access Journals (Sweden)

    Adegbindin Mourchid

    2016-01-01

    Full Text Available The Recursive Largest First (RLF algorithm is one of the most popular greedy heuristics for the vertex coloring problem. It sequentially builds color classes on the basis of greedy choices. In particular, the first vertex placed in a color class C is one with a maximum number of uncolored neighbors, and the next vertices placed in C are chosen so that they have as many uncolored neighbors which cannot be placed in C. These greedy choices can have a significant impact on the performance of the algorithm, which explains why we propose alternative selection rules. Computational experiments on 63 difficult DIMACS instances show that the resulting new RLF-like algorithm, when compared with the standard RLF, allows to obtain a reduction of more than 50% of the gap between the number of colors used and the best known upper bound on the chromatic number. The new greedy algorithm even competes with basic metaheuristics for the vertex coloring problem.

  17. Thermo-magnetic behavior of the of the quark-gluon vertex

    CERN Document Server

    Ayala, Alejandro; Loewe, M; Tejeda-Yeomans, Maria Elena; Zamora, R

    2015-01-01

    The thermo-magnetic corrections to the quark-gluon vertex in the presence of a weak magnetic field are calculated in the frame of the Hard Thermal Loop approximation. The vertex satisfies a QED-like Ward identity with the quark self-energy calculated within the same approximation. It turns out that only the longitudinal vertex components get modified. The calculation provides a first principles result for the quark anomalous magnetic moment at high temperature in a weak magnetic field. The effective thermo-magnetic quark-gluon coupling shows a decreasing behavior as function of the field strength. This result supports the observation that the behavior of the effective quark-gluon coupling in the presence of a magnetic field is an important ingredient in order to understand the inverse magnetic catalysis phenomenon recently observed in the lattice QCD simulations.

  18. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754272

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  19. The neural network Z vertex trigger for the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Skambraks, Sebastian; Abudinen, Fernando [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6 80805 Muenchen (Germany)

    2013-07-01

    A novel approach for track triggering is currently studied for the Belle II detector: neural networks are used to predict the event vertex in z direction, using only information from the central drift chamber. The lack in accuracy of classical online vertex reconstruction motivates new studies for the z vertex trigger. Since neural networks are general function approximators, they are well suited for problems where the model is not known a priori. Several methods were investigated, but our studies for single tracks in geometrically restricted areas of the detector have proven the multi layer perceptron to produce the most accurate results, even in the presence of background. This encourages the use of a set of multi layer perceptrons to cover the entire detector. Additionally, the methods presented may lead to online event reconstruction, for Belle II as well as for other running or future detectors.

  20. ATLAS strategy for primary vertex reconstruction during Run-2 of the LHC

    CERN Document Server

    Borissov, Guennadi; The ATLAS collaboration; Grimm, Kathryn; Pagan Griso, Simone; Pedersen, Lars Egholm; Prokofiev, Kirill; Rudolph, Matthew Scott; Wharton, Andrew Mark

    2015-01-01

    The reconstruction of vertices corresponding to proton--proton collisions in ATLAS is an essential element of event reconstruction used in many performance studies and physics analyses. During Run-1 of the LHC, ATLAS has employed an iterative approach to vertex finding. In order to improve the flexibility of the algorithm and ensure continued performance for very high numbers of simultaneous collisions in Run-2 of the LHC and beyond, a new approach to seeding vertex finding has been developed inspired by image reconstruction techniques. This note provides a brief outline of how reconstructed tracks are used to create an image of likely vertex collisions in an event, describes the implementation in the ATLAS software, and presents some preliminary results of the performance of the algorithm in simulation approximating early Run-2 conditions.

  1. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Zus, R. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Aldaya Martin, M.; Alimujiang, K.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Schoeffel, L.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E. [DESY, Hamburg (Germany); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Asmone, A.; Stella, B. [Dipt. di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Rome (Italy); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Universites Paris VI et VII, Paris (France); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France)] [and others

    2010-01-15

    Inclusive charm and beauty cross sections are measured in e{sup -}p and e{sup +} p neutral current collisions at HERA in the kinematic region of photon virtuality 5{<=}Q {sup 2}{<=}2000 GeV{sup 2} and Bjorken scaling variable 0.0002{<=}x{<=}0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  2. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Aldaya Martin, M. [DESY, Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)

    2009-06-15

    Inclusive charm and beauty cross sections are measured in e{sup -}p and e{sup +}p neutral current collisions at HERA in the kinematic region of photon virtuality 5{<=}Q{sup 2}{<=}2000 GeV{sup 2} and Bjorken scaling variable 0.0002{<=}x{<=}0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  3. Exploring complex networks by means of two-variable time series of vertex observables

    CERN Document Server

    Oświȩcimka, Paweł; Drożdż, Stanisław

    2016-01-01

    We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short, medium, and long-range information regarding the topological role of a vertex in a given network. We present and discuss results obtained on some well-known network models, as well as on real data representing protein contact networks. Our results suggest that the proposed analysis framework provides useful insights on the structural organization of complex networks. For instance, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.

  4. Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA

    CERN Document Server

    Aaron, FD; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D -J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H -U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H -C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

    2010-01-01

    Inclusive charm and beauty cross sections are measured in e-p and e+p neutral current collisions at HERA in the kinematic region of photon virtuality 5vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions.

  5. Performance of the ATLAS track and vertex reconstruction 
in the LHC Run 2

    CERN Document Server

    Oide, Hideyuki; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments and boosted, highly-collimated physics objects. The Insertable B-layer (IBL) is a fourth pixel layer, which was inserted in the innermost region of ATLAS during the long shutdown of the LHC. We will present results showing the performance of the track and vertex reconstruction algorithms using Run-2 data at the LHC and discuss some of the challenges encountered during commissioning. Recent improvements include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, novel techniques to enhance the performance in dense jet cores and time-dependent alignment of sub-detectors. Moreover, data-driven methods to evaluate vertex resolution, fake rates, track reconstruction inefficiencies in dense environments, and track parameter resolution and biases will be shown.

  6. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact

    Science.gov (United States)

    McGaughey, Georgia; Patrick Walters, W.

    2016-11-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  7. Vertex Corrections for Positive-Definite Spectral Functions of Simple Metals

    Science.gov (United States)

    Pavlyukh, Y.; Uimonen, A.-M.; Stefanucci, G.; van Leeuwen, R.

    2016-11-01

    We present a systematic study of vertex corrections in a homogeneous electron gas at metallic densities. The vertex diagrams are built using a recently proposed positive-definite diagrammatic expansion for the spectral function. The vertex function not only provides corrections to the well known plasmon and particle-hole scatterings, but also gives rise to new physical processes such as the generation of two plasmon excitations or the decay of the one-particle state into a two-particle-one-hole state. By an efficient Monte Carlo momentum integration we are able to show that the additional scattering channels are responsible for a reduction of the bandwidth, the appearance of a secondary plasmon satellite below the Fermi level, and a substantial redistribution of spectral weights. The feasibility of the approach for first-principles band-structure calculations is also discussed.

  8. Constraint Minimum Vertex Cover in K-Partite Graph: Approximation Algorithm and Complexity Analysis

    Directory of Open Access Journals (Sweden)

    Kamanashis Biswas

    2009-08-01

    Full Text Available Generally, a graph G, an independent set is a subset S of vertices in G such that no two vertices in S are adjacent (connected by an edge and a vertex cover is a subset S of vertices such that each edge of G has at least one of its endpoints in S. Again, the minimum vertex cover problem is to find a vertex cover with the smallest number of vertices. Consider a k-partite graph G = (V, E with vertex k-partition V = P1 ∪ P2 . . . ∪ Pk and the k integers are kp1, kp2, . . . , kpk. And, we want to find out whether there is a minimum vertex cover in G with at most kp1 vertices in P1 and kp2 vertices in P2 and so on or not. This study shows that the constrained minimum vertex cover problem in k-partite graph (MIN-CVCK is NP-Complete which is an important property of k-partite graph. Many combinatorial problems on general graphs are NP-complete, but when restricted to k-partite graph with at most k vertices then many of these problems can be solved in polynomial time. This paper also illustrates an approximation algorithm for MIN-CVCK and analyzes its complexity. In future work section, we specified a number of dimensions which may be interesting for the researchers such as developing algorithm for maximum matching and polynomial algorithm for constructing k-partite graph from general graph.

  9. Algebraic arctic curves in the domain-wall six-vertex model

    CERN Document Server

    Colomo, F

    2010-01-01

    The arctic curve, i.e. the spatial curve separating ordered (or `frozen') and disordered (or `temperate) regions, of the six-vertex model with domain wall boundary conditions is discussed for the root-of-unity vertex weights. In these cases the curve is described by algebraic equations which can be worked out explicitly from the parametric solution for this curve. Some interesting examples are discussed in detail. The upper bound on the maximal degree of the equation in a generic root-of-unity case is obtained.

  10. The Color Antisymmetric Ghost Propagator and One-Loop Vertex Renormalization

    OpenAIRE

    Furui, Sadataka

    2007-01-01

    The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Impl...

  11. Charged free fermions, vertex operators and the classical theory of conjugate nets

    Energy Technology Data Exchange (ETDEWEB)

    Doliwa, Adam [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warsaw (Poland); Manas, Manuel [Departamento de Matematica Aplicada y Estadistica, EUIT Aeronautica, Universidad Politecnica de Madrid, Madrid (Spain); Departamento de Fisica Teorica, Universidad Complutense, Madrid (Spain); Martinez Alonso, Luis; Medina, Elena [Departamento de Matematicas, Universidad de Cadiz, Cadiz (Spain); Santini, Paolo Maria [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy)

    1999-02-19

    We show that the quantum field theoretical formulation of the {tau}-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)

  12. Vertex and Propagator in $\\Phi^{4}$ Theory from 4PI Effective Action in Two Dimensions

    CERN Document Server

    Carrington, M E

    2012-01-01

    A set of self-consistent nonlinear integral equations for the four-point vertex and the propagator are derived from the 4-loop 4PI effective action for scalar field theories. This set of integral equations are solved in two dimensions through numerical lattice calculations. We compare the calculated results with those of perturbation theories. We find that the 4PI calculations are well consistent with the perturbation ones in perturbative regions. Non-perturbative results are also obtained in the 4PI formalism when the interacting strength becomes large. Furthermore, the full-momentum dependence of the four-point vertex is easily obtained in the 4PI effective action theories.

  13. Nonperturbative calculation of Green and vertex functions in terms of particle contours

    CERN Document Server

    Stefanis, N G

    1996-01-01

    The infrared regime of fermionic Green and vertex functions is studied analytically within a geometric approach which simulates soft interactions by an {\\it effective} theory of contours. Expanding the particle path integral in terms of dominant contours at large distances, all-order results in the coupling constant are obtained for the renormalized fermion propagator and a universal vertex function with physical characteristics close to those associated with the Isgur-Wise function in the weak decays of heavy mesons. The extension to the ultraviolet regime is scetched.

  14. Donaldson-Thomas invariants of local elliptic surfaces via the topological vertex

    CERN Document Server

    Bryan, Jim

    2016-01-01

    We compute the Donaldson-Thomas invariants of a local elliptic surface with section. We introduce a new computational technique which is a mixture of motivic and toric methods. This allows us to write the partition function for the invariants in terms of the topological vertex. Utilizing identities for the topological vertex proved in arXiv:1603.05271, we derive product formulas for the partition functions. The connected version of the partition function is written in terms of Jacobi forms. In the special case where the elliptic surface is a K3 surface, we get a new derivation of the Katz-Klemm-Vafa formula.

  15. Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    CERN Document Server

    Matevosyan, Hrayr H; Tandy, Peter C

    2007-01-01

    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.

  16. Building a non-perturbative quark-gluon vertex from a perturbative one

    Science.gov (United States)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  17. Effects of a dressed quark-gluon vertex in vector heavy-light mesons

    CERN Document Server

    Gomez-Rocha, M; Krassnigg, A

    2016-01-01

    We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed-quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate dressed quark photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the B_c*, which we obtain at 6.334 GeV well in line with predictions from other approaches.

  18. Exchange Relations for the q-Vertex Operators of $U_q(\\widehat{sl2})$

    CERN Document Server

    Awata, H

    1993-01-01

    We consider the q-deformed Knizhnik-Zamolodchikov equation for the two point function of q-deformed vertex operators of $U_q(sl_2^)$. We give explicitly the fundamental solutions, the connection matrices and the exchange relations for the q-vertex operators of spin 1/2 and $j \\in {1\\over 2}{\\bf Z}_{\\geq 0}$. Consequently, we confirm that the connection matrices are equivalent to the elliptic Boltzman weights of IRF type obtained by the fusion procedure from ABF models.

  19. Bubbly vertex dynamics: a dynamical and geometrical model for epithelial tissues with curved cell shapes

    CERN Document Server

    Ishimoto, Yukitaka

    2014-01-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them on the vertex model. Thus, a model with the curvatures is constructed and its algorithm is given for simulation. Its possible extensions and applications will also be discussed.

  20. Studies of Hadronic Physics with the BaBar Detector at SLAC and the Atlas Detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [Univ. of Louisville, KY (United States). Dept. of Physics

    2016-06-30

    The University of Louisville High Energy Physics group contributed significantly to the success of the BaBar Experiment at SLAC and the Mu2e Experiment at Fermilab. In particular, they have contributed to understanding hadronic processes in electron-positron annihilation and charged lepton flavor violation in a very rare muon conversion process. Both are high-precision undertakings at the Intensity Frontier of High Energy Physics.