WorldWideScience

Sample records for babar silicon vertex

  1. Internal alignement of the BABAR silicon vertex tracking detector

    CERN Document Server

    Brown, D; Roberts, D

    2007-01-01

    The BABAR Silicon Vertex Tracker (SVT ) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e¡ collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 Silicon Vertex Trackerwafers. This procedure uses a tuned mix of lab-bench measurements and complementary in-situ experimental data to control systematic distortions. Wafer positions and orientations are determined by minimizing a Â2 computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables evaluated in special co...

  2. The BaBar silicon vertex tracker, performance and running experience

    CERN Document Server

    Re, V; Bozzi, C; Carassiti, V; Cotta-Ramusino, A; Piemontese, L; Breon, A B; Brown, D; Clark, A R; Goozen, F; Hernikl, C; Kerth, L T; Gritsan, A; Lynch, G; Perazzo, A; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Brenna, E; Citterio, M; Lanni, F; Palombo, F; Ratti, L; Manfredi, P F; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Forti, F; Gagliardi, D J; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T I; Roat, C; Bóna, M; Bianchi, F; Gamba, D; Trapani, P; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Pompili, A; Poropat, P; Rashevskaia, I; Vuagnin, G; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Hale, D; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Mazur, M; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Rowe, W; Schmitz, R E; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Wilder, M; Wilson, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies.

  3. The design and construction of the BaBar silicon vertex tracker

    CERN Document Server

    Bozzi, C; Ramusino, A C; Dittongo, S; Folegani, M; Piemontese, L; Abbott, B K; Breon, A B; Clark, A R; Dow, S; Fan, Q; Goozen, F; Hernikl, C; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Lynch, G; Levi, M; Luft, P; Luo, L; Nyman, M A; Pedrali-Noy, M; Roe, N A; Zizka, G; Roberts, D; Barni, D; Brenna, E; Defendi, I; Forti, A C; Giugni, D; Lanni, F; Palombo, F; Vaniev, V; Leona, A; Mandelli, E; Manfredi, P F; Perazzo, A; Re, V; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Calderini, G; Carpinelli, M; Dutra, F; Forti, F; Gagliardi, D; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Paoloni, E; Profeti, A; Rama, M; Rampino, G; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Tritto, S; Vitale, R; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T; Roat, C; Bóna, M; Bianchi, F; Daudo, F; Girolamo, B D; Gamba, D; Giraudo, G; Grosso, P; Romero, A; Smol, A; Trapani, P; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Rastelli, C; Vallazza, E; Vuagnin, G; Hast, C; Potter, E P; Sharma, V; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Eppich, A; Hale, D; Hall, K; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A; Grothe, M; Johnson, R; Kröger, W; Lockman, W; Pulliam, T; Rowe, W; Schmitz, R; Seiden, A; Spencer, E; Turri, M; Wilder, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Walsh, J; Zobernig, H

    2000-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory consists of five layers of double-sided, AC-coupled silicon strip detectors. The detectors are readout with a custom IC, capable of simultaneous acquisition, digitization and transmission of data. The SVT geometry is shown and the construction phases of its modules are described in detail, with emphasis on the bending procedures needed for the arch-modules of the outer layers.

  4. Managing Bias Leakage Currents and High Data Rates in the BABAR Silicon Vertex Tracker

    CERN Document Server

    Garra-Tico, J; Bondioli, M; Bruinsma, M; Curry, S; Kirkby, D; Burke, S; Callahan, D; Campagnari, C; Cunha, A; Hale, D; Kyre, S; Richman, J; Beck, T; Eisner, A M; Kroseberg, J; Lockman, W S; Nesom, G; Seiden, A; Spradlin, P; Winstrom, L; Brown, D; Dardin, S; Goozen, F; Kerth, L T; Lynch, G; Roe, N A; Anderson, J; Chen, C; Lae, C K; Roberts, D; Simi, G; Tuggle, J; Lazzaro, A; Lombardo, V; Palombo, F; Ratti, L; Angelini, C; Batignani, G; Bettarini, S; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Mammini, P; Manfredi, P F; Marchiori, G; Mazur, M; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Walsh, J; Elmer, P; Long, O; Charles, E; Perazzo, A; Burchat, P; Edwards, A J; Miyashita, T S; Majewski, S; Petersen, B A; Bona, M; Bianchi, F; Gamba, D; Trapani, P; Bomben, M; Bosisio, L; Cartaro, C; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Gao, Y Y; Gritsan, A V; Guo, Z J

    2008-01-01

    The silicon vertex tracker at the BABAR experiment is the primary device used in measuring the distance between B0 and meson decay vertices for the extraction of CP asymmetries. It consists of five layers of double-sided, AC-coupled silicon modules, read out by custom integrated circuits. It has run well consistently for eight years. I report on three years of experience in managing problematic bias leakage currents in the fourth layer. In addition, I report on recent success in decreasing the data acquisition time by reducing the readout window.

  5. Pin Photodiodes for Radiation Monitoring and Protection in the Babar Silicon Vertex Tracker

    Science.gov (United States)

    Meyer, T. I.

    We discuss the design, implementation and performance of the radiation monitoring and protection system used by the Silicon Vertex Tracker (SVT) in the BaBar detector. Using 12 reverse-biased PIN photodiodes mounted around the beampipe near the IP, we are able to provide instantaneous radiation dose rates, absorbed dose integrals, and active protection that aborts the circulating beams in the PEP-II storage ring when radiation levels exceed user-defined thresholds. The systems has reliably protected the SVT from excessive radiation damage and has also served as a key diagnostic tool in understanding radiation backgrounds at PEP-II.

  6. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  7. The Belle Silicon Vertex Detector

    CERN Document Server

    Kawasaki, T

    2002-01-01

    The Belle Silicon Vertex Detector (SVD) started working from June 1999 at the KEK B-factory experiment. The main purpose of the SVD is to make precise measurements of the B decay vertex position, which are essential for the observation of CP asymmetries. Excellent vertex resolution and a good detection efficiency are required for the SVD. In the present paper, the performance of Belle SVD is reviewed. The upgrade plan for the SVD2, which is under construction and will be installed in summer 2002, is also presented.

  8. Aleph silicon microstrip vertex detector

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.

  9. Performance of the Belle silicon vertex detector

    CERN Document Server

    Hazumi, M

    2001-01-01

    The performance of the Silicon Vertex Detector (SVD) in the Belle experiment at the KEK B factory is described. The resolution on the distance between B meson vertices is estimated to be 115 sub - sub 2 sub 6 sup + sup 2 sup 4 mu m, which is good enough for the precise measurement of the CP asymmetry in B decays. A plan for the upgrade of the SVD is also mentioned.

  10. The Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.

    2013-01-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10 35 cm −2 s −1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m 2 and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics

  11. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  12. The PHENIX Forward Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Aidala, C.; Anaya, L.; Anderssen, E.; Bambaugh, A.; Barron, A.; Boissevain, J.G.; Bok, J.; Boose, S.; Brooks, M.L.; Butsyk, S.; Cepeda, M.; Chacon, P.; Chacon, S.; Chavez, L.; Cote, T.; D'Agostino, C.; Datta, A.; DeBlasio, K.; DelMonte, L.; Desmond, E.J.

    2014-01-01

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of 1.2<|η|<2.2 that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 μm pitch in the radial direction and lengths in the ϕ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au–Au collisions is approximately 2.8%. The precision tracking provided by this device makes the identification of muons from secondary vertices away from the primary event vertex possible. The expected distance of closest approach (DCA) resolution of 200 μm or better for particles with a transverse momentum of 5 GeV/c will allow identification of muons from relatively long-lived particles, such as D and B mesons, through their broader DCA distributions

  13. Barrel silicon vertex tracker for PHENIX at RHIC

    International Nuclear Information System (INIS)

    Ohnishi, Hiroaki

    2005-01-01

    The barrel silicon vertex tracker has been proposed as an upgrade project of the PHENIX experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The prime motivation for this new detector is to provide precision measurements of heavy-quark production (charm and beauty) in A + A, p(d) + A, and polarized p + p collisions. The current design of the silicon vertex tracker comprises a four-layer barrel detector, built from two internal layers of pixel detectors and two external layers of projective 'stripixels' which complement the central spectrometer arms of PHENIX. In this paper, the physics motivation of the silicon vertex tracker upgrade and the concept of the new detector will be discussed. Moreover, the status of the new development and beginning production of the silicon detectors will be presented

  14. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  15. First-year experience with the Ba Bar silicon vertex tracker

    CERN Document Server

    Bozzi, C; Cotta-Ramusino, A; Dittongo, S; Folegani, M; Piemontese, L; Abbott, B K; Breon, A B; Clark, A R; Dow, S; Fan, Q; Goozen, F; Hernikl, C; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Lynch, G; Levi, M; Luft, P; Luo, L; Nyman, M A; Pedrali-Noy, M; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Barni, D; Brenna, E; Defendi, I; Forti, A C; Giugni, D; Lanni, F; Palombo, F; Vaniev, V; Leona, A; Mandelli, E; Manfredi, P F; Perazzo, A; Re, V; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Calderini, G; Carpinelli, M; Forti, F; Gagliardi, D; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rampino, G; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Tritto, S; Vitale, R; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T; Roat, C; Bóna, M; Bianchi, F; Daudo, F; Di Girolamo, B; Gamba, D; Giraudo, G; Grosso, P; Romero, A; Smol, A; Trapani, P; Zanin, D; Bosisio, L; Della Ricca, G; Rashevskaia, I; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Rastelli, C; Vallazza, E; Vuagnin, G; Hast, C; Potter, E P; Sharma, V; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Eppich, A; Hale, D; Hall, K; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A; Grothe, M; Johnson, R; Kröger, W; Lockman, W; Pulliam, T; Rowe, W; Schmitz, R; Seiden, A; Spencer, E; Turri, M; Walkowiak, W; Wilder, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2001-01-01

    Within its first year of operation, the BaBar Silicon Vertex Tracker (SVT) has accomplished its primary design goal, measuring the z vertex coordinate with sufficient accuracy as to allow the measurement of the time-dependent CP asymmetry in the neutral B-meson system. The SVT consists of five layers of double-sided, AC-coupled silicon-strip detectors of 300 mu m thickness with a readout strip pitch of 50-210 mu m and a stereo angle of 90 deg. between the strips on the two sides. Detector alignment and performance with respect to spatial resolution and efficiency in the reconstruction of single hits are discussed. In the day-to-day operation of the SVT, radiation damage and protection issues were of primary concern. The SVT is equipped with a dedicated system (SVTRAD) for radiation monitoring and protection, using reverse-biased photodiodes. The evolution of the SVTRAD thresholds on the tolerated radiation level is described. Results on the first-year radiation exposure as measured with the SVTRAD system and ...

  16. W. K. H. Panofsky Prize Talk: The Silicon Vertex Trigger

    Science.gov (United States)

    Ristori, Luciano

    2009-05-01

    I will discuss the importance of real-time selection of events at a hadron collider, the ideas that led to the conception of the Silicon Vertex Trigger (SVT) and some historical notes on its construction and commissioning. I will also highlight some remarkable results obtained by CDF with the data selected by the SVT.

  17. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  18. Performance of the CDF Silicon VerteX detector

    International Nuclear Information System (INIS)

    Schneider, O.

    1992-11-01

    The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices

  19. The silicon vertex locator for the LHCb upgrade

    CERN Document Server

    Head, Tim

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.

  20. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  1. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, M.A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gotra, Y., E-mail: gotra@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kurbatov, E. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Leffel, M.; Mandal, S.; McMullen, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Merkin, M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Raydo, B.; Teachey, W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tucker, R. [Arizona State University, Tempe, AZ (United States); Ungaro, M.; Yegneswaran, A.; Ziegler, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-12-21

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements. -- Highlights: •A Silicon Vertex Tracker has been designed for the central tracker of the CLAS12 experiment. •Using cantilevered module geometry allows minimizing amount of material in the tracking volume. •A dedicated Hybrid Flex Circuit Board has been developed to read out double sided module. •Module performance meets design goals of the CLAS12 Central Tracker.

  2. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  3. The Belle silicon vertex detector Present performance and upgrade plans

    CERN Document Server

    Taylor, Geoffrey

    2003-01-01

    The Belle detector has been operating at the KEKB colliding beam B- factory since 1999. It is a general purpose detector optimized to measure decay products of BB over bar pairs created at the Y(4S) resonance. The vertexing function provided by the Silicon Vertex Detector (SVD) is crucial for accurate B-decay measurements, particularly in searching for asymmetries in decay times of B over bar and B mesons, the essence of CP violation being studied at Belle. High radiation levels during early KEKB running soon rendered "SVD1.0" inoperable. It was replaced by another of the same design, built in parallel with the installation of SVD1.0. Improvement of the beam operating conditions allowed "SVD1.1" to provide vertex information for the first year of operation. During this time "SVD1.4" was built. This was mechanically identical, so needed no new tooling or structure development but used a radiation tolerant 0.8mum process VA1 prime chip and an upgraded detector design from Hamamatsu. SVD1.4 was installed in Bell...

  4. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, Mary Ann [JLAB; Boiarinov, Serguie; Bonneau, Peter R. [JLAB; Elouadrhiri, Latifa [JLAB; Eng, Brian J. [JLAB; Gotra, Yuri N. [JLAB; Kurbatov, Evgeny O. [Moscow State U.; Leffel, Mindy A. [JLAB; Mandal, Saptarshi [JLAB; McMullen, Marc E. [JLAB; Merkin, Mikhail M. [Moscow State U.; Raydo, Benjamin J. [JLAB; Teachey, Robert W, [JLAB; Tucker, Ross J. [Arizona State U.; Ungaro, Maurizio [JLAB; Yegneswaran, Amrit S. [JLAB; Ziegler, Veronique [JLAB

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  5. The silicon vertex detector of the Belle II experiment

    Science.gov (United States)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8×10 35 cm -2 s -1, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R&D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  6. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  7. The silicon vertex detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-01-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  8. System software design for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Bailey, M.

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported

  9. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  10. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  11. Error handling for the CDF online silicon vertex tracker

    CERN Document Server

    Bari, M; Cerri, A; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2001-01-01

    The online silicon vertex tracker (SVT) is composed of 104 VME 9U digital boards (of eight different types). Since the data output from the SVT (few MB/s) are a small fraction of the input data (200 MB/s), it is extremely difficult to track possible internal errors by using only the output stream. For this reason, several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams, and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named spy buffers, which act as built-in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be frozen at any time (e.g., on error detection) to take a snapshot of all data flowing through each SVT board. The spy buffers are coordinated at system level by the Spy Control Board. The architecture, design, and implementation of this system are described. (4 refs).

  12. TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)

    Energy Technology Data Exchange (ETDEWEB)

    PHENIX EXPERIMENT; OBRIEN,E.; PAK, R.; DREES, K.A.; (PHENIX EXPERIMENT COLLABORATORS)

    2007-08-01

    The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the {upsilon}{prime} and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality.

  13. TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)

    International Nuclear Information System (INIS)

    PHENIX EXPERIMENT; OBRIEN, E.; PAK, R.; DREES, K.A.

    2007-01-01

    The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the υ(prime) and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality

  14. Status of the silicon strip vertex detector for the Mark II experiment at the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Gratta, G.; Litke, A.

    1987-10-01

    We are constructing a silicon strip vertex detector to be used in the Mark II detector in the study of Z 0 decays at the SLAC Linear Collider. The status of the project, including the performance of the individual silicon detector modules, is presented. 6 refs., 8 figs., 2 tabs

  15. The silicon drift vertex detector for the STAR experiment at RHIC

    CERN Document Server

    Pandey, S U; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2002-01-01

    The current status of the STAR Silicon Vertex Tracker (SVT) is presented. The performance of the Silicon Drift Detectors (SDD) is discussed. Results for a recent 15 layer SDD tracker which prototypes all components of the SVT are presented. The enhanced physics capabilities of the STAR detector due to the addition of the SVT are addressed.

  16. Proposed method of assembly for the BCD silicon strip vertex detector modules

    International Nuclear Information System (INIS)

    Lindenmeyer, C.

    1989-01-01

    The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs

  17. Status and prospects of the BaBar SVT

    Science.gov (United States)

    Re, V.; Bruinsma, M.; Curry, S.; Kirkby, D.; Berryhill, J.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kyre, S.; Levy, S.; Long, O.; Mazur, M.; Richman, J.; Stoner, J.; Verkerke, W.; Beck, T.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Seiden, A.; Spradlin, P.; Walkowiak, W.; Wilson, M.; Bozzi, C.; Cibinetto, G.; Piemontese, L.; Snoek, H. L.; Brown, D.; Charles, E.; Dardin, S.; Goozen, F.; Kerth, L. T.; Gritsan, A.; Lynch, G.; Roe, N. A.; Chen, C.; Hulsbergen, W.; Lae, C. K.; Lillard, V.; Roberts, D.; Lazzaro, A.; Palombo, F.; Ratti, L.; Manfredi, P. F.; Mandelli, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ceccanti, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Marchiori, G.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rizzo, G.; Simi, G.; Walsh, J.; Elmer, P.; Perazzo, A.; Burchat, P.; Edwards, A. J.; Majewski, S.; Petersen, B. A.; Roat, C.; Bona, M.; Bianchi, F.; Gamba, D.; Trapani, P.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Vitale, L.; Datta, M.; Mihalyi, A.

    2006-05-01

    The BABAR Silicon Vertex Tracker (SVT) has been efficiently operated for five years since the start of data taking in 1999. It has met design requirements and no degradation in its performance has been observed thus far. However, because of higher than expected background levels, and anticipated further increases in luminosity and dose rates, we have done a thorough study to assess the viability of operating the SVT until the end of the decade.

  18. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  19. Development of new assembly techniques for a silicon micro-vertex detector unit using the flip-chip bonding method

    International Nuclear Information System (INIS)

    Saitoh, Y.; Takeuchi, H.; Mandai, M.; Kanazawa, H.; Yamanaka, J.; Miyahara, S.; Kamiya, M.; Fujita, Y.; Higashi, Y.; Ikeda, H.; Ikeda, M.; Koike, S.; Matsuda, T.; Ozaki, H.; Tanaka, M.; Tsuboyama, T.; Avrillon, S.; Okuno, S.; Haba, J.; Hanai, H.; Mori, S.; Yusa, K.; Fukunaga, C.

    1994-01-01

    Full-size models of a detector unit for a silicon micro-vertex detector were built for the KEK B factory. The Flip-Chip Bonding (FCB) method using a new type anisotropic conductive film was examined. The structure using the FCB method successfully provides a new architecture for the silicon micro-vertex detector unit. (orig.)

  20. Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    OpenAIRE

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2002-01-01

    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sen...

  1. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  2. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  3. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  4. First results of the Belle II Silicon Vertex Detector readout system

    International Nuclear Information System (INIS)

    Friedl, M; Bergauer, T; Buchsteiner, F; Irmler, C; Lettenbichler, J; Casarosa, G; Forti, F; Paoloni, E; Hara, K; Itoh, R; Nakamura, K R; Nakao, M; Suzuki, S Y; Higuchi, T; Konno, T; Liu, Z-A; Natkaniec, Z; Ostrowicz, W; Schlüter, T; Schnell, M

    2014-01-01

    At the heart of the Belle II experiment at KEK (Japan), there will be a Vertex Detector (VXD) composed of 2 layers of DEPFET pixels (PXD) and 4 layers of double-sided silicon strip detectors (SVD). The latter use the APV25 front-end chip — originally developed for CMS — which is reading out the inner part of the SVD sensors through the Origami chip-on-sensor concept, including a state-of-the-art two-phase CO 2 cooling. The whole system (including the full DAQ chain) was successfully tested in a beam at DESY in January 2014 and first results are presented here

  5. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M, E-mail: irmler@hephy.oeaw.ac.a [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2010-12-15

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10{sup 35}cm{sup -2}s{sup -1}, which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  6. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M

    2010-01-01

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10 35 cm -2 s -1 , which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  7. Study of gluing and wire bonding for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Kang, K.H.; Hara, K.; Higuchi, T.; Hyun, H.J.; Jeon, H.B.; Joo, C.W.; Kah, D.H.; Kim, H.J.; Mibe, T.; Onuki, Y.; Park, H.; Rao, K.K.; Sato, N.; Shimizu, N.; Tanida, K.; Tsuboyama, T.; Uozumi, S.

    2014-01-01

    This paper describes an investigation into gluing and wire bonding for assembling the Silicon Vertex Detector (SVD) for the Belle II experiment at KEK in Japan. Optimizing the gluing of the silicon microstrip sensors, the support frame, and the readout flex cables is important for achieving the required mechanical precision. The wire bonding between the sensors and the readout electronic chips also needs special care to maximize the physics capability of the SVD. The silicon sensors and signal fan out flex circuits (pitch adapters) are glued and connected using wire bonding. We determine that gluing quality is important for achieving good bonding efficiency. The standard deviation in the glue thickness for the best result is measured to be 3.11 μm. Optimal machine parameters for wire bonding are determined to be 70 mW power, 20 gf force, and 20 ms for the pitch adapter and 60 mW power, 20 gf force, and 20 ms for the silicon strip sensors; these parameters provide a pull force of (10.92±0.72) gf. With these settings, 75% of the pitch adapters and 25% of the strip sensors experience the neck-broken type of break

  8. Thermal simulations of the new design for the BELLE silicon vertex detector

    International Nuclear Information System (INIS)

    Dragic, J.

    2000-01-01

    Full text: The experienced imperfections of the BELLE silicon vertex detector, SVD1 motioned the design of a new detector, SVD2, which targets on improving the main weaknesses encountered in the old design. In this report we focus on tile thermal aspects of the SVD2 ladder, whereby sufficient cooling of the detector is necessary in order to minimise the detector leakage currents. It is estimated that reducing the temperature of the silicon detector from 25 deg C to 15 deg C would result in a 50% reduction in leak current. Further, cooling the detector would help minimize mechanical stresses from the thermal cycling. Our task is to ensure that the heat generated by the readout chips is conducted down the SVD hybrid unit effectively, such that the chip and the hybrid temperature does not overbear the SVD silicon sensor temperature. We considered the performance of two materials to act as a heat spreading plate which is glued between the two hybrids in order to improve the heat conductivity of the hybrid unit, namely Copper and Thermal Pyrolytic Graphite (TPG). The effects of other ladder components were also considered in order to enhance the cooling of the silicon detectors. Finite element analysis with ANSYS software was used to simulate the thermal conditions of the SVD2 hybrid unit, in accordance with the baseline design for the mechanical structure of the ladder. It was found that Cu was a preferred material as it achieved equivalent silicon sensor cooling (3.6 deg C above cooling point), while its mechanical properties rendered it a lot more practical. Suppressing, the thermal path via a rib support block, by increasing its thermal resistivity, as well as increasing thermal conductivity of the ribs in the hybrid region, were deemed essential in the effective cooling of the silicon sensors

  9. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    CERN Document Server

    Nomerotski, A.; Collins, P.; Dumps, R.; Greening, E.; John, M.; Mapelli, A.; Leflat, A.; Li, Y.; Romagnoli, G.; Verlaat, B.

    2013-01-01

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  10. Development of a silicon tracking and vertex detection system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2007-01-01

    The compressed baryonic matter (CBM) experiment is a fixed-target heavy-ion spectrometer planned at the future international Facility for Antiproton and Ion Research (FAIR) at GSI. The CBM research program will explore the phase diagram of Quantum Chromo Dynamics (QCD) in the region of high baryon chemical potentials, in other words nuclear matter at extreme densities. Matter of such forms is believed to exist in the interior of neutron stars and in the cores of certain types of supernovae. In the laboratory, the dense nuclear medium is created in collisions of heavy-ion beams with nuclear targets. With beam intensities of up to 10 12 ions per pulse, beam energies up to 45 GeV/nucleon, and high availability the SIS-300 synchrotron of FAIR will offer unique opportunities for this research. The CBM detector will identify hadrons and leptons in nuclear collisions with up to 1000 charged particles at event rates up to 10 MHz. The experiment will be optimized in particular for the detection of rare probes, like hadronic decays of D mesons and leptonic decays of light vector mesons, that can yield information on the initial dense phase of the collisions. The challenge is to accomplish in this environment high-resolution charged particle tracking, momentum measurement and secondary vertex selection with a silicon tracking and vertex detection system, the central component of the CBM detector. The system requirements include a very low material budget, radiation tolerant sensors with high spatial resolution, and a fast readout compatible with high-level-only triggers. The paper discusses the concept of the silicon detection system, the optimization of its layout, and the R and D on micro-strip and pixel sensors as well as front-end electronics for the building blocks of the detector stations

  11. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H.; Jeon, H.B. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H., E-mail: sunshine@knu.ac.kr [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Uozumi, S. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); and others

    2016-09-21

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  12. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    International Nuclear Information System (INIS)

    Kang, K.H.; Jeon, H.B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A.K.; Batignani, G.; Bauer, A.; Behera, P.K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.

    2016-01-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  13. Mechanical and thermal behavior of a prototype support structure for a large silicon vertex detector (BCD)

    International Nuclear Information System (INIS)

    Mulderink, H.; Michels, N.; Joestlein, H.

    1989-01-01

    The Bottom Collider Detector (BCD) has been proposed as a device to study large numbers of events containing B mesons. To identify secondary vertices in hadronic events it will employ the most ambitious silicon strip tracking detector proposed to-date. This report will discuss results from measurements on a first mechanical/thermal model of the vertex detector support structure. The model that was built and used for the studies described here is made of brass. Brass was used because it is readily available and easily assembled by soft soldering, and, for appropriate thicknesses, it will behave similarly to the beryllium that will be used in the actual detector. The trough was built to full scale with the reinforcement webbing and the cooling channels in place. There were no detector modules in place. We plan, however, to install modules in the trough in the future. The purpose of the model was to address two concerns that have arisen about the proposed structure of the detector. The first is whether or not the trough will be stable enough. The trough must be very light in weight yet have a high degree of rigidity. Because of the 3m length of the detector there is question as to the stiffness of the proposed trough. The main concern is that there will sagging or movement of the trough in the middle region. The second problem is the heat load. There will be a great deal of heat generated by the electronics attached to the detector modules. So the question arises as to whether or not the silicon detectors can be kept cool enough so that when the actual experiment is run the readings will be valid. The heat may also induce motion by differential expansion of support components. 26 figs

  14. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    Science.gov (United States)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  15. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    International Nuclear Information System (INIS)

    Friedl, M.; Abe, R.; Abe, T.

    2004-01-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide 'fast or' (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown

  16. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  17. Analysis of the radiation tolerance of the LHCb silicon vertex detector

    CERN Document Server

    Feick, H

    1998-01-01

    This note analyses the radiation tolerance of the LHC-B silicon vertex detector in the framework of the latest damage models put forward by the ROSE / CERN RD 48 Collaboration. The calculations assume constant temperature and constant flux for a one year beam period of 240 d. It is found that the ultimate failure of the detectors is due to the damage-induced doping changes causing the loss of sensitive volume. Increases in the leakage current and carrier trapping stay at a tolerable level. Given a suitable operating temperature (5 degree C) and initial resistivity, detectors of 150 _m (480 \\Omega cm) and 200 _m (850\\Omega cm) thickness are expected to remain fully depleted with 200 V up to equivalent 1-MeV neutron fluences of 5 \\Theta 1014cm\\Gamma 2and 9 \\Theta 1014cm\\Gamma 2, respectively. Admitting partially depleted operation, the lower benchmarkfigure of 7000 collected electrons is reached at radiation doses as high as 8 \\Theta 1014cm\\Gamma 2 and1 \\Theta 1015cm\\Gamma 2, respectively. A conservative 50 4.0...

  18. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  19. HELIX128S-2 - A readout chip for the silicon vertex detector and inner tracker detector of HERA-B

    International Nuclear Information System (INIS)

    Trunk, U.; Fallot-Burghardt, W.; Sexauer, E.; Knoepfle, K-T.; Hofmann, W.; Cuje, M.; Glass, B.; Feuerstack-Raible, M.; Eisele, F.; Straumann, U.

    1998-01-01

    HERA-B is a fixed target experiment at the HERA proton storage ring dedicated to examine CP-violation in the B-Meson system. Based on the RD20-FElix concept a readout chip has been designed in AMS's 0.8 μm CMOS process for the HERA-B silicon vertex and inner tracker (MSGC) detectors. Various test chips have been submitted and successfully tested since '95, thus enabling the submission of a fully integrated 128 channel version in April '97. Design features of this chip (HELIX128S-2) and test results of its predecessor HELIX128 are presented

  20. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Onuki, Y. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Smiljic, D. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-08-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO{sub 2} cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii.

  1. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Bergauer, T.; Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C.; Onuki, Y.; Smiljic, D.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO 2 cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii

  2. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  3. Production of high energy {eta}' in B meson decays from BaBar experiment; Etude de la production de {eta}' de haute impulsion dans les desintegrations du meson B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hicheur, A

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the {upsilon}(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy {eta}' in B decays has been studied through the two main contributions, B{yields} {eta}' X{sub s} coming from the rare decay b {yields} sg*, and B-bar{sup 0} {yields} {eta}'D{sup 0} coming from the internal tree color suppressed decay b {yields} cud. The improvement of the measurement of the process B {yields} {eta}'X-s and the first. observation of the decay B-bar{sup 0} {yields} {eta}'D{sup 0} have led to the conclusion that the {eta}' production is dominated by the decay b {yields} sg* and enables to constrain its quark content. (author)

  4. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  5. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  6. Recent results of BABAR

    International Nuclear Information System (INIS)

    Bernard, D.

    2001-01-01

    The BABAR detector at SLAC's PEP-II storage ring has collected data amounting to about 30.4 fb -1 until june 2001. Results on CP violation, and in particular search for direct CP violation, and measurement of rare B decays are presented

  7. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  8. Recent BABAR Results

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, Gerald [University of Bergen, Bergen (Norway). Dept. of Physics

    2015-04-29

    We present herein the most recent BABAR results on direct CP asymmetry measurements in B → Xsγ, on partial branching fraction and CP asymmetry measurements in B → Xs+-, on a search for B → π/ηℓ+- decays, on a search for lepton number violation in B+ → X-+ℓ'+ modes and a study of B0 →ωω and B0 → ωφ decays.

  9. The structural landscape in 14-vertex clusters of silicon, M@Si14: when two bonding paradigms collide.

    Science.gov (United States)

    Jin, Xiao; Arcisauskaite, Vaida; McGrady, John E

    2017-09-12

    The structural chemistry of the title clusters has been the source of controversy in the computational literature because the identity of the most stable structure appears to be pathologically dependent on the chosen theoretical model. The candidate structures include a D 3h -symmetric 'fullerene-like' isomer with 3-connected vertices (A), an 'arachno' architecture (B) and an octahedral isomer with high vertex connectivities typical of 'closo' electron-deficient clusters (C). The key to understanding these apparently very different structures is the fact that they make use of the limited electron density available from the endohedral metal in very different ways. Early in the transition series the favoured structure is the one that maximises transfer of electron density from the electropositive metal to the cage whereas for later metals it is the one that minimises repulsions with the increasingly core-like d electrons. The varying role of the d electrons across the transition series leads directly to strong functional dependency, and hence to the controversy in the literature.

  10. The First Year of the BABAR Experiment at PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-12-18

    The BABAR detector, situated at the SLAC PEP-II asymmetric e{sup +}e{sup -} collider, has been recording data at energies on and around the {Upsilon}(4S) resonance since May 1999. In this paper, we briefly describe the PEP-II B Factory and the BABAR detector. The performance presently achieved by the experiment in the areas of tracking, vertexing, calorimetry and particle identification is reviewed. Analysis concepts that are used in the various papers submitted to this conference are also discussed.

  11. Tracking and Vertexing for the Heavy Photon Search Experiment

    Science.gov (United States)

    Uemura, Sho; HPS Collaboration

    2015-04-01

    The Heavy Photon Search (HPS) requires precision tracking and vertexing of e+e- pairs against a high background in a difficult experimental environment. The silicon vertex tracker (SVT) for HPS uses actively cooled silicon microstrip sensors with fast readout electronics. To maximize acceptance and vertex resolution with a relatively small detector, the SVT operates directly downstream of the target, close to the beam line, and inside of a dipole magnet. This talk presents the design and performance of the HPS SVT.

  12. Charm Decays at BABAR

    International Nuclear Information System (INIS)

    Charles, M.

    2004-01-01

    The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays

  13. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  14. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  15. Vertex reconstruction in CMS

    International Nuclear Information System (INIS)

    Chabanat, E.; D'Hondt, J.; Estre, N.; Fruehwirth, R.; Prokofiev, K.; Speer, T.; Vanlaer, P.; Waltenberger, W.

    2005-01-01

    Due to the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ('vertex finding') and an estimation problem ('vertex fitting'). Starting from least-squares methods, robustifications of the classical algorithms are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels

  16. First Results from the LHCb Vertex Locator

    CERN Document Server

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the interaction point, and compared to the vertex detectors of the other LHC experiments, it is the closest LHC vertex detector to the beam interaction point, being located only 7 mm from the beam during normal operation. The detector operates in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. The VELO has been commissioned and successfully operated during the initial running period of the LHC. The preliminary operational results and detector performances are reported.

  17. The refined topological vertex

    International Nuclear Information System (INIS)

    Iqbal, Amer; Kozcaz, Can; Vafa, Cumrun

    2009-01-01

    We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.

  18. Rare B Decays in BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Hicheur, A

    2004-08-25

    Measurements and searches for rare B decays have been performed with the BaBar detector at the PEP-II e{sup +}e{sup -} asymmetric B Factory, operating at the {Upsilon}(4S) resonance. The authors report some recent branching fraction measurements on hadronic and radiative B decays, occurring from b --> s/d and b --> u transitions. Most of the results presented here are based on a data sample corresponding to a luminosity of 81.9 fb{sup -1}.

  19. BaBar Physics Book

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Helen

    1998-11-04

    This book presents the results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory. The workshop brought together a number of theorists with experimentalists from the BABAR Collaboration. Each chapter represents the contribution of a working group and presents both a theoretical summary of the relevant topics and the results of related simulation studies. The working group convenors, listed below, were teams that included both theorists and experimentalists. The book represents the status of work around the beginning of 1998. Both the state of the theory and of the experiment's simulation and analysis tools continue to advance. The results presented here are thus not a final view of what the experiment can achieve, but represent an interim study. The studies are more detailed and comprehensive than those made at the time of the Technical Design Report, but still lack many features that will be needed for the real data analysis. The book is intended as a guide to the work that still needs to be done, and as a detailed introduction which will assist new members, joining the Collaboration, and, we hope, other researchers in the field.

  20. BaBar Data Aquisition

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C; Russell, J J

    1998-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by analysing the decays of a very large sample of B and Bbar mesons produced at the high luminosity PEP-11 accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detector subsystems. Data from the front end electronics is read into commercial VME processors via a custom "personality card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data are read out via a non-blocking network switch to a farm of commercial UNIX processors. Careful design of the core data acquisition code has enabled us to sustain events rates in excess of 20 kHz while maintaini...

  1. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  2. BABAR

    DEFF Research Database (Denmark)

    Andersson, Per; Köpsén, Susanne; Gross, Marin

    in the public and political agendas, internationally and nationally. According to the authors of the report, an increased interest in adult education generates an increased interest in the professionalization of the adult education sector, and thereby in the qualification of those teaching adults: adult...

  3. The design and performance of the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Polini, A.; Brock, I.; Goers, S.

    2007-08-01

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m 2 of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  4. The LHCb Vertex Locator performance and Vertex Locator upgrade

    CERN Document Server

    INSPIRE-00259789

    2012-01-01

    LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 $\\rm \\mu$m. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10$^{16}$ 1 MeV$\\rm n_{eq}/cm^2$, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 $\\rm \\mu m$ pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current...

  5. LHCb VELO Closing Control, Vertex Resolution and Luminosity Measurement

    CERN Document Server

    Redford, S

    2010-01-01

    The LHCb Vertex Locator (VELO) surrounds the collision point at IP8 of the LHC ring and performs precise tracking and vertexing. This silicon micro-strip detector is built in two halves, which each move independently in the transverse plane so as to approach the collision region during data taking, but retract whilst the beams are injected and adjusted. The closing procedure of the VELO is detailed, along with an analysis of the primary vertex resolution and a description of the role of the VELO in the LHCb luminosity measurement.

  6. The VELO (VErtex LOcator) at the LHCb experiment

    CERN Document Server

    De Capua, S.

    2008-01-01

    The LHCb silicon vertex locator (VELO) is an array of silicon planes installed in a retractable roman pot system, which will enable the LHCb experiment to reconstruct and trigger on b-hadrons produced in collisions at the LHC. The VELO will be also used to attempt measuring the absolute luminosity with a novel method based on vertex reconstruction of beam gas interactions. In this paper the VELO system, its construction and the results from the commissioning phase are presented. The options for a possible upgraded detector are also discussed.

  7. Recent Results of BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Denis

    2001-11-07

    The BABAR detector at SLAC's PEP-II storage ring has collected data equivalent to about 30.4 fb{sup -1} through June 2001. Results on CP violation, and in particular searches for direct CP violation, and measurement of rare B decays are presented.

  8. Measurement of the angle alpha at BABAR

    International Nuclear Information System (INIS)

    Perez, A.

    2009-01-01

    The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.

  9. Rare B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Datta, M

    2005-03-14

    The authors present recent results on rare B meson decays based on data taken by the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} collider. Included in this report are measurements of branching fractions and other quantities of interest for several hadronic, radiative, electroweak, and purely leptonic decays of B mesons.

  10. Vertex routing models

    International Nuclear Information System (INIS)

    Markovic, D; Gros, C

    2009-01-01

    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a nonzero information centrality to be extensive/subextensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results for the information flow in social networks are discussed.

  11. The ARGUS vertex trigger

    International Nuclear Information System (INIS)

    Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.

    1995-09-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)

  12. Performance of the LHCb Vertex Locator

    CERN Document Server

    Latham, T

    2012-01-01

    LHCb is a dedicated flavour physics experiment at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is an essential part of the LHCb detector, permitting precision measurements of the production and decay vertices of beauty and charm particles. The VELO consists of a series of silicon micro-strip detectors, arranged in two retractable halves. Positioned only 7 mm from the beam during normal operations, it must withstand very high levels of radiation. The performance of the LHCb VELO during the first year of LHC physics running is presented.

  13. Developments in solid state vertex detectors

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1984-12-01

    Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)

  14. The LHCb Vertex Locator Upgrade

    Science.gov (United States)

    Szumlak, T.

    2017-12-01

    The Large Hadron Collider beauty LHCb detector is a dedicated flavour physics experiment, designed to efficiently detect decays of b- and c-hadrons to perform precise studies of CP violation and rare decays. At the end of Run 2, many of the LHCb measurements will remain statistically dominated. In order to increase the trigger yield for purely hadronic channels, the hardware trigger will be removed, and the full detector will be read out at 40 MHz. This, in combination with the five-fold increase in luminosity necessitates radical changes to LHCb's electronics with entire subdetector replacements required in some cases. The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the proton-proton collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The upgraded VELO will be equipped with silicon hybrid pixel sensors, each read out by VeloPix ASICs. The highest occupancy ASICs will have pixel hit rates of 900 Mhit/s and produce an output data rate of over 15 Gbit/s, with a total rate of 1.6 Tbit/s anticipated for the whole detector. Selected highlights of this challenging and ambitious project are described in this paper.

  15. The BaBar Light Pulser System

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P

    2004-03-18

    The BABAR experiment and the PEP-II e{sup +}e{sup -} collider at SLAC in California started taking data in May 1999. The aim of the experiment is to study CP violation in the B meson system. A central part of the BABAR detector is the CsI(Tl) electromagnetic calorimeter. To make precision measurements with a calorimeter in a high luminosity environment requires that the crystals are well calibrated and continually monitored for radiation damage. However, this should not impact the total integrated luminosity. To achieve this goal a fiber-optic light pulser system was designed. The light sources chosen were xenon flash lamps. A novel light distribution method was developed using an array of graded index microlenses. Initial results from performance studies are presented.

  16. Measurement of the angle alpha at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; /Orsay, LAL

    2009-06-25

    The authors present recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory, operating at the {Upsilon}(4S) resonance. They present constraints on {alpha} from B {yields} {pi}{pi}, B {yields} {rho}{rho} and B {yields} {rho}{pi} decays.

  17. The BaBar Data Acquisition System

    CERN Document Server

    Scott, I; Grosso, P; Huffer, M E; O'Grady, C; Russell, J J

    1999-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by ana-lyzing the decays of a very large sample of B and B(Bar) mesons produced at the high luminosity PEP-II accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detec-tor subsystems. Data from the front end electronics is read into commercial VME processors via a custom "Personality Card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data is read out via a non-blocking network switch to a farm of commercial UNIX processors. The current implementation of the BaBar data acquisition sys-tem has been shown to sustain a Level 1 trigger rate of 1.3...

  18. Representing vertex-transitive Vertex-transitive graphs on Groupoids

    African Journals Online (AJOL)

    Vertex-transitive graphs are one of the most favoured class of graphs in modelling scientific phenomena if symmetry is at issue. An understanding of these graphs should, therefore, be an obvious undertaking. Here, we present a characterisation of vertex-transitive graphs as left loop graphs and expose the measure of ...

  19. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  20. First Results from the LHCb Vertex Locator

    CERN Multimedia

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The VELO is the silicon detector surrounding the interaction point, and is the closest LHC vertex detector to the interaction point, located only 7 mm from the LHC beam during normal operation. The detector will operate in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 micron thick half disc sensors with R-measuring and Phi-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with one n-on-p module. The detectors are operated in vacuum and a...

  1. CLAS12 Silicon Vertex Tracker Module Test

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Eng, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gotra, Yuri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Boiarinov, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-09-11

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory and the experimenters of CLAS12 collaboration who have committed to participate in beam tests to be carried out during the 2013-2014 Fermilab Test Beam Facility program.

  2. The LHCb Vertex Locator

    CERN Document Server

    Eckstein, D

    2003-01-01

    The dedicated CP violation experiment at the LHC, LHCb, will be equipped with a novel silicon detector (VELO). The VELO will provide precise measurements of tracks from displaced $b$-vertices and will allow to trigger on them. The entire detector will be housed in a mobile secondary vacuum system, and after the injection and stabilisation of the beams each fill, the silicon detectors will move inwards and approach to within $7\\,$mm of the beams. In order to fulfil the trigger requirements, the VELO must combine in an unprecedented way the use of high resolution silicon detectors and large CPU farms. The extreme, non-uniform radiation environment puts additional constraints on the sensor design. The design of the VELO is described, along with the R\\&D of the silicon sensors and its production status.

  3. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  4. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors pro- vides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  5. Track and vertex reconstruction in the ATLAS experiment

    International Nuclear Information System (INIS)

    Lacuesta, V

    2013-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increasing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are crucial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  6. Managing the BABAR Object Oriented Database

    International Nuclear Information System (INIS)

    Hasan, Adil

    2002-01-01

    The BaBar experiment stores its data in an Object Oriented federated database supplied by Objectivity/DB(tm). This database is currently 350TB in size and is expected to increase considerably as the experiment matures. Management of this database requires careful planning and specialized tools in order to make the data available to physicists in an efficient and timely manner. We discuss the operational issues and management tools that were developed during the previous run to deal with this vast quantity of data at SLAC

  7. Hadronic Physics Studies at BaBar

    International Nuclear Information System (INIS)

    Stroili, R.

    2006-01-01

    A new resonance Y(4260) with a mass of 4259 ± 8 -6 +2 MeV/c 2 and J PC = 1 -- , discovered by the BaBar experiment shows peculiar behavior in his decay mode. The Λ c + baryon mass has been measured, using its decays to ΛK S 0 K + and Σ 0 K S 0 K + , and its value is 2286.46 ± 0.14 MeV/c 2 , the precision is greatly improved w.r.t. PDG value. Ξ c 0 and (Omega) c 0 decays and production have been studied with results greatly improved w.r.t. PDG

  8. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  9. CP Violation at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Christophe; /DSM, DAPNIA, Saclay

    2011-11-15

    We report recent measurements of the three CKM angles of the Unitarity Triangle using about 383 millions b{bar b} pairs collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The results of the angles ({beta}, {alpha}, {gamma}) of the unitarity triangle are consistent with Belle results, and with other CKM constraints such as the measurement of {epsilon}{sub K}, the length of the sides of the unitarity triangle determined from the measurements of {Delta}m{sub d}, {Delta}m{sub s}, |V{sub ub}|. This is an impressive confirmation of Standard Model in quark-flavor sector.

  10. LCFI vertex detector design studies

    Energy Technology Data Exchange (ETDEWEB)

    Milstene, C.; Sopczak, A.

    2005-12-01

    A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies CCD detectors for quark flavor identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the International Linear Collider (ILC).

  11. Vertex detectors: The state of the art and future prospects

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD's and APS's) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now

  12. Vertex detectors: The state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C.J.S. [Rutherford Appleton Laboratory, Didcot (United Kingdom)

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.

  13. The LHCb Vertex Locator – Performance and Radiation Damage

    CERN Document Server

    Oblakowska-Mucha, A

    2014-01-01

    LHCb is a dedicated flavour physics experiment at the Large Hadron Collider at CERN. The Vertex Locator (VELO) is an important part of a LHCb tracking system, enabling precision measurement of beauty and charm mesons’ flight distance. The VELO consist of a set of silicon micro-strip detectors, arranged in two retractable halves, operating only 7 mm from the interac- tion region. In these proceedings the VELO performance during the Run 1 is summarised and radiation damage studies are presented.

  14. Results in Charm Physics from BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pompili, A

    2004-06-03

    Recent measurements in the charm sector at BABAR are reviewed. The scope of the presentation includes the observation of two new narrow mesons in the D{sub s}{sup +}{pi}{sup 0} and D{sub s}{sup +}{pi}{sup 0}{gamma} final states as well as the measurement of D{sup 0}-{bar D}{sup 0} mixing parameters by means of two methods: using the doubly-Cabibbo-suppressed D{sup 0} decay to K{sup +}{pi}{sup -} and using the ratios of lifetimes extracted from samples of D{sup 0} mesons decaying to K{sup -} {pi}{sup +}, K{sup -}K{sup +}, and {pi}{sup -}{pi}{sup +}.

  15. Performance of the LHCb Vertex Locator

    CERN Document Server

    van Beuzekom, Martin

    2012-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is essential for both the trigger and physics analyses. The VELO is the silicon micro- strip detector surrounding the LHCb interaction point, and is located only 8 mm from the LHC beam during normal operation. It consists of two retractable detector halves with 21 silicon micro-strip tracking modules each and is moved into position for each fill of the LHC, once stable beams are obtained. The detector operates in an extreme and highly non-uniform radiation environment, and the effects of surface and bulk radiation damage have already been measured. The VELO has been successfully operated for the first LHC physics run. Operational results show a signal to noise ratio of > 17 and a cluster finding efficiency of 99.5%. The small pitch a...

  16. Tracking and vertexing at ATLAS

    OpenAIRE

    Ferrari, Pamela

    2007-01-01

    Several algorithms for tracking and for primary and secondary vertex reconstruction have been developed by the ATLAS collaboration following different approaches. This has allowed a thorough cross-check of the performances of the algorithms and of the reconstruction software. The results of the most recent studies on this topic are discussed and compared.

  17. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  18. EAMJ Vertex June.indd

    African Journals Online (AJOL)

    2009-06-06

    Jun 6, 2009 ... haematoma who presented with signs of severe head injury with upper limb decerebrate posture. We discuss the ... B. Axial CT image in bone window setting showing the bilateral linear parietal fracture (open arrow) at the vertex. A. B. Anterior (Frontal area). Scalp incision for craniotomy. Posterior (Occipital ...

  19. Status and prospects of the LHCb Vertex Locator

    CERN Document Server

    van Beuzekom, Martin

    2007-01-01

    The Vertex Locator of the LHCb experiment is a dedicated subdetector for the reconstruction of primary and secondary vertices in b-hadron decays. The vertex detector features two halves with 21 modules each, mounted on retractable bases. Each module consists of two half-disk silicon micro-strip sensors measuring hits in R and $\\Phi$ coordinates. The strip pitch ranges from 40 to about 100 $\\mu$m. A vacuum boy with a 300 $\\mu$m thick aluminium foil shields the sensors from the wakefields of the proton beams which are passing at a distance of 8 mm from the active area of the sensors. Because of the harsh non-uniform radiation environment we opted for n-on-n strips in diffusion oxygenated float zone silicon. The current status of the vertex detector, which has recently entered the commissioning phase, will be discussed. Given the limited lifetime of the detector due to the radiation environment, developments for a detector replacement with n-on-p type modules have already started. Possible upgrade scenarios fo...

  20. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  1. BaBar Explores CP Violation

    Energy Technology Data Exchange (ETDEWEB)

    Karyotakis, Jean Yannis

    2003-05-16

    The most recent results obtained by the BABAR experiment at the PEP-II asymmetric-energy B Factory at SLAC on CP-violating asymmetries and branching fractions for neutral and charged B decays are presented here. The analysis was performed on a data sample of {approx} 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. Using b {yields} c{bar c}s decays, we measure sin2{beta} = 0.741 {+-} 0.067(stat) {+-} 0.034(syst). We also present sin2{beta} measurements from, b {yields} s{bar s}s and b {yields} c{bar c}d processes. From neutral B meson decays to two-body final states of charged pions and kaons, we derive for the CP violating parameters, S{sub {pi}{pi}} = 0.02 {+-} 0.34 {+-} 0.05 [-0.54, +0.58] and C{sub {pi}{pi}} = -0.30 {+-} 0.25 {+-} 0.04 [-0.72, +0.12]. First results for B {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and K{sup {+-}}{pi}{sup {-+}}{pi}{sup 0} final states dominated by the {rho}{sup {+-}} resonance, are also presented.

  2. BABAR IFR Replacement R and D

    CERN Document Server

    Berry, M

    2003-01-01

    The Instrumented Flux Return (IFR) of the BaBar detector will soon need to be replaced by a more robust muon detection system. Scintillator bars with embedded Wavelength Shifting (WLS) fibers and Limited Streamer Tubes are two replacement technology options. The scintillator bars are tested for attenuation length; and causes for the large width of the Photo Multiplier Tube (PMT) signal are analyzed by Monte Carlo simulation. Cooling techniques for Avalanche Photo Diodes (APD) are investigated. The fairly high attenuation length coupled with the narrow PMT signal make the scintillator a viable option for a muon detecting system. Continuing work will focus on increasing timing resolution using an APD to read the signal from the WLS fibers, and investigating the lifetime of the APD. The ability to read a signal from the LST on external copper strips is tested and signals are found to be clearly distinguishable from noise. The voltage is compared to count rate to find that the optimal operating voltage for the LS...

  3. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  4. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00536755

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  5. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking

  6. The BABAR Event Building and Level-3 Trigger Farm Upgrade

    International Nuclear Information System (INIS)

    Bartoldus, Rainer

    2003-01-01

    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system

  7. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  8. STAR Vertex Detector Upgrade Development

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  9. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  10. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  11. Lectures on the Topological Vertex

    CERN Document Server

    Mariño, M

    2008-01-01

    In this lectures, I will summarize the approach to Gromov–Witten invariants on toric Calabi–Yau threefolds based on large N dualities. Since the large N duality/topological vertex approach computes Gromov–Witten invariants in terms of Chern–Simons knot and link invariants, Sect. 2 is devoted to a review of these. Section 3 reviews topological strings and Gromov–Witten invariants, and gives some information about the open string case. Section 4 introduces the class of geometries we will deal with, namely toric (noncompact) Calabi–Yau manifolds, and we present a useful graphical way to represent these manifolds which constitutes the geometric core of the theory of the topological vertex. Finally, in Sect. 5, we define the vertex and present some explicit formulae for it and some simple applications. A brief Appendix contains useful information about symmetric polynomials. It has not been possible to present all the relevant background and physical derivations in this set of lectures. However, these...

  12. Identifying vertex covers in graphs

    DEFF Research Database (Denmark)

    Henning, Michael A.; Yeo, Anders

    2012-01-01

    An identifying vertex cover in a graph G is a subset T of vertices in G that has a nonempty intersection with every edge of G such that T distinguishes the edges, that is, e∩T ≠ 0 for every edge e in G and e∩T ≠ f∩T for every two distinct edges e and f in G. The identifying vertex cover number TD......(G) of G is the minimum size of an identifying vertex cover in G. We observe that TD(G)+ρ(G) = |V (G)|, where ρ(G) denotes the packing number of G. We conjecture that if G is a graph of order n and size m with maximum degree Δ, then TD(G) ≤(Δ(Δ-1)/ Δ2+1)n + (2/Δ2+1) m. If the conjecture is true......, then the bound is best possible for all Δ ≥ 1. We prove this conjecture when Δ ≥ 1 and G is a Δ-regular graph. The three known Moore graphs of diameter 2, namely the 5-cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also...

  13. Readout of silicon strip detectors

    CERN Document Server

    Dabrowski, W

    2003-01-01

    Various architectural and technological options of readout electronics for silicon strip detectors in vertex and tracking applications are discussed briefly. The ABCD3T ASIC for the readout of silicon strip detectors in the ATLAS semiconductor tracker is presented. The architecture of the chip, some design issues and radiation effects are discussed.

  14. Xic' Production at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2006-09-26

    Using 232 fb{sup -1} of data collected by the BABAR detector, the {Xi}'{sub c}{sup +} and {Xi}'{sub c}{sup 0} baryons are reconstructed through the decays: {Xi}'{sub c}{sup +} {yields} {Xi}{sub c}{sup +}{gamma} and {Xi}'{sub c}{sup 0} {yields} {Xi}{sub c}{sup 0}{gamma}, where {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} and {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}. By measuring the efficiency-corrected yields in different intervals of the center-of-mass momentum, the production rates from B decays and from the continuum are extracted. For production from B decays, the branching fractions are found to be {Beta}(B {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = [1.69 {+-} 0.17 (exp.) {+-} 0.10 (model)] x 10{sup -4} and {Beta}(B {yields} {Xi}'{sub c}{sup 0}X) x {Beta} {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +} = [0.67 {+-} 0.07 (exp.) {+-} 0.03 (model)] x 10{sup -4}. For production from the continuum the cross-sections are found to be {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup +}) = 141 {+-} 24 (exp.) {+-} 19 (model) fb and {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup 0}X) x {Beta}({Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}) = 70 {+-} 11 (exp.) {+-} 6 (model) fb. The helicity angle distributions of {Xi}'{sub c} decays are studied and found to be consistent with J = 1/2.

  15. Performance of the LHCb Vertex Locator

    CERN Document Server

    Aaij, R.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R.B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjornstad, P.M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Lastovicka, T.; Lafferty, G.; Latham, T.; Lefeuvre, G.; Leflat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G.D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A.F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N.A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.

    2014-01-01

    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means ...

  16. Study of Charm Baryons with the BaBar Experiment

    International Nuclear Information System (INIS)

    Petersen, Brian Aa.

    2006-01-01

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the Ξ' c 0/+ , Ξ c (2980) + and Ξ c (3077) + baryons, measure branching ratios for Cabibbo-suppressed Λ c + decays and use baryon decays to study the properties of the light-quark baryons, (Omega) - and Ξ(1690) 0

  17. Measurement of Inclusive Production of Charmonium at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Milek, M

    2003-12-19

    This thesis presents a study of inclusive production of charmonium mesons at the {Upsilon}(4S) resonance ({radical}s = 10.58 GeV) and in the continuum up to 50 MeV below the resonance. The full dataset of BABAR Run 1 (an integrated luminosity of 23.3 fb{sup -1}) is used in the analysis.

  18. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  19. studies of radiative penguin decays at BaBar

    Indian Academy of Sciences (India)

    We summarize results on a number of observations of penguin dominated radiative decays of the meson. Such decays are forbidden at tree level and proceed via electroweak loops. As such they may be sensitive to physics beyond the standard model. The observations have been made at the BaBar experiment at PEP-II, ...

  20. CP Violation Results from B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Biassoni, Pietro; /Milan U. /INFN, Milan

    2011-08-22

    In the present paper we review recent experimental results from the BABAR experiment concerning the measurement of the CKM angles. A particular highlight is given to the novel independent determination of the angle {alpha} from B{sup 0} {yields} a{sub 1}(1260){sup {+-}}{pi}{sup {-+}} and to the recent full-luminosity updates of several angle {gamma} measurements.

  1. Measurement of Inclusive Production of Charmonium at BaBar

    International Nuclear Information System (INIS)

    Milek, M

    2003-01-01

    This thesis presents a study of inclusive production of charmonium mesons at the Υ(4S) resonance (√s = 10.58 GeV) and in the continuum up to 50 MeV below the resonance. The full dataset of BABAR Run 1 (an integrated luminosity of 23.3 fb -1 ) is used in the analysis

  2. Data driven processor 'Vertex Trigger' for B experiments

    International Nuclear Information System (INIS)

    Hartouni, E.P.

    1993-01-01

    Data Driven Processors (DDP's) are specialized computation engines configured to solve specific numerical problems, such as vertex reconstruction. The architecture of the DDP which is the subject of this talk was designed and implemented by W. Sippach and B.C. Knapp at Nevis Lab. in the early 1980's. This particular implementation allows multiple parallel streams of data to provide input to a heterogenous collection of simple operators whose interconnection form an algorithm. The local data flow control allows this device to execute algorithms extremely quickly provided that care is taken in the layout of the algorithm. I/O rates of several hundred megabytes/second are routinely achieved thus making DDP's attractive candidates for complex online calculations. The original question was open-quote can a DDP reconstruct tracks in a Silicon Vertex Detector, find events with a separated vertex and do it fast enough to be used as an online trigger?close-quote Restating this inquiry as three questions and describing the answers to the questions will be the subject of this talk. The three specific questions are: (1) Can an algorithm be found which reconstructs tracks in a planar geometry and no magnetic field; (2) Can separated vertices be recognized in some way; (3) Can the algorithm be implemented in the Nevis-UMass and DDP and execute in 10-20 μs?

  3. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  4. CPLEAR et BABAR, all aspects of CP violation; CPLEAR et BABAR la violation de CP dans tous ses etats

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Ch

    2003-06-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K{sup 0} {yields} {pi}{sup +} {pi}{sup -} decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; {delta}m{sub d} measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B{sup 0} {yields} {rho}{sup {+-}} {pi}{sup {+-}} and B{sup 0} {yields} {pi}{sup {+-}} K{sup {+-}} decays. (author)

  5. The DELPHI silicon tracker

    CERN Document Server

    Pernegger, H

    1997-01-01

    The DELPHI collaboration has upgraded the Silicon Vertex Detector in order to cope with the physics requirements for LEP200. The new detector consists of a barrel section with three layers of microstrip detectors and a forward extension made of hybrid pixel and large pitch strip detectors. The layout of the detector and the techniques used for the different parts of the new silicon detector shall be described.

  6. MEG II drift chamber characterization with the silicon based cosmic ray tracker at INFN Pisa

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M., E-mail: marco.venturini@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baracchini, E. [ICEPP, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cei, F.; D' Onofrio, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dussoni, S.; Galli, L.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Signorelli, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2016-07-11

    High energy physics experiments at the high intensity frontier place ever greater demands on detectors, and in particular on tracking devices. In order to compare the performance of small size tracking prototypes, a high resolution cosmic ray tracker has been assembled to provide an external track reference. It consists of four spare ladders of the external layers of the Silicon Vertex Tracker of the BaBar experiment. The test facility, operating at INFN Sezione di Pisa, provides the detector under test with an external track with an intrinsic resolution of 15–30 μm. The MEG II tracker is conceived as a unique volume wire drift chamber filled with He–isobutane 85–15%. The ionization density in this gas mixture is about 13 clusters/cm and this results in a non-negligible bias of the impact parameters for tracks crossing the cell close to the anode wire. We present the telescope performance in terms of tracking efficiency and resolution and the results of the characterization of a MEG II drift chamber prototype.

  7. Vertex Tracking at a Future Linear Collider

    CERN Document Server

    Battaglia, Marco

    2011-01-01

    The anticipated physics program at an high energy e+e- linear collider places special emphasis on the accuracy in extrapolating charged particle tracks to their production vertex to tag heavy quarks and leptons. This paper reviews physics motivations and performance requirements, sensor R&D directions and current results of the studies for a vertex tracker at a future linear collider.

  8. New vertex reconstruction algorithms for CMS

    CERN Document Server

    Frühwirth, R; Prokofiev, Kirill; Speer, T.; Vanlaer, P.; Chabanat, E.; Estre, N.

    2003-01-01

    The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding'') and a statistical problem (``vertex fitting''). We briefly review classical methods. We introduce novel approaches and motivate them in the framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels

  9. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  10. Forward Tracking with the silicon vertex detector at the CDF experiment in RUN II. Spurrekonstruktion in Vorwärtsrichtung mit dem Silizium-Vertexdetektor des CDF-Experiments in RUN II

    Energy Technology Data Exchange (ETDEWEB)

    Scheidle, Thorsten [Univ. of Karlsruhe (TH) (Germany)

    2007-02-01

    The Standard Model of particle physics describes the fundamental particles of matter and their interactions. In order to test the Standard Model, determine free parameters and search for new particles beyond the Standard Model, large accelerator complexes produce particle collisions which are recorded by large detectors. Until the start of the Large Hadron Collider at CERN, the Tevatron accelerator at Fermilab provides particle collisions with the highest center-of-mass energy of √s = 1.96 TeV. The two multipurpose detector systems CDF and DØ record the collisions. A multipurpose detector system is built of several specialized sub-detectors to measure different particle properties. A particle which passes the detector deposits energy by interacting with the detector material. A silicon strip detector and a wire drift chamber detect charged particles close to the collision point. The energy loss in these systems is relatively small, instead many different small energy depositions are produced by one passing particle. These so-called hits can be combined to a track, indicating the path of the particle. A homogeneous magnetic field surrounding the tracking system forces a charged particle to a helix path which allows a momentum measurement by measuring the curvature. The reconstruction of particle tracks is a non-trivial task. First all position measurements belonging to a particle along a hypothetical helix have to be found and then all position information has to be combined to a reconstructed track and its parameters. I focused my work on the track reconstruction in the silicon detector which provides a good position resolution of the measurements.

  11. Performances of RPCs in the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Robert

    2003-09-26

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m{sup 2} of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behavior. These problems started very soon after the installation of the chambers on the detector when the high ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R&D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes.

  12. Performances of RPCs in the BaBar experiment

    International Nuclear Information System (INIS)

    Anulli, F.; Baldini, R.; Band, H.; Bionta, R.; Brau, J.; Brigljevic, V.; Buzzo, A.; Calcaterra, A.; Carpinelli, M.; Cartaro, T.; Cavallo, N.; Crosetti, G.; De Nardo, G.; De Sangro, R.; Eichenbaum, A.; Falciai, D.; Fabozzi, F.; Ferroni, F.; Finocchiaro, G.; Forti, F.; Frey, R.; Johnson, J.; Gatto, C.; Grauges-Pous, E.; Iwasaki, M.; Lange, D.; Lista, L.; Lo Vetere, M.; Lu, C.; Neal, H.; Neri, N.; Macri, M.; Messener, B.; Monge, M.R.; Moore, T.; Morganti, S.; Palano, A.; Paoloni, E.; Paolucci, P.; Passaggio, S.; Pastore, F.; Patrignani, C.; Patteri, P.; Peruzzi, I.; Piccolo, D.; Piccolo, M.; Piredda, G.; Pompili, A.; Robutti, E.; Roodman, A.; Santroni, A.; Sciacca, C.; Sinev, N.; Soha, A.; Storm, D.; Tosi, S.; Va'vra, J.; Xie, Y.; Wright, D.; Wisniewski, W.

    2003-01-01

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m 2 of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behaviour. These problems started very soon after the installation of the chambers on the detector when the high-ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R and D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes

  13. Recent results on hadronic final states from Babar

    Directory of Open Access Journals (Sweden)

    Gary J. William

    2015-01-01

    Full Text Available Two recent studies from the Babar Collaboration at SLAC are presented on the production of hadrons at low energies. The first is a study of exclusive K+K− production in e+e− annihilation events with initial-state photon radiation. The second is a study of ηc production in two-photon interactions and a three-body Dalitz-plot analysis searching for intermediate scalar meson production in ηc decays.

  14. The BaBar Software Architecture and Infrastructure

    International Nuclear Information System (INIS)

    Cosmo, Gabriele

    2003-01-01

    The BaBar experiment has in place since 1995 a software release system (SRT Software Release Tools) based on CVS (Concurrent Version System) which is in common for all the software developed for the experiment, online or offline, simulation or reconstruction. A software release is a snapshot of all BaBar code (online, offline, utilities, scripts, makefiles, etc.). This set of code is tested to work together, and is indexed by a release number (e.g., 6.8.2) so a user can refer to a particular release and get reproducible results. A release will involve particular versions of packages. A package generally consists of a set of code for a particular task, together with a GNU makefile, scripts and documentation. All BaBar software is maintained in AFS (Andrew File System) directories, so the code is accessible worldwide within the Collaboration. The combination SRT, CVS, AFS, has demonstrated to be a valid, powerful and efficient way of organizing the software infrastructure of a modern HEP experiment with collaborating Institutes distributed worldwide, both in a development and production phase

  15. Spinfoam cosmology with the proper vertex amplitude

    Science.gov (United States)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  16. VERTEX ANTIMAGIC TOTAL LABELING PADA GRAPHMULTICYCLE

    Directory of Open Access Journals (Sweden)

    Dominikus Arif Budi Prasetyo pythagors

    2015-01-01

    Full Text Available Pelabelan graf merupakan bagian dari graf yang berkembang saat ini. Jenis pelabelan pada graf bergantungpada domainnya, yakni pelabelan sisi ajaib, pelabelan titik ajaib, dan pelabelan total ajaib. Pelabelan totalajaib pada graf dibedakan lagi berdasarkan komponen graf yang dievaluasi, yakni pelabelan total sisi ajaibdan pelabelan total titik ajaib. Pada pelabelan ajaib, bobot dari komponen graf yang dievaluasi adalah sama,jika bobotnya tidak sama maka dinamakan pelabelan tak-ajaib (antimagic. Misalkan G adalah graf denganbanyak titik p dan sisi q. Suatu pemetaan bijektif dari komponen-komponen graf ke bilangan bulat positif {1,2, …, (p+q} disebut called (a, d vertex antimagic total labelling (pelabelan total titik ajaib dari graf G jikabobot setiap titik (vertex merupakan barisan aritmetika naik. Pada artikel ini membahas bahwa grafmulticycle mCp memenuhi (a, d vertex antimagic total labelling dan beberapa bentuk pelabelannya.Kata kunci : graph multicycle, vertex antimagic total labeling

  17. Vertex occlusal radiography in localizing unerupted mesiodentes

    Directory of Open Access Journals (Sweden)

    P Chalakkal

    2011-01-01

    Full Text Available The aim was to compare the vertex occlusal projection with the anterior maxillary occlusal projection in localizing the position of mesiodentes. Mesiodentes were observed in an 8-year-old boy with an anterior maxillary occlusal radiograph. A vertex occlusal radiograph was taken to compare it with the former in terms of mesiodentes localization with respect to the maxillary central incisors. The vertex occlusal radiograph provided greater details of the position and proximity of mesiodentes with respect to the long axis of maxillary central incisors in comparison to the anterior maxillary occlusal radiograph. Vertex occlusal radiography is an important diagnostic tool in diagnosing the presence, position, and proximity of mesiodentes with respect to the long axis of normally aligned maxillary central incisors. However, it is not recommended for routine use in a patient as its radiation dose is higher than conventional intraoral radiographic methods.

  18. Domination Number of Vertex Amalgamation of Graphs

    Science.gov (United States)

    Wahyuni, Y.; Utoyo, M. I.; Slamin

    2017-06-01

    For a graph G = (V, E), a subset S of V is called a dominating set if every vertex x in V is either in S or adjacent to a vertex in S. The domination number γ ( G ) is the minimum cardinality of the dominating set of G. The dominating set of G with a minimum cardinality denoted by γ ( G )-set. Let G 1, G 2, …, Gt be subgraphs of the graph G. If the union of all these subgraphs is G and their intersection is {v}, then we say that G is the vertex-amalgamation of G 1, G 2, …, Gt at vertex v. Based on the membership of the common vertex v in the γ ( Gi )-set, there exist three conditions to be considered. First, if v elements of every γ ( Gi )-set, second if there is no γ ( Gi )-set containing v, and third if either v is element of γ ( Gi )-set for 1 ≤ i ≤ p or there is no γ ( Gi )-set containing v for p amalgamation of G 1, G 2, …, Gt at vertex v can be determined.

  19. The DIRC Particle Identification System for the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adam, I

    2004-06-30

    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail.

  20. Searches for low-mass Higgs and dark bosons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Oberhof, Benjamin, E-mail: benjamin.oberhof@pi.infn.it [INFN sezione di Pisa and Universitá di Pisa, Polo Fibonacci - Edificio C, Largo B. Pontecorvo 3, 56125 - Pisa (Italy)

    2013-01-15

    We present BaBar latest results for the direct search of a light CP-odd Higgs boson using radiative decays of the ϒ(nS) (n=1,2,3) resonances in different final states. We also present the results for the search of a hidden sector gauge and Higgs bosons using the full BaBar datasample.

  1. The Mark II vertex detectors: Status and prospects

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector

  2. The Mark II vertex detectors: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector.

  3. Displaced vertex searches for sterile neutrinos at future lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Cazzato, Eros; Fischer, Oliver [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2016-12-02

    We investigate the sensitivity of future lepton colliders to displaced vertices from the decays of long-lived heavy (almost sterile) neutrinos with electroweak scale masses and detectable time of flight. As future lepton colliders we consider the FCC-ee, the CEPC, and the ILC, searching at the Z-pole and at the center-of-mass energies of 240, 350 and 500 GeV. For a realistic discussion of the detector response to the displaced vertex signal and the Standard Model background we consider the ILC’s Silicon Detector (SiD) as benchmark for the future lepton collider detectors. We find that displaced vertices constitute a powerful search channel for sterile neutrinos, sensitive to squared active-sterile mixing angles as small as 10{sup −11}.

  4. Penguin and rare decays in BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Simon [Univ. Denis, Paris (France)

    2015-04-29

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xs+ inclusive decays.

  5. B→ (ρ/ω) γ at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Koeneke, Karsten [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2007-06-01

    This document describes the measurements of the branching fractions and isospin violations of the radiative electroweak penguin decays B→ (ρ/ω) γ at the asymmetric-energy e+e- PEP-II collider with the BABAR detector. Together with the previously measured branching fractions of the decays B→ K*γ the ratio of CKM-matrix elements |V td/Vts| are extracted and the length of the far side of the unitarity triangle is determined.

  6. Recent BaBar Results on $B$ Decays

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; /Edinburgh U.

    2011-11-15

    Several recent key results from the BABAR experiment are presented, most using 383.6 fb{sup -1} of data. In particular, the search for B{sup +} {yields} {tau}{sup +}{nu}, inclusive and exclusive measurements of |V{sub ub}|, measurements of b {yields} d{gamma} decays and new observations of rare charmless hadronic decays. The new results provide important experimental constraints on the Standard Model and new physics models. Keywords: B decays; flavor; leptonic; semi-leptonic, radiative, hadronic.

  7. Searches for New Physics in CP Violation from BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Palombo, Fernando [Universita di Milano, Dipartimento di Fisica, Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy). et al.

    2015-05-12

    Results of recent searches for new physics in CP violation in charm decays from the BABAR experiment are presented. These results include a measurement of D0 - anti D0 mixing and searches for CP violation in two-body D0 decays, a search for CP violation in the charm decays D± → KS0K ± and D s± → KS0K± , KS0π± , and a search for direct CP violation in the singly-Cabibbo suppressed D± → K+K-π±decays. These studies are based on the final dataset collected by BABAR at the PEP-II B factory at SLAC in the period 1999-2008. No evidence of CP violation is found in these charm decays. The measured mixing parameter yCP = [0.72 ± 0.18(stat) ± 0.12(syst)]% excludes the no-mixing null hypothesis with a significance of 3.3σ .

  8. BaBar computing - From collisions to physics results

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The BaBar experiment at SLAC studies B-physics at the Upsilon(4S) resonance using the high-luminosity e+e- collider PEP-II at the Stanford Linear Accelerator Center (SLAC). Taking, processing and analyzing the very large data samples is a significant computing challenge. This presentation will describe the entire BaBar computing chain and illustrate the solutions chosen as well as their evolution with the ever higher luminosity being delivered by PEP-II. This will include data acquisition and software triggering in a high availability, low-deadtime online environment, a prompt, automated calibration pass through the data SLAC and then the full reconstruction of the data that takes place at INFN-Padova within 24 hours. Monte Carlo production takes place in a highly automated fashion in 25+ sites. The resulting real and simulated data is distributed and made available at SLAC and other computing centers. For analysis a much more sophisticated skimming pass has been introduced in the past year, ...

  9. Alignment of the LHCb vertex locator

    International Nuclear Information System (INIS)

    Gersabeck, M.

    2009-01-01

    LHCb will commence data taking as the first dedicated heavy flavour experiment at a hadron collider in 2008. A very high hit precision from its vertex detector (vertex locator, VELO) is essential to meet the tight requirements of vertex reconstruction in B-physics. The single hit precision of the VELO is better than 10μm. However, the VELO is operated only 8 mm from the beam and must be retracted and reinserted each LHC fill. Hence, the detector places unique demands on its alignment algorithm. The partially assembled VELO system has already been tested in a beam test. The novel software alignment methods are presented together with their interplay with the metrology measurements. Results from Monte Carlo simulation studies are discussed and recent beam test results are shown that prove the method's precision at the micron level.

  10. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  11. A note on arbitrarily vertex decomposable graphs

    Directory of Open Access Journals (Sweden)

    Antoni Marczyk

    2006-01-01

    Full Text Available A graph \\(G\\ of order \\(n\\ is said to be arbitrarily vertex decomposable if for each sequence \\((n_{1},\\ldots,n_k\\ of positive integers such that \\(n_{1}+\\ldots+n_{k}=n\\ there exists a partition \\((V_{1},\\ldots,V_{k}\\ of the vertex set of \\(G\\ such that for each \\(i \\in \\{1,\\ldots,k\\}\\, \\(V_{i}\\ induces a connected subgraph of \\(G\\ on \\(n_i\\ vertices. In this paper we show that if \\(G\\ is a two-connected graph on \\(n\\ vertices with the independence number at most \\(\\lceil n/2\\rceil\\ and such that the degree sum of any pair of non-adjacent vertices is at least \\(n-3\\, then \\(G\\ is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound \\(n-3\\ is replaced by \\(n-2\\.

  12. BaBar - A Community Web Site in an Organizational Setting

    Energy Technology Data Exchange (ETDEWEB)

    White, Bebo

    2003-07-10

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future.

  13. BaBar - A Community Web Site in an Organizational Setting

    International Nuclear Information System (INIS)

    White, Bebo

    2003-01-01

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future

  14. The vertex detector trigger data model

    CERN Document Server

    Koratzinos, M

    1998-01-01

    The aim of this note is to discuss the various issues arising from Different choices in the design of the Vertex Trigger Data Model and define a Baseline model. The pros and cons of the different choices will be presented with A recommendation of which choice constitutes the baseline solution and with a suggestion of the work plan to arrive to the final solution. This note does not try and define the definite version of the data model. However it is important to have a first version at this stage of the Vertex Trigger project.

  15. Vertex Reconstruction for AEGIS’ FACT Detector

    CERN Document Server

    Themistokleous, Neofytos

    2017-01-01

    My project dealt with the development of a vertex reconstruction technique to discriminate antihydrogen from background signals in the AEGIS apparatus. It involved the creation of a Toy Monte-Carlo to simulate particle annihilation events, and a vertex reconstruction utility based on the Bayesian theory of probability. The first results based on 107 generated events with single track in the detector are encouraging. For such events, the algorithm can reconstruct the z-coordinate accurately , while for the r-coordinate the result is less accurate.

  16. Vertex Detector Performance for CLICdet, FCCee & FCChh.

    CERN Document Server

    Rasmussen, Peter Winkel

    2017-01-01

    The performance of the vertex detectors planned for CLICdet, FCCee & FCChh was tested in this project. This was done my studying the figure of merit for a vertex detector which is the transverse impact parameter resolution $\\sigma(d_0)$. This was carried out by simulating single $\\mu^-$ at different energies, polar angles, $\\theta$ with a uniform distribution in the azimuthal angle $\\phi$. The events were reconstructed and the distribution $\\Delta(d_0) = d_{0,reco}-d_{0,true}$ was fitted with a Gaussian function where the width of the function resulted in $\\sigma(d_0)$. The effect of material budget and fit function on this was also tested.

  17. Primary vertex reconstruction at the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00301388; The ATLAS collaboration; Casper, D.; Hooberman, B.; Gui, B.; Lee, G.; Maurer, J.; Morley, A.; Pagan Griso, S.; Petersen, B.; Prokofiev, K.; Shan, L.; Shope, D.; Wharton, A.; Whitmore, B.; Zhang, M.

    2017-01-01

    These proceedings present the method and performance of primary vertex reconstruction at the ATLAS experiment during Runs 1 and 2 at the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of $\\sqrt{s} = 8$ TeV, and during 2015-2016 at $\\sqrt{s} = 13$ TeV. Some predictions toward future runs are also presented. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed.

  18. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xun

    2009-01-21

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e{sup +}e{sup -} collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis

  19. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    International Nuclear Information System (INIS)

    Chen, Xun

    2009-01-01

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e + e - collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis procedures

  20. The Micro-Vertex-Detector for the P-bar ANDA experiment

    International Nuclear Information System (INIS)

    Zotti, Laura

    2013-01-01

    P-bar ANDA is a fixed target experiment that will be carried out at the future FAIR facility. P-bar ANDA will provide an excellent tool to address fundamental question in the field of hadronic physics, with a physic program that extends from the investigation of QCD (providing insight in the mechanisms of mass generation and confinement) to the test of fundamental symmetries. The Micro-Vertex-Detector located in the innermost part of the central tracking system will be composed by hybrid pixel and double-sided micro-strip silicon detectors. The Micro-Vertex-Detector will play an important role for the P-bar ANDA physics goals. The possibility to reconstruct the secondary vertices and the applicability of a precise D meson tagging is essential for the spectroscopy in the open charm sector and the charmonium mass region. To this aim the Micro-Vertex-Detector features a spatial resolution better than 100μm, a time resolution better than 20ns, a limited material budget, and a high data rate capability in a triggerless environment. An overview of the Micro-Vertex-Detector related to the physics goals will be presented.

  1. Improving vertex position determination by using a kinematic fit

    International Nuclear Information System (INIS)

    Forden, G.E.; Saxon, D.H.

    1985-05-01

    A method is developed for improving decay vertex reconstruction by using kinematic fits. This is applied to generated charm meson decays. An improvement of 16% in the vertex position measurement along the flight path is achieved. (author)

  2. Cluster algebras bases on vertex operator algebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2016-01-01

    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300

  3. Primary Vertex Reconstruction with the ATLAS Experiment

    CERN Document Server

    Casper, David William; The ATLAS collaboration

    2017-01-01

    ATLAS reconstructs primary vertices with high efficiency and resolution. These vertices serve as input to other mission critical analysis tools, and are relied on by many physics analyses. This presentation surveys the ATLAS primary vertex reconstruction algorithms, and describes validity checks done using real data. The complications introduced by pileup are discussed, along with refinements currently under study.

  4. LHCb Vertex Locator Upgrade Work Report

    CERN Document Server

    Estrada, Michael

    2017-01-01

    As the LHCb prepares for the planned upgrade of its vertex locator, there is a great need for supporting work such as the design and testing of apparatus that will ensure the smooth implementation of new hardware and infrastructure. My work this summer consisted largely of tasks to support this process.

  5. Algebraic characterization of the Witten vertex

    International Nuclear Information System (INIS)

    Embacher, F.

    1989-01-01

    The Witten vertex of open bosonic string field theory is characterized by a set of algebraic properties written down in the Fock-space operator formalism. The typical 3-string overlap structure as well as the correct ghost midpoint insertion are not required from the outset but arise as consequences. 20 refs. (Author)

  6. Primary Vertex Reconstruction at the ATLAS Experiment

    CERN Document Server

    Grimm, Kathryn; The ATLAS collaboration

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in an LHC collision is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. New methods have been developed by the ATLAS experiment to reconstruct vertices in such environments. Advances in vertex seeding include methods taken from medical imaging, which allow for reconstruction of multiple vertices with small spatial separation. The adoption of this new seeding algorithm within the ATLAS adaptive vertex finding and fitting procedure will be discussed, and the first results of the new techniques from Run-2 data will be presented. Additionally, data-driven methods to evaluate vertex resolution will be presented with special focus on correct methods to evaluate the effect of the beam spot constraint; results from these methods in Ru...

  7. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  8. Twisted Frobenius identies from vertex operator superalgebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2017-01-01

    Roč. 2017, 9 November (2017), č. článku 2340410. ISSN 1687-9120 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2017/2340410/

  9. Lifetime tests for MAC vertex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  10. Characterisations of Intersection Graphs by Vertex Orderings

    OpenAIRE

    Wood, David R.

    2004-01-01

    Characterisations of interval graphs, comparability graphs, co-comparability graphs, permutation graphs, and split graphs in terms of linear orderings of the vertex set are presented. As an application, it is proved that interval graphs, co-comparability graphs, AT-free graphs, and split graphs have bandwidth bounded by their maximum degree.

  11. Measurement of the Spin of the Omega- Hyperon at Babar

    International Nuclear Information System (INIS)

    Aubert, B.

    2006-01-01

    A measurement of the spin of the (Omega) - hyperon produced through the exclusive process Ξ c 0 → (Omega) - K + is presented using a total integrated luminosity of 116 fb -1 recorded with the BABAR detector at the e + e - asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ c 0 has spin 1/2, the angular distribution of the Λ from (Omega) - → ΛK - decay is inconsistent with all half-integer (Omega) - spin values other than 3/2. Lower statistics data for the process (Omega) c 0 → (Omega) - π + from a 230 fb -1 sample are also found to be consistent with (Omega) - spin 3/2. If the Ξ c 0 spin were 3/2, an (Omega) - spin of 5/2 cannot be excluded

  12. The New BaBar Data Reconstruction Control System

    Energy Technology Data Exchange (ETDEWEB)

    Ceseracciu, Antonio

    2003-06-02

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is actively distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 12 farms.

  13. Virasoro conditions, vertex operators, and string dynamics in curved space

    International Nuclear Information System (INIS)

    Jain, S.; Mandal, G.; Wadia, S.R.

    1987-01-01

    We present the perturbatively renormalized expression of a scalar vertex operator for strings in a background metric and dilaton field. The equations of motion for the background fields and the wave equation for the vertex function emerge upon imposing Virasoro conditions on the vertex operator

  14. Certain extensions of vertex operator algebras of affine type

    International Nuclear Information System (INIS)

    Li Haisheng

    2001-01-01

    We generalize Feigin and Miwa's construction of extended vertex operator (super)algebras A k (sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type. (orig.)

  15. The 16-vertex model and its even and odd 8-vertex subcases on the square lattice

    Science.gov (United States)

    Assis, Michael

    2017-09-01

    We survey and enlarge the known mappings of the 16-vertex model, with emphasis on mappings between the even and odd 8-vertex subcases of the general model, also giving new mappings between these models, valid on finite toroidal lattices. In particular, we find new mappings between the models by using their algebraic invariants with respect to the SL(2)× SL(2) symmetry of the 16-vertex model; we also find a larger set of weak-graph transformations. We show many examples of models with negative weights which map to models with only positive weights. Using the algebraic invariant relations of the even and odd 8-vertex models, we find the complete set of points in the complex field plane of the square lattice Ising model in a field which map to the even or odd 8-vertex models; these points also correspond to the set of free-fermionic points of the model. We do not find any new integrable points, but we find a new mapping between the odd 8-vertex model and the square lattice Ising model at magnetic field H= iπ/(2β) , valid on finite toroidal lattices. We also show directly through various examples that mappings via algebraic invariants do not fully exhaust the possible mappings a model may have with another model. We construct a new solution to the odd 8-vertex free-fermion model which is valid on the finite lattice, since the previous known solution resulted from a mapping valid only in the thermodynamic limit. Finally, we detail for the first time the phase transitions of the column staggered free-fermion 8-vertex model, and show that it can be mapped to the bi-partite staggered free-fermion model.

  16. ILC Vertex Tracker R&D

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac

    2007-10-01

    This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department

  17. Performance simulation of BaBar DIRC bar boxes in TORCH

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  18. submitter Performance simulation of BaBar DIRC bar boxes in TORCH

    CERN Document Server

    Föhl, K; Castillo García, L; Cussans, D; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  19. KANGA(ROO): Handling the micro-DST of the BaBar Experiment with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, Stephen J.

    2002-06-24

    A system based on ROOT for handling the micro-DST of the BABAR experiment is described. The purpose of the KANGA system is to have micro-DST data available in a format well suited for data distribution within a world-wide collaboration with many small sites. The design requirements, implementation and experience in practice after three years of data taking by the BABAR experiment are presented.

  20. Use of a track and vertex processor in a fixed-target charm experiment

    International Nuclear Information System (INIS)

    Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.

    1996-01-01

    We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)

  1. A Future Vertex Locator with Precise Timing for the LHCb Experiment

    CERN Multimedia

    Mitreska, Biljana

    2017-01-01

    The LHCb experiment is designed to perform high precision measurements of matter-antimatter asymmetries and searches for rare and forbidden decays, with the aim of discovering new and unexpected particles and forces. In 2030 the LHC beam intensity will increase by a factor of 50 compared to current operations. This means increased samples of the particles we need to study, but it also presents experimental challenges. In particular, with current technology it becomes impossible to differentiate the many (>50) separate proton-proton collisions which occur for each bunch crossing. A Monte Carlo simulation was developed to model the operation of a silicon pixel vertex detector surrounding the collision region at LHCb, under the conditions expected after 2030, after the second upgrade of the Vertex Locator (VELO). The main goal was studying the effect of adding '4D' detectors which save high-precision timing information, in addition to the usual three spatial coordinates, as charged particles pass through them. W...

  2. Alignment of the LHCb Vertex Locator

    CERN Document Server

    Gersabeck, Marco

    2009-01-01

    LHCb will commence data taking as the first dedicated heavy flavour experiment at a hadron collider in 2008. A very high hit precision from its vertex detector (VELO) is essential to meet the tight requirements of vertex reconstruction in B-physics. The single hit precision of the VELO is better than 10 micron. However, the VELO is operated only 8 mm from the beam and must be retracted and reinserted each LHC fill. Hence, the detector places unique demands on its alignment algorithm. The partially assembled VELO system has already been tested in a beam test. The novel software alignment methods are presented together with their interplay with the metrology measurements. Results from Monte Carlo simulation studies are discussed and recent beam test results are shown that prove the method's precision at the micron level.

  3. Vertex Reconstruction and Performance in ATLAS

    CERN Document Server

    Whitmore, Ben William; The ATLAS collaboration

    2017-01-01

    Efficient and precise reconstruction of the primary vertices in LHC collisions is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of the primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. The performance of the current vertexing algorithms using Run-2 data will be presented and compared to results from simulation. Additionally, data-driven methods to evaluate vertex resolution, and details of upgrades to the ATLAS inner detector will be presented.

  4. Alignment strategy for the LHCb vertex locator

    CERN Document Server

    AUTHOR|(CDS)2075236

    2007-01-01

    LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. These requirements place strict constraints on the LHCb vertex locator (VELO) alignment. Additional challenges arise from the VELO being retracted between each fill of the LHC and from its unique circular disc R/$\\Phi$ strip geometry. This paper describes the software alignment procedure developed for the VELO, which is primarily based on a non-iterative method using a matrix inversion technique. The procedure is demonstrated with simulated events, and results obtained during runs in external test-beams are also presented.

  5. Primary vertex reconstruction with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286780

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in a LHC collision is essential for determining the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. The algorithms developed by the ATLAS experiments to reconstruct multiple vertices with small spatial separation are presented.

  6. The ZEUS vertex detector: Design and prototype

    International Nuclear Information System (INIS)

    Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence

    1991-01-01

    A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)

  7. Complex growing networks with intrinsic vertex fitness

    International Nuclear Information System (INIS)

    Bedogne, C.; Rodgers, G. J.

    2006-01-01

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution ρ(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined

  8. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  9. B Decay Charm Counting via Topological Vertexing

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron S

    2001-10-15

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z{sup 0} decays collected during the SLD/SLC 97-98 run. The method takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BR(B {yields} (0D)X) = (3.7{+-}1.1(stat) {+-} 2.1(syst))%; and BR(B {yields} (2D)X) = (17.9{+-}1.4(stat) {+-} 3.3(syst))% where B and D represent mixtures of open b and open c hadrons. The corresponding charm count, N{sub c} = 1.188 {+-} 0.010 {+-} 0.040 {+-} 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  10. Prototyping the CBM Micro Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Koziel, Michal [University of Frankfurt, Frankfurt am Main (Germany); Collaboration: CBM-MVD-Collaboration

    2013-07-01

    For the reconstruction of Open Charm Hadrons with the CBM experiment a Micro Vertex Detector (MVD) with an excellent resolution of the secondary decay vertex (< 70 μm along the beam axis) is required. To achieve this vertex resolution a material budget of a few 0.1% X0 is mandatory for the individual detector stations positioned downstream in close vicinity to the target. To further reduce the multiple scattering the MVD operates in vacuum. The need of prototyping and characterizing the CBM-MVD motivated the construction of an advanced device - a beam telescope - giving the opportunity to exercise the following aspects: handling and integration of ultra-thin CMOS sensors on advanced materials like CVD diamond, double sided sensor assembly for ultra-precise tracking, cooling, scalable readout and slow control, development of data analysis framework and first steps towards implementation of tracking algorithms into a FPGA-based hardware. This group report aims to summarize the activity towards fabrication of the CBM-MVD prototype.

  11. A Measurement of the CP Parameter sine two beta Using Fully Reconstructed B to ccbar Decays at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Eric A

    2003-04-22

    This dissertation presents a measurement of the time-dependent CP-violating asymmetries in the neutral B-meson system performed with data collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample used consists of 29.7 fb{sup -1} collected at the {Upsilon}(4S) resonance and 3.9 fb{sup -1} collected off-resonance. We analyze three samples of fully-reconstructed B-meson decays: a sample of decays to CP eigenstates in the modes J/{psi} K{sub s}{sup 0}, {psi}(2S) K{sub s}{sup 0}, {chi}{sub cl} K{sub s}{sup 0}, and J/{psi} K*{sup 0} (822 events); as well as both charged (14304 events) and neutral (10457 events) B decays to flavor-eigenstates including D{sup (*)} and {pi}/{rho}/{alpha}{sub 1}. In all cases, the proper decay time difference between the reconstructed B-meson and the recoiling B-meson is determined by measuring the separation of the two decay vertices. Furthermore, the flavor of the recoiling B-meson is tagged using a neural network algorithm. We use the flavor-eigenstate samples to calibrate both the vertexing and tagging performance. We measure the amplitude of the CP asymmetry, sin2{beta} = 0.61 {+-} 0.14(stat) {+-} 0.06(syst). These results indicate the existence of indirect CP violation in the B-meson system.

  12. Study of the breaking of the CP symmetry in the BABAR experiment; Etude de la violation de la symetrie CP dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ganjour, S

    2007-09-15

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e{sup +}e{sup -} asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B{sup 0} {yields} D{sub s}{sup *} + D{sup *-} decays; measurement of CP violation in the B{sup 0} {yields} D{sup *{+-}}{pi}{sup {+-}} decays and constraint on the Unitary Triangle parameter sin(2{beta} + {gamma}) using these decays. (author)

  13. Charmed-B decays at BaBar

    International Nuclear Information System (INIS)

    Tisserand, Vincent

    2004-01-01

    We present recent results on charmed-B decays using data collected by the BaBaR experiment at the PEP-II storage ring. This report is subdivided in 3 parts. In a first step, we present preliminary results on the measurement of the branching fractions of seven color-suppressed anti B 0 -meson decays into D (*)0 π 0 , D (*)0 η, D (*)0 ω, and D 0 η ' . Then we discuss the preliminary measurement of the ratio of Cabibbo-suppressed to Cabibbo-favored branching fractions B(B - →D 0 K - )/B(B - →D 0 π - ), where the D 0 is possibly reconstructed in the CP-even π - π + and K - K + modes. For the D 0 decays into CP-eigenstates, a search for a direct CP asymmetry is performed. For the same category of decay processes, we show a precise preliminary measurement of both the branching fraction of B - decaying to D *0 K *- and of the fraction of longitudinal polarization in this decay. Finally, we present a study where the 22 possible B decays to anti D (*) D * K are reconstructed exclusively. The branching fractions of the anti B 0 and of the B + to anti D (*) D (*) K are presented and a search for decays B→anti D (*) D sJ + (→D (*)0 K + ), where the D sJ + represents the orbitally excited D s states, is also discussed. (orig.)

  14. The BaBar Data Reconstruction Control System

    Energy Technology Data Exchange (ETDEWEB)

    Ceseracciu, A

    2005-04-20

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 9 farms.

  15. Recent Results in Semileptonic B Decays with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, B.K.; /Maryland U.

    2012-04-02

    In this note, recent results of studies of semileptonic B meson decays from BABAR are discussed and preliminary results given. In particular, a recent measurement of {Beta}(B {yields} D{sup (*)}{tau}{nu}) and the ratio {Beta}(B {yields} D{sup (*)}{tau}{nu})/{Beta}(B {yields} D{sup (*)}{ell}{nu}) is presented. For the D* mode, a branching fraction of 1.79 {+-} 0.13(stat) {+-} 0.17(syst) is found, with a ratio of 0.325 {+-} 0.023(stat) {+-} 0.027(syst). For the D mode, the results are 1.04 {+-} 0.12(stat) {+-} 0.14(syst) and 0.456 {+-} 0.053(stat) {+-} 0.056(syst), respectively. In addition, a study of B{sub s} production and semileptonic decays using data collected in a center-of-mass energy region above the {Upsilon}(4S) resonance is discussed. The semileptonic branching fraction {Beta}(B{sub s} {yields} {ell}{nu}X) is measured to be 9.9{sub -2.1}{sup +2.6}(stat){sub -2.0}{sup +1.3}(syst).

  16. Results from the BABAR Fully Inclusive Measurement of B? Xs?

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-09-20

    We present preliminary results from a lepton-tagged fully-inclusive measurement of B {yields} X{sub s}{gamma} decays, where X{sub s} is any strange hadronic state. Results are based on a BABAR data set of 88.5 million B{bar B} pairs at the {Upsilon}(4S) resonance. We present a reconstructed photon energy spectrum in the {Upsilon}(4S) frame, and partial branching fractions above minimum reconstructed photon energies of 1.9, 2.0, 2.1 and 2.2 GeV. We then convert these to measurements of partial branching fractions and truncated first and second moments of the true photon energy distribution in the B rest frame, above the same minimum photon energy values. The full correlation matrices between the first and second moments are included to allow fitting to any parameterized theoretical calculation. We also measure the direct CP asymmetry {Alpha}{sub CP}(B {yields} X{sub s+d{gamma}}) (based on the charge of the tagging lepton) above a reconstructed photon energy of 2.2 GeV.

  17. Measurements of the CKM Angle Alpha at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-04

    The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

  18. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  19. The upgrade of the LHCb Vertex Locator (VELO)

    CERN Document Server

    van Beuzekom, M

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will enable the detector to run at a luminosity of 2 x 10$^{33}$ cm$^{-22}$s$^{-1}$ and explore New Physics effects in the beauty and charm sector with unprecedented precision. To achieve this, the entire readout will be transformed into a triggerless system operating at 40 MHz, where the event selection algorithms will be executed by high-level software in the CPU farm. The upgraded silicon vertex detector (VELO) must be lightweight, radiation hard, vacuum compatible, and has to drive data to the data acquisition system at speeds of up to 3 Tbit/s. This challenge will be met with a new VELO design based on hybrid pixel detectors, positioned to within 5 mm of the LHC colliding beams. The sensors have 55 x 55 $\\mu$m$^2$ square pixels and the VeloPix ASIC, which is being developed for the readout, is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with integrated hit rates of up to 900 MHz which translates to a bandwidth of m...

  20. Automatised Data Quality Monitoring of the LHCb Vertex Locator

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and flags issues whenever they arise. An unbiased subset of the detector data are processed about once per hour by monitoring algorithms. The new analysis framework then analyses the plots that are prod...

  1. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  2. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  3. An asynchronous data-driven readout prototype for CEPC vertex detector

    Science.gov (United States)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  4. Pion-nucleon vertex function with one nucleon off shell

    International Nuclear Information System (INIS)

    Mizutani, T.; Rochus, P.

    1979-01-01

    The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region

  5. Elliptic genera and vertex operator super-algebras

    CERN Document Server

    Tamanoi, Hirotaka

    1999-01-01

    This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.

  6. Finding and Counting Vertex-Colored Subtrees

    Science.gov (United States)

    Guillemot, Sylvain; Sikora, Florian

    The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. [17] in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors M. Using an algebraic framework recently introduced by Koutis et al. [15,16], we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, showing that the counting problem is FPT if M is a set, but becomes # W [1]-hard if M is a multiset with two colors.

  7. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  8. The BaBar Event Building and Level-3 Trigger Farm Upgrade

    International Nuclear Information System (INIS)

    Luitz, Steffen

    2003-01-01

    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system

  9. A 96-channel, 500 ps resolution TDC board for the BaBar experiment at SLAC

    CERN Document Server

    Minutoli, S

    2000-01-01

    A TDC board has been designed and built to complete the readout of the Instrumented Flux Return of the BABAR experiment at the Stanford Linear Accelerator Center. The board has 96 input channels and makes use of 3 general purpose TDC chips designed at CERN, with time resolution up to 500 ps and configurable via a Test Access Port (IEEE standard 1149). Data are stored before readout in a multievent buffer. Communication with BABAR DAQ system is realized through 3 serial lines on the backplane connector. All the logic, including internal registers and the interfaces with the BABAR protocol and the TAP controller, is implemented in two fast FPGAs. The board is designed to work at 59.5 MHz clock frequency. (7 refs).

  10. BaBar Simulation Production—A Millennium of Work in Under a Year

    Science.gov (United States)

    Smith, D. A.; Blanc, F.; Bozzi, C.; Khan, A.

    2006-06-01

    The BaBar experiment requires simulated events beyond the ability of a single computing site to provide. This paper describes the evolution of simulation and job management methods to meet the physics community requirements and how production became distributed to use resources beyond any one computing center. The evolution of BaBar simulation along with the development of the distribution of the computing effort is described. As the computing effort is distributed to more sites there is a need to simplify production so the effort does not multiply with number of production centers. Tools are created to be flexible in handling errors and failures that happen in the system and respond accordingly, this reduces failure rates and production effort. This paper will focus on one cycle of simulation production within BaBar as a description of a large scale computing effort which was fully performed, and provided new simulation data to the users on time.

  11. Final Report: BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    International Nuclear Information System (INIS)

    Judd, Dennis J.

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas

  12. Final Report BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    CERN Document Server

    Judd, D J

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas.

  13. Search for Exclusive Electroweak Penguin Decays at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, Natalia

    2003-04-03

    This dissertation describes the search for the flavor-changing neutral current decays B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -}, performed using a sample of (22.7 {+-} 0.4) x 10{sup 6} {Upsilon}(4S) {yields} B {bar B} decays collected with the BABAR detector at the PEP-II B Factory. The following final states have been reconstructed: B{sup +} {yields} K{sup +}{ell}{sup +}{ell}{sup -}, B{sup 0} {yields} K{sup 0}{ell}{sup +}{ell}{sup -} (K{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}), B{sup +} {yields} K*{sup +}{ell}{sup +}{ell}{sup -} (K*{sup +} {yields} K{sub s}{sup 0}{pi}{sup +}), and B{sup 0} {yields} K*{sup 0}{ell}{sup +}{ell}{sup -} (K*{sup 0} {yields} K{sup +}{pi}{sup -}), where {ell}{sup +}{ell}{sup -}is either an e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pair. The established 90% C.L. upper limits are: {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) < 0.6 x 10{sup -6}; {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) < 2.5 x 10{sup -6}. These limits represent a significant improvement over previously published results and are close to Standard Model predictions.

  14. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  15. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  16. Operational Aspects of Dealing with the Large BaBar Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Trunov, Artem G

    2003-06-13

    To date, the BaBar experiment has stored over 0.7PB of data in an Objectivity/DB database. Approximately half this data-set comprises simulated data of which more than 70% has been produced at more than 20 collaborating institutes outside of SLAC. The operational aspects of managing such a large data set and providing access to the physicists in a timely manner is a challenging and complex problem. We describe the operational aspects of managing such a large distributed data-set as well as importing and exporting data from geographically spread BaBar collaborators. We also describe problems common to dealing with such large datasets.

  17. First year operational experience with the Cherenkov Detector (DIRC) of BaBar

    International Nuclear Information System (INIS)

    Adam, I.; BaBar Collaboration

    2000-01-01

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Y(4s) resonance

  18. VETRA - offline analysis and monitoring software platform for the LHCb Vertex Locator

    International Nuclear Information System (INIS)

    Szumlak, Tomasz

    2010-01-01

    The LHCb experiment is dedicated to studying CP violation and rare decay phenomena. In order to achieve these physics goals precise tracking and vertexing around the interaction point is crucial. This is provided by the VELO (VErtex LOcator) silicon detector. After digitization, FPGAs are employed to run several algorithms to suppress noise and reconstruct clusters. This is performed by an FPGA based processing board. An off-line software project, VETRA, has been developed which performs a bit perfect emulation of this complex processing in the FPGAs. This is a novel development as this hardware emulation is not standalone but rather is fully integrated into the LHCb software to allow the reconstruction of full data from the detector. This software platform facilitates the development and understanding of the behaviour of the processing algorithms, the optimization of the parameters of the algorithms that will be loaded into the FPGA and monitoring of the detector performance. This framework has also been adopted by the Silicon Tracker detector of LHCb. This processing framework was successfully used with the first 1500 tracks of data in the VELO obtained from the first LHC beam in September 2008. The software architecture and utilisation of the VETRA project will be discussed in detail.

  19. LHCb: Performance and Radiation Damage Effects in the LHCb Vertex Locator

    CERN Multimedia

    Carvalho Akiba, K

    2014-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the LHC. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO), hence the detector is critical for both the trigger and offline physics analyses. The VELO is the retractable silicon-strip detector surrounding the LHCb interaction point. It is located only 7 mm from the LHC beam during normal LHC operation, once moved into its closed position for each LHC fill when stable beams are obtained. During insertion the detector is centred around the LHC beam by the online reconstruction of the primary vertex position. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 $\\mu$m thick half-disc sensors with R-measuring and $\\phi$-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with the only n-on-p sensors operating at the LHC. The detectors are operated in ...

  20. Performance, Radiation Damage Effects and Upgrade of the LHCb Vertex Locator

    CERN Document Server

    De Capua, S

    2013-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC). Heavy hadrons are identified through their flight distance in the VELO, the retractable silicon-strip vertex detector surrounding the LHCb interaction point at only 7 mm from the beam during normal LHC operation. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 µm thick half-disc sensors with R- and phi-measuring geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 µm. The detector is also equipped with the only n-on-p module operating at the LHC. The performance of the VELO in its three years of successful operation during the LHC physics runs will be presented. Highlights will include alignment, cluster finding efficiency, single hit resolution, and impact parameter and vertex resolutions. The VELO module sensors receive a large and non-uniform radiation dose having inner and outer radii of only 7 and 42...

  1. The Mark III vertex chamber and prototype test results

    International Nuclear Information System (INIS)

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype

  2. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  3. Graphs with No Induced Five-Vertex Path or Antipath

    DEFF Research Database (Denmark)

    Chudnovsky, Maria; Esperet, Louis; Lemoine, Laetitia

    2017-01-01

    We prove that a graph G contains no induced five-vertex path and no induced complement of a five-vertex path if and only if G is obtained from 5-cycles and split graphs by repeatedly applying the following operations: substitution, split unification, and split unification in the complement, where...

  4. Design of a secondary-vertex trigger system

    International Nuclear Information System (INIS)

    Husby, D.; Chew, P.; Sterner, K.; Selove, W.

    1995-06-01

    For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices

  5. Vertex epidural haematoma manifesting with bilateral upper limb ...

    African Journals Online (AJOL)

    Vertex epidural haematomas (VEDH) are rare and difficulties are encountered in diagnosis and management. This is a case report of a patient with a vertex epidural haematoma who presented with signs of severe head injury with upper limb decerebrate posture. We discuss the challenges of radiological investigation and ...

  6. Drift chamber vertex detectors for SLC/LEP

    International Nuclear Information System (INIS)

    Hayes, K.G.

    1987-03-01

    The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers

  7. Vertex Accentuation in Female Pattern Hair Loss in Asians

    Directory of Open Access Journals (Sweden)

    Chavalit Supsrisunjai

    2016-05-01

    Full Text Available Background: The most common cause of hair loss seen in women is female pattern hair loss (FPHL, also known as female androgenetic alopecia. It affects the central part of the scalp, but spares the frontal hairline. Frontal accentuation was also described by Olsen. In Asian women, vertex thinning patterns are frequently developed, but there has been no report about vertex thinning pattern in female pattern hair loss. Objective: To find prevalence of vertex accentuation in female pattern hair loss (FPHL in Asian women. Methods: Scalp hair counting (n/cm2 were measured at 3 different areas; vertex, mid scalp and frontal area respectively by digital dermoscope (Dino digital AM-413T. Visual counting and photography were performed. Outcomes were evaluated by gross appearance of vertex thinning and/or hair density <120 /cm2 in any of 3 areas. Results: 143 patients were evaluated. Mean age was 45.54 years. Of the hair loss type, 36.4% were mid-scalp, 33.6% were vertex accentuation and 30.1% were frontal accentuation, respectively. Age was not significantly different among the 3 types of hair loss (P- value 0.859. Conclusion: Although the most common female pattern hair loss type is diffuse type (Ludwig type, vertex accentuation pattern is the second most common pattern in this study. This study is the first to mention “Vertex accentuation” to be another pattern for FPHL.

  8. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  9. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  10. Primary Vertex Reconstruction for Upgrade at LHCb

    CERN Document Server

    Wanczyk, Joanna

    2016-01-01

    The aim of the LHCb experiment is the study of beauty and charm hadron decays with the main focus on CP violating phenomena and searches for physics beyond the Standard Model through rare decays. At the present, the second data taking period is ongoing, which is called Run II. After 2018 during the long shutdown, the replacement of signicant parts of the LHCb detector is planned. One of main changes is upgrade of the present software and hardware trigger to a more rapid full software trigger. Primary Vertex (PV) is a basis for the further tracking and it is sensitive to the LHC running conditions, which are going to change for the Upgrade. In particular, the center-of-mass collision energy should reach the maximum value of 14 TeV. As a result the quality of the reconstruction has to be studied and the reconstruction algorithms have to be optimized.

  11. Resistance Distances in Vertex-Face Graphs

    Science.gov (United States)

    Shangguan, Yingmin; Chen, Haiyan

    2018-01-01

    The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.

  12. Search for Physics Beyond the Standard Model at BaBar and Belle

    Directory of Open Access Journals (Sweden)

    Calderini G.

    2012-06-01

    Full Text Available Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different γ resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

  13. BABAR - the detector for the PEP II B Factory at SLAC

    International Nuclear Information System (INIS)

    Lueth, V.

    1994-09-01

    BABAR refers to the detector that is being designed for the PEP II B-Factory at SLAC to perform a comprehensive study of CP violation in B meson decays. The design requirements and the principal detector components are briefly described. A summary of the expected physics performance is presented

  14. studies of radiative penguin decays at BaBar (*) + - * -6 * ' * * * -E ...

    Indian Academy of Sciences (India)

    The observations have been made at the BaBar experiment at PEP-II, the asymmetric B factory at SLAC. Keywords. Radiative decays; B mesons. PACS Nos 13.20.He; 12.15.Ji; 12.60.Cn. 1. Introduction. Penguin dominated B decays are decays which proceed via higher order electroweak loops as illustrated in figure 1. such ...

  15. CPLEAR and BaBar: CP violation in all its states

    CERN Document Server

    Yeche, Christophe

    2003-01-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K0 → π+ π- decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; Δmd measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B0 → ρ± π± and B0 �...

  16. Study of the breaking of the CP symmetry in the BABAR experiment

    International Nuclear Information System (INIS)

    Ganjour, S.

    2007-09-01

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e + e - asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B 0 → D s * + D *- decays; measurement of CP violation in the B 0 → D *± π ± decays and constraint on the Unitary Triangle parameter sin(2β + γ) using these decays. (author)

  17. B and c quark exclusive decays with the vertex detector

    International Nuclear Information System (INIS)

    Hayes, K.

    1987-01-01

    Physics topics as diverse as the forward backward charge asymmetry to CP violation can be studied with the aid of heavy quark exclusive decays at the Z 0 . The Mark II with its vertex detector is sufficiently powerful to do a good job on many of these topics with reasonable acceptances and sample purities. Measurements of the absolute value of V/sub bu/ using B 0 → π + π - and of the B 0 lifetime using the decay B 0 → D + + l - + neutrals (D + → K - π + π + ) have been illustrated in this paper. Unfortunately, given the small branching ratios for most exclusive decay modes, large numbers of Z 0 decays are needed. From the standpoint of vertex detector performance, the Mark II vertex detector can fully reconstruct the vertex topology of nearly all strange particle decays, but in general can only tag the presence of secondary b and c quark decay vertices with good efficiency. High efficiency full vertex reconstruction of heavy quark decays requires an order of magnitude improvement in impact parameter resolution. Analyses which use vertex detector information to make vertex topology cuts for b and c quark decay will have good efficiency if significant impact parameters (δ/σ > 3) are required for only a few tracks. 7 references, 6 figures

  18. Silicon strip detectors for the LHCb experiment

    OpenAIRE

    Steinkamp, O

    2005-01-01

    The LHCb experiment is a single-arm magnetic spectrometer. Silicon micro-strip detectors are employed in a significant fraction of the tracking system. The Vertex Locator consists of 21 detector stations that operate inside the LHC beam pipe and are separated from the beam vacuum by a thin aluminium foil. The Silicon Tracker is a large-surface silicon micro-strip detector that covers the full acceptance of the experiment in a single tracking station upstream of the spectrometer magnet and the...

  19. The MAPS based PXL vertex detector for the STAR experiment

    International Nuclear Information System (INIS)

    Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.

    2015-01-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m 2 . Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ∼ 3.8 cm 2 . The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm 2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector

  20. Vertex operators, virasoro conditions and string dynamics in curved space

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1987-01-01

    String propagation in a background metric and dilation field are considered in the context of conformal invariant field theory. A perturbatively renormalized tachyon vertex in the presence of these background fields is presented. This generalises the Berezinsky-Kosterlitz-Thouless construction. The equations of motion for the background fields and the wave equation for the vertex function emerge upon imposing the Virasoro gauge conditions on the vertex operator. This is equivalent to calculating the equation of motion Qvertical barpsi> = 0 in the BRST approach

  1. Self-dual vertex operator superalgebras and superconformal field theory

    Science.gov (United States)

    Creutzig, Thomas; Duncan, John F. R.; Riedler, Wolfgang

    2018-01-01

    Recent work has related the equivariant elliptic genera of sigma models with K3 surface target to a vertex operator superalgebra that realizes moonshine for Conway’s group. Motivated by this we consider conditions under which a self-dual vertex operator superalgebra may be identified with the bulk Hilbert space of a superconformal field theory. After presenting a classification result for self-dual vertex operator superalgebras with central charge up to 12 we describe several examples of close relationships with bulk superconformal field theories, including those arising from sigma models for tori and K3 surfaces.

  2. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  3. A Measurement of Neutral B Mixing using Di-Lepton Events with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardane, Naveen [Imperial College, London (United Kingdom)

    2000-12-01

    This thesis reports on a measurement of the neutral B meson mixing parameter, Δmd, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software.

  4. Uncovering the triple omeron vertex from Wilson line formalism

    International Nuclear Information System (INIS)

    Chirilli, G. A.; Szymanowski, L.; Wallon, S.

    2011-01-01

    We compute the triple omeron vertex from the Wilson line formalism, including both planar and nonplanar contributions, and get perfect agreement with the result obtained in the Extended Generalized Logarithmic Approximation based on Reggeon calculus.

  5. Graph Theory. 2. Vertex Descriptors and Graph Coloring

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.

  6. Assembling the last module of the vertex locator for LHCb

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The 42nd and final vertex locator module is assembled in the LHCb clean room. This will be used to measure the point at which two protons in the beam collide from the tracks of particles produced in the collision.

  7. Vertex models: from cell mechanics to tissue morphogenesis.

    Science.gov (United States)

    Alt, Silvanus; Ganguly, Poulami; Salbreux, Guillaume

    2017-05-19

    Tissue morphogenesis requires the collective, coordinated motion and deformation of a large number of cells. Vertex model simulations for tissue mechanics have been developed to bridge the scales between force generation at the cellular level and tissue deformation and flows. We review here various formulations of vertex models that have been proposed for describing tissues in two and three dimensions. We discuss a generic formulation using a virtual work differential, and we review applications of vertex models to biological morphogenetic processes. We also highlight recent efforts to obtain continuum theories of tissue mechanics, which are effective, coarse-grained descriptions of vertex models.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Authors.

  8. Linear Time Vertex Partitioning on Massive Graphs

    Science.gov (United States)

    Mell, Peter; Harang, Richard; Gueye, Assane

    2016-01-01

    The problem of optimally removing a set of vertices from a graph to minimize the size of the largest resultant component is known to be NP-complete. Prior work has provided near optimal heuristics with a high time complexity that function on up to hundreds of nodes and less optimal but faster techniques that function on up to thousands of nodes. In this work, we analyze how to perform vertex partitioning on massive graphs of tens of millions of nodes. We use a previously known and very simple heuristic technique: iteratively removing the node of largest degree and all of its edges. This approach has an apparent quadratic complexity since, upon removal of a node and adjoining set of edges, the node degree calculations must be updated prior to choosing the next node. However, we describe a linear time complexity solution using an array whose indices map to node degree and whose values are hash tables indicating the presence or absence of a node at that degree value. This approach also has a linear growth with respect to memory usage which is surprising since we lowered the time complexity from quadratic to linear. We empirically demonstrate linear scalability and linear memory usage on random graphs of up to 15000 nodes. We then demonstrate tractability on massive graphs through execution on a graph with 34 million nodes representing Internet wide router connectivity. PMID:27336059

  9. Performance of the ATLAS primary vertex reconstruction algorithms

    CERN Document Server

    Zhang, Matt

    2017-01-01

    The reconstruction of primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. Such advances in vertex seeding include methods taken from medical imagining, which allow for reconstruction of very nearby vertices will be highlighted. The performance of the current vertexing algorithms using early Run-2 data will be presented and compared to results from simulation.

  10. R&D Challenges of a CLIC Vertex Detector

    CERN Document Server

    van der Kraaij, E

    2010-01-01

    The Compact Linear Collider (CLIC) is a concept for an electron-positron collider with a center- of-mass energy of up to 3 TeV. Given the unprecedented experimental conditions at CLIC none of the technologies available today can fulfill all requirements set for the vertex detector. At the conference these conditions and the challenges they pose for the R&D of a CLIC vertex detector were presented.

  11. The quintic interaction vertex in light-cone gravity

    International Nuclear Information System (INIS)

    Ananth, Sudarshan

    2008-01-01

    We consider pure gravity in light-cone gauge and derive the complete quintic interaction vertex. Up to quartic order, the Kawai-Lewellen-Tye (KLT) relations can be made manifest at the level of the Einstein-Hilbert Lagrangian. The quintic interaction vertex represents an essential first step in further extending the off-shell validity of the KLT relations to higher order vertices

  12. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  13. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  14. Relations for Modular Forms from Vertex Operator Algebras

    Science.gov (United States)

    Zuevsky, Alexander

    2018-02-01

    We will give a short reminder for vertex operator algebra notion and corresponding characters. Then we discuss algebraic methods for explicit computation of the partition and correlation functions. We then illustrate general ways to find number theory identities for related modular forms by specific examples of modular form relations arising from our construction. Finally, we present new results concerning identities for prime forms on genus g Riemann surfaces and genus two n-point functions for vertex operator algebra characters.

  15. The vertex detector for the Lepton/Photon Collaboration

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-01-01

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity η distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed

  16. Vertex Reconstruction at STAR: Overview and Performance Evaluation

    Science.gov (United States)

    Smirnov, D.; Lauret, J.; Perevoztchikov, V.; Van Buren, G.; Webb, J.

    2017-10-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) has a rich physics program ranging from studies of the Quark Gluon Plasma to the exploration of the spin structure of the proton. Many measurements carried out by the STAR collaboration rely on the efficient reconstruction and precise knowledge of the position of the primary-interaction vertex. Throughout the years two main vertex finders have been predominantly utilized in event reconstruction by the experiment: MinutVF and PPV with their application domains focusing on heavy ion and proton-proton events respectively. In this work we give a brief overview and discuss recent improvements to the vertex finding algorithms implemented in the STAR software library. In our studies we focus on the finding efficiency and the quality of the reconstructed primary vertex. We examine the effect of an additional constraint, imposed by an independent measurement of the beam line position, when it is applied during the fit. We evaluate the significance of the improved primary vertex resolution on identification of the secondary decay vertices occurring inside the beam pipe. Finally, we present a method and its software implementation developed to measure the performance of the primary vertex reconstruction algorithms.

  17. Gauge-invariant three-gluon vertex in QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.; Papavassiliou, J.

    1989-01-01

    By resumming the Feynman graphs which contribute to any gauge-invariant process we explicitly construct, at one-loop order, a three-gluon vertex for QCD which is completely independent of the choice of gauge. This vertex satisfies a Ward identity of the type encountered in ghost-free gauges, relating the vertex to the proper self-energy of a previously constructed gluon propagator, also found by resumming graphs; like the vertex, this self-energy is completely gauge invariant. We also derive the gauge-invariant propagator and vertex via a second related technique which minimizes the dependence on embedding these objects in a gauge-invariant process; the same results are found as in the first technique. These results motivate a toy model of the nonlinear Schwinger-Dyson equation satisfied by the exact gauge-invariant three-gluon vertex. This model is nonperturbative and has infrared singularities, which we can remove via gluon mass generation; it shows many interesting features expected of QCD, such as a β function which is not Borel summable in perturbation theory

  18. Online track and vertex reconstruction on GPUs for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment searches for the lepton flavour violating decay μ → eee, aiming at a branching ratio sensitivity better than 10{sup -16}.To reach this sensitivity, muon rates above 10{sup 9} μ/s are required. A high precision silicon tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in the target to suppress background. The trigger-less readout system will deliver about 100 GB/s of zero-suppressed data. A network of optical links and switching FPGAs sends the complete detector data for a time slice to one node of the filter farm. An FPGA inside the filter farm PC transfers the event data to the GPU via PCIe direct memory access. The GPU finds and fits tracks using a 3D tracking algorithm for multiple scattering dominated resolution. In a second step, a three track vertex fit is performed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background. The talk discusses the data flow from the FPGA to the GPU as well as the implementation and performance of the track and vertex fits on the GPU.

  19. Rapid 3D Track Reconstruction with the BaBar Trigger Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S

    2004-05-24

    As the PEP-II luminosity increases the BaBar trigger and dataflow systems must accommodate the increasing data rate. A significant source of background events at the first trigger level comes from beam particle interactions with the beampipe and synchrotron masks, which are separated from the interaction region by more than 20 cm. The BaBar trigger upgrade will provide 3D tracking capabilities at the first trigger level in order to remove background events by distinguishing the origin of particle tracks. Each new z{sub 0} p{sub T} Discriminator (ZPD) board processes over 1 gigabyte of data per second in order to reconstruct the tracks and make trigger decisions based upon the 3D track parameters.

  20. User Defined Data in the New Analysis Model of the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, G.

    2005-04-06

    The BaBar experiment has recently revised its Analysis Model. One of the key ingredient of BaBar new Analysis Model is the support of the capability to add to the Event Store user defined data, which can be the output of complex computations performed at an advanced stage of a physics analysis, and are associated to analysis objects. In order to provide flexibility and extensibility with respect to object types, template generic programming has been adopted. In this way the model is non-intrusive with respect to reconstruction and analysis objects it manages, not requiring changes in their interfaces and implementations. Technological details are hidden as much as possible to the user, providing a simple interface. In this paper we present some of the limitations of the old model and how they are addressed by the new Analysis Model.

  1. Search for exotics in the rare decay B → J/ψKKK at BABAR

    Directory of Open Access Journals (Sweden)

    Prencipe Elisabetta

    2015-01-01

    Full Text Available One of the most intriguing puzzles in hadron spectroscopy are the numerous charmonium-like states observed in the last decade, including charged states that are manifestly exotic. Over the years, the experiment BABAR has extensively studied those in B meson decays, initial state radiation processes and two photon reactions. We report in this paper a new study on some of those states, performed using the entire data sample collected by BABAR in e+e− collisions, at center of mass energies near 10.58 GeV/c2. The study of the process B → J/ψϕK will be presented, and the search for the resonant states X(4140 and X(4270 in their decays to J/ψϕ, will be highlighted.

  2. A Measurement of the Exclusive Branching Fraction for B → π K at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aspinwall, Marie Louise [Imperial College, London (United Kingdom)

    2002-02-01

    This thesis presents an exclusive measurement of the branching fraction B for the rare charmless hadronic B decays to πK final states. A sample of 22.57±0.36 million BB pairs was collected with the BaBar detector at the Stanford Linear Accelerator Center's PEP-II B Factory, during the Run 1 data taking period (1999-2000).

  3. Final Report, CONTRIBUTIONS TO STUDIES OF CP VIOLATION AND HADRONIC PHYSICS WITH THE BABAR COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [University of Louisville

    2013-07-25

    The University of Louisville High Energy Physics group has undertaken a long-term effort in understanding baryon production in elementary particle processes in the 10 GeV energy region. We have contributed significantly to the broad program of the BaBar Collaboration, particularly in support of computing, data visualization, and simulation. We report here on progress in the areas of service to the Collaboration and understanding of baryon production via measurement of inclusive hadronic particle spectra.

  4. The RPC-based IFR system at BaBar experiment preliminary results

    CERN Document Server

    Piccolo, D; Bagnasco, S; Baldini, R; Band, H R; Bionta, R; Buzzo, A; Calcaterra, A; Cavallo, N; Contri, R; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Fabozzi, F; Falciai, D; Finocchiaro, G; Gatto, C; Johnson, J; Lista, L; Lo Vetere, M; Macri, M; Monge, R; Palano, A; Paolucci, P; Passaggio, S; Patrignani, C; Patteri, P; Peruzzi, I; Piccolo, M; Robutti, E; Santroni, A; Sciacca, C; Wright, D; Yu, Z; Zallo, A

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported.

  5. The RPC-based IFR system at BaBar experiment: preliminary results

    International Nuclear Information System (INIS)

    Piccolo, Davide; Palano, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Anulli, F.; Baldini, R.; Calcaterra, A.; De Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I.; Piccolo, M.; Yu, Z.; Zallo, A.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Sciacca, C.; Bionta, R.; Wright, D.; Band, H.; Johnson, J.

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported

  6. Distributing File-Based Data to Remote Sites Within the BABAR Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, Stephen J.

    2002-05-02

    BABAR [1] uses two formats for its data: Objectivity database and root [2] files. This poster concerns the distribution of the latter--for Objectivity data see [3]. The BABAR analysis data is stored in root files--one per physics run and analysis selection channel--maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,000 root files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centers throughout the us and Europe. Two basic problems confront us when we seek to import bulk data from slac to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and we must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync [4], the widely-used mirror/synchronization program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimize the network transfer by using multiple streams, adjusting the tcp window size, or separating encrypted authentication from unencrypted data channels.

  7. Expected performance of tracking and vertexing with the HL-LHC ATLAS detector

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of $7.5 \\cdot 10^{34} cm^{-2}s^{-1}$ which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  8. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  9. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  10. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  11. Choosing CPUs in an Open Market: System Performance Testing for the BaBar Online Farm

    International Nuclear Information System (INIS)

    Pavel, Tomas J

    1998-01-01

    BABAR is a high-rate experiment to study CP violation in asymmetric e + e - collisions. The BABAR Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full reconstruction of selected events and for monitoring functions. A large number of machine architectures were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU performance. Factors of general interest to others making hardware decisions are highlighted. Performance of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations in memory system performance exist. No single operating system has an overall edge in the performance of its primitives. In particular, freeware operating systems perform no worse overall than the commercial offerings

  12. The IFR Online Detector Control system at the BaBar Experiment

    International Nuclear Information System (INIS)

    Paolucci, Pierluigi

    1999-01-01

    The Instrumented Flux Return (IFR)[1] is one of the five subdetectors of the BaBar[2] experiment on the PEP II accelerator at SLAC. The IFR consists of 774 Resistive Plate Chamber (RPC) detectors, covering an area of about 2,000 m 2 and equipped with 3,000 Front-end Electronic Cards (FEC) reading about 50,000 channels (readout strips). The first aim of a B-factory experiment is to run continuously without any interruption and then the Detector Control system plays a very important role in order to reduce the dead-time due to the hardware problems. The I.N.F.N. group of Naples has designed and built the IFR Online Detector Control System (IODC)[3] in order to control and monitor the operation of this large number of detectors and of all the IFR subsystems: High Voltage, Low Voltage, Gas system, Trigger and DAQ crates. The IODC consists of 8 custom DAQ stations, placed around the detector and one central DAQ station based on VME technology and placed in electronic house. The IODC use VxWorks and EPICS to implement slow control data flow of about 2500 hardware channels and to develop part of the readout module consisting in about 3500 records. EPICS is interfaced with the BaBar Run Control through the Component Proxy and with the BaBar database (Objectivity) through the Archiver and KeyLookup processes

  13. Choosing CPUs in an Open Market: System Performance Testing for the BaBar Online Farm

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Tomas J

    1998-11-17

    BABAR is a high-rate experiment to study CP violation in asymmetric e{sup +}e{sup {minus}} collisions. The BABAR Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full reconstruction of selected events and for monitoring functions. A large number of machine architectures were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU performance. Factors of general interest to others making hardware decisions are highlighted. Performance of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations in memory system performance exist. No single operating system has an overall edge in the performance of its primitives. In particular, freeware operating systems perform no worse overall than the commercial offerings.

  14. Two- and Three-Body Charmless B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-05

    We report recent measurements of rare charmless B decays performed by BaBar. The results are based on the final BaBar dataset of 424 fb{sup -1} collected at the PEP-II B-factory based at the SLAC National Accelerator Laboratory. The study of rare B decays is a key ingredient to meet two of the main goals of the B-factories: assessing the validity of the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP-violation by precisely measuring the elements of the Unitarity Triangle (UT), and searching for hints of New Physics (NP), or otherwise constraining NP scenarios, in processes which are suppressed in the Standard Model (SM). In loop processes, in particular, NP at some higher energy scale may manifest itself in the low energy effective theory as new couplings, such as those introduced by new very massive virtual particles in the loop. In NP searches hadronic uncertainties can play a major role, expecially for branching fraction measurements. Many theoretical uncertainties cancel in ratios of amplitudes, and most NP probes are therefore of this kind. In the following sections we report recent measurements, performed by the BaBar Collaboration, that are relevant to NP searches in charmless hadronic B decays.

  15. Events simulation production for the BaBar experiment using the grid approach content

    International Nuclear Information System (INIS)

    Fella, A.; Andreotti, D.; Luppi, E.

    2007-01-01

    The BaBar experiment is taking data since 1999, investigating the violation of charge and parity (CP) symmetry in the field of High Energy Physics. Event simulation is an intensive computing task, due to the complexity of algorithm based on Monte-Carlo method implemented using the GEANT engine. Data needed as input for the simulation, stored in the ROOT format, are classified into two categories: conditions data for describing the detector status when data are recorded, and background triggers data for including noise signal necessary to obtain a realistic simulation. In order to satisfy these requirements, in the traditional BaBar computing model events are distributed over several sites involved in the collaboration where each site manager centrally manages a private farm dedicated to simulation production. The new grid approach applied to the BaBar production framework is discussed along with the schema adopted for data deployment via Xrootd servers, including data management using grid middle ware on distributed storage facilities spread over the INFN-GRID network. A comparison between the two models is provided, describing also the custom application developed for performing the whole production task on the grid and showing results achieved. (Author)

  16. Study of charmonium decays of B mesons in the Babar experiment; Etude des desintegrations charmonium des mesons B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe

    2006-04-15

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e{sup +}e{sup -} collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2{beta}) 0.722 {+-} 0.040 {+-} 0.023; {alpha} = (103 + 11 - 9) degrees; {gamma} = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes.

  17. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  18. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  19. Silicon PIN diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab

  20. Quarkonium Spectroscopy And Search for New States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G.

    2011-11-04

    The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the mass values suggest that they could be conventional charmonia, but also other interpretations like D{sup 0}{bar D}*{sup 0} molecule or diquark-antidiquark states among many other models have been advanced. Reviews can be found in Refs. [1][2]. In all cases the picture is not completely clear. This situation could be remedied by a coherent search of the decay pattern to D{bar D}, search for production in two-photon fusion and ISR, and of course improving the statistical precision upon the current measurements. The BaBar experiment at the PEP-II asymmetric collider, designed to perform precision measurement of CP violation in the B meson system, has an extensive quarkonium spectroscopy program. Recent

  1. A covariant representation of the Ball–Chiu vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, Naser; Schubert, Christian

    2013-01-01

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry

  2. A covariant representation of the Ball–Chiu vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, Naser, E-mail: naser@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Schubert, Christian, E-mail: schubert@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-04-21

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.

  3. Plethystic vertex operators and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Fauser, Bertfried; Jarvis, Peter D; King, Ronald C

    2016-01-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π . Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π , the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms. (paper)

  4. Measurement of Rb Using a Vertex Mass Tag

    International Nuclear Information System (INIS)

    Steiner, R.; Benvenuti, A.C.; Coller, J.A.; Hedges, S.J.; Johnson, A.S.; Shank, J.T.; Whitaker, J.S.; Allen, N.J.; Cotton, R.; Dervan, P.J.; Hasan, A.; McKemey, A.K.; Watts, S.J.; Caldwell, D.O.; Lu, A.; Yellin, S.J.; Cavalli-Sforza, M.; Coyne, D.G.; Fernandez, J.P.; Liu, X.; Reinertsen, P.L.; Schalk, T.; Schumm, B.A.; DOliveira, A.; Johnson, R.A.; Meadows, B.T.; Nussbaum, M.; Dima, M.; Harton, J.L.; Smy, M.B.; Staengle, H.; Wilson, R.J.; Baranko, G.; Fahey, S.; Fan, C.; Krishna, N.M.; Lauber, J.A.; Nauenberg, U.; Wagner, D.L.; Bazarko, A.O.; Bolton, T.; Rowson, P.C.; Shaevitz, M.H.; Camanzi, B.; Mazzucato, E.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Eisenstein, B.I.; Gladding, G.; Karliner, I.; Shapiro, G.; Steiner, H.; Bardon, O.; Burrows, P.N.; Busza, W.; Cowan, R.F.; Dong, D.N.; Fero, M.J.; Gonzalez, S.; Kendall, H.W.; Lath, A.; Lia, V.; Osborne, L.S.; Quigley, J.; Taylor, F.E.; Torrence, E.; Verdier, R.; Williams, D.C.

    1998-01-01

    We report a new measurement of R b =Γ Z 0 →bbar b /Γ Z 0 →hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130x10 3 hadronic Z 0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b -tagging efficiency and purity. We obtain R b =0.2142±0.0034(stat) ±0.0015(syst)±0.0002( R c ) . copyright 1998 The American Physical Society

  5. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. Characterisation of a radiation hard front-end chip for the vertex detector of the LHCb experiment at CERN

    International Nuclear Information System (INIS)

    Bakel, N. van; Baumeister, D.; Beuzekom, M. van; Bulten, H.J.; Feuerstack-Raible, M.; Jans, E.; Ketel, T.; Klous, S.; Loechner, S.; Sexauer, E.; Smale, N.; Snoek, H.; Trunk, U.; Verkooijen, H.

    2003-01-01

    The Beetle is a 128 channel analog pipelined readout chip which is intended for use in the silicon vertex locator (VELO) of the LHCb experiment at CERN. The Beetle chip is specially designed to withstand high radiation doses. Two Beetle1.1 chips bonded to a silicon strip detector have been tested with minimum ionizing particles. The main goal was to measure the signal-to-noise (S/N) ratio of the Beetle1.1 connected to a prototype VELO detector. Furthermore we investigated the general behaviour of the Beetle1.1. In this note we present the chip architecture, the measured (S/N) numbers as well as some characteristics (e.g. risetime, spillover) of the Beetle1.1 chip. Results from a total ionizing dose irradiation test are reported

  7. RAVE-a Detector-independent vertex reconstruction toolkit

    International Nuclear Information System (INIS)

    Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian

    2007-01-01

    A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available

  8. Simulations with the PANDA micro-vertex-detector

    International Nuclear Information System (INIS)

    Kliemt, Ralf

    2013-01-01

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  9. The L3 vertex detector: design and performance

    Science.gov (United States)

    Akbari, H.; Alverson, G.; Anderhub, H.; Bao, J.; Behner, F.; Behrens, J.; Beissel, F.; Betev, B.; Biland, A.; Böhm, A.; Camps, C.; Chien, C.-Y.; Commichau, V.; Dieters, K.; Donat, A.; Djambazov, L.; Fisher, P.; Freibel, W.; Göttlicher, P.; Haensli, M.; Hangarter, K.; Hasan, A.; Heller, R.; Herten, U.; Hofer, H.; Glaubman, M.; Jung, H.; Leedom, I.; Leiste, R.; Liebmann, H.; Lohmann, W.; Neyer, C.; Newman, D.; MacDermott, M.; Maolinbay, M.; McNally, D.; Mnich, J.; Möller, M.; Orndorff, J.; Peng, Y.; Pevsner, A.; Pohl, M.; Quadleig, K.; Rahal-Callot, G.; Ren, D.; Reucroft, S.; Rieb, N.; Rinsche, U.; Röser, U.; Röhner, S.; Rose, J.; Schmitz, P.; Schulte, R.; Schultze, K.; Sens, J. C.; Spangler, J.; Spartiotis, C.; Spickermann, T.; Starosta, R.; Sultanov, G.; Suter, H.; Szcesny, H.; Taylor, L.; Tonisch, F.; Trowitzsch, G.; Ulbricht, J.; Viertel, G.; Vikas, P.; Virnich, H.; Vogt, H.; Von Gunten, H. P.; Waldmeier, S.; Weber, J.; Winands, T.; Zemp, P.

    1992-05-01

    The L3 vertex detector is comprised of the time expansion chamber (TEC), the Z-chamber and a layer of plastic scintillating fibers. The TEC has shown a high spatial resolution and an excellent multi-track reconstruction capability at LEP luminosity. The Z-chamber provides information about the z-coordinates of the tracks and the fibers are used for calibrating the drift velocity with a high precision. A description of the L3 vertex detector, its readout and data acquisition and its performance during the 1990 LEP running period is presented in this paper.

  10. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  11. Measurement of the e+e-→ hadrons cross-section at low energy with ISR events at BABAR

    International Nuclear Information System (INIS)

    Malaescu, B.

    2011-01-01

    The precise measurement of the cross section e + e - →π + π - (γ) from threshold to an energy of 3 GeV, using events with Initial State Radiation (ISR) collected with the BABAR detector, is presented. The ISR luminosity is determined from a study of the leptonic process e + e - →μ + μ - γ(γ), and the method is tested by the comparison with the next-to-leading order (NLO) QED prediction. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the BABAR ππ cross section measured from threshold to 1.8 GeV is (514.1±2.2(stat)±3.1(syst))x10 -10 . Other results on ISR multihadronic cross sections from BABAR are presented.

  12. Improving the Security and Performance of the BaBar Detector Controls System

    International Nuclear Information System (INIS)

    Kotturi, Karen D.

    2003-01-01

    It starts out innocently enough--users want to monitor Online data and so run their own copies of the detector control GUIs in their offices and at home. But over time, the number of processes making requests for values to display on GUIs, webpages and stripcharts can grow, and affect the performance of an Input/Output Controller (IOC) such that it is unable to respond to requests from requests critical to data-taking. At worst, an IOC can hang, its CPU having been allocated 100% to responding to network requests. For the BaBar Online Detector Control System, we were able to eliminate this problem and make great gains in security by moving all of the IOCs to a non-routed, virtual LAN and by enlisting a workstation with two network interface cards to act as the interface between the virtual LAN and the public BaBar network. On the interface machine, we run the Experimental Physics Industrial Control System (EPICS) Channel Access (CA) gateway software (originating from Advanced Photon Source). This software accepts as inputs, all the channels which are loaded into the EPICS databases on all the IOCs. It polls them to update its copy of the values. It answers requests from applications by sending them the currently cached value. We adopted the requirement that data-taking would be independent of the gateway, so that, in the event of a gateway failure, data-taking would be uninterrupted. In this way, we avoided introducing any new risk elements to data-taking. Security rules already in use by the IOC were propagated to the gateway's own security rules and the security of the IOCs themselves was improved by removing them from the public BaBar network

  13. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    International Nuclear Information System (INIS)

    Lu, Changguo

    2003-01-01

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement

  14. Results from the first beam-induced reconstructed tracks in the LHCb vertex locator

    CERN Document Server

    Rodrigues, E

    2010-01-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare $b$ decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of $B$-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n$^+$-on-n 300 $\\mu$m thick half disc sensors with $R$ and $\\Phi$ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO$_2$ cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relativ...

  15. Study of B --> S Gamma at BaBar Using the Sum of Exclusive Modes

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, T

    2003-12-17

    The electromagnetic penguin process b {yields} s{gamma} is very interesting to theorists because it can be used to constrain contributions from new physics that could enter at the one loop level. The high statistics of B{bar B} events collected at the BABAR experiment make a measurement of this rare decay possible. The branching fraction of a sum of exclusive b {yields} s{gamma} decay modes is measured as a function of the strange hadronic mass. This is a large step toward the measurement of the b {yields} s{gamma} rate.

  16. Sun Microsystem's AutoClient and management of computer farms at BaBar

    OpenAIRE

    Telnov, A. V.; Luitz, S.; Pavel, T. J.; Saxton, O. H.; Simonson, M. R.

    2000-01-01

    Modern HEP experiments require immense amounts of computing power. In the BaBar experiment at SLAC, most of it is provided by Solaris SPARC systems. AutoClient, a product of Sun Microsystems, was designed to make setting up and managing large numbers of Solaris systems more straightforward. AutoClient machines keep all filesystems, except swap, on a server and employ CacheFS to cache them onto a local disk, which makes them Field Replaceable Units with performance of stand-alone systems. We b...

  17. Observation of Y(3940) --> J/psiomega in B --> J/psiomegaK at BABAR.

    Science.gov (United States)

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A

    2008-08-22

    We present a study of the decays B;{0,+}-->J/psiomegaK;{0,+} using 383x10;{6} BB[over ] events obtained with the BABAR detector at PEP-II. We observe Y(3940)-->J/psiomega, with mass 3914.6_{-3.4};{+3.8}(stat)+/-2.0(syst) MeV/c;{2}, and width 34_{-8};{+12}(stat)+/-5(syst) MeV. The ratio of B0 and B+ decay to YK is 0.27_{-0.23};{+0.28}(stat)-0.01+0.04(syst), and the relevant B0 and B+ branching fractions are reported.

  18. Search for D{sub (sJ)}(2632) at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-08-17

    The authors performed a search for the D{sub sJ}*(2632){sup +} state recently reported by the SELEX Collaboration at FNAL. This preliminary analysis makes use of an integrated luminosity of 125 fb{sup -1} collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. The resulting D{sub s}{sup +}{eta} and D{sup 0}K{sup +} mass spectra show no evidence for the D{sub sJ}*(2632){sup +} state. In addiition, no signal is observed in the D*{sup +} K{sub S} mass spectrum.

  19. New results on low energy exclusive hadronic final states from BABAR

    OpenAIRE

    Gary J. William

    2018-01-01

    The 3.6 standard deviation discrepancy between the standard model (SM) prediction for the muon anomalous magnetic moment gμ - 2 and the corresponding experimental measurement is one of the most persistent and intriguing potential signals in particle physics for physics beyond the SM. The largest uncertainty in the SM prediction for gμ - 2 arises from the uncertainty in the measured low energy inclusive e+e- → hadrons cross section. New results from the BABAR experiment at SLAC for the e+e- → ...

  20. New modular form identities associated to generalized vertex operator algebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2015-01-01

    Roč. 16, č. 1 (2015), s. 607-623 ISSN 1787-2405 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.335, year: 2015 http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_1138

  1. Fast simulation and topological vertex finding in JAVA

    International Nuclear Information System (INIS)

    Walkowiak, Wolfgang

    2001-01-01

    An overview of the fast Monte Carlo simulation for NLC detector studies as currently provided in the Java Analysis Studio environment is presented. Special emphasis is given to the simulation of tracks. In addition, the SLD collaboration's topological vertex finding algorithm (ZVTOP) has been implemented in the Java Analysis Studio framework

  2. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  3. Tripartite connection condition for a quantum graph vertex

    Czech Academy of Sciences Publication Activity Database

    Cheon, T.; Exner, Pavel; Turek, Ondřej

    2010-01-01

    Roč. 375, č. 2 (2010), s. 113-118 ISSN 0375-9601 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Schrodinger operator * Singular vertex * Boundary conditions Subject RIV: BA - General Mathematics Impact factor: 1.963, year: 2010

  4. Vertex algebra generation of almost holomorphic modular forms

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2015-01-01

    Roč. 31, - (2015), s. 15-23 ISSN 0974-5750 Institutional support: RVO:67985840 Keywords : automorphic forms * non-holomorphic extension of Einstein series * vertex algebras Subject RIV: BA - General Mathematics http://www.scientificadvances.co.in/abstract/1/157/897

  5. Random matrices and the six-vertex model

    CERN Document Server

    Bleher, Pavel

    2013-01-01

    This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wa...

  6. Tests of track segment and vertex finding with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B.; Lessner, E. (Fermi National Accelerator Lab., Batavia, IL (USA)); Lindsey, C.S. (Iowa State Univ. of Science and Technology, Ames, IA (USA))

    1990-04-01

    Feed forward neural networks have been trained, using back-propagation, to find the slopes of simulated track segments in a straw chamber and to find the vertex of tracks from both simulated and real events in a more conventional drift chamber geometry. Network architectures, training, and performance are presented. 12 refs., 7 figs.

  7. Self-locking degree-4 vertex origami structures.

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Wang, K W

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  8. A measurement of B0 meson properties using partially reconstructed B0 to D*- pi+ and B0 tp D*- lepton+ nu-lepton decays with the BABAR detector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-10-13

    The two B{sup 0} decay processes B{sup 0} {yields} D*{sup -} {pi}{sup +} and B{sup 0} {yields} D*{sup -} {ell}{sup +} {nu}{sub {ell}} have been studied by means of a partial reconstruction technique using a data sample collected with the BABAR detector at the PEP-II storage ring. To increase statistics, only the soft {pi}{sup -} from the decay D*{sup -} {yields} {pi}{sup -} D{sup 0} was used in association with either an oppositely-charged high-momentum pion or lepton. Events were then identified by exploiting the constraints from the simple kinematics of {Upsilon}(4S) decays. A clear signature is obtained in each case. The position of the B{sup 0} decay point was obtained from the reconstructed {pi}{sup +} ({ell}{sup +}){pi}{sup -} vertex. The position of the other {bar B}{sup 0} in the event was also determined. Taking advantage of the boost given to the {Upsilon}(4S) system by the asymmetric beam energies of PEP-II, the lifetime of the B{sup 0} meson has been measured from the separation distance between the two vertices along the beam direction.

  9. Domination parameters of a graph with added vertex

    Directory of Open Access Journals (Sweden)

    Maciej Zwierzchowski

    2004-01-01

    Full Text Available Let \\(G=(V,E\\ be a graph. A subset \\(D\\subseteq V\\ is a total dominating set of \\(G\\ if for every vertex \\(y\\in V\\ there is a vertex \\(x\\in D\\ with \\(xy\\in E\\. A subset \\(D\\subseteq V\\ is a strong dominating set of \\(G\\ if for every vertex \\(y\\in V-D\\ there is a vertex \\(x\\in D\\ with \\(xy\\in E\\ and \\(\\deg _{G}(x\\geq\\deg _{G}(y\\. The total domination number \\(\\gamma _{t}(G\\ (the strong domination number \\(\\gamma_{S}(G\\ is defined as the minimum cardinality of a total dominating set (a strong dominating set of \\(G\\. The concept of total domination was first defined by Cockayne, Dawes and Hedetniemi in 1980 [Cockayne E. J., Dawes R. M., Hedetniemi S. T.: Total domination in graphs. Networks 10 (1980, 211–219], while the strong domination was introduced by Sampathkumar and Pushpa Latha in 1996 [Pushpa Latha L., Sampathkumar E.: Strong weak domination and domination balance in a graph. Discrete Mathematics 161 (1996, 235–242]. By a subdivision of an edge \\(uv\\in E\\ we mean removing edge \\(uv\\, adding a new vertex \\(x\\, and adding edges \\(ux\\ and \\(vx\\. A graph obtained from \\(G\\ by subdivision an edge \\(uv\\in E\\ is denoted by \\(G\\oplus u_{x}v_{x}\\. The behaviour of the total domination number and the strong domination number of a graph \\(G\\oplus u_{x}v_{x}\\ is developed.

  10. Measurement of Charmless B to Vector-Vector decays at BaBar

    International Nuclear Information System (INIS)

    Olaiya, Emmanuel

    2011-01-01

    The authors present results of B → vector-vector (VV) and B → vector-axial vector (VA) decays B 0 → φX(X = φ,ρ + or ρ 0 ), B + → φK (*)+ , B 0 → K*K*, B 0 → ρ + b 1 - and B + → K* 0 α 1 + . The largest dataset used for these results is based on 465 x 10 6 Υ(4S) → B(bar B) decays, collected with the BABAR detector at the PEP-II B meson factory located at the Stanford Linear Accelerator Center (SLAC). Using larger datasets, the BABAR experiment has provided more precise B → VV measurements, further supporting the smaller than expected longitudinal polarization fraction of B → φK*. Additional B meson to vector-vector and vector-axial vector decays have also been studied with a view to shedding light on the polarization anomaly. Taking into account the available errors, we find no disagreement between theory and experiment for these additional decays.

  11. Studying b --> s gamma at BABAR Using a Fully Inclusive Method

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, R

    2004-02-23

    The b {yields} s{gamma} decay represents a possible electromagnetic ''loop'' penguin decay of the B meson. This FCNC process is of high theoretical interest because various scenarios of new physics are expected to have contributions at the same (one loop) level as the Standard Model. The large sample of B{bar B} meson decays collected by the BaBar experiment makes a precision measurement of this rare decay possible. In conjunction with Standard Model predictions at the 10% level, it brings new physics effects into the realm of detection--or seriously constrains models that could predict them. A fully inclusive technique is presented to study the b {yields} s{gamma} transition as a function of photon energy, using 88.5 {+-} 1.0 x 10{sup 6} B{bar B} meson decays collected by the BaBar experiment in the years 2000 to 2002. The expected statistical and systematic uncertainties have been fully determined which enables first comparisons with theoretical predictions and other experimental results. It also lays the basis for the determination of the inclusive branching fraction {Beta}(B {yields} X{sub s}{gamma}) and the measurement of the photon energy spectrum.

  12. BaBar MC production on the Canadian grid using a web services approach

    International Nuclear Information System (INIS)

    Agarwal, A; Armstrong, P; Desmarais, R; Gable, I; Popov, S; Ramage, S; Schaffer, S; Sobie, C; Sobie, R; Sulivan, T; Vanderster, D; Mateescu, G; Podaima, W; Charbonneau, A; Impey, R; Viswanathan, M; Quesnel, D

    2008-01-01

    The present paper highlights the approach used to design and implement a web services based BaBar Monte Carlo (MC) production grid using Globus Toolkit version 4. The grid integrates the resources of two clusters at the University of Victoria, using the ClassAd mechanism provided by the Condor-G metascheduler. Each cluster uses the Portable Batch System (PBS) as its local resource management system (LRMS). Resource brokering is provided by the Condor matchmaking process, whereby the job and resource attributes are expressed as ClassAds. The important features of the grid are automatic registering of resource ClassAds to the central registry, ClassAds extraction from the registry to the metascheduler for matchmaking, and the incorporation of input/output file staging. Web-based monitoring is employed to track the status of grid resources and the jobs for an efficient operation of the grid. The performance of this new grid for BaBar jobs, and the existing Canadian computational grid (GridX1) based on Globus Toolkit version 2 is found to be consistent

  13. Study of charmonium decays of B mesons in the Babar experiment

    International Nuclear Information System (INIS)

    Grenier, Philippe

    2006-04-01

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e + e - collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2β) 0.722 ± 0.040 ± 0.023; α = (103 + 11 - 9) degrees; γ = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes

  14. Cycles through all finite vertex sets in infinite graphs

    DEFF Research Database (Denmark)

    Kundgen, Andre; Li, Binlong; Thomassen, Carsten

    2017-01-01

    that every one-ended planar cubic 3-connected bipartite graph has a Hamiltonian curve. It is also equivalent to the statement that every planar cubic 3-connected bipartite graph with a nowhere-zero 3-flow (with no restriction on the number of ends) has a Hamiltonian curve. However, there are 7-ended planar......A closed curve in the Freudenthal compactification |G| of an infinite locally finite graph G is called a Hamiltonian curve if it meets every vertex of G exactly once (and hence it meets every end at least once). We prove that |G| has a Hamiltonian curve if and only if every finite vertex set of G...... is contained in a cycle of G. We apply this to extend a number of results and conjectures on finite graphs to Hamiltonian curves in infinite locally finite graphs. For example, Barnette’s conjecture (that every finite planar cubic 3-connected bipartite graph is Hamiltonian) is equivalent to the statement...

  15. Bs⁎BK vertex from QCD sum rules

    International Nuclear Information System (INIS)

    Cerqueira, A.; Osório Rodrigues, B.; Bracco, M.E.

    2012-01-01

    The form factors and the coupling constant of the B s ⁎ BK vertex are calculated using the QCD sum rules method. Three-point correlation functions are computed considering both K and B mesons off-shell and, after an extrapolation of the QCDSR results, we obtain the coupling constant of the vertex. We study the uncertainties in our result by calculating a third form factor obtained when the B s ⁎ is the off-shell meson, considering other acceptable structures and computing the variations of the sum rules' parameters. The form factors obtained have different behaviors but their simultaneous extrapolations reach to the same value of the coupling constant g B s ⁎ BK =10.6±1.7. We compare our result with other theoretical estimates.

  16. Covariant superstring fermionic amplitudes. Vertex operators and picture changing

    International Nuclear Information System (INIS)

    Aldazabal, G.; Nunez, C.; Bonini, M.

    1988-07-01

    Massive Ramond and Neveu-Schwarz vertex operators in the -1/2 and -1 ghost representations respectively are obtained from the factorization of the scattering amplitude of an arbitrary number of bosonic and fermionic massless states on general Riemann surfaces. The correlators for the ghost field of charge -1 and its derivatives are given as well as the normal ordering prescriptions to be used in computing scattering amplitudes. The vertex operators for the massless and the first two excited levels, both of the Ramond and the Neveu-Schwarz sector are given explicitly. The picture changing mechanism is considered and applied to relate the Neveu-Schwarz vertices in different representations. (author). 22 refs

  17. Worldline calculation of the three-gluon vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, N.; Schubert, C.

    2012-01-01

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  18. On the zero crossing of the three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, A. [Department of Physics, University of Cyprus, POB 20537, 1678 Nicosia (Cyprus); Binosi, D., E-mail: binosi@ectstar.eu [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (Italy); Boucaud, Ph. [Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); De Soto, F. [Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla (Spain); Papavassiliou, J. [Department of Theoretical Physics and IFIC, University of Valencia-CSIC, E-46100, Valencia (Spain); Rodríguez-Quintero, J. [Department of Integrated Sciences, University of Huelva, E-21071 Huelva (Spain); Zafeiropoulos, S. [Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2016-10-10

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  19. The secondary vertex finding algorithm with the ATLAS detector

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    A high performance identification of jets, produced via fragmentation of bottom quarks, is crucial for the ATLAS physics program. These jets can be identified by exploiting the presence of cascade decay vertices from bottom hadrons. A general vertex-finding algorithm is introduced and its ap- plication to the search for secondary vertices inside jets is described. Kinematic properties of the reconstructed vertices are used to construct several b-jet identification algorithms. The features and performance of the secondary vertex finding algorithm in a jet, as well as the performance of the jet tagging algorithms, are studied using simulated $pp$ -> $t\\bar{t}$ events at a centre-of-mass energy of 13 TeV.

  20. Impact parameter trigger and vertex detector for forward collider

    International Nuclear Information System (INIS)

    Selove, W.

    1993-01-01

    In a forward collider design, Coulomb scattering produces an unavoidable smearing of the vertex region by low-p t tracks. A detector and triggering design is described which aims at differentiating B events from minimum bias events with high efficiency, in spite of this smearing, by measuring momentum and p t of all tracks in real time, and triggering only when an event shows a number of high-p t tracks with substantial impact parameters. Triggering efficiency an order of magnitude larger than for a lepton trigger can be anticipated. Detector planes are located within 4 millimeters of the beam line; a replaceable-vertex-region design provides for rapid replacement of radiation damaged closest elements at time intervals of a few months

  1. Six-vertex model and Schramm-Loewner evolution

    Science.gov (United States)

    Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B.

    2017-05-01

    Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SL E κ, Schramm-Loewner evolution with parameter κ , where 4 <κ ≤12 +8 √{2 } . For square ice, κ =12 . At the "free-fermion point" of the six-vertex model, κ =8 +4 √{3 } . These unusual values lie outside the classical interval 2 ≤κ ≤8 .

  2. Vertex finding by sparse model-based clustering

    Science.gov (United States)

    Frühwirth, R.; Eckstein, K.; Frühwirth-Schnatter, S.

    2016-10-01

    The application of sparse model-based clustering to the problem of primary vertex finding is discussed. The observed z-positions of the charged primary tracks in a bunch crossing are modeled by a Gaussian mixture. The mixture parameters are estimated via Markov Chain Monte Carlo (MCMC). Sparsity is achieved by an appropriate prior on the mixture weights. The results are shown and compared to clustering by the expectation-maximization (EM) algorithm.

  3. Superstring vertex operators and scattering amplitudes on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Aldazabel, G.; Nunez, C.; Iengo, R.; Bonini, M.

    1987-12-01

    The construction of scattering amplitudes involving arbitrary bosonic mass level states is considered in both the closed superstring and in the heterotic string theories, at any order of perturbation. From massless particle scattering on a general Riemann surface, the super-covariant form of the vertex operators is derived via factorization. The super-covariant rules, including the normal ordering prescriptions, to be used in computing amplitudes, are automatically given by this procedure. (author). 22 refs, 1 fig

  4. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  5. The effect of radiation damage on the vertex detector efficiency

    CERN Document Server

    Cooke, O

    1997-01-01

    97-023 This note describes a brief study into the effects of the radiation damage on the vertex detectorperformance. The noise increases as the detector is irradiated. Fixing the fraction of noise clusters to 0.1% by adjusting the thresholds brings about a loss in efficiency with increased irradiation. This loss in efficiency is parameterized, and some effects on the B->pi+pi- channel are shown.

  6. Fatigue crack shape prediction based on vertex singularity

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš

    2008-01-01

    Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  8. Colour-independent partition functions in coloured vertex models

    International Nuclear Information System (INIS)

    Foda, O.; Wheeler, M.

    2013-01-01

    We study lattice configurations related to S n , the scalar product of an off-shell state and an on-shell state in rational A n integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S 2 (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S 2 , which depends on two sets of Bethe roots, {b 1 } and {b 2 }, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b 1 }→∞, and/or {b 2 }→∞, into a product of determinants, 2. Each of the latter determinants is an A 1 vertex-model partition function

  9. Track and vertex reconstruction: From classical to adaptive methods

    International Nuclear Information System (INIS)

    Strandlie, Are; Fruehwirth, Rudolf

    2010-01-01

    This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.

  10. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2016-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  11. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  12. A Study of Production and Decay of Omegac0 Baryons in BABAR

    International Nuclear Information System (INIS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-01-01

    Production and decay of (Omega) c 0 baryons is studied with ∼ 230 fb -1 of data recorded with the BABAR detector at the PEP-II e + e - asymmetric-energy storage ring at SLAC. The (Omega) c 0 is reconstructed through its decays into (Omega) - π + , (Omega) - π + π - π + , Ξ - K - π + π + final states. The invariant mass spectra are presented and the signal yields are extracted. Ratios of branching fractions are measured relative to the (Omega) c 0 → (Omega) - π + mode Β((Omega) c 0 → Ξ - K - π + π + )/Β((Omega) c 0 → (Omega) - π + ) = 0.31 ± 0.15(stat.) ± 0.04(syst.), Β((Omega) c 0 → (Omega) - π + π - π + )/Β((Omega) c 0 → (Omega) - π + ) c 0 baryons is extracted from decays into (Omega) - π + , establishing the first observation of (Omega) c 0 production from B decays

  13. The DIRC front-end electronics chain for BaBar

    CERN Document Server

    Bailly, P; Del Buono, L; Genat, J F; Lebbolo, H; Roos, L; Zhang, B; Beigbeder-Beau, C; Bernier, R; Breton, D; Cacéres, T; Chase, Robert L; Ducorps, A; Hrisoho, A; Imbert, P; Sen, S; Tocut, V; Truong, K; Wormser, G; Zomer, F; Bonneaud, G; Dohou, F; Gastaldi, F; Matricon, P; Renard, C; Thiebaux, C; Vasileiadis, G; Verderi, M; Oxoby, G; Vavra, J; Warner, D; Wilson, R J

    1999-01-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  14. Performance of 2nd Generation BaBar Resistive Plate Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F.; Baldini, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Zallo, A.; /Frascati; Cheng, C.H.; Lange, D.J.; Wright, D.M.; /LLNL,; Messner, R.; Wisniewski, William J.; /SLAC; Pappagallo, M.; /Bari U. /INFN, Bari; Andreotti, M.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; /Ferrara; Capra, R.; /Genoa U. /INFN, Genoa /Naples U. /INFN, Naples /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Rome U. /INFN, Rome /Oregon U. /UC, Riverside

    2005-07-12

    The BaBar detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm{sup 2}) depending on position within the endcap. Some regions have integrated over 0.3 C/cm{sup 2}. RPC efficiency measured with cosmic rays is high and stable. The average efficiency measured with beam is also high. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques and minimal use of linseed oil, many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current. Studies of the above aging effects are presented and correlated with detector operating conditions.

  15. A Barrel IFR Instrumented With Limited Streamer Tubes for BABAR Experiment

    International Nuclear Information System (INIS)

    Andreotti, M.; Ferrara U.; INFN, Ferrara

    2006-01-01

    The new barrel Instrumented Flux Return (IFR) of BABAR detector will be reported here. Limited Streamer Tubes (LSTs) have been chosen to replace the existing RPCs as active elements of the barrel IFR. The layout of the new detector will be discussed: in particular, a cell bigger than the standard one has been used to improve efficiency and reliability. The extruded profile is coated with a resistive layer of graphite having a typical surface resistivity between 0.2 and 0.4 MOhm/square. The tubes are assembled in modules and installed in 12 active layers of each sextant of the IFR detector. R and D studies to choose the final design and Quality Control procedure adopted during the tube production will be briefly discussed. Finally the performances of installed LSTs into 2/3 of IFR after 8 months of operations will be reported

  16. Simulation and measurement of the fringe field of the 1.5 T BABAR solenoid

    CERN Document Server

    Antokhin, E; Chupyra, A G; Fedorov, D; Ganzhur, S; Kolachev, G M; Litvinov, A V; Medvedko, A; Mikerov, V; Mikhailov, S; Onuchin, A P; Singatulin, S; Aleksan, Roy; Bourgeois, P; Gosset, L; Graffin, P; London, G W; Mols, J P; Toussaint, J C; Berndt, M; Coombes, R; Ecklund, S; Jensen, D; Keller, L; Krebs, J; Lynch, H; Wolf, Z

    1999-01-01

    In the context of the SLAC PEP-II asymmetric e sup + e sup - collider and the BABAR detector with its 1.5 T solenoid, we have calculated and measured the fringe field at the nearby beam elements and at the position of the photomultipliers external to the return iron but within a specially designed iron shield. The comparisons of these measurements with the simulations based on finite element analysis are remarkably good, within about 5 G at the most critical beam element. The field at the photomultipliers is less than 1 G, in agreement with the simulation. With a simple method of demagnetization of the shield, a maximum field of 0.6 G is obtained. (author)

  17. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  18. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  19. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Schrader, Christoph

    2011-01-01

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few μm), low material budget (∝50 μm Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the HADES data

  20. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  1. Dalitz Plot Analyses of B^- \\to D^+ \\pi^-\\pi^-, B^+ \\to \\pi^+ \\pi^- \\pi^+ and D^+_s \\to \\pi^+ \\pi^- \\pi^+ at BABAR

    OpenAIRE

    Dong, Liaoyuan; Collaboration, for the BABAR

    2009-01-01

    We report on the Dalitz plot analyses of B^- \\to D^+ \\pi^-\\pi^-, B^+ \\to \\pi^+ \\pi^- \\pi^+ and D^+_s \\to \\pi^+ \\pi^- \\pi^+. The Dalitz plot method and the most recent BABAR results are discussed.

  2. Radiative Penguin Decays at the BaBar Experiment B to K*gamma, B to rho gamma, B to omega gamma and B to Xs gamma

    International Nuclear Information System (INIS)

    Grauges, E.

    2004-01-01

    A review of the results obtained from the analysis of the B meson decays that involve Radiative Penguin processes, recorded at the BaBar experiment at the Stanford Linear Accelerator Center PEP-II B-Factory, is presented. The physics interest of these processes and their SM prediction are discussed briefly. The most relevant selection techniques used in the analysis are described before quoting the latest results made public by the BaBar collaboration as of July 2003

  3. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  4. Study of the radiation induced effects in the LHCb Vertex Locator

    CERN Document Server

    Szumlak, Tomasz

    2016-01-01

    LHCb is a dedicated heavy-flavour physics experiment at the Large Hadron Collider at CERN. The VErtex LOcator (VELO) is a critical part of a LHCb tracking system, enabling the full topological reconstruction of beauty and charm mesons’ decays and providing essential input for the High Level Trigger (HLT) system used by the experiment to select events. The VELO comprises 42 modules made of two $n^{+}$-on-$n~300~\\mu$m thick half-disc silicon sensors with $R$- and ${\\mit\\Phi}$-measuring micro-strips, arranged in two retractable halves, operating only about 8 mm from the proton beams. In these paper, selected aspects of the VELO performance during the Run 1 data-taking period is shortly summarised along with the radiation damage studies. The track finding efficiency is typically greater than 98\\%. An impact parameter resolution of less than $35~\\mu$m is achieved for particles with transverse momentum greater than 1 GeV/$c$. An overview of all important performance parameters will be given. The VELO sensors have...

  5. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  6. Challenges for secondary vertex reconstruction in CBM at SIS100 and SIS300 at FAIR

    International Nuclear Information System (INIS)

    Lymanets, A.; Kotynia, A.; Heuser, J.

    2010-01-01

    Full text: The CBM experiment at FAIR will explore the QCD phase diagram in the region of highest baryon densities. In contrast to other experimental programs in the same energy domain, CBM will be able to explore rare probes such as charm and dileptons due to its capability of running at interaction rates as high as 10 MHz. In order to cope with the related experimental challenges detailed simulations studies as well as extensive R and D activities on the detector and readout systems are ongoing. In this contribution, the challenges of open charm measurement in pA collisions, e.g. already at SIS100, and in AA collisions at SIS300 will be investigated. In order to extract open charm decays from the large background of produced charged particles, secondary vertex reconstruction with a precision of less than 0.1 mm is required. The involved tracking and reconstruction procedures have to be fast in order to allow their implementation already on the trigger level. Prerequisite for this are ultra-low mass, fast and radiation tolerant silicon detectors. These two aspects of a finally successful measurement, hardware development and reconstruction routines, are being developed in close contact to each other and their status is demonstrated in this talk. (author)

  7. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Science.gov (United States)

    Lee, Han Rim; Kim, Sung Hun; Park, Jong Hoon; Jung, Won Gyun; Lim, Hansang; Kim, Chan Hyeong

    2017-06-01

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a 90Sr beta source, a 60Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  8. A doublet of 3 in. cylindrical silicon drift detectors in the CERES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Faschingbauer, U.; Agakichiev, G.; Baur, R.; Ceretto, F.; Dress, A.; Fraenkel, Z.; Fuchs, C.; Gatti, E.; Glaessel, P.; Hess, F.; Hemberger, M.; De los Heros, C.P.; Holl, P.; Irmscher, D.; Jacob, C.; Kemmer, J.; Minaev, Y.; Panebrattsev, Y.; Pfeiffer, A.; Ravinovich, I.; Razin, S.; Rehak, P.; Sampietro, M.; Schukraft, J.; Shimanskiy, S.; Socol, E.; Specht, H.J.; Tel-Zur, G.; Tserruya, I.; Ullrich, T.; Voigt, C.; Wurm, J.P.; Yurevich, V. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)]|[JINR, RU-141980 Dubna, Moscow Region (Russian Federation)]|[Physikalisches Institut der Universitaet Heidelberg, D-69120 Heidelberg (Germany)]|[Weizmann Institute, Rehovot 76100 (Israel)]|[Politecnico di Milano, I-20133 Milano (Italy)]|[Ketek GmbH, D-85764 Oberschleissheim (Germany)]|[Brookhaven National Laboratory, Upton, NY 11973 (United States)]|[CERN, CH-1211 Geneva 23 (Switzerland)

    1996-08-01

    We report on the performance of a doublet of 3 in. cylindrical silicon drift detectors installed as an upgrade of the CERES/NA45 electron pair spectrometer for the Pb-beam at the CERN SPS. The silicon detectors provide external particle tracking and background rejection of conversions and close Dalitz pairs. Results on vertex reconstruction and rejection from a Pb test-run in 1994 are presented. (orig.).

  9. A doublet of 3" cylindrical silicon drift detectors in the CERES/NA45 experiment

    CERN Document Server

    Faschingbauer, U; Baur, R; Ceretto, F; Drees, A; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Hemberger, M; Pérez de los Heros, C; Hess, F; Holl, P; Irmscher, D; Jacob, C; Kemmer, J; Minaev, Yu I; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Razin, S V; Rehak, P; Sampietro, M; Schükraft, Jürgen; Shimansky, S S; Socol, E; Specht, H J; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Voigt, C A; Wurm, J P; Yurevich, V I

    1995-01-01

    We report on the performance of a doublet of 3" cylindrical silicon drift detectors installed as an upgrade of the CERES/NA45 electron pair spectrometer for the Pb-beam at the CERN SPS. The silicon detectors provide external particle tracking and background rejection of conversions and close Dalitz pairs. Results on vertex reconstruction and rejection from Pb test-run in 1994 are presented.

  10. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    International Nuclear Information System (INIS)

    Kapustinsky, Jon S.

    2010-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10 o to 35 o to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 μm radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  11. Intrinsic-normal-ordered vertex operators from the multiloop N-tachyon amplitude

    International Nuclear Information System (INIS)

    Aldazabal, G.; Nunez, C.; Bonini, M.; Iengo, R.

    1987-09-01

    We construct vertex operators for arbitrary mass level states of the closed bosonic string. Starting from a generalization of the Koba-Nielsen amplitude which is suitable for an arbitrary genus Riemann surface, we read the vertex operators from the residues of the poles for the intermediate states. Since the original expression is metric independent and normal ordered without the need of inventing any regularization scheme, our vertex operators also possess these properties. We discuss their general features. (author). 17 refs

  12. Three-coloring graphs with no induced seven-vertex path II : using a triangle

    OpenAIRE

    Chudnovsky, Maria; Maceli, Peter; Zhong, Mingxian

    2015-01-01

    In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.

  13. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  14. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    Science.gov (United States)

    Blum, Adrian L.; Alkofer, Reinhard; Huber, Markus Q.; Windisch, Andreas

    2017-03-01

    Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks ("unquenching") change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the threegluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.

  15. Strings in background fields: β functions and vertex operators

    International Nuclear Information System (INIS)

    de Alwis, S.P.

    1986-01-01

    We review the conditions for consistent propagation of closed strings in background fields and discuss the connection between conformal invariance and the vanishing of the renormalization-group β functions for the generalized σ model on a curved world sheet. The β functions with up to four derivative terms are found to be compatible with graviton and dilaton equations of motion provided the former are computed in a nonminimal subtraction scheme. Finally, vertex operators in background fields are discussed and it is shown that the anomalous dimension operator is given by the first variation of the β function to all orders in α'

  16. A new tool for constrained vertex fitting in ATLAS

    CERN Document Server

    Colijn, Auke Pieter; Limper, Maaike; Prokofiev, Kirill

    2009-01-01

    The precise reconstruction of trajectories of charged and neutral particles and their decay vertices is crucial for many physics analyses. Studying the tracking performance on well known benchmark channels helps to understand the properties of the ATLAS detector during the initial phase of the LHC. In order to exploit the correlations between reconstructed parameters of final state tracks having the same mother particle, a new tool for vertex fitting with possibility of simultaneous application of kinematic constraints has been developed. Using this tool on a benchmark channel such as J/psi to μ+μ− helps to correct shifts in the reconstructed curvature induced by systematic deformations of the detector.

  17. Ionization potentials of solids: the importance of vertex corrections.

    Science.gov (United States)

    Grüneis, Andreas; Kresse, Georg; Hinuma, Yoyo; Oba, Fumiyasu

    2014-03-07

    The ionization potential is a fundamental key quantity with great relevance to diverse material properties. We find that state of the art methods based on density functional theory and simple diagrammatic approaches as commonly taken in the GW approximation predict the ionization potentials of semiconductors and insulators unsatisfactorily. Good agreement between theory and experiment is obtained only when diagrams resulting from the antisymmetry of the many-electron wave function are taken into account via vertex corrections in the self-energy. The present approach describes both localized and delocalized states accurately, making it ideally suited for a wide class of materials and processes.

  18. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    OpenAIRE

    Alipour Tehrani, Niloufar; Arfaoui, Samir; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued...

  19. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  20. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  1. Eight-Vertex Model of Two-Dimensional Domain Walls

    Science.gov (United States)

    Rys, Franz S.

    1983-09-01

    A statistical model of interacting linear domain walls (occurring, e.g., in monolayer adsorbates) is solved on the square lattice with use of exact and numerical results of an equivalent eight-vertex model. For attractive walls a commensurate and an incommensurate phase are separated by a first-order line for stiff walls and by a fluid phase for flexible walls. The phase boundaries with the fluid phase are Ising-like. For repulsive stiff walls an intermediate striped phase with a nonuniversal boundary occurs which vanishes for higher flexibilities. Moreover, disorder lines are located.

  2. A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM

    OpenAIRE

    UĞURLU, Onur

    2015-01-01

    The minimum vertex cover  problem belongs to the  class  of  NP-compl ete  graph  theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...

  3. Performance of the VTL PEPR vertex guidance system

    International Nuclear Information System (INIS)

    Dunn, L.A.; Harris, R.; Kenyon, R.G.; Lubatti, H.J.; Moriyasu, K.

    1975-01-01

    A PEPR vertex guidance system requiring no operator intervention has been operating at the University of Washington's Visual Techniques Laboratory since 1972. The measurement of 140 000 events consisting of 3, 4, 5, and 6-prong interactions of a 15 GeV/c π - beam with deuterium was recently completed. The system employs global transformations that reduce circular tracks to a point in a two-dimensional angle-curvature space. Noise reduction techniques are used to improve position and angle accuracy and thereby the system resolution and efficiency. Monitoring criteria were developed to ensure continuous peak performance over long production periods. (Auth.)

  4. Studies of Hadronic Physics with the BaBar Detector at SLAC and the Atlas Detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [Univ. of Louisville, KY (United States). Dept. of Physics

    2016-06-30

    The University of Louisville High Energy Physics group contributed significantly to the success of the BaBar Experiment at SLAC and the Mu2e Experiment at Fermilab. In particular, they have contributed to understanding hadronic processes in electron-positron annihilation and charged lepton flavor violation in a very rare muon conversion process. Both are high-precision undertakings at the Intensity Frontier of High Energy Physics.

  5. For information: Geneva University - Recent results of the BaBar experiment on CP Violation in the B mesons decays

    CERN Multimedia

    Université de Genève

    2005-01-01

    UNIVERSITE DE GENEVE ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 18 May PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Recent results of the BaBar experiment on CP Violation in the B mesons decays by Prof. Jean-Pierre Lees / LAPP, Annecy After a brief introduction on B physics at B factories and the current status of the BaBar experiment, I will show how CP violation effects in the decays B->D(*)K(*) and B->D(*)pi/rho can be used to probe the value of the angle gamma of the Unitarity triangle, and what precision can be expected on this measurement by the end of the BaBar running, in 2008. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  6. Stochastic Higher Spin Vertex Models on the Line

    Science.gov (United States)

    Corwin, Ivan; Petrov, Leonid

    2016-04-01

    We introduce a four-parameter family of interacting particle systems on the line, which can be diagonalized explicitly via a complete set of Bethe ansatz eigenfunctions, and which enjoy certain Markov dualities. Using this, for the systems started in step initial data, we write down nested contour integral formulas for moments and Fredholm determinant formulas for Laplace-type transforms. Taking various choices or limits of parameters, this family degenerates to many of the known exactly solvable models in the Kardar-Parisi-Zhang universality class, as well as leads to many new examples of such models. In particular, asymmetric simple exclusion process, the stochastic six-vertex model, q-totally asymmetric simple exclusion process and various directed polymer models all arise in this manner. Our systems are constructed from stochastic versions of the R-matrix related to the six-vertex model. One of the key tools used here is the fusion of R-matrices and we provide a probabilistic proof of this procedure.

  7. Vertex function representation in non-uniform frequency grids

    Science.gov (United States)

    Tam, Ka-Ming; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    2014-03-01

    The proper computer representation of many-body vertex functions is a central issue in computational many body methods such as the parquet formalism, a self-consistent two-particle field theory. Despite the great effort over the past two decades, its application is very limited. This is predominately due to two crucial factors - the stability of the iteration and the size of the memory allocation for the vertices. We previously demonstrated that the stability problem can be alleviated by explicitly restoring the crossing symmetry, making simulations beyond weak coupling for the Hubbard model feasible. The next step for the practical applications of the parquet formalism is to compress the memory required to represent the vertex. In this talk, we first demonstrate the problem of perturbation theory off the Matsubara frequency grids. This problem is avoided by working on the so-called decimation grids, which are non-uniform grids on Matsubara frequency. We then use this scheme in the parquet method, for solving an Anderson impurity problem. The results show substantial improvement compared to using the same number of uniform frequency grids. This may represent a crucial step towards practical applications of the parquet formalism for large clusters.

  8. Nonperturbative aspects of the quark-photon vertex

    International Nuclear Information System (INIS)

    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated q bar q vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function which is chosen to reflect confinement and asymptotic freedom and are largely constrained by the obtained bound-state spectrum

  9. SPARTex: A Vertex-Centric Framework for RDF Data Analytics

    KAUST Repository

    Abdelaziz, Ibrahim

    2015-08-31

    A growing number of applications require combining SPARQL queries with generic graph search on RDF data. However, the lack of procedural capabilities in SPARQL makes it inappropriate for graph analytics. Moreover, RDF engines focus on SPARQL query evaluation whereas graph management frameworks perform only generic graph computations. In this work, we bridge the gap by introducing SPARTex, an RDF analytics framework based on the vertex-centric computation model. In SPARTex, user-defined vertex centric programs can be invoked from SPARQL as stored procedures. SPARTex allows the execution of a pipeline of graph algorithms without the need for multiple reads/writes of input data and intermediate results. We use a cost-based optimizer for minimizing the communication cost. SPARTex evaluates queries that combine SPARQL and generic graph computations orders of magnitude faster than existing RDF engines. We demonstrate a real system prototype of SPARTex running on a local cluster using real and synthetic datasets. SPARTex has a real-time graphical user interface that allows the participants to write regular SPARQL queries, use our proposed SPARQL extension to declaratively invoke graph algorithms or combine/pipeline both SPARQL querying and generic graph analytics.

  10. Study of the Wtb vertex structure at the ATLAS experiment

    CERN Document Server

    AUTHOR|(CDS)2069592; Onofre, Antonio

    2008-01-01

    The top quark is the heaviest and least studied quark of the Standard Model. Although its properties have already been investigated at colliders, the statistics of the collected data have not yet allowed for precise measurements, with exception of its mass. The determination of other fundamental properties such as its couplings requires larger top quark samples, which will be available at the Large Hadron Collider (LHC) at CERN. Within the Standard Model, the Wtb vertex is purely left-handed, and its amplitude is given by the Cabibbo-Kobayashi-Maskawa matrix element Vtb, related to weak interaction between a top and a b-quark. In a more general way, additional anomalous couplings such as right-handed vectorial couplings and left and right-handed tensorial couplings can also be considered. The study of the angular distribution of the top quark decay products at the LHC will allow precision measurements of the structure of the Wtb vertex, providing also an important probe for possible physics beyond the SM. In ...

  11. Commissioning of the control and data acquisition electronics for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.M.; Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.; Bailey, M.W.; Kruse, M.C.; Castro, A.

    1991-11-01

    The SVX data acquisition system includes three components: a Fastbus Sequencer, an SVX Rabbit Crate Controller and a Digitizer. These modules are integrated into the CDF DAQ system and operate the readout chips. The results of the extensive functional tests of the SVX modules are reported. We discuss the stability of the Sequencers, systematic differences between them and methods of synchronization with the Tevatron beam crossings. The Digitizer ADC calibration procedure run on the microsequencer is described. The microsequencer code used for data taking and SVX chip calibration modes is described. Measurements of the SVX data scan time are discussed

  12. Study of Rare B Meson Decays Related to the CKM Angle Beta at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Keith; /Amherst Coll.

    2007-06-06

    This study reports measurements of the branching fractions of B meson decays to {eta}{prime}K{sup +}, {eta}{prime}K{sup 0}, {omega}{pi}{sup +}, {omega}K{sup +}, and {omega}K{sup 0}. Charge asymmetries are measured for the charged modes and the time-dependent CP-violation parameters S and C are measured for the neutral modes. The results are based on a data sample of 347 fb{sup -1} containing 383 million B{bar B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring located at the Stanford Linear Accelerator Center. Statistically significant signals are observed for all channels with the following results: B(B{sup +} {yields} {eta}{prime}K{sup +}) = (70.0{+-}1.5{+-}2.8)x10{sup -6}, B(B{sup 0} {yields} {eta}{prime}K{sup 0}) = (66.6{+-}2.6{+-}2.8)x10{sup -6}, B(B{sup +} {yields} {omega}{pi}{sup +}) = (6.7{+-}0.5{+-}0.4)x10{sup -6}, B(B{sup +} {yields} {omega}K{sup +}) = (6.3{+-}0.5{+-}0.3)x10-6, and B(B{sup 0} {yields} ?K0) = (5.6{+-}0.8{+-}0.3)x10-6, where the first uncertainty is statistical and the second is systematic. We measure A{sub ch}({eta}{prime}K{sup +}) = +0.010{+-}0.022{+-}0.006, A{sub ch}({omega}{pi}{sup +}) = -0.02{+-}0.08{+-}0.01, A{sub ch}({omega}K{sup +}) = -0.01{+-}0.07{+-}0.01, S{sub {eta}{prime}K{sup 0}{sub S}} = 0.56{+-}0.12{+-}0.02, C{sub {eta}{prime}K{sup 0}{sub S}} = -0.24 {+-} 0.08 {+-} 0.03, S{sub {omega}{prime}K{sup 0}{sub S}} = 0.62+0.25 -0.29 {+-} 0.02, and C{sub {omega}{prime}K{sup 0}{sub S}} = -0.39+0.25 -0.24 {+-} 0.03. The result in S{sub {eta}{prime}K{sup 0}{sub S}} contributes to the published measurement from BABAR, which differs from zero by 5.5 standard deviations and is the first observation of mixing-induced CP-violation in a charmless B decay.

  13. A momentum space analysis of the Triple Pomeron Vertex in pQCD

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kutak, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Instytut Fizyki Jadrowej Polskiej Akademii Nauk, Krakow (Poland)

    2007-10-15

    We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)

  14. A quantum relativistic integrable model as the continuous limit of the six-vertex model

    International Nuclear Information System (INIS)

    Zhou, Y.K.

    1992-01-01

    The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)

  15. A vertex including emission of spin fields for an arbitrary bc system

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Madsen, R.A.; Roland, K.

    1990-01-01

    We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)

  16. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  17. A quantum hybrid with a thin antenna at the vertex of a wedge

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)

    2017-03-26

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.

  18. Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M. [Stanford Univ., CA (United States)

    2013-08-01

    The compact bound state consisting of a bottom and anti-bottom quark pair interacting via the strong nuclear force is called “bottomonium.” A wealth of long-lived bottomonium states can be both experimentally produced and theoretically described, providing a unique tool to probe calculation techniques with experiment. Bottomonia with total angular momentum J = 1 and orbital angular momentum L = 0 at a variety of radial excitations n – called Υ(nS) – can be produced at electron-positron colliders. The BABAR experiment, located at the interaction point of such a collider (the PEP-II storage ring), has observed 122 million Υ(3S) and 100 million Υ(2S) decays. Some of these involve a transition to the bottomonium state χbJ (nP) (L = 1 and J = (0, 1, 2)), emitting a photon, with subsequent transition to a lower Υ(nS), also emitting a photon. The final Υ(nS) can be identified through a decay to two muons. The dependence of the branching fractions and photon energies in this process on the spin state of the intermediate χbJ (nP) is a key test of phenomenological models. To this end, this dissertation contains a nearly comprehensive study of these transitions with an emphasis on experimentally optimal discrimination between various models. This focus spurs innovative techniques that complement a large array of physics results, both presented in detail herein.

  19. Study of the Rare Decay B0 to pi0 pi0 at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bowerman, Daniel

    2003-08-20

    The BABAR experiment operating at the PEP-II e{sup +}e{sup -} collider is designed to study CP violation effects in the B-meson system. From May 1999 to June 2002 approximately 81 fb{sup -1} of data have been collected at the {Upsilon}(4S) resonance, containing (87.9 {+-} 1.4) Million BB pairs. From this data sample the branching fraction for the decay B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} has been extracted using a multi-dimensional maximum likelihood technique. With an efficiency of 20.4%, we find 36{sub -14-1}{sup +15+1} B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} events and measure the branching fraction to be {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (2.0{sub -0.8-0.2}{sup +0.9+0.3}) x 10{sup -6} where the first error is statistical and the second systematic. The statistical significance is 3.1{sigma} and we report an upper limit of {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) < 3.6 x 10{sup -6} (90%CL). The results of the fit are confirmed using a simple cut based analysis technique.

  20. Study of Rare Radiative B Decay to K*(1430) Meson Using the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qinghua; /Pennsylvania U.

    2005-09-14

    Radiative B Meson decay through the b {yields} s{gamma} process has been one of the most sensitive probe of new physics beyond the Standard Model, because of its importance in understanding the phenomenon of CP violation, which is believed to be necessary to explain the excess of matter over anti-matter in our universe. The inclusive picture of the b {yields} s{gamma} process is well established; however, our knowledge of the exclusive final states in radiative B meson decays is rather limited. We have investigated one of them, the exclusive, radiative B decay to the charmless K*{sub 2}(1430) meson, in a sample of 88.5 x 10{sup 6} B{bar B} events with the BABAR detector at the PEP-II storage ring. We present a measurement of the branching fractions {Beta}(B{sup 0} {yields} K*{sub 2}(1430){sup 0}{gamma}) = (1.22 {+-} 0.25 {+-} 0.10) x 10{sup -5} and {Beta}(B{sup +} {yields} K*{sub 2}(1430){sup +}){gamma} = (1.45 {+-} 0.40 {+-} 0.15) x 10{sup -5}, where the first error is statistical and the second systematic. In addition, we have performed the first search for direct CP violation in this decay with the measured asymmetry in B{sup 0} {yields} K*{sub 2}(1430){sup 0}{gamma} of {Alpha}{sub CP} = -0.08 {+-} 0.15 {+-} 0.01.

  1. Investigation of B-->D{sup (*)}anti-D{sup (*)}K Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jean-Pierre

    2001-07-30

    Using about 23M B{bar B} events collected in 1999-2000 with the BABAR detector, they report the observation of several hundred B {yields} D{sup (*)} {bar D}(*) K decays with two completely reconstructed D mesons. The preliminary branching fractions of the low background decay modes B{sup 0} {yields} D*{sup -} D{sup (*)}{sup 0} K{sup +} are determined to be {Beta}(B{sup 0} {yields} D*{sup -} D{sup 0}K{sup +}) = (2.8 {+-} 0.7 {+-} 0.05) x 10{sup -3} and {Beta}(B{sup 0} {yields} D*{sup -} D*{sup 0} K{sup +}) = (6.8 {+-} 1.7 {+-} 1.7) x 10{sup -3}. Observation of a significant number of candidates in the color-suppressed decay mode B{sup +} {yields} D*{sup +} D*{sup -} K{sup +} is reported with a preliminary branching fraction {Beta}(B{sup +} {yields} D*{sup +} D*{sup -} K{sup +}) = (3.4 {+-} 1.6 {+-} 0.9) x 10{sup -3}.

  2. Study of B --> D*{sup +}D*{sup -} Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-02-10

    Decays of the type B {yields} D(*){bar D}(*) can be used to provide a measurement of the parameter sin2{beta} of the Unitarity Triangle that is complementary to that derived from the mode B{sup 0} {yields} J/{psi}K{sub S}{sup 0}. Here we report a measurement of the branching fraction and a study of the CP parity content for the decay B{sup 0} {yields} D*{sup +}D*{sup -} with the BABAR detector. With data corresponding to an integrated luminosity of 20.7 fb{sup -1} collected at the {Upsilon}(4S) resonance during 1999-2000, we determine the branching fraction to be {Beta}(B{sup 0} {yields} D*{sup +}D*{sup -}) = (8.0 {+-} 1.6(stat ) {+-} 1.2(syst.)) x 10{sup -4}. The measured fraction of the component with odd CP parity is 0.22 {+-} 0.18(stat) {+-} 0.03(syst). Observation of a significant number of candidates in the decay modes B{sup 0} {yields} D*{sup +}D{sup -} and B{sup +} {yields} D*{sup +}D*{sup 0} is reported. All results presented in this note are preliminary.

  3. Hadronic and rare B decays with the BaBar and Belle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Prudent, Xavier [Technische Univ. Dresden, Dresden (Germany)

    2012-05-07

    We review recent experimental results on Bd and Bs mesons decays by the BaBar and Belle experiments. These include measurements of the color-suppressed decays B¯0 → D(*)0h0,h0 = π0,η,η',ω, observation of the baryonic decay B¯0 → Λc+Λ¯K, measurements of the charmless decays B → ηh,h = π,K, B → Kπ, and observation of CP eigenstates in the Bs decays: Bs0 → J/ψf0(980), Bs0 → J/ψf0(1370) and Bs0 → J/ψη. As a result, the theoretical implications of these results will be considered.ided

  4. Construction and Evaluation of a High Resolution Silicon Microstrip Tracking Detector, and, Utilization to Determine Interaction Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Prakash Parayil [Carnegie Mellon U.

    1997-01-01

    A 20 plane, 47K channel silicon microstrip vertex detector was built for the charm baryon experiment 781 (SELEX) at Fermilab. The detector is taking data with an average vertex transverse resolution of 6 microns. The measurement and multiple scattering errors are well understood and have been parametrized. The mass resolution of reconstructed $\\Sigma^+$ and $\\Sigma^-$ hyperons produced at 540-640 GeV /c is consistent with silicon detector resolutions. The vertex detector has been used to resolve primary and secondary vertices and this high precision information is being used in the experiment's realtime online trigger. Flawless operation over 14 months and the long-term stability of the efficiency, alignment and accuracy demonstrates successful integration of hardware and software.

  5. Power pulsing schemes for vertex detectors at CLIC

    CERN Document Server

    Blanchot, G

    2013-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector ( < 0.2% of a radiation length, Xo, per layer). To achieve such a low mass, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power-pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. A power-pulsing scheme is proposed for the analog electronics and its electrical features are discussed on the basis of measurements.

  6. The Small Acceptance Vertex Detector of NA61/SHINE

    Directory of Open Access Journals (Sweden)

    Deveaux M.

    2018-01-01

    Full Text Available Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD, which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  7. Waterbomb base: a symmetric single-vertex bistable origami mechanism

    Science.gov (United States)

    Hanna, Brandon H.; Lund, Jason M.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2014-09-01

    The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb base's kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force-deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development.

  8. Topological vertex, string amplitudes and spectral functions of hyperbolic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)

    2014-05-15

    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)

  9. The Small Acceptance Vertex Detector of NA61/SHINE

    Science.gov (United States)

    Deveaux, M.; Aduszkiewicz, A.; Ali, Y.; Baszczyk, M.; Brylinski, W.; Dorosz, P.; Di Luise, S.; Feofilov, G.; Gazdzicki, M.; Igolkin, S.; Jablonski, M.; Kovalenko, V.; Koziel, M.; Kucewicz, W.; Larsen, D.; Lazareva, T.; Martinengo, P.; Merzlaya, A.; Mik, L.; Planeta, R.; Snoch, A.; Vechernin, V.; Tefelski, D.; Suljic, M.; Staszel, P.

    2018-02-01

    Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD), which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  10. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    Grosse-Knetter, J.

    2008-03-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  11. Greedy Local Search and Vertex Cover in Sparse Random Graphs

    DEFF Research Database (Denmark)

    Witt, Carsten

    2009-01-01

    . This work starts with a rigorous explanation for this claim based on the refined analysis of the Karp-Sipser algorithm by Aronson et al. Subsequently, theoretical supplements are given to experimental studies of search heuristics on random graphs. For c search heuristic...... finds an optimal cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on the absence of a giant component. As an additional insight into the randomized search, it is shown that the heuristic fails badly also on graphs consisting of a single tree component of maximum......Recently, various randomized search heuristics have been studied for the solution of the minimum vertex cover problem, in particular for sparse random instances according to the G(n, c/n) model, where c > 0 is a constant. Methods from statistical physics suggest that the problem is easy if c

  12. vertex drift chamber construction and test results

    International Nuclear Information System (INIS)

    Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.

    1991-05-01

    A jet-cell based vertex chamber has been built for the D OE experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO 2 (95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with [9.74+8.68(|E|-1.25)] μm/nsec where E is the electric field strength in (kV/cm < |E| z 1.6 kV/cm.) An intrinsic spatial resolution of 60 μm or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 μm. 8 refs., 6 figs., 1 tab

  13. CCD vertex detector for the future linear collider

    CERN Document Server

    Stefanov, K D

    2003-01-01

    The R and D program at the LCFI collaboration is dedicated to the building of CCD-based vertex detector, satisfying the challenging requirements of the proposed future linear colliders. The mechanical part of the program targets the development of precision thin detector ladders, using large back-thinned unsupported CCDs under tension. Another part of the program aims to achieve very fast readout of the sensors using column-parallel CCDs, bump bonded to a dedicated CMOS readout chip. Each column of the CCD is read and processed independently, which gives the ultimate speed performance. Some results on modelling of the proposed column parallel CCD with device simulator CAD tools are presented. Tests on fast commercial CCD are being carried out to provide information on noise performance and handling of MIP-like charges at high clock frequencies.

  14. A vertex similarity index for better personalized recommendation

    Science.gov (United States)

    Chen, Ling-Jiao; Zhang, Zi-Ke; Liu, Jin-Hu; Gao, Jian; Zhou, Tao

    2017-01-01

    Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.

  15. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  16. Waterbomb base: a symmetric single-vertex bistable origami mechanism

    International Nuclear Information System (INIS)

    Hanna, Brandon H; Lund, Jason M; Magleby, Spencer P; Howell, Larry L; Lang, Robert J

    2014-01-01

    The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb base's kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development. (paper)

  17. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.E.; /Oregon U.; Breidenbach, M.; /SLAC; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  18. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.

    2007-01-01

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region

  19. Mapping the material in the LHCb vertex locator using secondary hadronic interactions arXiv

    CERN Document Server

    Alexander, M.; Bay, A.; Bel, L.J.; van Beuzekom, M.; Bogdanova, G.; Borghi, S.; Bowcock, T.J.V.; Buchanan, E.; Buytaert, J.; Carvalho Akiba, K.; Chen, S.; Coco, V.; Collins, P.; Crocombe, A.; Da Cunha Marinho, F.; Dall'Occo, E.; De Capua, S.; Dean, C.T.; Dettori, F.; Dossett, D.; Dreimanis, K.; Dujany, G.; Eklund, L.; Evans, T.; Ferro-Luzzi, M.; Gersabeck, M.; Gershon, T.; Hadavizadeh, T.; Harrison, J.; Hennessy, K.; Hulsbergen, W.; Hutchcroft, D.; Jans, P.Ilten E.; John, M.; Kopciewicz, P.; Koppenburg, P.; Lafferty, G.; Latham, T.; Leflat, A.; Majewski, M.W.; McNulty, R.; Mylroie-Smith, J.; Oblakowska-Mucha, A.; Parkes, C.; Pearce, A.; Poluektov, A.; Pritchard, A.; Qian, W.; Redford, S.; Richards, S.; Rinnert, K.; Rodrigues, E.; Sarpis, G.; Schiller, M.; Schindler, H.; Smith, M.; Smith, N.A.; Szumlak, T.; Velthuis, J.J.; Volkov, V.; Wallace, C.; Wark, H.M.; Webber, A.; Williams, M.R.J.; Williams, M.

    Precise knowledge of the location of the material in the LHCb vertex locator (VELO) is essential to reducing background in searches for long-lived exotic particles, and in identifying jets that originate from beauty and charm quarks. Secondary interactions of hadrons produced in beam-gas collisions are used to map the location of material in the VELO. Using this material map, along with properties of a reconstructed secondary vertex and its constituent tracks, a $p$-value can be assigned to the hypothesis that the secondary vertex originates from a material interaction. A validation of this procedure is presented using photon conversions to dimuons.

  20. Wrong vertex displacements due to Lee-Wick resonances at LHC

    International Nuclear Information System (INIS)

    Alvarez, E.; Schat, C.; Rold, L. da; Szynkman, A.

    2009-01-01

    We show how a resonance from the recently proposed Lee-Wick Standard Model could lead to wrong vertex displacements at LHCb. We study which could be the possible 'longest lived' Lee-Wick particle that could be created at LHC, and we study its possible decays and detections. We conclude that there is a region in the parameter space which would give wrong vertex displacements as a unique signature of the Lee-Wick Standard Model at LHCb. Further numerical simulation shows that LHC era could explore these wrong vertex displacements through Lee-Wick leptons below 500 GeV. (author)

  1. A Vizing-like theorem for union vertex-distinguishing edge coloring

    OpenAIRE

    Bousquet, Nicolas; Dailly, Antoine; Duchene, Eric; Kheddouci, Hamamache; Parreau, Aline

    2016-01-01

    We introduce a variant of the vertex-distinguishing edge coloring problem, where each edge is assigned a subset of colors. The label of a vertex is the union of the sets of colors on edges incident to it. In this paper we investigate the problem of finding a coloring with the minimum number of colors where every pair of vertices receive distinct labels. Finding such a coloring generalizes several other well-known problems of vertex-distinguishing colorings in graphs. We show that for any grap...

  2. Search for Rare Multi-Pion Decays of the Tau Lepton Using the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Antonyan, Ruben [The Ohio State Univ., Columbus, OH (United States)

    2007-09-18

    A search for the decay of the τ lepton to rare multi-pion final states is performed using the BABAR detector at the PEP-II asymmetric-energy e+e- collider. The analysis uses 232 fb-1 of data at center-of-mass energies on or near the Y(4S) resonance. In the search for the τ- → 3π-+0vτ decay, we observe 10 events with an expected background of 6.5$+2.0\\atop{-1.4}$ events. In the absence of a signal, we calculate the decay branching ratio upper limit β(τ- → 3π-2π+2π0vτ) < 3.4 x 10-6 at the 90% confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode τ- → 2ωπ-vτ with the further decay of ω →π-π+π0. We observe 1 event, expecting 0.4$+1.0\\atop{-0.4}$ background events, and calculate the upper limit βτ-→ 2ωπ-vτ < 5.4 x 10-7 at the 90% confidence level. This is the first upper limit for this mode.

  3. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  4. A Study of Production and Decay of Omega_c^0 Baryons in BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-09-28

    Production and decay of {Omega}{sub c}{sup 0} baryons is studied with {approx} 230 fb{sup -1} of data recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} asymmetric-energy storage ring at SLAC. The {Omega}{sub c}{sup 0} is reconstructed through its decays into {Omega}{sup -}{pi}{sup +}, {Omega}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}, {Xi}{sup -}K{sup -}{pi}{sup +}{pi}{sup +} final states. The invariant mass spectra are presented and the signal yields are extracted. Ratios of branching fractions are measured relative to the {Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +} mode {Beta}({Omega}{sub c}{sup 0} {yields} {Xi}{sup -} K{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) = 0.31 {+-} 0.15(stat.) {+-} 0.04(syst.), {Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -} {pi}{sup +}{pi}{sup -}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) < 0.30 (90%CL). The momentum spectrum (not corrected for efficiency) of {Omega}{sub c}{sup 0} baryons is extracted from decays into {Omega}{sup -}{pi}{sup +}, establishing the first observation of {Omega}{sub c}{sup 0} production from B decays.

  5. The measurements of angle γ of the unitarity triangle with the BaBar detector

    International Nuclear Information System (INIS)

    Derkach, D.

    2010-06-01

    In this thesis, we present studies of the B mesons system performed using the full dataset collected by the BABAR experiment at the PEP-II collider at SLAC. The first analysis presented here is the search of the rare V ub mediated decays B + → D + K *0 . The experimental analysis is performed looking at several D + decay modes. No signals have been found and upper limits have been set to be: Br(B + → D + K 0 ) -6 at 90% prob.; Br(B + → D + K *0 ) -6 at 90% prob. In the second part we present the CP violation studies in the B-meson system, and in particular the measurements of the γ angle of the unitarity triangle. The γ angle is the relative weak phase between the V ub and V cb elements of the CKM matrix. We present and describe the analysis using the charged B meson decays: B + → D 0 K + . These decays are studied through the ADS method, where the neutral D mesons are reconstructed into Kππ 0 final states. Combining this analysis with a similar one that used Kπ as a D 0 final state, we have obtained the following values: ratio r(DK) 0.083+0.028-0.043; γ angle = (86+51-45) degrees. If the results of this thesis are used in the full system of the B → DK and B → DK * decay amplitudes, other interesting results can be obtained. The error on the ratio r(DK * ) for the charged B decays is improved by a factor 3 resulting in r(DK * ) = (0.08 ± 0.03). The ration between the V ub mediated annihilation (A) and the color suppressed (C) amplitudes is obtained to be A/C 0 ) for neutral B decays is found to be (0.27 ± 0.09)

  6. A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Frank; /Manchester U.

    2006-04-26

    The branching fraction is measured for the decay channels B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} and B{sup +} {yields} {eta}{sub c}K{sup +} where {eta}{sub c} {yields} K{bar K}{pi}, using the BABAR detector. The {eta}{sub c} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} decay channels are used, including non-resonant decays and possibly those through intermediate resonances.

  7. Measurement of Exclusive B Decays to Charmonium and K or K* Branching Fractions with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2004-08-11

    The authors report preliminary results on the measurement of branching fractions of exclusive decays of neutral and charged B mesons into two-body final states containing a charmonium state and a light strange meson. The charmonium mesons considered are J/{psi}, {psi}(2S) and {chi}{sub c1}, and the light mesons are either K or K*. They use a sample of about 124 million B{bar B} events collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center.

  8. Time-dependent Dalitz-Plot Analysis of the Charmless Decay B^0 -> K^0S Pi Pi- at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, J

    2009-10-17

    A time-dependent amplitude analysis of B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} decays is performed in order to extract the CP violation parameters of f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} and direct CP asymmetries of K*{sup +}(892){pi}{sup -}. The results are obtained from the final BABAR data sample of (465 {+-} 5)10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The time dependent CP asymmetry for f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} are measured to be S(f{sub 0}(980)K{sub S}{sup 0}) = -0.97 {+-} 0.09 {+-} 0.01 {+-} 0.01, and S({rho}{sup 0}(770)K{sub S}{sup 0}) = 0.67 {+-} 0.20 {+-} 0.06 {+-} 0.04, respectively. In decays to K*{sup +}(892){pi}{sup -} the direct CP asymmetry is found to be A{sub CP}(K*{sup {+-}}(892){pi}{sup {-+}}) = -0.18 {+-} 0.10 {+-} 0.04 {+-} 0.00. The relative phases between B{sup 0} {yields} K*{sup +}(892){pi}{sup -} and {bar B}{sup 0} {yields} K*{sup -}(892){pi}{sup +}, relevant for the extraction of the unitarity triangle angle {gamma}, is measured to be {Delta}{phi}(K*(892){pi}) = (34.9 {+-} 23.1 {+-} 7.5 {+-} 4.7){sup o}, where uncertainties are statistical, systematic and model-dependent, respectively. Fit fractions, direct CP asymmetries and the relative phases of different other resonant modes have also been measured. A new method for extracting longitudinal shower development information from longitudinally unsegmented calorimeters is also presented. This method has been implemented as a part of the BABAR final particle identification algorithm. A significant improvement in low momenta muon identification at BABAR is obtained.

  9. Developments in Silicon Detectors and their impact on LHCb Physics Measurements

    CERN Document Server

    Gouldwell-Bates, A

    2005-01-01

    The LHCb experiment is a high energy physics detector at the Large Hadron Collider (LHC) which will probe the current understanding of the Standard Model through precise measurements of CP violation and rare decays. The LHCb detector heavily depends on the silicon vertexing (VELO) sub-detector for excellent vertex and proper decay time resolutions. The VELO detector sits at a position of only 7 mm from the LHC proton beams. However, the proximity of the silicon sensors to the proton beams results in the detectors suffering radiation damage. Radiation damage results in three changes in the macroscopic properties of the silicon detector: an increase of the leakage current, a decrease in the charge collection efficiency, and changes in the operation voltage required to fully deplete the silicon detector of the free charge carriers. Due to this radiation damage, it is expected that a replacement or upgrade of the LHCb vertex detector will be required by 2010, only 3 years after the turn-on of the LHC. This thesis...

  10. The quark-gluon vertex in Landau gauge bound-state studies

    International Nuclear Information System (INIS)

    Williams, Richard

    2015-01-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)

  11. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    Directory of Open Access Journals (Sweden)

    Blum Adrian L.

    2017-01-01

    Full Text Available Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (“unquenching” change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the threegluon vertex the “unquenching” effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.

  12. Pion production and absorption in nuclear reactions. I. The vertex function

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    We have performed a model calculation of the pion-nucleon vertex function for the case in which one nucleon is allowed to go far off its mass shell. We discuss the relevance of this vertex function for the calculation of pion production and absorption in nuclear reactions, such as (π + ,p), (p,π + ), and for the pionic disintegration of the deuteron. The model used is based upon an approximation to an exact equation for the vertex function derived from a field-theoretic model with pseudoscalar coupling. Our calculations indicate a strong dependence of the vertex function on the invariant mass of the off-shell nucleon. The results are dominated by the presence of the 1470 MeV, P 11 resonance

  13. Silicon detectors for neutrino oscillation experiments

    CERN Document Server

    do Couto e Silva, E

    1998-01-01

    This note describes the technique of using a target equipped with high resolution silicon microstrip detectors for the detection of the topological signature of decays in neutrino oscillation ex periments. Two detectors are presented. The first detector is installed in the NOMAD spectrometer at the CERN SPS neutrino beam. The target consists of four layers passive boron carbide plate s (total mass of 45 kg) interleaved with five layers of silicon microstrip detectors. A total of 600 single--sided silicon microstrip detectors are used amounting to a total area of 1.14 m$^2$. The silicon tracker is made with the longest ladders built to date (72 cm). During the 1997 run about 8000 charged current interactions were estimated to have occurred in the target and data tak ing will continue in 1998. For these events it will be possible to perform a precise measurement of both vertex and kinematical variables. The second detector was installed in September 1997 in a CERN PS pion beam to investigate the possibility of ...

  14. A silicon detector for neutrino physics

    CERN Document Server

    Kokkonen, J

    2002-01-01

    In order to demonstrate the feasibility of conducting future muon neutrino - tau neutrino oscillation searches using a high-resolution, large-area silicon microstrip detector, the Silicon TARget (STAR) detector was built. STAR was installed in the NOMAD short baseline neutrino oscillation experiment at the CERN SPS neutrino beam, where it recorded approximately 10000 neutrino interactions during the operation of the detector in the period 1997-98. It consists of five layers of silicon detectors interleaved with four layers of passive boron carbide as the target. The target mass is 45 kg, while the total silicon surface area is 1.14 square-meters and contains 32000 readout channels. The individual modules have a length of 72 cm, the longest built to date. The detection of tau particles, produced in tau neutrino charged-current interactions, would require a tracking detector with a precision of a few tens of microns in order to measure the position of the neutrino interaction vertex as well as the impact parame...

  15. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A.

    2017-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  16. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    Science.gov (United States)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  17. Persistent magnetic vortex flow at a supergranular vertex

    Science.gov (United States)

    Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.

    2018-03-01

    Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org

  18. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  19. Jet Vertex Charge Reconstruction Poster for LHCP 2015

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    B-jet reconstruction algorithms used so far in ATLAS data analyses do not provide the b-jet charge information, which could potentially play a major role in reducing the combinatorial backgrounds in final states with multiple b-jets. This missing point is addressed by the newly developed JetVertexCharge (JVC) algorithm presented in this poster. Inspired by the decay chain of B-hadrons, the JVC algorithm provides a multi-variate b-jet charge estimate relying on tracks, displaced vertices and muons contained in the jet. In this algorithm, the established concept of estimating jet charge as a transverse momentum weighted sum of track charges is used to reconstruct the charge of the jet as whole, as well as the charges of up to two displaced vertices in the jet, using the corresponding sets of associated tracks. The charge of the associated muon is interpreted as the same-sign or opposite-sign relative to the b-jet charge, according to its transverse momentum and geometrical match to vertices. Jets are divided in...

  20. A vertex trigger based on cylindrical multiwire proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.; Boesiger, K.; Lindfeld, L.; Mueller, K.; Robmann, P.; Schmitt, S.; Schmitz, C.; Steiner, S. [Physik-Institut, Universitaet Zuerich, CH-8057 Zurich (Switzerland); Straumann, U. [Physik-Institut, Universitaet Zuerich, CH-8057 Zurich (Switzerland)], E-mail: strauman@physik.unizh.ch; Szeker, K.; Truoel, P.; Urban, M.; Vollhardt, A.; Werner, N. [Physik-Institut, Universitaet Zuerich, CH-8057 Zurich (Switzerland); Baumeister, D.; Loechner, S. [ASIC-Laboratory, Kirchhoff-Institut fuer Physik, D-69120 Heidelberg (Germany); Hildebrandt, M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2008-02-21

    This article describes the technical implementation and the performance of the z-vertex trigger (CIP2k), which is part of the H1-experiment at HERA. The HERA storage ring and collider was designed to investigate electron (and positron) proton scattering at a center-of-mass energy of 320 GeV. To improve the sensitivity for detecting non-standard model physics and other high momentum transfer phenomena, the HERA ring has been ungraded between 2000 and 2003 to increase the specific luminosity for the experiments. In order to cope with the increased event and background rate the experiments were upgraded, too. The CIP2k trigger system is based on a set of five cylindrical multiwire proportional chambers with cathode pad readout, and allows to distinguish between events induced by beam background and ep-interactions at the first trigger stage. The trigger decision is calculated dead-time free with a latency of 1.5{mu}s in parallel to the beam clock at 10.4 MHz. The trigger-logic is realized in large field programmable gate arrays (FPGA) using the hardware description language Verilog. The system is operational since October 2003. It suppresses background events with high efficiency and provides event timing information, as designed.

  1. Susceptibility and vertex corrections for a square Fermi surface

    International Nuclear Information System (INIS)

    Djajaputra, D.; Ruvalds, J.

    1999-01-01

    The authors investigate the response of an electron system which exhibits ideal nesting features. Using the standard Matsubara formalism they derive analytic expressions for the imaginary and real parts of the bare particle-hole susceptibility. The imaginary part has sharp peaks whose maxima at the nesting momenta approximately scale with (ω/T). The peak lineshapes resemble neutron scattering data on chromium and some copper oxide superconductors. The real part of the bare susceptibility at the nestling vectors diverges logarithmically at low temperatures. Analytic formulae for the first vertex correction to the susceptibility are derived for a Hubbard interaction and its momentum and temperature variations are calculated numerically. This term detracts substantially from the ordinary RPA terms for intermediate values of the Coulomb repulsion. Exact cancellation of a certain class of diagrams at half filling is shown to result from particle-hole symmetry. They discuss the consequences of these results for spin fluctuation theories of high temperature superconductors and spin density wave instabilities

  2. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  3. On trees with total domination number equal to edge-vertex ...

    Indian Academy of Sciences (India)

    We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The edge incident with a leaf is called an end edge. We denote by Pn the path on n vertices. Let T be a tree, and let v be a vertex of T . We say that v is adjacent to a path Pn if there is a neighbor of v, ...

  4. Neutrino interaction vertex location with the help of electronic detectors in the OPERA experiment

    International Nuclear Information System (INIS)

    Gornushkin, Yu.A.; Dmitrievskij, S.G.; Chukanov, A.V.

    2015-01-01

    OPERA experiment is designed for the direct observation of ν τ appearance from ν μ →ν τ oscillation in a ν μ beam. Description of the procedure of neutrino interaction vertex localization (Brick Finding) by the electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and determination of the target bricks with the highest probability to contain the vertex.

  5. Pion-nucleon vertex function with an off-shell nucleon

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    A model calculation for the π-N vertex function is presented in the case in which there is a single off-mass-shell nucleon and a (nearly) on-mass-shell pion. Very strong effects due to the P 11 resonance at 1470 MeV are found. A simple parametrization of the vertex function is prvided in the case that at least one nucleon is on its mass shell. (Auth.)

  6. Studies of the Triple PomeronVertex in perturbative QCD and its applications in phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Kutak, K.

    2006-12-15

    We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N{sub c}{yields}{infinity} comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N{sub c} case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F{sub 2} structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F{sub 2} is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC.

  7. Search for B → (ρ/ω) γ decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Piatenko, Timofei [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2008-07-28

    The authors present the results of the search for the decays B0/± → ρ0/±γ (previously observed) and B0 → ωγ (for which currently only an upper limit exists). Together with B → K*γ decays, B → (ρ/ωγ allow us to measure the ratio of CKM-matrix elements |Vtd/Vts|. The analysis is based on the full BABAR dataset of 424.35 fb-1 corresponding to 465 million B$\\bar{B}$ pairs, and makes heavy use of multivariate classification techniques based on decision trees. They find β(B± → ρ±γ) = (1.20 -0.38+0.42 ± 0.20) x 10-6, β(B0 → ρ0γ) = (0.95-0.21+0.23 ± 0.06) x 10-6, β(B0 → ωγ) = (0.51-0.24+0.27 ± 0.10) x 10-60 → ωγ) < 0.9 x 10-6 (90% C.L.). They also measure the isospin and SU(3)F violating quantities Γ(B+ → ρ+γ)/2Γ(B0 → ρ0γ)-1 = -0.43-0.22+0.25 ± 0.10 and Γ(B0 → ωγ)/Γ(B0 → ρ0γ)-1 = -0.49-0.27+0.30 ± 0.10.

  8. A Study of B→c$\\bar{c}$γK in the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fulsom, Brian Gregory [Univ. of British Columbia, Vancouver, BC (Canada)

    2009-04-01

    The BABAR Collaboration is a high energy physics experiment located at the Stanford Linear Accelerator Center. The primary goal of the experiment is to study charge and parity violation in the B-meson sector, however the copious production of B mesons decaying to other final states allows for a wide-ranging physics program. In particular, one can access the charmonium system via colour-suppressed b → c decays of the type B → c$\\bar{c}$K. This thesis presents a study of B →c$\\bar{c}$γK decays where c$\\bar{c}$ includes J/Ψ and Ψ(2S), and K includes K±, KS0 and K*(892). The particular emphasis is on a search for the radiative decays X(3872) → J/Ψγ and X(3872) → Ψ(2S)γ. The X(3872) state is a recently-discovered resonance of undetermined quark composition, speculatively a conventional charmonium state or exotic four-quark di-meson molecule. This research is also sensitive to the well-known radiative charmonium decays B → χc1,2K, which are used as verification for the analysis technique. This dissertation sets the best B → χc1K branching fraction measurements to date, and sees the first evidence for factorization-suppressed B0 → χc2}K*0 decay at a level of 3.6σ. It also provides evidence for X(3872) → J/Ψγ and X(3872) → Ψ(2S)γ with 3.6σ and 3.3σ significance, respectively. The product of branching fractions β(B± → X(3872)K±) • β(X(3872) → J/Ψγ) = (2.8 ± 0.8(stat.) ± 0.2(syst.)) x 10{sup -6} and β(B{± → X(3872)K±) → β(X(3872) → Ψ(2S)γ) = (9.5 ± 2.7(stat.) ± 0.9(syst.)) x 10-6 are measured. These results improve upon previous X(3872) → J/Ψγ measurements, and represent the first evidence for X(3872) → Ψ(2S)γ.

  9. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  10. Development of vertexing and lifetime triggers and a study of Bs mixing using hadronic decays at D0

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Christopher P. [Imperial College, London (United Kingdom)

    2005-03-01

    The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of Bs oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay Bs → Dsπ. This important mode provides the best proper time resolution for Bs mixing and is reconstructed for the first time at D0. Projections on the sensitivity to Bs oscillations are then presented.

  11. Study of Charmless Semileptonic B Decays And a Measurement of the CKM Matrix Element |Vub| at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary Peter [Imperial College, London (United Kingdom)

    2004-04-01

    This thesis presents a measurement of exclusive charmless semileptonic branching fractions of B mesons measured using 81.9fb-1 of data (approximately 90 million BB pairs) collected between 1999 and 2002 by the BaBar detector operating at the PEP-II e+e- storage ring, at SLAC.

  12. The study of CP violation in the B0 → D+D- by means of the BABAR detector. Measurement of the performances of DIRC Cherenkov detector of BABAR: Prototype-II and final detector

    International Nuclear Information System (INIS)

    Benkebil, Mehdi

    1999-01-01

    The work presented in this thesis is divided into two parts: the physics analysis of the decay mode B 0 → D + D - and the performance obtained with a new type of a particle identification detector using the Cherenkov effect technique: the DIRC. The analysis of this decay mode has been performed with data generated from fast simulation and a preliminary version of the reconstruction program. The branching ratio of this channel is predicted to be 4.5 x 10 -4 . The uncertainty in the sin 2 β measurement obtained with this mode is: σ(sin 2β)0.19 and 0.32 for fast simulation and preliminary version of the reconstruction program, respectively. The comparison of this result with the one obtained in the B 0 → J/ψK s 0 mode will bring very useful theoretical insights. The performance study of the DIRC has been done on the prototype-II and the final detector. The beam-test results in terms resolution on the θ c angle and number of Cherenkov photons are the following: σ(θ c ) = 10.2 ± 0.1 mrad per photon, σ(θ c ) = 3.2 ± 0.2 mrad per track and N γ 15.7 ± 0.1 at θ dip = 20 angle and 0 transmission in the bar. The analysis of the first cosmic data collected by the BABAR detector has allowed to study the DIRC in its final configuration. Among all the results obtained, we give the following ones: σ(θ c ) = 10.09 ± 0.06 mrad per photon, σ(θ c ) = 4.71 ± 0.14 mrad per track and N γ 35.2 ± 3.8 at θ dip = 20 angle and 0 transmission in the bar. The extrapolation to the real condition of BABAR for all these results shows that the DIRC will run with performances similar to the nominal values. A detailed study of the background shows that, even though it will not be negligible, it will not compromise the DIRC performances in BABAR. (author)

  13. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  14. CP violation in BaBar: tagging of B mesons and study of the B → 3 π channel

    International Nuclear Information System (INIS)

    Versille, S.

    1999-04-01

    My thesis took place in LPNHE Paris 6/7 in the BaBar experiment. It is divided in three main topics: the analysis of CP violation in the B 0 → π + π - π 0 channel, the tagging of neutral B meson and a study of the background of the PEPII collider. CP violation is naturally present in the Standard Model but has not been demonstrated yet in the B 0 B-bar 0 system. For this purpose, a collider (PEPII) and a detector (BaBar) have been installed in SLAC. In order to demonstrate CP violation, a new variable Kin, is described: it is optimal in several ways, for example when one wants to combine several channels and/or experiments. One of the favoured channel to measure the α angle is B 0 → 3 π, as it is the only one which permits to extract this parameter without theoretical uncertainties from penguin diagrams. But this analysis is subtle: it needs a nine parameter fit which is difficult to handle. This thesis establishes that the experimental limitations are three-fold: hadronic background, combinatorial background as well as low energy photons, the theoretical uncertainty being the resonant contributions other than the ρ(770). For a CP violation analysis, we need to determine the flavor (B 0 or B-bar 0 ) of the non-CP B at its decay time. To tackle this problem, we set-up in BaBar the 'tagging' group which is in charge of providing the collaboration with a software for multivariate analysis. This program, Cornelius, gives the opportunity to the user of having access to different multivariate methods with a common interface: it is the official package for B-tagging. Taking into account the fact that the number of events useful for CP violation studies is rather low, we need to study all kinds of background and, amongst others, the one coming from the collider. We need several detectors installed in the interaction region for this study. An analysis of this background and of the pressure in the machine is also presented in this thesis. (author)

  15. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study

    OpenAIRE

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R.

    2016-01-01

    Background A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-depen...

  16. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    Science.gov (United States)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  17. Silicon drift-chamber studies for possible use at RHIC

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1990-01-01

    It is proposed to continue the program now underway at the University of Pittsburgh to study the feasibility of using silicon drift-chambers as particle tracking devices at RHIC. We are currently testing a UA6-type detector obtained from BNL and plan to also study a new device that will become available this year: a cylindrical geometry detector designed for NA45 (CERN). In addition we propose to fabricate and study a detector to be used in vertex determination for the RHIC OASIS experiment. The two-year budget for this proposal is $246.962. 5 refs., 12 figs

  18. Detecting the solution space of vertex cover by mutual determinations and backbones.

    Science.gov (United States)

    Wei, Wei; Zhang, Renquan; Guo, Binghui; Zheng, Zhiming

    2012-07-01

    To solve the combinatorial optimization problems, especially the minimal Vertex-cover problem with high efficiency, is a significant task in theoretical computer science and many other subjects. Aiming at detecting the solution space of Vertex-cover, a new structure named mutual-determination is defined and discovered for Vertex-cover on general graphs, which results in the emergence of strong correlations among the unfrozen nodes. Based on the backbones and mutual-determinations with node ranks by leaf removal, we propose a Mutual-determination and Backbone Evolution Algorithm to achieve the reduced solution graph, which provides a graphical expression of the solution space of Vertex-cover. By this algorithm, the whole solution space and detailed structures such as backbones can be obtained strictly when there is no leaf-removal core on the given graph. Compared with the current algorithms, the Mutual-determination and Backbone Evolution Algorithm performs as well as the replica symmetry one in a certain interval but has a small gap higher than the replica symmetric breaking one and has a relatively small error for the exact results. The algorithm with the mutual-determination provides a new viewpoint to solve Vertex-cover and understand the organizations of the solution spaces, and the reduced solution graph gives an alternative way to catch detailed information of the ground/steady states.

  19. Vertex finding performance studies for the Phase II CMS Level-1 Trigger

    CERN Document Server

    Udrescu, Silviu Marian

    2017-01-01

    At the HL-LHC, a significant increase in the luminosity delivered to CMS will result in a pileup per bunch crossing of 140-200. This provides a difficult environment to obtain reliable physics results and keep trigger rates manageable. In order to mitigate this problem, tracker information will be used, for the first time, at the Level-1 (L1) trigger. This will allow the primary vertex reconstruction at L1. In this report, an investigation into the vertex finding performance of a potential algorithm is presented. The vertex finding efficiency was measured as a function of several variables, such as the percentage of tracks associated to the primary vertex within the barrel and the pT of the tracks. The efficiency was found to not depend significantly on the pileup for the samples analyzed, however, a strong dependence was observed on the number of tracks associated with the primary vertex.

  20. Simulation and Measurement of the Fringe Field of the 1.5 Tesla BaBar Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    London, Georges W

    1998-11-17

    In the context of the SLAC PEP-II asymmetric e{sup +}e{sup {minus}} collider and the BABAR detector with its 1.5 Tesla solenoid, we have calculated and measured the fringe field at the nearby beam elements and at the position of the photomultipliers external to the return iron but within a specially designed iron shield. The comparisons of these measurements with the simulations based on finite element analysis are remarkably good, within about 5 Gauss at the most critical beam element. The field at the photomultipliers is less than 1 Gauss, in agreement with the simulation. With a simple method of demagnetization of the shield, a maximum field of 0.6 Gauss is obtained.

  1. Status of the CDF silicon detector

    Science.gov (United States)

    Bolla, Gino

    CDF is a collider experiment that is running at the Tevatron. The core of the CDF detector is an 8 layer silicon micro strip tracker. There are 722,432 active strips with pitches that range from 25 to 140 μm. This device is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment and it is one of the largest silicon detectors in present use by an HEP experiment. A of the experience in commissioning and operating this double-sided detector during the first 2 years of Run II is presented. A description of the encountered failure modes follows a general view of the design. After more than 2 years of data taking, we report on the performance of the tracker and its effect on physics analyses. A short description of the SVT, the level 2 Silicon Vertex Trigger, will be given as well. PACS: 29.40.GX Tracking and position sensitive detectors - 29.40.Wk Solid-state detectors

  2. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Aldaya Martin, M. [DESY, Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)

    2009-06-15

    Inclusive charm and beauty cross sections are measured in e{sup -}p and e{sup +}p neutral current collisions at HERA in the kinematic region of photon virtuality 5{<=}Q{sup 2}{<=}2000 GeV{sup 2} and Bjorken scaling variable 0.0002{<=}x{<=}0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  3. ATLAS strategy for primary vertex reconstruction during Run-2 of the LHC

    CERN Document Server

    Borissov, Guennadi; The ATLAS collaboration; Grimm, Kathryn; Pagan Griso, Simone; Pedersen, Lars Egholm; Prokofiev, Kirill; Rudolph, Matthew Scott; Wharton, Andrew Mark

    2015-01-01

    The reconstruction of vertices corresponding to proton--proton collisions in ATLAS is an essential element of event reconstruction used in many performance studies and physics analyses. During Run-1 of the LHC, ATLAS has employed an iterative approach to vertex finding. In order to improve the flexibility of the algorithm and ensure continued performance for very high numbers of simultaneous collisions in Run-2 of the LHC and beyond, a new approach to seeding vertex finding has been developed inspired by image reconstruction techniques. This note provides a brief outline of how reconstructed tracks are used to create an image of likely vertex collisions in an event, describes the implementation in the ATLAS software, and presents some preliminary results of the performance of the algorithm in simulation approximating early Run-2 conditions.

  4. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact.

    Science.gov (United States)

    McGaughey, Georgia; Patrick Walters, W

    2017-03-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  5. Application of laser differential confocal technique in back vertex power measurement for phoropters

    Science.gov (United States)

    Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli

    2012-10-01

    A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.

  6. Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA

    CERN Document Server

    Aaron, FD; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D -J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H -U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H -C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

    2010-01-01

    Inclusive charm and beauty cross sections are measured in e-p and e+p neutral current collisions at HERA in the kinematic region of photon virtuality 5vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions.

  7. A Dyson-Schwinger study of the four-gluon vertex

    Science.gov (United States)

    Cyrol, Anton K.; Huber, Markus Q.; Smekal, Lorenz von

    2015-03-01

    We present a self-consistent calculation of the four-gluon vertex of Landau gauge Yang-Mills theory from a truncated Dyson-Schwinger equation. The equation contains the leading diagrams in the ultraviolet and is solved using as the only input results for lower Green functions from previous Dyson-Schwinger calculations that are in good agreement with lattice data. All quantities are therefore fixed and no higher Green functions enter within this truncation. Our self-consistent solution resolves the full momentum dependence of the vertex but is limited to the tree-level tensor structure at the moment. Calculations of selected dressing functions for other tensor structures from this solution are used to exemplify that they are suppressed compared to the tree-level structure except for possible logarithmic enhancements in the deep infrared. Our results furthermore allow one to extract a qualitative fit for the vertex and a running coupling.

  8. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    Science.gov (United States)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  9. A new efficient RLF-like algorithm for the vertex coloring problem

    Directory of Open Access Journals (Sweden)

    Adegbindin Mourchid

    2016-01-01

    Full Text Available The Recursive Largest First (RLF algorithm is one of the most popular greedy heuristics for the vertex coloring problem. It sequentially builds color classes on the basis of greedy choices. In particular, the first vertex placed in a color class C is one with a maximum number of uncolored neighbors, and the next vertices placed in C are chosen so that they have as many uncolored neighbors which cannot be placed in C. These greedy choices can have a significant impact on the performance of the algorithm, which explains why we propose alternative selection rules. Computational experiments on 63 difficult DIMACS instances show that the resulting new RLF-like algorithm, when compared with the standard RLF, allows to obtain a reduction of more than 50% of the gap between the number of colors used and the best known upper bound on the chromatic number. The new greedy algorithm even competes with basic metaheuristics for the vertex coloring problem.

  10. Study of the vertex trigger performance on test-beam data

    CERN Document Server

    Teubert, F

    1999-01-01

    99-030 The performance of the Level-1 vertex trigger algorithm on test-beam data collected with a prototype of the VDET detector is presented. The effect of the detectors misalignment on the Level-1 vertex trigger performance is shown to be a critical issue if the relative position is not controlled better than $100~\\mu$m. The Primary vertex resolution on the longitudinal direction obtained on the test-beam for 2D-tracks ($270~\\mu$m), translates into a resolution close to $80~\\mu$m for the statistics of an LHC event in good agreement with expectations. The discriminating power between B-events and Minimum Bias events is studied using a sample of ``artificial'' events built from events interacting at different targets separated by 1~cm. The results are very encouraging showing the feasibility to trigger on low multiplicity displaced vertices.

  11. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Zus, R.; Aldaya Martin, M.; Alimujiang, K.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Schoeffel, L.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Asmone, A.; Stella, B.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Pokorny, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Schoening, A.; South, D.; Wegener, D.; Tsakov, I.

    2010-01-01

    Inclusive charm and beauty cross sections are measured in e - p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5≤Q 2 ≤2000 GeV 2 and Bjorken scaling variable 0.0002≤x≤0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb -1 . The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  12. X-ray powder crystallography with vertex instrumentation

    International Nuclear Information System (INIS)

    Chatzisotiriou, V.; Christofis, I.; Dimitriou, N.; Karvelas, S.; Karydas, A.G.; Loukas, D.; Pavlidis, A.; Spirou, S.; Dre, C.; Haralabidis, N.; Misiakos, K.; Tsoi, E.; Perdikatsis, V.; Psycharis, V.; Terzis, A.; Turchetta, R.

    1998-01-01

    An X-ray Diffractometer for Powder Crystallography is described along with experimental results and future plans. This is an intermediate instrument toward a long linear array system. Three channels of a silicon microstrip detector, are the detecting elements in the present instrument. Each detector channel is followed by a VLSI readout chain, which consists of a charge preamplifier with pulse shaping circuitry, a discriminator, and a 16-bit counter. Control and data acquisition is performed with a custom made PC readout card. A motorized goniometer scans the angle range of interest. Calibration of the system is done with reference samples and data which are captured with a one-channel conventional NaI detector. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Nonseparable frequency dependence of the two-particle vertex in interacting fermion systems

    Science.gov (United States)

    Vilardi, Demetrio; Taranto, Ciro; Metzner, Walter

    2017-12-01

    We derive functional flow equations for the two-particle vertex and the self-energy in interacting fermion systems which capture the full frequency dependence of both quantities. The equations are applied to the hole-doped two-dimensional Hubbard model as a prototype system with entangled magnetic, charge, and pairing fluctuations. Each fluctuation channel acquires substantial dependencies on all three Matsubara frequencies, such that the frequency dependence of the vertex cannot be accurately represented by a channel sum with only one frequency variable in each term. At the temperatures we are able to access, the leading instabilities are mostly antiferromagnetic, with an incommensurate wave vector. However, at large doping, a divergence in the charge channel occurs at a finite frequency transfer, if the vertex flow is computed without self-energy feedback. This enigmatic instability was already observed in a calculation by Husemann et al. [C. Husemann, K.-U. Giering, and M. Salmhofer, Phys. Rev. B 85, 075121 (2012), 10.1103/PhysRevB.85.075121], who used an approximate separable ansatz for the frequency dependence of the vertex. We identify a simple mechanism for this instability in terms of a random-phase approximation for the charge channel with a frequency dependent effective magnetic interaction as input. In spite of the strong momentum and frequency dependence of the vertex, the self-energy has a Fermi-liquid form. At the moderate interaction strength where our approach is applicable, we obtain a moderate reduction of the quasiparticle weight and a sizable decay rate with a pronounced momentum dependence. Nevertheless, the self-energy feedback into the vertex flow turns out to be crucial, as it suppresses the unphysical finite frequency charge instability.

  14. Vertex operators for the closed bosonic string theory at arbitrary genus in the operator formalism

    International Nuclear Information System (INIS)

    Lugo, A.R.

    1990-01-01

    A systematic procedure for constructing vertex operators for the physical states of the closed bosonic string theory at genus g in the operator formalism is presented. The method is based on imposing suitable commutation relations with the generators of the conformal transformations required by unitarity of scattering amplitudes. An Arakelov-type metric on the Riemann surface naturally arises in the case of the tachyon, which allows to define vertex operators at higher levels via covariant derivatives. They involve covariant derivatives of the curvature with respect to this metric as it happens in the path integral approach. As a particular result, the Fradkin-Tseytlin dilaton coupling is obtained

  15. The track finding algorithm of the Belle II vertex detectors

    Directory of Open Access Journals (Sweden)

    Bilka Tadeas

    2017-01-01

    Full Text Available The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e− - collider SuperKEKB in Tsukuba (Japan. In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated ϒ(4S → BB̄ events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum.

  16. Antiproton tagging and vertex fitting in a Timepix3 detector

    CERN Document Server

    Aghion, S.; The AEGIS collaboration; Antonello, M.; Belov, A.; Bonomi, G.; Brusah, R. S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Hackstock, P.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2018-01-01

    Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN was used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the a...

  17. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  18. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    Science.gov (United States)

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Study of charm production through the decay of B mesons in the BABAR experiment; Etude de la production de charme dans les desintegrations des mesons beaux avec l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Couderc, F

    2005-04-15

    The BABAR experiment, located at SLAC (Stanford, California), has been dedicated, since 1999, to the study of B meson decays produced in electron positron collisions with an energy in the center of mass frame equal to the mass of {epsilon}(4S) resonance. In this experiment, the charged particles identification is provided, in particular by the measurement of the energy loss per length unit in the drift chamber. In order to improve the calibration of this quantity, a selection of electrons/positrons from radiative Bhabha events was performed; with the new sample the charge asymmetry in the charged particles reconstruction was reduced. In B meson decays, the inclusive production of charmed particles (D{sup 0}, D{sup 0}-bar, D{sup {+-}}, D{sub s}{sup {+-}}, {lambda}{sub c}{sup {+-}}) is measured with a new analysis method, made possible by the large statistics accumulated by the BABAR experiment. B and B-bar mesons are produced simultaneously from the {epsilon}(4S) resonance. The events are selected by reconstructing completely one B in a hadronic channel. Charmed particles from the other B are then reconstructed with the remaining tracks. This enables the measurement of the total number of charm produced in B{sup +} and in B{sup 0} decays separating the correlated charm production (quark transitions: b {yields} cX) from the anti-correlated production (quark transitions: b {yields} c-bar X). The results obtained on an integrated luminosity of 210 fb{sup -1} are the following: N{sub c}{sup B{sup +}} = 0.970 {+-} 0.042; N{sub c-}bar{sup B{sup +}} 0.262 {+-} 0.034; N{sub c}{sup B{sup 0}} = 0.950 {+-} 0.057; N{sub c-}bar{sup B{sup 0}} 0.285 {+-} 0.048. This new method also allows the measurement of the momentum of the charmed particles in the B rest frame. Access to the different production mechanisms of these particles is thereby provided. (author)

  20. Measurement of Mixing and CP Violation in the Two-Body D0 decays to KK, pipi and Kpi with the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Casarosa, Giulia [Univ. of Pisa (Italy)

    2012-12-01

    In this thesis we present the measurement of D0 - $\\bar{D}$0 mixing parameter yCP using the full BABAR data sample. We also searched for CP violation in the D0 → K+K-, π+π- channels, finding the parameter ΔY compatible with zero. In Chapter 1, we briefly review the SM and introduce the theoretical framework of neutral meson mixing and CP violation. The BABAR detector and the performance of each sub-detector are described in Chapter 2. In Chapter 3, we present an overview of the analysis including a brief description of the previous similar BABAR analyses and the expected improvements in the present analysis. The candidate reconstruction and selection are described in Chapter 4, together with the optimization of the signal region. The signal and background event classes are described in Chapter 5, where we also provide the probability density functions used to extract the mixing and CP violating parameter. In Chapter 6 we describe the various crosschecks performed to validate the analysis and the evaluation of the systematic error. Finally in Chapter 7 we present the final results and their interpretation.

  1. Approximations of Quantum-Graph Vertex Couplings by Singularly Scaled Rank-One Operators

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Manko, S. S.

    2014-01-01

    Roč. 104, č. 9 (2014), s. 1079-1094 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum graph * vertex coupling * approximation Subject RIV: BE - Theoretical Physics Impact factor: 1.939, year: 2014

  2. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    Science.gov (United States)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  3. Behaviour of the cervix and the presenting vertex in labour in Blacks ...

    African Journals Online (AJOL)

    1974-04-17

    Apr 17, 1974 ... Behaviour of the Cervix and the Presenting. Vertex in Labour in Blacks and Indians of Natal ... man's curve of the normal progress of cervical dilatation in the first stage of labour to detect early deviation from .... the exact time of onset of painful regular uterine con- tractions. Doctors who recorded the results ...

  4. A general-purpose trigger processor system and its application to fast vertex trigger

    International Nuclear Information System (INIS)

    Hazumi, M.; Banas, E.; Natkaniec, Z.; Ostrowicz, W.

    1997-12-01

    A general-purpose hardware trigger system has been developed. The system comprises programmable trigger processors and pattern generator/samplers. The hardware design of the system is described. An application as a prototype of the very fast vertex trigger in an asymmetric B-factory at KEK is also explained. (author)

  5. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    Objects in the plane with no obvious landmarks can be described by either vertex transformation vectors or edge transformation vectors. In this paper we provide the relation between the two transformation vectors. Grenander & Miller (1994) use a multivariate normal distribution with a block circu...

  6. Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase

    CERN Document Server

    Bleher, P M

    2005-01-01

    The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...

  7. Conserved currents in the six-vertex and trigonometric solid-on-solid models

    Science.gov (United States)

    Ikhlef, Yacine; Weston, Robert

    2017-04-01

    We construct quasi-local conserved currents in the six-vertex model with anisotropy parameter η by making use of the quantum-group approach of Bernard and Felder. From these currents, we construct parafermionic operators with spin 1+\\text{i}η /π that obey a discrete-integral condition around lattice plaquettes embedded into the complex plane. These operators are identified with primary fields in a c  =  1 compactified free Boson conformal field theory. We then consider a vertex-face correspondence that takes the six-vertex model to a trigonometric SOS model, and construct SOS operators that are the image of the six-vertex currents under this correspondence. We define corresponding SOS parafermionic operators with spins s  =  1 and s=1+2\\text{i}η /π that obey discrete integral conditions around SOS plaquettes embedded into the complex plane. We consider in detail the cyclic-SOS case corresponding to the choice η =\\text{i}π ≤ft( p-{{p}\\prime}\\right)/p , with {{p}\\prime} coprime. We identify our SOS parafermionic operators in terms of the screening operators and primary fields of the associated c=1-6≤ft( p-{{p}\\prime}\\right){{}2}/p{{p}\\prime} conformal field theory.

  8. Vertex corrections to the mean-field electrical conductivity in disordered electron systems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Vladislav; Janiš, Václav

    2013-01-01

    Roč. 25, č. 17 (2013), "175502-1"-"175502-10" ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : disordered electron systems * electrical conductivity * vertex corrections Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.223, year: 2013

  9. On the colour contribution to effective weak vertex in broken colour gauge theories

    International Nuclear Information System (INIS)

    Ramachandran, R.

    1979-01-01

    Treating the breaking of colour symmetry via the mixing between the colour gluons and weak bosons (a la Rajasekaran and Roy) it is observed that the colour contribution to the effective weak vertex of a quark at zero momentum transfer is zero upto 0(α). (author)

  10. Detecting overlapping community structure of networks based on vertex–vertex correlations

    International Nuclear Information System (INIS)

    Zarei, Mina; Izadi, Dena; Samani, Keivan Aghababaei

    2009-01-01

    Using the NMF (non-negative matrix factorization) method, the structure of overlapping communities in complex networks is investigated. For the feature matrix of the NMF method we introduce a vertex–vertex correlation matrix. The method is applied to some computer-generated and real-world networks. Simulations show that this feature matrix gives more reasonable results

  11. Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.

  12. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  13. On non-Cayley vertex-transitive graphs and the Meta-Cayley graphs ...

    African Journals Online (AJOL)

    The pursuit to identify vertex-transitive non-Cayley graphs has been deliberate for some time now. In that vein, Alspach and Parsons [1] introduced metacirculant graphs. They are de ned on two cyclic groups with adjacency re-sembling twisting that is typically used in de ning semi-direct products of groups. In this sequel we ...

  14. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  15. Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material's dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

  16. An antiperiodic dynamical six-vertex model: I. Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic eight-vertex model

    International Nuclear Information System (INIS)

    Niccoli, G

    2013-01-01

    The spin-1/2 highest weight representations of the dynamical six-vertex and the standard eight-vertex Yang–Baxter algebra on a finite chain are considered in this paper. In particular, the integrable quantum models associated with the corresponding transfer matrices under antiperiodic boundary conditions for the dynamical six-vertex case and periodic boundary conditions for the eight-vertex case are analyzed here. For the antiperiodic dynamical six-vertex transfer matrix defined on chains with an odd number of sites, we adapt Sklyanin’s quantum separation of variable (SOV) method and explicitly construct the SOV representations from the original space of the representations. In this way, we provide the complete characterization of the eigenvalues and the eigenstates proving also the simplicity of its spectrum. Moreover, we characterize the matrix elements of the identity on separated states of this model by determinant formulae. The matrices entering these determinants have elements given by sums over the SOV spectrum of the product of the coefficients of the separate states. This SOV analysis is done without any need to be reduced to the case of the so-called elliptic roots of unit, and the results derived here define the required setup to extend to the dynamical six-vertex model the approach recently developed by the author and collaborators to compute the form factors of the local operators in the SOV framework. For the periodic eight-vertex transfer matrix, we prove that its eigenvalues have to satisfy a fixed system of equations. In the case of a chain with an odd number of sites, this system of equations is the same entering in the SOV characterization of the antiperiodic dynamical six-vertex transfer matrix spectrum. This implies that the set of the periodic eight-vertex eigenvalues is contained in the set of the antiperiodic dynamical six-vertex eigenvalues. A criterion is introduced to find simultaneous eigenvalues of these two transfer matrices and

  17. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  18. Measurement of Branching Fractions for Two-Body Charmless B Decays to Charged Pions and Kaons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for charmless two-body B decays to charged pions and kaons using data collected by the BaBar detector at the Stanford Linear Accelerator Center's PEP-II Storage ring. In a sample of 8.8 million produced B anti-B pairs the authors measure the branching fractions beta(B{sup 0} --> pi{sup +}pi{sup {minus}}) = (9.3{sub {minus}2.3{minus}1.4}{sup +2.6+1.2}) x 10{sup {minus}6} and beta(B{sup 0} --> K{sup +}pi{sup {minus}}) = (12.5{sub {minus}2.6{minus}1.7}{sup +3.0+1.3}) x 10{sup {minus}6}, where the first uncertainty is statistical and the second is systematic. For the decay B{sup 0} --> K{sup +}K{sup {minus}} they find no significant signal and set an upper limit of beta(B{sup 0} --> K{sup +}K{sup {minus}}) < 6.6 x 10{sup {minus}6} at the 90% confidence level.

  19. Study of the Rare Decay B Mesons Decaying to X Mesons Positive And Negative Leptons at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Koptchev, Ventzislav B.; /Massachusetts U., Amherst

    2005-08-30

    Flavor-changing neutral current transitions are forbidden at tree level in the Standard Model and can only occur via higher order diagrams. Since the amplitudes for such loops are dominated by the heaviest known particles, and non-SM effects are expected to contribute at the same order as the SM, such processes are an ideal place to look for new physics. We present a measurement of the inclusive branching fraction for the flavor-changing neutral current process B {yields} X{sub s}{ell}{sup +}{ell}{sup -} with a sample of 81.9 fb{sup -1}, collected with the BABAR detector at the Stanford Linear Accelerator Center. The final state is reconstructed from e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pairs and a hadronic system consisting of one K{sup {+-}} or K{sub s} and up to two pions, with at most one {pi}{sup 0}. They observe a signal of 40 {+-} 10(stat) {+-} 2(syst) events and extract a branching fraction {Beta}(B {yields} X{sub s}{ell}{sup +}{ell}{sup -}) = (5.6 {+-} 1.5(stat) {+-} 0.6(exp. syst) {+-} 1.1(model syst)) x 10{sup -6} for m{sub ll} > 0.2 GeV.

  20. A Study of $e^+e^-\\to p\\bar{p}$ Using Initial StateRadiation with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-12-13

    The e{sup +}e{sup -} {yields} p{bar p} cross-section is determined over a range of p{bar p} masses, from threshold to 4.5 GeV/c{sup 2}, by studying the e{sup +}e{sup -} {yields} p{bar p}{gamma} process. The data set corresponds to an integrated luminosity of 232 fb{sup -1}, collected with the BABAR detector at the PEP-II storage ring, at an e{sup +}e{sup -} center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G{sub E}/G{sub M}|, is measured for p{bar p} masses below 3 GeV/c{sup 2}; its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c{sup 2}. We also measure J/{psi} {yields} p{bar p} and {psi}(2S) {yields} p{bar p} branching fractions and set an upper limit on Y(4260) {yields} p{bar p} production and decay.