WorldWideScience

Sample records for babar muon system

  1. The BaBar detector for muon identification and neutral hadron detection

    International Nuclear Information System (INIS)

    Paolucci, P.; Evangelista, C.; Palano, A.; Baldini, R.; Calcaterra, A.; De Sangro, R.; Piccolo, M.; Zallo, A.; Peruzzi, I.; Buzzo, A.; Contri, R.; Crosetti, G.; Monge, R.; Passaggio, S.; Patrignani, C.; Pia, M.G.; Santroni, A.; Bionta, R.M.; van Bibber, K.; Wenaus, T.J.; Wright, D.M.; Cavallo, N.; Carlino, G.; Lista, L.; Mele, S.; Parascandolo, P.; Piccolo, D.; Sciacca, C.; Johnson, J.R.

    1996-01-01

    The BaBar experiment is projected to study CP violation in B decays. Muon detection and K L 0 identification are achieved by an instrumented flux return (IFR) system based on resistive plate chamber detectors. In this paper the general layout of the IFR system will be described. (orig.)

  2. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    International Nuclear Information System (INIS)

    Yi, M.

    2004-01-01

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO 2 , argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 ± 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 ± 1000SCCM and a time requirement of 56 ± 5 seconds to flush an entire module

  3. The RPC-based IFR system at BaBar experiment: preliminary results

    International Nuclear Information System (INIS)

    Piccolo, Davide; Palano, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Anulli, F.; Baldini, R.; Calcaterra, A.; De Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I.; Piccolo, M.; Yu, Z.; Zallo, A.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Sciacca, C.; Bionta, R.; Wright, D.; Band, H.; Johnson, J.

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported

  4. The RPC-based IFR system at BaBar experiment preliminary results

    CERN Document Server

    Piccolo, D; Bagnasco, S; Baldini, R; Band, H R; Bionta, R; Buzzo, A; Calcaterra, A; Cavallo, N; Contri, R; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Fabozzi, F; Falciai, D; Finocchiaro, G; Gatto, C; Johnson, J; Lista, L; Lo Vetere, M; Macri, M; Monge, R; Palano, A; Paolucci, P; Passaggio, S; Patrignani, C; Patteri, P; Peruzzi, I; Piccolo, M; Robutti, E; Santroni, A; Sciacca, C; Wright, D; Yu, Z; Zallo, A

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported.

  5. CORBA Evaluations for the BABAR Online System

    International Nuclear Information System (INIS)

    Glanzman, Thomas

    1998-01-01

    The Common Object Request Broker Architecture (CORBA) is a software system to deal with distributed object computing. The release of CORBA version 2, and real implementations from numerous vendors (both freeware and payware) have made its use very attractive for interprocess and interprocessor communication within an object-oriented software system. A number of object request brokers (ORBs) were evaluated for possible use within the BABAR Online system. Given an expectation for a reasonable level of performance within the Online system, it was essential to characterize the behavior and test the response of these products prior to their adoption. This paper summarizes the results of a systematic performance study of six ORB products. The products tested include: Visibroker, Orbix, DAIS, Omnibroker, OmniORB2, and TAO. Performance results of ORB products, including a test of TCP/IP sockets, are compared. These tests resulted in the adoption of the TAO ORB for use within the BABAR Online system

  6. The BaBar Light Pulser System

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P

    2004-03-18

    The BABAR experiment and the PEP-II e{sup +}e{sup -} collider at SLAC in California started taking data in May 1999. The aim of the experiment is to study CP violation in the B meson system. A central part of the BABAR detector is the CsI(Tl) electromagnetic calorimeter. To make precision measurements with a calorimeter in a high luminosity environment requires that the crystals are well calibrated and continually monitored for radiation damage. However, this should not impact the total integrated luminosity. To achieve this goal a fiber-optic light pulser system was designed. The light sources chosen were xenon flash lamps. A novel light distribution method was developed using an array of graded index microlenses. Initial results from performance studies are presented.

  7. The BaBar Data Acquisition System

    CERN Document Server

    Scott, I; Grosso, P; Huffer, M E; O'Grady, C; Russell, J J

    1999-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by ana-lyzing the decays of a very large sample of B and B(Bar) mesons produced at the high luminosity PEP-II accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detec-tor subsystems. Data from the front end electronics is read into commercial VME processors via a custom "Personality Card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data is read out via a non-blocking network switch to a farm of commercial UNIX processors. The current implementation of the BaBar data acquisition sys-tem has been shown to sustain a Level 1 trigger rate of 1.3...

  8. Gas system Upgrade for the BaBar IFR Detector at SLAC

    International Nuclear Information System (INIS)

    Foulkes, S

    2004-01-01

    A new gas distribution and monitoring system was installed as part of an upgrade of the forward endcap muon detection system (IFR) of the BaBar detector at SLAC. Over 300 gas circuits are controlled and monitored. The return gas flow is monitored by digital bubblers which use photo-gate electronics to count the bubbling rate. The rates are monitored in real time and recorded in a history database allowing studies of flow rate versus chamber performance

  9. The BaBar LST Detector High Voltage System: Design And Implementation

    International Nuclear Information System (INIS)

    Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S.; Ohio State U.

    2006-01-01

    In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 (micro)m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides the decoupling capacitor to pick up the detector signals from the anode wires. The BABAR LST detector is operated at 5.5 kV. The high voltage system for the LST detector was designed and built at The Ohio State University (OSU HVPS). Each of the 25 supplies built for BaBar provides 80 output channels with individual current monitoring and overcurrent protection. For each group of 20 channels the HV can be adjusted between 0 and 6 kV. A 4-fold fan-out is integrated in the power supplies to provide a total of 320 outputs. The power supplies are controlled through built-in CANbus and Ethernet (TCP/IP) interfaces. In this presentation we will discuss the design and novel features of the OSU HVPS system and its integration into the BABAR EPICS detector control framework. Experience with the supplies operation during the LST extensive quality control program and their performance during the initial data taking period will be discussed

  10. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  11. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  12. The CDF muon system

    International Nuclear Information System (INIS)

    LeCompte, T.J.; Papadimitriou, V.

    1993-01-01

    The authors describe the characteristics of the CDF muon system and their experience with it. They explain how the trigger works and how they identify muons offline. They also describe the future upgrades of the system and their trigger plans for Run IB and beyond

  13. DIRC, a new type of particle identification system For BABAR

    International Nuclear Information System (INIS)

    Schwiening, J.

    1997-12-01

    The DIRC, a new type of Cherenkov imaging device, has been selected as the primary particle identification system for the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiators and light guides. In this paper, the principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. The studies of the optical properties and radiation hardness of the quartz radiators are described, followed by a discussion of the detector design

  14. The New BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, Antonio

    2003-01-01

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is actively distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 12 farms

  15. The BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, A

    2005-01-01

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 9 farms

  16. The BESIII muon identification system

    International Nuclear Information System (INIS)

    Zhang Jiawen; Qian Sen; Chen Jin; Du Zhizhen; Han Jifeng; Li Rubo; Liu Jichen; Liang Hao; Mao, Yajun; Ma Liehua; Wang Yifang; Xie Yigang; Xie Yuguang; Zhang Qingmin; Zhao Jianbing; Zhao, T.; Zhou, Yongzhao

    2010-01-01

    The muon identification system of BESIII experiment at the IHEP is described. The muon counter (MUC) is composed of resistive plate chambers (RPCs) working in self-quenching streamer mode with the gas mixture Ar/C 2 F 4 H 2 /C 4 H 10 =50/42/8. The design, the construction, the mass production and the quality control result of the detectors are described in detail. The paper also presents the performance of the bare RPCs and the superlayer modules with cosmic rays. Finally, the subsystems of MUC, including the RPC superlayer modules, the gas systems, the HV and LV system and the readout electronic system, are also presented.

  17. Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Frank C. [Caltech, Pasadena, CA (United States). Physics Dept.

    2015-04-29

    The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons

  18. DIRC - a particle identification system for BaBar

    International Nuclear Information System (INIS)

    Hoecker, A.

    1999-10-01

    The DIRC (an acronym for Detection of Internally Reflected Cherenkov light) is a novel type of Cherenkov imaging device that has been developed, built and installed as part of the BaBar detector at the asymmetric B-factory PEP-II at SLAC. The DIRC is based on total internal reflection of Cherenkov photons produced and guided within thin, rectangular quartz bars covering the barrel region of BaBar. The photon detector is an array of photomultiplier tubes covering the photon phase space at the backward end of the bars. In its first few months of operation the DIRC performance has been found to achieve the design requirements. This note presents results from cosmic ray data and an analysis of the first beam collision runs. (author)

  19. The CMS Muon System Alignment

    CERN Document Server

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  20. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  1. Development of a Data Acquisition System for the BaBar CP Violation Experiment

    International Nuclear Information System (INIS)

    Claus, Richard

    1999-01-01

    Experiences developing data acquisition system for the BaBar CP violation experiment located at the Stanford Linear Accelerator Center are presented. The BaBar detector consists of multiple independent subdetectors joined with a data acquisition system consisting of a large number of embedded PowerPC single board computers residing in VME crates. The data acquisition software is layered on the VxWorks real-time operating system. It is partitionable to allow subsystems (as well as test stands) to operate independently. Data is assimilated into events through a combination of shared memory and a high performance network. This system presents data to a UNIX farm via a high speed non-blocking ethernet switch at a rate of 2 KHz. Topics such as bootstrapping and loading 200 processors, NFS file access for these processors and software development and deployment are discussed

  2. Development of a Data Acquisition System for the BaBar CP Violation Experiment

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C P; Russell, J J

    1999-01-01

    Experiences developing data acquisition system for the BaBar CP violation experiment located at the Stanford Linear Accelerator Center are presented. The BaBar detector consists of multiple independent subdetectors joined with a data acquisition system consisting of a large number of embedded PowerPC single board computers residing in VME crates. The data acquisition software is layered on the VxWorks real-time operating system. It is partitionable to allow subsystems (as well as test stands) to operate independently. Data is assimilated into events through a combination of shared memory and a high performance network. This system presents data to a UNIX farm via a high speed non-blocking ethernet switch at a rate of 2 KHz. Topics such as bootstrapping and loading 200 processors, NFS file access for these processors and software development and deployment are discussed.

  3. Choosing CPUs in an Open Market: System Performance Testing for the BaBar Online Farm

    International Nuclear Information System (INIS)

    Pavel, Tomas J

    1998-01-01

    BABAR is a high-rate experiment to study CP violation in asymmetric e + e - collisions. The BABAR Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full reconstruction of selected events and for monitoring functions. A large number of machine architectures were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU performance. Factors of general interest to others making hardware decisions are highlighted. Performance of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations in memory system performance exist. No single operating system has an overall edge in the performance of its primitives. In particular, freeware operating systems perform no worse overall than the commercial offerings

  4. The IFR Online Detector Control system at the BaBar Experiment

    International Nuclear Information System (INIS)

    Paolucci, Pierluigi

    1999-01-01

    The Instrumented Flux Return (IFR)[1] is one of the five subdetectors of the BaBar[2] experiment on the PEP II accelerator at SLAC. The IFR consists of 774 Resistive Plate Chamber (RPC) detectors, covering an area of about 2,000 m 2 and equipped with 3,000 Front-end Electronic Cards (FEC) reading about 50,000 channels (readout strips). The first aim of a B-factory experiment is to run continuously without any interruption and then the Detector Control system plays a very important role in order to reduce the dead-time due to the hardware problems. The I.N.F.N. group of Naples has designed and built the IFR Online Detector Control System (IODC)[3] in order to control and monitor the operation of this large number of detectors and of all the IFR subsystems: High Voltage, Low Voltage, Gas system, Trigger and DAQ crates. The IODC consists of 8 custom DAQ stations, placed around the detector and one central DAQ station based on VME technology and placed in electronic house. The IODC use VxWorks and EPICS to implement slow control data flow of about 2500 hardware channels and to develop part of the readout module consisting in about 3500 records. EPICS is interfaced with the BaBar Run Control through the Component Proxy and with the BaBar database (Objectivity) through the Archiver and KeyLookup processes

  5. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  6. Improving the Security and Performance of the BaBar Detector Controls System

    International Nuclear Information System (INIS)

    Kotturi, Karen D.

    2003-01-01

    It starts out innocently enough--users want to monitor Online data and so run their own copies of the detector control GUIs in their offices and at home. But over time, the number of processes making requests for values to display on GUIs, webpages and stripcharts can grow, and affect the performance of an Input/Output Controller (IOC) such that it is unable to respond to requests from requests critical to data-taking. At worst, an IOC can hang, its CPU having been allocated 100% to responding to network requests. For the BaBar Online Detector Control System, we were able to eliminate this problem and make great gains in security by moving all of the IOCs to a non-routed, virtual LAN and by enlisting a workstation with two network interface cards to act as the interface between the virtual LAN and the public BaBar network. On the interface machine, we run the Experimental Physics Industrial Control System (EPICS) Channel Access (CA) gateway software (originating from Advanced Photon Source). This software accepts as inputs, all the channels which are loaded into the EPICS databases on all the IOCs. It polls them to update its copy of the values. It answers requests from applications by sending them the currently cached value. We adopted the requirement that data-taking would be independent of the gateway, so that, in the event of a gateway failure, data-taking would be uninterrupted. In this way, we avoided introducing any new risk elements to data-taking. Security rules already in use by the IOC were propagated to the gateway's own security rules and the security of the IOCs themselves was improved by removing them from the public BaBar network

  7. A binary link tracker for the BaBar level 1 trigger system

    International Nuclear Information System (INIS)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The BaBar detector at PEP-II will operate in a high-luminosity e + e - collider environment near the Υ(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed by the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs

  8. The DIRC Particle Identification System for the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adam, I

    2004-06-30

    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail.

  9. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    International Nuclear Information System (INIS)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V.V.; Howard, C.; Hydomako, R.

    2015-01-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography

  10. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  11. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  12. Performances of RPCs in the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Robert

    2003-09-26

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m{sup 2} of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behavior. These problems started very soon after the installation of the chambers on the detector when the high ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R&D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes.

  13. Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions ofendcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.

  14. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  15. Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 microns and 30-200 microradians. Systematic errors on displacements are estimated to be 340-590 microns based on comparisons with independent photogrammetry measurements.

  16. Integration Tests of the Muon System

    CERN Multimedia

    Cerutti, F; Palestini, S

    A complex large-size prototype of the Muon system is installed in the test area H8B in Prévessin; the set-up includes chambers belonging to the three layers of the Barrel Spectrometer (on the right in Figure 1), and chambers belonging to one octant of the End Cap Spectrometer (center and left side of Figure 1). Figure 1: Set-up of the Muon spectrometer integration test. The installation accurately reproduces the geometry of regions of the ATLAS Muon Spectrometer, with the H8 beam-line crossing the detectors at positions/angles corresponding to particles with polar angle of 75 ± 4 and 15 ± 4 degrees, respectively for the Barrel and the End Cap. A comprehensive test program is being carried out with this set-up, ranging from tests of support frames (octant of the MDT BigWheel and of the SmallWheel) and of handling/installation of tracking chambers, to real-size tests of the alignment systems, together with accurate studies of performance and calibration of the precision chambers, and with develo...

  17. The automated stringing system for the BaBar drift chamber

    International Nuclear Information System (INIS)

    Borsato, E.; Caracciolo, R.; Fanin, C.; Galeazzi, F.; Morandin, M.; Santi, S.; Voci, C.; Bronzini, F.; Buccheri, A.; Ferroni, F.; Fratini, K.; Morganti, S.; Patel, P.M.; Pelosi, A.; Piredda, G.; Fernholz, R.; Henderson, R.; Kelsey, M.

    2000-01-01

    After discussing the motivations for the project, the automated equipment used for the BaBar Drift Chamber stringing is described. Details are given mainly concerning the crucial points of setting-up and calibration. The focus is on the high accuracy reached by a large and complex mechanical tool

  18. The Muon system of the run II D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov,; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech.

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  19. BABAR IFR Replacement R and D

    CERN Document Server

    Berry, M

    2003-01-01

    The Instrumented Flux Return (IFR) of the BaBar detector will soon need to be replaced by a more robust muon detection system. Scintillator bars with embedded Wavelength Shifting (WLS) fibers and Limited Streamer Tubes are two replacement technology options. The scintillator bars are tested for attenuation length; and causes for the large width of the Photo Multiplier Tube (PMT) signal are analyzed by Monte Carlo simulation. Cooling techniques for Avalanche Photo Diodes (APD) are investigated. The fairly high attenuation length coupled with the narrow PMT signal make the scintillator a viable option for a muon detecting system. Continuing work will focus on increasing timing resolution using an APD to read the signal from the WLS fibers, and investigating the lifetime of the APD. The ability to read a signal from the LST on external copper strips is tested and signals are found to be clearly distinguishable from noise. The voltage is compared to count rate to find that the optimal operating voltage for the LS...

  20. Muon tracking system with Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D'Incecco, M.; Sablone, D.; Franchi, G.

    2015-01-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background

  1. Muon tracking system with Silicon Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Candela, A.; D' Incecco, M.; Sablone, D. [Gran Sasso National Laboratory of INFN, Assergi (Italy); Franchi, G. [AGE Scientific Srl, Capezzano Pianore (Italy)

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  2. Design and characterization of a small muon tomography system

    Science.gov (United States)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  3. Gas system proposal for the LHCb muon system

    CERN Document Server

    Hahn, F; Lindner, R

    2001-01-01

    This document describes the gas system proposed for the LHCb Muon system, following the Gas Working Group mandate to ensure the uniform approach to gas technology and controls across the LHC detectors. Standard technical design modules are employed as fas as possible, in order to minimise design overheads and long term support costs.

  4. The calibration system of the GERDA muon veto Cherenkov detector

    International Nuclear Information System (INIS)

    Ritter, Florian; Lubsandorzhiev, Bayarto; Freund, Kai; Grabmayr, Peter; Jochum, Josef; Knapp, Markus; Meierhofer, Georg; Shaibonov, Bator

    2010-01-01

    The GERDA experiment searches for neutrinoless double beta decay (0νββ). To achieve a sensitivity of 10 -3 counts/(keVkgy) or better within a specific region of interest (ROI), a good background identification is needed. Therefore GERDA is located in the LNGS (Laboratori Nationali del Gran Sasso) underground facility. In addition to the good rejection of cosmic muons due to the surrounding bedrocks, a dual muon veto system has to be used. For calibration and monitoring of the muon veto, two separate systems have been developed.

  5. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  6. CMS Muon Alignment: System Description and first results

    CERN Document Server

    Sobron, M

    2008-01-01

    The CMS detector has been instrumented with a precise and complex opto-mechanical alignment subsystem that provides a common reference frame between Tracker and Muon detection systems by means of a net of laser beams. The system allows a continuous and accurate monitoring of the muon chambers positions with respect to the Tracker body. Preliminary results of operation during the test of the CMS 4T solenoid magnet, performed in 2006, are presented. These measurements complement the information provided by the use of survey techniques and the results of alignment algorithms based on muon tracks crossing the detector.

  7. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  8. Using Grid for the BABAR Experiment

    International Nuclear Information System (INIS)

    Bozzi, C.

    2005-01-01

    The BaBar experiment has been taking data since 1999. In 2001 the computing group started to evaluate the possibility to evolve toward a distributed computing model in a grid environment. We built a prototype system, based on the European Data Grid (EDG), to submit full-scale analysis and Monte Carlo simulation jobs. Computing elements, storage elements, and worker nodes have been installed at SLAC and at various European sites. A BaBar virtual organization (VO) and a test replica catalog (RC) are maintained in Manchester, U.K., and the experiment is using three EDG testbed resource brokers in the U.K. and in Italy. First analysis tests were performed under the assumption that a standard BaBar software release was available at the grid target sites, using RC to register information about the executable and the produced n-tuples. Hundreds of analysis jobs accessing either Objectivity or Root data files ran on the grid. We tested the Monte Carlo production using a farm of the INFN-grid testbed customized to install an Objectivity database and run BaBar simulation software. First simulation production tests were performed using standard Job Description Language commands and the output files were written on the closest storage element. A package that can be officially distributed to grid sites not specifically customized for BaBar has been prepared. We are studying the possibility to add a user friendly interface to access grid services for BaBar

  9. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  10. A compact muon tracking system for didactic and outreach activities

    Energy Technology Data Exchange (ETDEWEB)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D. [INFN Gran Sasso National Laboratory – Assergi (AQ) (Italy); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A. [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Pazos Clemens, L., E-mail: luis.pazclem@nyu.edu [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Franchi, G.; D' Inzeo, M. [Age Scientific srl – Capezzano Pianore (Italy)

    2016-07-11

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  11. A compact muon tracking system for didactic and outreach activities

    International Nuclear Information System (INIS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; D'Inzeo, M.

    2016-01-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  12. Evaluation of the Electronic Bubbler Gas Monitoring System for High Flow in the BaBar Detector

    International Nuclear Information System (INIS)

    Little, Angela

    2003-01-01

    We evaluated the gas monitoring system in the Instrumented Flux Return (IFR) portion of the BaBar detector at the Stanford Linear Accelerator Center (SLAC) to determine its suitability for flows greater than 80 cc/min. Future modifications to the IFR involve particle detectors with a higher gas flow rate than currently in use. Therefore, the bubbler system was tested to determine if it can handle high flow rates. Flow rates between 80 and 240 cc/min were analyzed through short term calibration and long term stability tests. The bubbler system was found to be reliable for flow rates between 80 and 160 cc/min. For flow rates between 200 and 240 cc/min, electronic instabilities known as baseline spikes caused a 10-20% error in the bubble rate. An upgrade would be recommended for use of the bubbler system at these flow rates. Since the planned changes in the IFR will require a maximum flow of 150 cc/min, the bubbler system can sufficiently handle the new gas flow rates

  13. A drift chamber tracking system for muon scattering tomography applications

    Science.gov (United States)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  14. Design and performances of the LHCb Muon System

    CERN Multimedia

    Campana, P

    2009-01-01

    We present the detector design and performance of the LHCb Muon System. In order to fulfill the requirements of the experiment, the chambers have to provide high detection efficiency, a good time resolution, a high rate capability and good aging characteristics. We present performance results of the chambers from beam tests, with cosmics rays and at the CERN Gamma Irradiation Facility. Cosmic rays have also been used to study the performance of the chambers in the experimental setup. The obtained results allow us to conclude that the requirements of the LHCb experiment are fulfilled and that the LHCb Muon detector is ready for data taking.

  15. The first-level muon trigger system advances

    CERN Multimedia

    Ellis, N.

    2006-01-01

    Important advances have been made in the last few months in the first-level muon trigger, both for the barrel system and for the endcap system, in a close collaboration between the detector and trigger-electronics groups for the RPCs (Resistive-Plate Chambers) and TGCs (Thin-Gap Chambers). These trigger systems are crucial for the success of the muon-related physics programme of the experiment; events that are not triggered will be lost forever, and the trigger chambers also provide the second coordinate for the reconstruction of muons that are only measured in the bending plane by the MDT detectors. Integration and installation of the barrel muon trigger electronics on the RPC detectors is in full swing. The on-detector electronics consists of more than 800 units each of "Splitter" and "Pad" boxes which have been tested and integrated by a team of physicists, engineers and technicians from Italy and Romania. This work will continue for a further few months until the complete system has been installed and so...

  16. Recent results of BABAR

    International Nuclear Information System (INIS)

    Bernard, D.

    2001-01-01

    The BABAR detector at SLAC's PEP-II storage ring has collected data amounting to about 30.4 fb -1 until june 2001. Results on CP violation, and in particular search for direct CP violation, and measurement of rare B decays are presented

  17. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  18. BaBar Data Aquisition

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C; Russell, J J

    1998-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by analysing the decays of a very large sample of B and Bbar mesons produced at the high luminosity PEP-11 accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detector subsystems. Data from the front end electronics is read into commercial VME processors via a custom "personality card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data are read out via a non-blocking network switch to a farm of commercial UNIX processors. Careful design of the core data acquisition code has enabled us to sustain events rates in excess of 20 kHz while maintaini...

  19. The upgrade of the muon system of the CMS experiment

    CERN Document Server

    Abbrescia, Marcello

    2014-01-01

    The CMS muon system is based on three types of gaseous detectors, RPC, CSC and DT. While operating very well in the present conditions, upgrades are foreseen for each of the subsystems, necessary to cope with the increased pile-up, coming along with higher rates and radiation, during the upcoming periods of data taking.Moreover, an important issue will be to make the system able to perform its delicate task of muon triggering and tracking also in the High Luminosity phase of LHC, foreseen to start after Long Shutdown 3 in 2023 and to last for about 10 years.Studies devoted to asses the system perfomance stability for the future will be presented. In addition, the stategy - which is being developed - to complement the existing system with new detectors, based on GEM or improved RPC technologies, will be shown.

  20. Modular trigger processing The GCT muon and quiet bit system

    CERN Document Server

    Stettler, Matthew; Hansen, Magnus; Iles, Gregory; Jones, John; PH-EP

    2007-01-01

    The CMS Global Calorimeter Trigger system's HCAL Muon and Quiet bit reformatting function is being implemented with a novel processing architecture. This architecture utilizes micro TCA, a modern modular communications standard based on high speed serial links, to implement a processing matrix. This matrix is configurable in both logical functionality and data flow, allowing far greater flexibility than current trigger processing systems. In addition, the modular nature of this architecture allows flexibility in scale unmatched by traditional approaches. The Muon and Quiet bit system consists of two major components, a custom micro TCA backplane and processing module. These components are based on Xilinx Virtex5 and Mindspeed crosspoint switch devices, bringing together state of the art FPGA based processing and Telcom switching technologies.

  1. Beam vacuum system of Brookhaven's muon storage ring

    International Nuclear Information System (INIS)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-01-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10 -7 Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system will be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 ell/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented

  2. Design of a muon tomography system with a plastic scintillator and wavelength-shifting fiber arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Baek, Cheol-Ha [Department of Radiological Science, Dongseo University, Busan 617-716 (Korea, Republic of); Chung, Yong Hyun, E-mail: ychung@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2013-12-21

    Recently, monitoring nuclear materials to avoid nuclear terrorism has become an important area of national security. It can be difficult to detect gamma rays from nuclear material because they are easily shielded by shielding material. Muon tomography using multiple -Coulomb scattering derived from muons can be utilized to detect special nuclear materials (SNMs) such as uranium-235 and plutonium-239. We designed a muon tomography system composed of four detector modules. The incident and scattered muon tracks can be calculated by two top and two bottom detectors, respectively. 3D tomographic images are obtained by extracting the crossing points of muon tracks with a point-of-closest-approach algorithm. The purpose of this study was to optimize the muon tomography system using Monte Carlo simulation code. The effects of the geometric parameters of the muon tomography system on material Z-discrimination capability were simulated and evaluated.

  3. LHCb: LHCb Muon System Performance at High Luminosity

    CERN Multimedia

    Pinci, D

    2013-01-01

    The LHCb detector was conceived to operate with an average Luminosity of $2 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. During the last year of LHC run, the whole apparatus has shown to be able to perfectly acquire and manage data produced at a Luminosity as high as $4 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. In these conditions, all sub-detectors operated at average particle rates higher than the design ones and in particular the Multi-Wire Proportional Chambers equipping the Muon System had to sustain a particle rate as high as 250 kHz/cm$^{2}$. In order to study the possibility of increasing the Luminosity of operation of the whole experiment several tests were performed. The effective beam Luminosity at the interaction point of LHCb was increased in several steps up to $10^{33}$ cm$^{-2}$ s$^{-1}$ and in each step the behavior of all the detectors in the Muon System was recorded. The data analysis has allowed to study the performance of the Muon System as a function of the LHC Luminosity and the results are r...

  4. Radiation Testing of Electronics for the CMS Endcap Muon System

    CERN Document Server

    INSPIRE-00070357; Celik, A.; Durkin, L.S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels o...

  5. Radiation testing of electronics for the CMS endcap muon system

    Energy Technology Data Exchange (ETDEWEB)

    Bylsma, B. [Ohio State University (United States); Cady, D.; Celik, A. [Texas A and M University, College Station, TX 77843 (United States); Durkin, L.S. [Ohio State University (United States); Gilmore, J., E-mail: gilmore@tamu.edu [Texas A and M University, College Station, TX 77843 (United States); Haley, J. [Northeastern University (United States); Khotilovich, V.; Lakdawala, S. [Texas A and M University, College Station, TX 77843 (United States); Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J. [Rice University (United States); Roe, J.; Safonov, A.; Suarez, I. [Texas A and M University, College Station, TX 77843 (United States); Wood, D. [Northeastern University (United States); Zawisza, I. [Texas A and M University, College Station, TX 77843 (United States)

    2013-01-11

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  6. Radiation testing of electronics for the CMS endcap muon system

    Science.gov (United States)

    Bylsma, B.; Cady, D.; Celik, A.; Durkin, L. S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  7. Recent BABAR Results

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, Gerald [University of Bergen, Bergen (Norway). Dept. of Physics

    2015-04-29

    We present herein the most recent BABAR results on direct CP asymmetry measurements in B → Xsγ, on partial branching fraction and CP asymmetry measurements in B → Xs+-, on a search for B → π/ηℓ+- decays, on a search for lepton number violation in B+ → X-+ℓ'+ modes and a study of B0 →ωω and B0 → ωφ decays.

  8. Electronics design of the RPC system for the OPERA muon

    International Nuclear Information System (INIS)

    Acquafredda, R.; Ambrosio, M.; Consiglio, L.

    2004-01-01

    The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are required by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes)

  9. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  10. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  11. Polarized muon beams for muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Skrinsky, A.N. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.).

  12. The BaBar Mini

    International Nuclear Information System (INIS)

    Brown, David N.

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  13. The BaBar mini

    International Nuclear Information System (INIS)

    Brown, David N.; BaBar Collaboration

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  14. Muon studies of low-dimensional solid state systems

    International Nuclear Information System (INIS)

    Jestaedt, T.

    1999-04-01

    This thesis concerns the use of the technique of μSR, an abbreviation which stands for three separate types of experiments: muon spin rotation, muon spin relaxation and muon spin resonance. The experiments presented here were performed on beamlines at the ISIS facility at the Rutherford Appleton Laboratory (UK) and at the Paul Scherrer Institut (Villigen, Switzerland). The systems studied are linked by the common theme of reduced dimensionality. Results of μSR measurements on La 2-x Sr x NiO 4+δ (nickelates) are presented. In these systems the lattice constants are much smaller in two of the dimensions as compared to the third, leading to two dimensional magnetism. Earlier experiments using techniques other than μSR concentrated mainly on materials with x = 0 and δ ≠ 0. The work that I describe on La 2-x Sr x NiO 4+δ shows that, there are interesting magnetic features as a function of strontium doping, and the details of this dependence are examined. In each of the samples oscillations of the muon spin polarization were observed below a sample dependent temperature, showing that low temperature magnetic order occurs. μSR is also used to study Sr 2 LnMn 2 O 7 (the Ruddlesden- Popper phases), where Ln are various ions of the lanthanide series. These manganates have a layered structure, leading to a reduced dimensionality as compared to the related perovskite compounds of the MnO 3 series. Like the doped MnO 3 compounds, some of the Ruddlesden-Popper phases exhibit colossal magnetoresistance (CMR), all effect which initially stirred interest in the MnO 3 systems. In contrast to the MnO 3 systems, the relevant Mn 2 O 7 materials show this CMR effect over an extended temperature range. The μSR work is consistent with the existence of magnetic clusters in some of the Mn 2 O 7 materials and these clusters appear to be associated with the observation of CMR. The compound CaV 4 O 9 is the first known two-dimensional compound to exhibit a spin-gap and the effects

  15. Overview of the GEM muon system cosmic ray test program at the SSCL

    International Nuclear Information System (INIS)

    Milner, E.C.

    1993-04-01

    Muon track resolution exceeding 75-μm per plane is one of the main strengths of the GEM detector design, and will be crucial in searches for Higgs Bosons, heavy Z-Bosons, technicolor, and supersymmetry. Achieving this resolution coal requires improved precision in muon chambers and their alignment. A cosmic ray test stand known as the Texas Test Rio, (TTR) has been created at the SSCL for studying candidate GEM muon chamber technologies. Test results led to selecting Cathode Strip Chambers (CSC) as the GEM muon system baseline chamber technology

  16. ATLAS Detector Operation 2011 
Muon System

    CERN Document Server

    Iakovidis, G; The ATLAS collaboration

    2012-01-01

    During the 2011 LHC Data taking period the ATLAS Detector recorded 5.22 fb-1 which is 96.5% of the delivered data from proton-proton collisions. The Muon Spectrometer was improved to 100% operational fraction at the Level 1 trigger and more than 98.7% operational fraction of trigger and precision chambers. The recorded data with Muon Spectrometer was at a level of more than 99% good for physics analysis. This illustrates an excellent performance. This poster presents performance of the Muon Spectrometer trigger chambers as well as precision chambers. In addition a combined Muon Spectrometer performance is presented.

  17. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Evdokimov, Valery [Inst. for High Energy Physics (IHEP), Protvino (Russian Federation); Lukić, Strahinja [Univ. of Belgrade (Serbia)

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  18. Charm Decays at BABAR

    International Nuclear Information System (INIS)

    Charles, M.

    2004-01-01

    The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays

  19. P-KTPx: Production and Certification of MWPC for LHCb Muon System at CERN

    CERN Multimedia

    2005-01-01

    - The Large Hadron Collider beauty experiment - Multi Wire Proportional Chambers (MWPC) in the LHCb Muon System - Design Parameters MWPC Production at CERN - Panel Production - Panel Wiring Chamber Certification - Gas Leak Test - Chamber Conditioning - Gas Gain Uniformity Test

  20. Final Report: BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    International Nuclear Information System (INIS)

    Judd, Dennis J.

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas

  1. Final Report BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    CERN Document Server

    Judd, D J

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas.

  2. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  3. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  4. The CMS muon system status and upgrades for LHC run-2 and performance of muon reconstruction with 13 TeV data

    CERN Document Server

    Battilana, Carlo

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV center-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  5. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    Science.gov (United States)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  6. Status and performance of the CMS muon system in Run2

    CERN Document Server

    Cabrera Mora, Andres Leonardo

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run1 and Run2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the Level-1 (L1) muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger (HLT) and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV center-of-mass energy during the 2015 and 2016 LHC runs, are presented. Comparison of simulation with experimental data is also discussed where relevant. The system's state of the art is also shown, as well the improvements foreseen to achieve excellent overall quality of muon reconstruction in the high-luminosity conditions expected during Run2.

  7. Status and future prospects of the Muon Drift Tubes System of CMS

    International Nuclear Information System (INIS)

    Masetti, G.

    2017-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. In 2013 and 2014 a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors: DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO). Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope with the new rate and radiation environment. This paper will present, along with the main system improvements implemented in the system, the first performance results from data collected at 13 TeV center-of-mass energy during 2016, confirming the satisfactory operation of both DT performance and the TwinMux system. A review of the present status and plans for the DT system upgrades will be also described.

  8. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  9. The Alignment System of the ATLAS Muon End-Cap Spectrometer

    CERN Document Server

    Schricker, Alexander

    2002-01-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10% for muons with a transverse momentum of pT =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an align...

  10. Upgrade of the CMS muon trigger system in the barrel region

    International Nuclear Information System (INIS)

    Rabady, Dinyar; Ero, Janos; Flouris, Giannis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2017-01-01

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  11. Upgrade of the CMS muon trigger system in the barrel region

    Energy Technology Data Exchange (ETDEWEB)

    Rabady, Dinyar, E-mail: dinyar.rabady@cern.ch [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Ero, Janos [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Flouris, Giannis [University of Ioannina, 45110 Ioannina (Greece); Fulcher, Jonathan [CERN, 1211 Geneve 23 (Switzerland); Loukas, Nikitas; Paradas, Evangelos [University of Ioannina, 45110 Ioannina (Greece); Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth [CERN, 1211 Geneve 23 (Switzerland)

    2017-02-11

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  12. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  13. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  14. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Battilana, Carlo; Codispoti, Giuseppe; Dallavalle, Gaetano-Marco; Ero, Janos; Flouris, Giannis; Fountas, Konstantinos; Fulcher, Jonathan Richard; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes; Sphicas, Paraskevas; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the $\\m...

  15. Status and future prospects of the Muon Drift Tubes system of CMS

    CERN Document Server

    Masetti, Gianni

    2016-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. During the first Long Shutdown of LHC (LS1) a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC during phase 1 will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system.In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO).Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope wi...

  16. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2017-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  17. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    AUTHOR|(CDS)2080489; Flouris, Gianis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis,Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance shown during the LHCs Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer.An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). B...

  18. Future of the CMS Muon System Upgrades and Aging

    CERN Document Server

    Pilot, Justin Robert

    2016-01-01

    The CMS detector currently includes three different muon detector types drift tubes (DT) in the central region, cathode strip chambers (CSC) in the forward regions, and resistive plate chambers (RPC) in both the forward and central regions. Several upgrade projects are planned to maintain high data-taking efficiency with the planned running conditions for the high-luminosity upgrade of the LHC. These upgrades are designed to ensure detector longevity and increase redundancy, while mitigating rate increases and retaining sensitivity to phyics processes. This involves changes to electronics and infrastructure of existing detectors, and adding new detectors in the forward region of the CMS experiment. Plans for each of the muon subsystems are described here in the context of the Phase-II upgrade schedule of the CMS experiment.

  19. Monte-Carlo Analysis of the Flavour Changing Neutral Current B \\to Gamma at Babar

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. [Imperial College, London (United Kingdom)

    2001-09-01

    The main theme of this thesis is a Monte-Carlo analysis of the rare Flavour Changing Neutral Current (FCNC) decay b→sγ. The analysis develops techniques that could be applied to real data, to discriminate between signal and background events in order to make a measurement of the branching ratio of this rare decay using the BaBar detector. Also included in this thesis is a description of the BaBar detector and the work I have undertaken in the development of the electronic data acquisition system for the Electromagnetic calorimeter (EMC), a subsystem of the BaBar detector.

  20. The automatic test system for the L3 muon drift chamber amplifiers

    International Nuclear Information System (INIS)

    Bove, A.; Caiazzo, L.; Lanzano, S.; Manna, F.; Manto, G.; Parascandolo, L.; Parascandolo, P.; Parmentola, A.; Paternoster, G.

    1987-01-01

    We describe the system we developed to test the linearity of wire chambers amplifiers of the muon spectrometer presently in construction for the L3 experiment at LEP. The system, controlled by an Apple II computer, is capable of localizing both defective components and faults in the printed board. It will be used to perform the large scale quality control of the amplifier cards

  1. BaBar Physics Book

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Helen

    1998-11-04

    This book presents the results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory. The workshop brought together a number of theorists with experimentalists from the BABAR Collaboration. Each chapter represents the contribution of a working group and presents both a theoretical summary of the relevant topics and the results of related simulation studies. The working group convenors, listed below, were teams that included both theorists and experimentalists. The book represents the status of work around the beginning of 1998. Both the state of the theory and of the experiment's simulation and analysis tools continue to advance. The results presented here are thus not a final view of what the experiment can achieve, but represent an interim study. The studies are more detailed and comprehensive than those made at the time of the Technical Design Report, but still lack many features that will be needed for the real data analysis. The book is intended as a guide to the work that still needs to be done, and as a detailed introduction which will assist new members, joining the Collaboration, and, we hope, other researchers in the field.

  2. BaBar Physics Book

    International Nuclear Information System (INIS)

    Quinn, Helen

    1998-01-01

    This book presents the results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory. The workshop brought together a number of theorists with experimentalists from the BABAR Collaboration. Each chapter represents the contribution of a working group and presents both a theoretical summary of the relevant topics and the results of related simulation studies. The working group convenors, listed below, were teams that included both theorists and experimentalists. The book represents the status of work around the beginning of 1998. Both the state of the theory and of the experiment's simulation and analysis tools continue to advance. The results presented here are thus not a final view of what the experiment can achieve, but represent an interim study. The studies are more detailed and comprehensive than those made at the time of the Technical Design Report, but still lack many features that will be needed for the real data analysis. The book is intended as a guide to the work that still needs to be done, and as a detailed introduction which will assist new members, joining the Collaboration, and, we hope, other researchers in the field

  3. Configuration Database for BaBar On-line

    International Nuclear Information System (INIS)

    Salnikov, Andrei

    2003-01-01

    The configuration database is one of the vital systems in the BaBar on-line system. It provides services for the different parts of the data acquisition system and control system, which require run-time parameters. The original design and implementation of the configuration database played a significant role in the successful BaBar operations since the beginning of experiment. Recent additions to the design of the configuration database provide better means for the management of data and add new tools to simplify main configuration tasks. We describe the design of the configuration database, its implementation with the Objectivity/DB object-oriented database, and our experience collected during the years of operation

  4. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  5. arXiv Architecture of the LHCb muon Frontend control system upgrade

    CERN Document Server

    Bocci, Valerio

    2016-10-06

    The LHCb experiment(Fig. 1), that is presently taking data at CERN (European Center for Nuclear Research) Large Hadron Collider (LHC), aims at the study of CP violation in the B meson sector. Its key elements is the Muon detector [1], which allows triggering, and muon identification from inclusive b decays. The electronic system (Fig. 2) of the whole detector is very complex and its Muon detector Experiment Control System (ECS) allows monitoring and control of a number of Front-End boards in excess of 7000. The present system in charge of controlling Muon detector Front-End (FE) Electronics consists of 10 Crates of equipment; each crate contains two kinds of modules: a Pulse Distribution Module (PDM) and up to 20 Service Boards (SB) connected via a custom Backplane for a total amount of about 800 microcontrollers[2]. LHCb upgrade is planned for 2018/19, which will allow the detector to exploit higher luminosity running. This upgrade will allow the experiment to accumulate more luminosity to allow measurements...

  6. Upgrades of the CMS muon system in preparation of HL-LHC

    CERN Document Server

    Teyssier, Daniel Francois

    2017-01-01

    The present CMS muon system operates three different detector types in the barrel drift tubes (DT) and resistive plate chambers (RPC), along with cathode strip chambers (CSC) and another set of RPCs in the forward regions. In order to cope with increasingly challenging conditions various upgrades are planned to the trigger and muon systems. New detectors will be added to improve the performance in the critical forward region large-area triple-foil gas electron multiplier (GEM) detectors will already be installed in LS2 in the pseudo-rapidity region $1.6 < \\eta < 2.4$, aiming at suppressing the rate of background triggers while maintaining high trigger efficiency for low transverse momentum muons. For the High Luminosity (HL)-LHC operations, the muon forward region should be enhanced with another large area GEM based station, called GE2/1, and with two new generation RPC stations, called RE3/1 and RE4/1, having low resistivity electrodes. These detectors will combine tracking and triggering capabil...

  7. BABAR

    DEFF Research Database (Denmark)

    Andersson, Per; Köpsén, Susanne; Gross, Marin

    This report presents the results from a comparative study of the qualification of adult educators in the Nordic-Baltic region. The study involved Denmark, Estonia and Sweden. The rationale behind the study is a growing interest in adult education resulting from a focus on lifelong learning in the...

  8. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  9. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  10. The BaBar Software Architecture and Infrastructure

    International Nuclear Information System (INIS)

    Cosmo, Gabriele

    2003-01-01

    The BaBar experiment has in place since 1995 a software release system (SRT Software Release Tools) based on CVS (Concurrent Version System) which is in common for all the software developed for the experiment, online or offline, simulation or reconstruction. A software release is a snapshot of all BaBar code (online, offline, utilities, scripts, makefiles, etc.). This set of code is tested to work together, and is indexed by a release number (e.g., 6.8.2) so a user can refer to a particular release and get reproducible results. A release will involve particular versions of packages. A package generally consists of a set of code for a particular task, together with a GNU makefile, scripts and documentation. All BaBar software is maintained in AFS (Andrew File System) directories, so the code is accessible worldwide within the Collaboration. The combination SRT, CVS, AFS, has demonstrated to be a valid, powerful and efficient way of organizing the software infrastructure of a modern HEP experiment with collaborating Institutes distributed worldwide, both in a development and production phase

  11. R&D for the upgrade of the CMS muon system

    CERN Document Server

    Abbrescia, Marcello

    2015-01-01

    The CMS muon system is based on three types of gaseous detectors, RPC, CSC and DT. While operating very well in the present conditions, upgrades are foreseen for each of the subsystems, necessary to guarantee its delicate role of muon triggering and tracking also in the High Luminosity phase of LHC, foreseen to start after Long Shutdown 3 in 2024 and to last for about 10 years.Studies devoted to asses the system perfomance stability for the future will be presented, and the plans about the new DT and CSC electronics will be outlined. In addition, the stategy - which is being developed - to complement the existing system with new detectors, based on GEM or improved RPC technologies, will be shown.

  12. Characterizing the dynamics of hydrothermal systems with muon tomography: the case of La Soufrière de Guadeloupe

    Science.gov (United States)

    Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.

    2017-12-01

    Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.

  13. Results from a complete simulation study of the RPC based muon trigger system for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Belli, G.; Bruno, G. E-mail: giacomo.bruno@pv.infn.it; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The performance of the Resistive Plate Chambers-based muon trigger of the CMS detector has been studied by means of a full simulation of the system under realistic operating conditions. Requirements on the performance of the chambers are deduced.

  14. Software framework developed for the slice test of the ATLAS endcap muon trigger system

    CERN Document Server

    Komatsu, S; Ishida, Y; Tanaka, K; Hasuko, K; Kano, H; Matsumoto, Y; Yakamura, Y; Sakamoto, H; Ikeno, M; Nakayoshi, K; Sasaki, O; Yasu, Y; Hasegawa, Y; Totsuka, M; Tsuji, S; Maeno, T; Ichimiya, R; Kurashige, H

    2002-01-01

    A sliced system test of the ATLAS end cap muon level 1 trigger system has been done in 2001 and 2002 separately. We have developed an own software framework for property and run controls for the slice test in 2001. The system is described in C++ throughout. The multi-PC control system is accomplished using the CORBA system. We have then restructured the software system on top of the ATLAS online software framework, and used this one for the slice test in 2002. In this report we discuss two systems in detail with emphasizing the module property configuration and run control. (8 refs).

  15. LHCb: Study of the Performance of the LHCb Muon System with First LHC Data

    CERN Multimedia

    Cardini, A

    2010-01-01

    The LHCb Muon System is composed by five detection stations (M1-M5), one upstream and four downstream of the calorimeter system, equipped on the 99% of the surface with a total of 1368 Multi-Wire Proportional Chambers (MWPC). Triple-GEM detectors with digital pad readout were chosen for the innermost region of the first station thanks to their excellent performances, in particular for what concerns rate capability and radiation hardness. In order to allow a fast evaluation of the transverse momentum of muons, all detectors are required to have a high efficiency, a fast response and a good space resolution with a readout granularity that decreases with the distance from the beam axis. The detector installation phase (2006-2009) was followed by an extensive commissioning and events were acquired with pulse trigger to several millions of cosmic tracks already in the commissioning phase and are being used for the first LHC collisions.

  16. Production of the front-end boards of the LHCb muon system

    CERN Document Server

    Bonivento, W; Auriemma, G

    2008-01-01

    This note describes the production of the front end boards CARDIAC, for the 1368 MWPC, and CARDIAC-GEM, for the 12 triple-GEM chambers, of the LHCb muon system. The PCB structure and component layout and the production issues, such as component soldering, quality assurance at the company and delivery rates, are described. The performance of these boards will be the subject of a future publication.

  17. The LST analog read-out system of the ZEUS muon detector

    International Nuclear Information System (INIS)

    De Giorgi, M.; Abbiendi, G.; Bertolin, A.; Borsato, E.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Pitacco, G.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.

    1996-01-01

    A muon position detector based on limited streamer tubes has been built for the ZEUS experiment at the HERA e-p collider at Desy. The tubes are arranged in chambers equipped with electronics circuitry providing an analog read-out of induced signals on strips set orthogonal to the tube wires. The electronic module for charge amplification and conversion will be described including some results obtained from the complete system. (orig.)

  18. Performance of a multigap RPC prototype for the LHCb muon system

    CERN Document Server

    Colrain, P; De Paula, L S; Gandelman, M; Lamas-Valverde, J; Moraes, D; Polycarpo, E; Schmidt, B; Schneider, T; Wright, A; Maréchal, B

    2000-01-01

    Several technologies are under consideration for the muon system of the LHCb experiment. Resistive Plate Chambers (RPCs) are one of the favourite candidates for the outer areas where the particle fluxes are expected to be at most some kHz/cm/sup 2/. This work describes the results obtained with a multigap RPC prototype under various beam conditions at the CERN facilities. (9 refs).

  19. Thin Double-gap RPCs for the Phase-2 Upgrade of the CMS Muon System

    CERN Document Server

    Lee, Kyong Sei

    2017-01-01

    High-sensitive double-gap phenolic Resistive Plate Chambers are studied for the Phase-2 upgrade of the CMS muon system at high pseudorapidity $\\eta$. Whereas the present CMS RPCs have a gas gap thickness of 2 mm, we propose to use thinner gas gaps, which will improve the performance of these RPCs. To validate this proposal, we constructed double-gap RPCs with two different gap thicknesses of 1.2 and 1.4 mm using high-pressure laminated plates having a mean resistivity of about 5 $\\times$ 10$^{10}$ $\\Omega$-cm. This paper presents test results using cosmic muons and $^{137}$Cs gamma rays. The rate capabilities of these thin-gap RPCs measured with the gamma source exceed the maximum rate expected in the new high-$\\eta$ endcap RPCs planned for future Phase-2 runs of LHC.

  20. monitoring la Soufrière de Guadeloupe phreatic system with muon tomography

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Ianigro, Jean-Christophe; Gardien, Serge; Girerd, Claude

    2015-04-01

    Muon tomography is a novel geophysics imaging technique that measures the flux of cosmic muons crossing geological bodies. Its attenuation is directly related to their thickness and density. On la Soufrière de Guadeloupe volcano, we could extract tiny particle flux fluctuations from the tomography signal of long-term acquisitions (a few months). We prove that atmospheric fluctuations or solar activity, which are the usual candidates for cosmic particles time modulations, cannot explain these changes leaving the volcanic dome phreatic system as the only explanation. Moreover the temporal trends we extracted from the different observation axes of our instrument show a good spatial and temporal correlation with events occuring at the surface of the volcano.

  1. The RPC LVL1 trigger system of the muon spectrometer of the ATLAS experiment at LHC

    CERN Document Server

    Aielli, G; Alviggi, M G; Biglietti, M; Bocci, V; Brambilla, Elena; Camarri, P; Canale, V; Caprio, M A; Cardarelli, R; Carlino, G; Cataldi, G; Chiodini, G; Conventi, F; De Asmundis, R; Della Pietra, M; Della Volpe, D; Di Ciaccio, A; Di Mattia, A; Di Simone, A; Falciano, S; Gorini, E; Grancagnolo, F; Iengo, P; Liberti, B; Luminari, L; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Sekhniaidze, G; Spagnolo, S; Salamon, A; Santonico, R; Vari, R; Veneziano, Stefano

    2004-01-01

    The ATLAS Trigger System has been designed to reduce the LHC interaction rate of about 1 GHz to the foreseen storage rate of about 100 Hz. Three trigger levels are applied in order to fulfill such a requirement. A detailed simulation of the ATLAS experiment including the hardware components and the logic of the Level-1 Muon trigger in the barrel of the muon spectrometer has been performed. This simulation has been used not only to evaluate the performances of the system but also to optimize the trigger logic design. In the barrel of the muon spectrometer the trigger will be given by means of resistive plate chambers (RPCs) working in avalanche mode. Before being mounted on the experiment, accurate quality tests with cosmic rays are carried out on each RPC chamber using the test station facility of the INFN and University laboratory of Napoli. All working parameters are measured and the uniformity of the efficiency on the whole RPC surface is required. A summary of the Napoli cosmic rays tests, together with a...

  2. Study of the breaking of the CP symmetry in the BABAR experiment; Etude de la violation de la symetrie CP dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ganjour, S

    2007-09-15

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e{sup +}e{sup -} asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B{sup 0} {yields} D{sub s}{sup *} + D{sup *-} decays; measurement of CP violation in the B{sup 0} {yields} D{sup *{+-}}{pi}{sup {+-}} decays and constraint on the Unitary Triangle parameter sin(2{beta} + {gamma}) using these decays. (author)

  3. The alignment system of the ATLAS muon end-cap spectrometer

    International Nuclear Information System (INIS)

    Schricker, A.

    2002-08-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10 % for muons with a transverse momentum of p T =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an alignment grid that must allow for an absolute position measurement of the chambers. This alignment grid employs up to 9.6m long precision rulers (alignment bars) which have to provide the position and orientation of all alignment sensors permeating the end-caps. Simulation studies have shown that the shape of these bars must be known to 30 μm r.m.s. and the length must be known to 20 μm r.m.s. The principles of alignment and survey techniques used to do this are introduced and the current activities concerning the alignment strategy for the ATLAS muon end-cap spectrometer are presented. After consideration of the motivation and requirements, the measurement strategy and the design of the alignment bars is given. An optical and thermal in-bar instrumentation is used to provide shape information of discrete points on the bar. The strategy to calibrate the in-bar instrumentation and to measure an initial bar shape with a large coordinate measuring machine, leads

  4. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  5. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  6. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  7. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Science.gov (United States)

    Claus, R.; ATLAS Collaboration

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  8. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    International Nuclear Information System (INIS)

    Claus, R.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013–2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  9. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Science.gov (United States)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  10. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    International Nuclear Information System (INIS)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R.T.; Huffer, M.; Kocian, M.; Ruckman, L.; Russell, J.; Su, D.; Wittgen, M.; Iakovidis, G.; Iordanidou, K.; Moschovakos, P.; Ntekas, K.; Kwan, K.; Lankford, A.J.; Nelson, A.; Schernau, M.; Schlenker, S.; Valderanis, C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2

  11. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Energy Technology Data Exchange (ETDEWEB)

    Claus, R., E-mail: claus@slac.stanford.edu

    2016-07-11

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013–2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  12. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    AUTHOR|(SzGeCERN)696050; Garelli, N.; Herbst, R.T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A.J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Bartoldus, R.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambe...

  13. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    ATLAS CSC Collaboration; The ATLAS collaboration

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgrade during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chamber...

  14. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    AUTHOR|(SzGeCERN)664042

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thr...

  15. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    Claus, Richard; The ATLAS collaboration

    2015-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thro...

  16. A 96-channel, 500 ps resolution TDC board for the BaBar experiment at SLAC

    CERN Document Server

    Minutoli, S

    2000-01-01

    A TDC board has been designed and built to complete the readout of the Instrumented Flux Return of the BABAR experiment at the Stanford Linear Accelerator Center. The board has 96 input channels and makes use of 3 general purpose TDC chips designed at CERN, with time resolution up to 500 ps and configurable via a Test Access Port (IEEE standard 1149). Data are stored before readout in a multievent buffer. Communication with BABAR DAQ system is realized through 3 serial lines on the backplane connector. All the logic, including internal registers and the interfaces with the BABAR protocol and the TAP controller, is implemented in two fast FPGAs. The board is designed to work at 59.5 MHz clock frequency. (7 refs).

  17. Limited Streamer Tubes for the BaBar Instrumented Flux Return Upgrade

    International Nuclear Information System (INIS)

    Lu, C.

    2005-01-01

    Starting from the very beginning of their operation the efficiency of the RPC chambers in the BaBar Instrumented Flux Return (IFR) has suffered serious degradation. After intensive investigation, various remediation efforts had been carried out, but without success. As a result the BaBar collaboration decided to replace the dying barrel RPC chambers about two years ago. To study the feasibility of using the Limited Streamer Tube (LST) as the replacement of RPC we carried out an R and D program that has resulted in BaBar's deciding to replace the barrel RPC's with LST's. In this report we summarize the major detector R and D results, and leave other issues of the IFR system upgrade to the future publications

  18. Performance of the babar-dirc

    International Nuclear Information System (INIS)

    Schwiening, Jochen; Babar-DIRC Collaboration

    2005-01-01

    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper describes the performance of the DIRC during the first 5 years of operation

  19. The BaBar electromagnetic calorimeter

    CERN Document Server

    Lewandowski, B

    2002-01-01

    The BaBar electromagnetic calorimeter is a hermetic, total-absorption array of CsI(Tl)-crystals, operated at the asymmetric e sup - e sup + -collider PEP-II at SLAC. The design and the status of the performance as of February 2002 is presented.

  20. Rare B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Datta, M

    2005-03-14

    The authors present recent results on rare B meson decays based on data taken by the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} collider. Included in this report are measurements of branching fractions and other quantities of interest for several hadronic, radiative, electroweak, and purely leptonic decays of B mesons.

  1. Measurement of the angle alpha at BABAR

    International Nuclear Information System (INIS)

    Perez, A.

    2009-01-01

    The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.

  2. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  3. Real-Time Data Processing in the muon system of the D0 detector

    International Nuclear Information System (INIS)

    Neeti Parashar et al.

    2001-01-01

    This paper presents a real-time application of the 16-bit fixed point Digital Signal Processors (DSPs), in the Muon System of the D0 detector located at the Fermilab Tevatron, presently the world's highest-energy hadron collider. As part of the Upgrade for a run beginning in the year 2000, the system is required to process data at an input event rate of 10 KHz without incurring significant deadtime in readout. The ADSP21csp01 processor has high I/O bandwidth, single cycle instruction execution and fast task switching support to provide efficient multisignal processing. The processor's internal memory consists of 4K words of Program Memory and 4K words of Data Memory. In addition there is an external memory of 32K words for general event buffering and 16K words of Dual port Memory for input data queuing. This DSP fulfills the requirement of the Muon subdetector systems for data readout. All error handling, buffering, formatting and transferring of the data to the various trigger levels of the data acquisition system is done in software. The algorithms developed for the system complete these tasks in about 20 micros per event

  4. Muon catalyzed fusion at very low temperature: A new target system

    International Nuclear Information System (INIS)

    Mulhauser, F.; Beveridge, J.L.; Marshall, G.M.

    1994-10-01

    Muon catalyzed fusion (μCF) processes are usually studied in gases or liquids. A new target system allows experiments on muonic hydrogen isotopes in solid hydrogen layers at 3K, where processes of the μCF cycle can be separated and the energy dependence of reactions can be measured. Muonic tritium atomic beams with energy of the order of 1 eV have been produced via transfer and emission from solid hydrogen target containing small tritium concentrations. The μt energy distribution overlaps the predicted muonic molecular (dμt) formation resonances. Preliminary time of flight results are shown. (author). 9 refs., 5 figs

  5. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed

  6. Photomultiplier characteristics considerations for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-01-01

    The results of an investigation of the characteristics of photomultipliers for the Deep Underwater Muon and Neutrino Detection (DUMAND) System are discussed. The pulse-height resolution, the afterpulsing phenomena and the gain sensitivity to the ambient magnetic field have been determined for large photocathode area photomultipliers. Furthermore, the transient time difference, the single photoelectron time spread, and the collection and photocathode quantum efficiency uniformity as a function of the position of the photocathode sensing area have been reviewed. Finally, an attempt has been made to estimate the photomultiplier reliability and its lifetime

  7. Design and Performance of the Alignment System for the CMS Muon Endcaps

    CERN Document Server

    Hohlmann, Marcus; Browngold, Max; Dehmelt, Klaus; Guragain, Samir; Andreev, Valery; Yang, Xiaofeng; Bellinger, James; Carlsmith, Duncan; Feyzi, Farshid; Loveless, Richard J; Northacker, David; Case, Michael; Eartly, David P; Prokofiev, Oleg; Sknar, Vladimir; Sytnik, Valeri

    2008-01-01

    The alignment system for the CMS Muon Endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large Cathode Strip Chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4T field is switched on and off. The Muon Endcap alignment system is required to monitor chamber positions with \\mbox{75-200 $\\mu$m} accuracy in the R$\\phi$ plane, $\\approx$400 $\\mu$m in the radial direction, and $\\approx$1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations.

  8. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  9. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  10. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  11. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  12. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G. [Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario (Canada); Bueno, J.; Bryman, D.; Liu, Z. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Charles, E.; Gallant, G. [Canada Border Services Agency, Ottawa, Ontario (Canada); Cousins, T.; Noel, S. [International Safety Research, Ottawa, Ontario (Canada); Drouin, P.-L.; Waller, D. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Stocki, T. J. [Health Canada, Ottawa, Ontario (Canada)

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  13. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC Upgrades Summary

    CERN Document Server

    Madorsky, Alexander

    2017-01-01

    To accommodate high-luminosity LHC operation at 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide the best track reconstruction, the trigger system must now import all available trigger primitives generated by Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources.To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup Table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The µTCA architecture (ado...

  14. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    Ahmad, S.; Bhaduri, P.P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S.K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-01-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  15. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    Science.gov (United States)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  17. Study of the breaking of the CP symmetry in the BABAR experiment

    International Nuclear Information System (INIS)

    Ganjour, S.

    2007-09-01

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e + e - asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B 0 → D s * + D *- decays; measurement of CP violation in the B 0 → D *± π ± decays and constraint on the Unitary Triangle parameter sin(2β + γ) using these decays. (author)

  18. Muon capture in metallic, chemical and solution systems - recent results and future plans at Los Alamos

    International Nuclear Information System (INIS)

    Naumann, R.A.; Schmidt, G.; Knight, J.D.; Mausner, L.F.; Orth, C.J.; Schillaci, M.E.

    1977-01-01

    The recent results on capture ratios and the KX-ray intensity patterns in negative muon capture experiments carried out at Los Alamos are outlined. A set of experiments was devoted to capture process in alkali halide compounds. The capture ratio for alkali chlorides and for potassium halides was found to reveal the fall-out with increasing atomic number. The measurements carried out on aqueous ions of NaCl verifies the indication that the muonic KX-ray intensity patterns show enhanced intensity of the higher K numbers in comparison to that in crystalline NaCl. The systematic investigations of the variations of the K mesic X-ray intensity pattern was carried out for pure elements with atomic number ranging from 6 to 34. The dependence of the X-ray intensity pattern on atomic number exhibits a maximum in the vicinity of Z=25 (manganese). Another research program is concerned with quantitative tests of the dependence of the muon capture on composition for solid solutions. Measurements are underway using two binary metallic alloy systems of aluminium-copper, silver-zinc and three continuous solid solutions formed by sodium chloride-sodium bromide, potassium chloride-potassium bromide and potassium bromide-potassium iodide

  19. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  20. First measurements of muon production rate using a novel pion capture system at MuSIC

    International Nuclear Information System (INIS)

    Cook, S; D, R; Lancaster, M; Wing, M; Fukuda, M; Hatanaka, K; Hino, Y; Kuno, Y; Nam, T H; Sakamoto, H; Sato, A; Truong, N M; Mori, Y; Ogitsu, T; Yamamoto, A; Yoshida, M

    2013-01-01

    The MuSIC (Muon Science Innovative Channel) beam line at RCNP (Research Centre for Nuclear Physics), Osaka will be the most intense source of muons in the world. A proton beam is incident on a target and, by using a novel capture solenoid, guides the produced pions into the beam line where they subsequently decay to muons. This increased muon flux will allow more precise measurements of cLFV (charged Lepton Flavour Violation) as well as making muon beams more economically feasible. Currently the first 36° of solenoid beam pipe have been completed and installed for testing with low proton current of 1 nA. Measurements of the total particle flux and the muon life time were made. The measurements were taken using thin plastic scintillators coupled to MPPCs (Multi-Pixel Photon Counter) that surrounded a magnesium or copper stopping target. The scintillators were used to record which particles stopped and their subsequent decay times giving a muon yield of 8.5 × 10 5 muons W −1 protonbeam or 3 × 10 8 muons s −1 when using the RCNP's full power (400 W).

  1. First measurements of muon production rate using a novel pion capture system at MuSIC

    Science.gov (United States)

    Cook, S.; D'Arcy, R.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Nam, T. H.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Truong, N. M.; Yamamoto, A.; Yoshida, M.; Wing, M.

    2013-02-01

    The MuSIC (Muon Science Innovative Channel) beam line at RCNP (Research Centre for Nuclear Physics), Osaka will be the most intense source of muons in the world. A proton beam is incident on a target and, by using a novel capture solenoid, guides the produced pions into the beam line where they subsequently decay to muons. This increased muon flux will allow more precise measurements of cLFV (charged Lepton Flavour Violation) as well as making muon beams more economically feasible. Currently the first 36° of solenoid beam pipe have been completed and installed for testing with low proton current of 1 nA. Measurements of the total particle flux and the muon life time were made. The measurements were taken using thin plastic scintillators coupled to MPPCs (Multi-Pixel Photon Counter) that surrounded a magnesium or copper stopping target. The scintillators were used to record which particles stopped and their subsequent decay times giving a muon yield of 8.5 × 105 muons W-1proton beam or 3 × 108 muons s-1 when using the RCNP's full power (400 W).

  2. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades

    Science.gov (United States)

    Madorsky, A.

    2017-07-01

    To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

  3. Measurement system for evaluation of the muon chambers for the LHCb experiment

    International Nuclear Information System (INIS)

    Nobrega, Rafael A.; Pinci, Davide

    2011-01-01

    In a detector with the complexity of the LHCb, where only for the muon system more than 1300 chambers, divided into 20 different types, will be used, resulting on more than 120 k channels to be readout, it is of crucial importance to study the many types of chambers to create a complete knowledge of the detector operation and to guarantee a high-quality performance during the experiment. To make it possible, a complete setup was built and a C++ based software was developed to carry out a set of measurements on the full-equipped chambers of the LHCb muon detector. The setup is made of front-end control electronics, high-voltage supply and acquisition circuitry while the software, running on a PC, remotely controls each element of the system and implements a number of automatized procedures to assess the main characteristics of the chambers. The main advantages of this system are its versatility and speed of measurement which are crucial to the experiment since there is the need to characterize every single chamber before final installation. Moreover, in this work it was proposed to measure the starting knee of the high-voltage operational plateau without the use of an external trigger by making use of the internal structure of the chambers. Two laboratories were prepared at CERN (European Laboratory for Particle Physics) to receive this system; one used to test chambers arrived from the CERN itself and the PNPI (Petersburg Nuclear Physics Institute) production sites, and one to test the chambers arrived from the INFN (National Institute of Nuclear Physics) production sites. In this document, the hardware and software setup will be presented together with the measurement-oriented implementations.

  4. Results from a complete simulation study of the RPC based muon trigger system for the CMS experiment

    CERN Document Server

    Altieri, S; Bruno, G; Guida, R; Merlo, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Abbrescia, M; Colaleo, A; Iaselli, Giuseppe; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2001-01-01

    The performance of the Resistive Plate Chambers-based muon trigger of the CMS detector has been studied by means of a full simulation of the system under realistic operating conditions. Requirements on the performance of the chambers are deduced. (6 refs).

  5. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  7. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  8. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  9. First trial of the muon acceleration for J-PARC muon g-2/EDM experiment

    Science.gov (United States)

    Kitamura, R.; Otani, M.; Fukao, Y.; Kawamura, N.; Mibe, T.; Miyake, Y.; Shimomura, K.; Kondo, Y.; Hasegawa, K.; Bae, S.; Kim, B.; Razuvaev, G.; Iinuma, H.; Ishida, K.; Saito, N.

    2017-07-01

    Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world’s first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

  10. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  11. Recent Results on T and CP Violation at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez Perez, Alejandro [Istituto Nazionale di Fisica Nucleare (INFN), Pisa (Italy).

    2015-02-06

    CP-violation (CPV) and Time-reversal violation (TRV) are intimately related through the CPT theorem: if one of these discrete symmetries is violated the other one has to be violated in such a way to conserve CPT. Although CPV in the B0B0-bar system has been established by the B-factories, implying indirectly TRV, there is still no direct evidence of TRV. We report on the observation of TRV in the B-meson system performed with a dataset of 468 × 106 BB-bar pairs produced in Υ(4S) decays collected by the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We also report on other CPV measurements recently performed on the B-meson system

  12. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  13. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  14. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    International Nuclear Information System (INIS)

    Lu, Changguo

    2003-01-01

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement

  15. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  16. Hadronic Physics Studies at BaBar

    International Nuclear Information System (INIS)

    Stroili, R.

    2006-01-01

    A new resonance Y(4260) with a mass of 4259 ± 8 -6 +2 MeV/c 2 and J PC = 1 -- , discovered by the BaBar experiment shows peculiar behavior in his decay mode. The Λ c + baryon mass has been measured, using its decays to ΛK S 0 K + and Σ 0 K S 0 K + , and its value is 2286.46 ± 0.14 MeV/c 2 , the precision is greatly improved w.r.t. PDG value. Ξ c 0 and (Omega) c 0 decays and production have been studied with results greatly improved w.r.t. PDG

  17. Managing the BABAR Object Oriented Database

    International Nuclear Information System (INIS)

    Hasan, Adil

    2002-01-01

    The BaBar experiment stores its data in an Object Oriented federated database supplied by Objectivity/DB(tm). This database is currently 350TB in size and is expected to increase considerably as the experiment matures. Management of this database requires careful planning and specialized tools in order to make the data available to physicists in an efficient and timely manner. We discuss the operational issues and management tools that were developed during the previous run to deal with this vast quantity of data at SLAC

  18. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  19. Muons in UA1

    International Nuclear Information System (INIS)

    Dijk, A.L. van.

    1991-01-01

    In the years 1987-1989 the experiment ('UA1'), which is described in this thesis, has focused on measurements with muons. These particles can be considered as a part of the 'fingerprint' of interesting reactions. In the practice of 'UA1', recognizing this 'fingerprint' represents a puzzle because many (often more than hundred particles are produced in a collision between a proton and an anti-proton. In the experiment the properties (charge, energy, direction) of these particles are measured and subsequently the events are reconstructed. This results in several event samples corresponding to specific production mechanisms. The first part (ch. 1-5) of this thesis deals with the muon trigger of the UA1 experiment. This is a computer system that, directly after a measurement, reconstructs an event and checks for the presence of muons. If no muon is found the event is not considered anymore. In the other cases, the event is kept and written to magnetic tape. These tapes are for further analysis. The necessity of a trigger follows from the fact that per second more than 250.000 interactions occur and only about 10 can be saved on tape. For this reason a trigger system is of critical importance: all events not written to tape are lost. In ch. 2 the experiment and in ch. 4 the ideas and constraints of the trigger are explained. Ch. 4 discusses the construction and functioning of the muon trigger and ch. 5 presents the performance. The second part of this thesis (ch.'s 6 and 7) contain the physics analysis results from data collected with muon trigger. These results are explicitly obtained from events containing two muons. The theory is briefly reviewed and a discussion is given of the data and the way the selections are done. Finally the J/Ψ and Γ samples and the cross sections of b-quark production are given. (author). 57 refs.; 60 figs.; 8 tabs

  20. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  1. Search for a dark photon in e(+)e(-) collisions at BABAR.

    Science.gov (United States)

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Stugu, B; Brown, D N; Feng, M; Kerth, L T; Kolomensky, Yu G; Lee, M J; Lynch, G; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Khan, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Mandelkern, M; Dey, B; Gary, J W; Long, O; Campagnari, C; Franco Sevilla, M; Hong, T M; Kovalskyi, D; Richman, J D; West, C A; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Schumm, B A; Seiden, A; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Andreassen, R; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Bloom, P C; Ford, W T; Gaz, A; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Spaan, B; Bernard, D; Verderi, M; Playfer, S; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Piemontese, L; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Bhuyan, B; Prasad, V; Adametz, A; Uwer, U; Lacker, H M; Dauncey, P D; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Derkach, D; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Roudeau, P; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Fry, J R; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Bougher, J; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Hamilton, B; Jawahery, A; Roberts, D A; Cowan, R; Sciolla, G; Cheaib, R; Patel, P M; Robertson, S H; Neri, N; Palombo, F; Cremaldi, L; Godang, R; Sonnek, P; Summers, D J; Simard, M; Taras, P; De Nardo, G; Onorato, G; Sciacca, C; Martinelli, M; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Feltresi, E; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Leruste, Ph; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Pacetti, S; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Perez, A; Rizzo, G; Walsh, J J; Lopes Pegna, D; Olsen, J; Smith, A J S; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Hartmann, T; Hess, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Olaiya, E O; Wilson, F F; Emery, S; Vasseur, G; Anulli, F; Aston, D; Bard, D J; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Lewis, P; Lindemann, D; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Muller, D R; Neal, H; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Snyder, A; Su, D; Sullivan, M K; Va'vra, J; Wisniewski, W J; Wulsin, H W; Purohit, M V; White, R M; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Ruland, A M; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Villanueva-Perez, P; Albert, J; Banerjee, Sw; Beaulieu, A; Bernlochner, F U; Choi, H H F; King, G J; Kowalewski, R; Lewczuk, M J; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Band, H R; Dasu, S; Pan, Y; Prepost, R; Wu, S L

    2014-11-14

    Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A^{'}), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e^{+}e^{-}→γA^{'}, A^{'}→e^{+}e^{-}, μ^{+}μ^{-} using 514  fb^{-1} of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10^{-4}-10^{-3} for dark photon masses in the range 0.02-10.2  GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.

  2. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  3. The BaBar experiment's distributed computing model

    International Nuclear Information System (INIS)

    Boutigny, D.

    2001-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multitier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT format and later in Objectivity format. GRID tools will be used for remote job submission

  4. The BaBar Experiment's Distributed Computing Model

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multi-tier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT[1] format and later in Objectivity[2] format. GRID tools will be used for remote job submission

  5. On-chamber readout system for the ATLAS MDT Muon Spectrometer

    CERN Document Server

    Chapman, J; Ball, R; Brandenburg, G; Hazen, E; Oliver, J; Posch, C

    2004-01-01

    The ATLAS MDT Muon Spectrometer is a system of approximately 380,000 pressurized cylindrical drift tubes of 3 cm diameter and up to 6 meters in length. These Monitored Drift Tubes (MDTs) are precision- glued to form super-layers, which in turn are assembled into precision chambers of up to 432 tubes each. Each chamber is equipped with a set of mezzanine cards containing analog and digital readout circuitry sufficient to read out 24 MDTs per card. Up to 18 of these cards are connected to an on-chamber DAQ element referred to as a Chamber Service Module, or CSM. The CSM multiplexes data from the mezzanine cards and outputs this data on an optical fiber which is received by the off-chamber DAQ system. Thus, the chamber forms a highly self-contained unit with DC power in and a single optical fiber out. The Monitored Drift Tubes, due to their length, require a terminating resistor at their far end to prevent reflections. The readout system has been designed so that thermal noise from this resistor remains the domi...

  6. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  7. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  8. Electron-muon ranger: performance in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Bene, P.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

  9. Development of the Experiment Control System and Performance Study of the Muon Chambers for the LHCb Experiment

    CERN Document Server

    Antunes Nobrega, R; Penso, G; Pinci, D

    2010-01-01

    The work of this thesis practically opened three fronts of the LHCb muon system : the development of the control and monitoring system of the readout electronics; the study of noise and threshold of the detector; and the study of the performance of the muon chambers. The LHCb muon readout apparatus is made 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Gas Electron Multiplier (GEM) chambers connected to approximately 7500 16-channel front-end boards, resulting in 120000 output channels. The large-scale of this system naturally led to a complex control and monitoring system made of about 600 microcontrollers which are directly connected to the front-end electronics and handled by six computers. The development of this control system was accomplished within this thesis; the microcontroller’s firmware and the high level software, operating on the six local computers, were implemented. Besides configuring and monitoring the on-chamber readout electronics, a set of calibration and debugging oriented procedu...

  10. Aligning the CMS Muon Endcap Detector with a System of Optical Sensors

    CERN Document Server

    Hohlmann, Marcus; Guragain, Samir; Andreev, Valery; Yang, Xiaofeng; Bellinger, James; Carlsmith, Duncan; Feyzi, Farshid; Loveless, Richard J; Northacker, David; Eartly, David P; Prokofiev, Oleg; Sknar, Vladimir

    2008-01-01

    The positions and orientations of one sixth of 468 large cathode strip chambers in the endcaps of the CMS muon detector are directly monitored by several hundred sensors including 2-D optical sensors with linear CCDs illuminated by cross-hair lasers. Position measurements obtained by photogrammetry and survey under field-off conditions show that chambers in the +Z endcap have been placed on the yoke disks with an average accuracy of $\\approx 1$ mm in all 3 dimensions. We reconstruct absolute Z$_{CMS}$ positions and orientations of chambers at B=0T and B=4T using data from the optical alignment system. The measured position resolution and sensitivity to relative motion is about 60 $\\mu m$. The precision for measuring chamber positions taking into account mechanical tolerances is \\mbox{$\\approx 270 \\mu m$}. Comparing reconstruction of optical alignment data and photogrammetry measurements at B=0T indicates an accuracy of $\\approx$ 680 $\\mu m$ currently achieved with the hardware alignment system. Optical positi...

  11. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  12. Muon flux measurements at the davis campus of the sanford underground research facility with the MAJORANA DEMONSTRATOR veto system

    Science.gov (United States)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.

    2017-07-01

    We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MAJORANADEMONSTRATOR muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) ×10-9 μ /s/cm2. Demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y)in the 4-keV region of interest (ROI) around the 2039-keV Q-value for 76Ge ββ(0ν) decay. This is required for tonne-scale germanium-based searches that will probe the inverted-ordering neutrino-mass parameter space for the effective Majorana neutrino mass in ββ(0ν) decay. Show technical and engineering scalability toward a tonne-scale instrument. Perform searches for additional physics beyond the Standard Model, such as dark matter and axions. The MAJORANA Collaboration has designed a modular instrument composed of two cryostats built from ultra-pure electroformed copper, with each cryostat capable of housing over 20 kg of HPGe detectors. The MAJORANADEMONSTRATOR contains 30 kg of detectors fabricated from Ge material enriched to 88% in 76Ge and another 15 kg fabricated from natural Ge (7.8% 76Ge). The modular approach allows us to assemble and optimize each cryostat independently, providing a fast deployment with minimal effect on already-operational detectors.Starting from the innermost cavity, the cryostats are surrounded by a compact graded shield composed of an inner layer of electroformed copper, a layer of commercially sourced C10100 copper, high-purity lead, an active muon veto, borated polyethylene, and pure polyethylene shielding. The cryostats, copper, and lead shielding are enclosed in a radon exclusion box and rest on an over-floor table that has openings for the active muon veto and polyethylene shielding panels situated below the detector. The entire experiment is located in a clean room at the 4850 ft level of SURF. A high

  13. Performance characterization of the Micromegas detector for the New Small Wheel upgrade and Development and improvement of the Muon Spectrometer Detector Control System in the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349891

    The ATLAS, an abbreviation for A Toroidal LHC ApparatuS, detector is one of the two general purpose high luminosity experiments (along with CMS) that have been built for probing p-p and Pb-Pb or p-Pb collisions in the LHC. The muon spectrometer encircles the rest of the ATLAS detector subsystems defining the ATLAS overall dimensions. Its principle of operation is based on the magnetic deflection of muon tracks by a system of superconducting air-core toroid magnets providing high resolution muon momentum measurement. The upgrade of the ATLAS muon spectrometer is primarily motivated by the high background radiation expected during Run-3 (2021) and ultimately at $\\mathcal{L}=7\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$ in HL-LHC (2026). Owing to this the detectors that occupy the innermost muon station called Small Wheel (SW), MDT, CSC \\& TGC, will go beyond their design luminosity limit. In addition, the muon trigger rate will exceed the available bandwidth because of the fake endcap muon triggers ($90\\%$ is c...

  14. Optimization, Synchronization, Calibration and Diagnostic of the RPC PAC Muon Trigger System for the CMS detector

    CERN Document Server

    Bunkowski, Karol

    2009-01-01

    The Compact Muon Solenoid is one of the four experiments that will analyse the results of the collisions of the protons accelerated by the Large Hadron Collider (LHC). The collisions of proton bunches occur in the middle of the CMS detector every 25 ns, i.e. with a frequency of 40 MHz. Such a high collision frequency is needed because the probability of interesting processes, which we hope to discover at the LHC (such as production of Higgs bosons or supersymmetric particles) is very small. The objects that are the results of the proton-proton collisions are detected and measured by the CMS detector. Out of each bunch crossing the CMS produces about 1 MB of data; 40 millions of bunch collisions per second give the data stream of 40 terabytes (1013) per second. Such a stream of data is practically not possible to record on mass storage, therefore the first stage of the analysis of the detector data is performed in real time by the dedicated trigger system. Its task is to select potentially interesting events (...

  15. Upgrade of the ATLAS Muon System for the HL-LHC

    CERN Document Server

    Amelung, Christoph; The ATLAS collaboration

    2018-01-01

    The muon spectrometer of the ATLAS detector will be significantly upgraded during the Phase-II upgrade in Long Shutdown 3 in order to cope with the operational conditions at the High-Luminosity LHC in Run 4 and beyond. Most of the electronics for the Resistive Plate Chambers (RPC), Thin Gap Chambers (TGC), and Monitored Drift Tube (MDT) chambers will be replaced to make them compatible with the higher trigger rates and longer latencies necessary for the new level-0 trigger. The MDT chambers will be integrated into the level-0 trigger in order to sharpen the momentum threshold. Additional RPC chambers will be installed in the inner barrel layer to increase the acceptance and robustness of the trigger. Some of the MDT chambers in the inner barrel layer will be replaced with new small-diameter MDTs. New TGC triplet chambers in the barrel-endcap transition region will replace the current TGC doublets to suppress the high trigger rate from random coincidences in this region. The power system for the RPC, TGC, and ...

  16. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Simulation of a small muon tomography station system based on RPCs

    Science.gov (United States)

    Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.

    2014-10-01

    In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.

  18. LHCb:MuSyC: a Software Package for the time alignment of the LHCb Muon System

    CERN Multimedia

    Lai, A

    2007-01-01

    The LHCb Muon System consists of 122000 front-end channels, which require being time-aligned within about 2 ns for proper operation of the experiment trigger. We describe a program which, on the base of the information acquired directly from detector, is able to calculate all the time parameters (programmable delay settings) to be loaded at different stages of the System in order to fix the necessary system calibration. The same criteria and similar procedures are also used to monitor the correct system time behavior during data-taking.

  19. Toward a RPC-based muon tomography system for cargo containers.

    Science.gov (United States)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.

    2014-10-01

    A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.

  20. Applying object-oriented software engineering at the BaBar collaboration

    International Nuclear Information System (INIS)

    Jacobsen, B.

    1997-01-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery. (orig.)

  1. Results in Charm Physics from BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pompili, A

    2004-06-03

    Recent measurements in the charm sector at BABAR are reviewed. The scope of the presentation includes the observation of two new narrow mesons in the D{sub s}{sup +}{pi}{sup 0} and D{sub s}{sup +}{pi}{sup 0}{gamma} final states as well as the measurement of D{sup 0}-{bar D}{sup 0} mixing parameters by means of two methods: using the doubly-Cabibbo-suppressed D{sup 0} decay to K{sup +}{pi}{sup -} and using the ratios of lifetimes extracted from samples of D{sup 0} mesons decaying to K{sup -} {pi}{sup +}, K{sup -}K{sup +}, and {pi}{sup -}{pi}{sup +}.

  2. BABAR Experiment Status and Recent Results

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, G.

    2004-10-04

    The BaBar detector at SLAC PEP-II asymmetric B-Factory has collected between 1999 and 2002 a data sample of 88 millions {Upsilon}(4S) {yields} B{bar B} decays. We present here recent measurements of branching fractions and time-dependent CP-violating asymmetries of neutral B mesons decays to several CP eigenstates. We present the results on the decays to (c{bar c}) K{sub S}{sup 0}/K{sub L}{sup 0}, which are related in the Standard Model to the angle {beta} of the Unitarity Triangle of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Moreover we present the branching fractions and the CP-asymmetries of charmless two body decays related to the angle {alpha}.

  3. Test beam studies of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system

    CERN Document Server

    Sharma, Ram Krishna

    2017-01-01

    The High Luminosity LHC (HL-LHC) will provide exceptional high instantaneous and integrated luminosity. The forward region $\\mid \\eta \\mid \\geq 1.5$ of the CMS detector will face extremely high particle rates in tens of $KHz/cm^{2}$ and hence it will affect the momentum resolution and longevity of the muon detectors. To overcome these issues the CMS collaboration has decided to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region $(1.5 \\leq \\eta \\leq 2.2)$ of muon endcap during the LS2 of the LHC and the next one will be installed in the GE2/1 region $(1.6 \\leq \\eta \\leq 2.5)$, during the LS3. Towards this goal, full-size CMS Triple GEM prototype chambers have been fabricated and put under the test beam at the CERN SPS test beam facility. The GEM detectors were operated with two gas mixtures $Ar/CO_{2}$ (70/30) and $Ar/CO_{2}/CF_{4}$ (40/15/45). In 2014 and 2016, ...

  4. Aspects of CP violation with the BABAR detector. Constraints on the CKM Matrix

    International Nuclear Information System (INIS)

    Roos, L.

    2004-09-01

    This document presents the work done within the BABAR Collaboration as well as a phenomenological study on the interpretation of the B measurements related to the Unitarity Triangle. The read-out electronics of the Cerenkov detector, the DIRC, and especially the Time-Digital-Converter designed at LPNHE are described. Two major results of the BABAR Collaboration are presented: the measurement of the sin(2β) parameter in the b → ccs modes, which has established the CP violation in the B sector in 2001 and the study of CP asymmetries in the B 0 → π + π - channel. The constraints on the Unitarity Triangle from the K 0 K 0 system, the B semi-leptonic decays, the B oscillation parameters are in excellent agreement with those from sin(2β) and α. (author)

  5. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  6. Pion contamination in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Brashaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bravar, U.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∼1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is f π  < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling

  7. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  8. The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation

    NARCIS (Netherlands)

    Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.

    1987-01-01

    Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a

  9. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  10. Distributing File-Based Data to Remote Sites Within the BABAR Collaboration

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    BABAR [1] uses two formats for its data: Objectivity database and root [2] files. This poster concerns the distribution of the latter--for Objectivity data see [3]. The BABAR analysis data is stored in root files--one per physics run and analysis selection channel--maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,000 root files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centers throughout the us and Europe. Two basic problems confront us when we seek to import bulk data from slac to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and we must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync [4], the widely-used mirror/synchronization program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimize the network transfer by using multiple streams, adjusting the tcp window size, or separating encrypted authentication from unencrypted data channels

  11. Distributing file-based data to remote sites within the BABAR collaboration

    International Nuclear Information System (INIS)

    Adye, T.; Dorigo, A.; Forti, A.; Leonardi, E.

    2001-01-01

    BABAR uses two formats for its data: Objectivity database and ROOT files. This poster concerns the distribution of the latter--for Objectivity data see. The BABAR analysis data is stored in ROOT files--one per physics run and analysis selection channel-maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,00- ROOT files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centres throughout the US and Europe. Two basic problems confront us when we seek to import bulk data from SLAC to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and the authors must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync, the widely-used mirror/synchronisation program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimise the network transfer by using multiple streams, adjusting the TCP window size, or separating encrypted authentication from unencrypted data channels

  12. Alignment of the ATLAS central muon spectrometer

    CERN Document Server

    Chevallier, F

    2008-01-01

    The muon spectrometer of the ATLAS experiment is one of the largest detectors ever built. At the LHC, new physics signs could appear through high momenta muons (1 TeV). Identification and precise momentum measurement of such muons are two of the main challenges of the ATLAS muon spectrometer. In order to get a good resolution for high energy muons (i.e. 10% at 1 TeV), the accuracy on the alignment of precision chambers must be of the order of 50 microns. Several procedures have been developed to reach such a precision. This document describes complementary techniques used to align the muon sub-detectors, and their results : the optical system, the muon cosmic rays and the straight tracks coming from collisions.

  13. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  14. PHENIX Muon Arms

    International Nuclear Information System (INIS)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En'yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F.; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D.; Sondheim, W.E.; Sorensen, S.; Staley, F.; Stankus, P.W.; Steffens, S.; Stein, E.M.; Stepanov, M.; Stokes, W.; Sugioka, M.; Sun, Z.; Taketani, A.; Taniguchi, E.; Tepe, J.D.; Thornton, G.W.; Tian, W.; Tojo, J.; Torii, H.; Towell, R.S.; Tradeski, J.; Vassent, M.; Velissaris, C.; Villatte, L.; Wan, Y.; Watanabe, Y.; Watkins, L.C.; Whitus, B.R.; Williams, C.; Willis, P.S.; Wong-Swanson, B.G.; Yang, Y.; Yoneyama, S.; Young, G.R.; Zhou, S.

    2003-01-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons (∼10 -3 ). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described

  15. PHENIX Muon Arms

    Energy Technology Data Exchange (ETDEWEB)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En' yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F. E-mail: readkf@ornl.gov; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D. [and others

    2003-03-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons ({approx}10{sup -3}). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described.

  16. Studies on muon cycling rates in muon catalyzed D-T fusion system with possible four-body muonic molecules formation

    International Nuclear Information System (INIS)

    Eskandri, M.R.; Hosini Motlagh, N.; Hataf, A.

    2000-01-01

    In recent studies, it is shown that the fusion rate for four-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ, is considerably larger than that of similar three-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ. It is shown that for dtμμ, fusion rate is R f (dt) ≅ 3 * 10 13 - 6 * * 10 13 S -1 which is 40 times higher than fusion rate of dtμμ molecule. In this paper we have looked for the effect of these molecules formation in muon catalyzed D-T fusion. The required data for all possible branches do not exist, so the main dtμμ branch are considered here. By choosing a variable value for dtμμ molecule formation rate and comparing obtained cycling rates with existing experimental values, the order of this parameter is evaluated to be ≅ 10 9 S -1 . Using obtained data in different conditions of D-T muon cycling rate calculations have shown that considering of four-body molecule formations in existing muon injection intensities do not make considerable change in three-body muonic molecule cycling rate

  17. A quasi-online distributed data processing on WAN: the ATLAS muon calibration system

    CERN Document Server

    De Salvo, A; The ATLAS collaboration

    2013-01-01

    In the Atlas experiment, the calibration of the precision tracking chambers of the muon detector is very demanding, since the rate of muon tracks required to get a complete calibration in homogeneous conditions and to feed prompt reconstruction with fresh constants is very high (several hundreds Hz for 8-10 hours runs). The calculation of calibration constants is highly CPU consuming. In order to fulfill the requirement of completing the cycle and having the final constants available within 24 hours, distributed resources at Tier-2 centers have been allocated. The best place to get muon tracks suitable for detector calibration is the second level trigger, where the pre-selection of data sitting in a limited region by the first level trigger via the Region of Interest mechanism allows selecting all the hits from a single track in a limited region of the detector. Online data extraction allows calibration data collection without performing special runs. Small event pseudo-fragments (about 0.5 kB) built at the m...

  18. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Monorchio, Diego; /INFN, Naples /Naples U.

    2011-09-13

    The authors will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)} {nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be payed in order to perform a model independent analysis. A B-Factory provides an unique environment where to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  19. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Baracchini, Elisabetta; /Rome U. /INFN, Rome

    2011-11-10

    We will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)}{nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be paid in order to perform a model independent analysis. A B-Factory provides an unique environment to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  20. First CP violation results from BABAR

    International Nuclear Information System (INIS)

    Hitlin, D.G.

    2001-01-01

    We present a preliminary measurement of time-dependent Cp-violating asymmetries in B 0 → J/ψK 0 S and B 0 → ψ(2S)K 0 S decays recorded by the BABAR. detector at the PEP-2 asymmetric B Factory at SLAC. The data sample consists of 9.0 fb -1 collected at the γ(4S) resonance and 0.8 fb -1 off-resonance. One of the neutral B mesons, produced in pairs at the γ(4S), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The time difference between the decays is determined by measuring the distance between the decay vertices. Wrong-tag probabilities and the time resolution function are measured with samples of fully-reconstructed semileptonic and hadronic neutral B final states. The value of the asymmetry amplitude, sin 2β, is determined from a maximum likelihood fit to the time distribution of 120 tagged B 0 → J/ψK 0 S and B 0 → ψ(2S)K 0 S candidates: sin 2β=0.12±O.37(stat)±0.09(syst). (author)

  1. Penguin Mediated B Decays at BABAR

    CERN Document Server

    Aubert, B

    2001-01-01

    We report on preliminary results of searches for penguin mediated B decays based on 20.7 fb^{-1} of data collected at the Y(4S) peak with the BABAR detector at PEP-II. The following branching fractions have been measured: BR(B+ --> phi K+) = (7.7^{+1.6}_{-1.4} +- 0.8)*10^{-6}, BR(B0 --> phi K0) = (8.1^{+3.1}_{-2.5} +- 0.8)*10^{-6}, BR(B+ --> phi K*+) = (9.7^{+4.2}_{-3.4} +- 1.7)*10^{-6}, BR(B0 --> phi K*0) = (8.7^{+2.5}_{-2.1} +- 1.1)*10^{-6}, BR(B+--> omega pi+) = (6.6^{+2.1}_{-1.8} +- 0.7)*10^{-6}, BR(B --> eta K^*0) = (19.8^{+6.5}_{-5.6} +-1.7)*10^{-6}, where the first error is statistical and the second systematic. For several other modes we report upper limits on their branching fractions; for example for the following flavor-changing neutral current decays, BR(B--> K l+ l-) K* l+ l-) < 2.5*10^{-6}, at 90% Confidence Level (C.L.).

  2. Electronic system of the RPC Muon Trigger in CMS experiment at LHC accelerator (Elektroniczny system trygera mionowego RPC w eksperymencie CMS akceleratora LHC

    CERN Document Server

    Bialkowska, H

    2009-01-01

    This paper presents implementation of distributed, multichannel electronic measurement system for RPC - based Muon Trigger in the CMS experiment at LHC. The introduction shortly describes the research aims of LHC and shows the metrological requirements for CMS - good spatial and time resolution, and possibility to estimate multiple physical parameters from registered collisions of particles. Further the paper describes RPC Muon Trigger consisting of 200 000 independent channels for position measurement. The first part of the paper presents the functional structure of the system in the context of requirements put by the CMS experiment, like global triggering system and data acquisition. The second part describes the hardware solutions used in particular parts of the RPC detector measuremnt system and shows some test results. The paper has a digest and overview nature.

  3. New gas electron-multiplier detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC design and prototype performance

    CERN Document Server

    Gruchala, Marek Michal

    2016-01-01

    The high luminosity LHC will require new detectors in the CMS endcap muon system to suppress the trigger rate of background events, to maintain high trigger efficiency for low transverse momentum muons, to enhance the robustness of muon detection in the high-flux environment of the endcap, and to extend the geometrical acceptance. We report on the design and recent progress towards implementing a new system of large-area, triple-foil gas electron-multiplier (GEM) detectors that will be installed in the first three of five muon detector stations in each endcap, the first station being closest to the interaction point. The first station will extend the geometric acceptance in pseudo-rapidity to eta lt 3.0 from the current limit of eta lt 2.4. The second and third stations will enhance the performance in the range 1.6 lt eta lt 2.4. We describe the design of the chambers and readout electronics and report on the performance of prototype systems in tests with cosmic ray muons, high-energy particlebeams, a...

  4. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    Barrel Muons The last CMS week was dominated by the lowering of YB0. The date of lowering was fixed in January for February 28th. RPC and DT cabling of YB0 had to be done on the surface to allow a complete check of the status of the chambers before lowering. When the decision of the date was taken, the wheel cabling, planned to start at end of December, was not yet started for several “muon independent” reasons. Cabling and DT /RPC test started on Jan 22nd and ended on Feb 19th. Several teams worked on the surface of the wheel in parallel on the three different items, finishing just in time for lowering. This was a real challenge and a significant result. So by the end of the CMS Week, all the positive part of CMS plus YB0 were in the cavern. YB+2 had been lowered in January 19th, and YB+1 on February 1st. The vertical chambers of sectors 1 and 7 (8 DT/RPC packs), whose space was taken by the lowering machinery, had to be installed after lowering. This was done from Jan 24 to Jan 26 for...

  5. System tests, initial operation and first data of the AMIGA muon detector for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Pontz, Michael

    2013-07-01

    Investigating the energy region between 10{sup 17} eV and 4 x 10{sup 18} eV for primary cosmic particles will lead to a deeper understanding of the origin of cosmic rays. Effects of the transition from galactic to extragalactic origin are expected to be visible in this region. The knowledge of the composition of cosmic rays strongly depends on the hadronic interaction models, which are applied in the air shower reconstruction. Directly determining the number of muons from an air shower on ground level will improve the precision of the composition measurements by reducing the dependence on the models. The Pierre Auger Observatory is facing these challenges with an upgrade of the original detector setup. A denser sub-array of water Cherenkov detectors and a dedicated muon detector (MD) array constitute the AMIGA enhancement (Auger Muon and Infill for the Ground Array). Additional fluorescence telescopes constitute HEAT (High Elevation Auger Telescopes). Seven MD modules have been installed until mid 2012 in a first hexagon at the site of the Pierre Auger Observatory in Malarguee, Argentina. The corresponding readout electronics, and 19 more of these setups, were assembled and tested in Siegen to assure correct functionality. The detectors were incorporated in the trigger structure of the original surface detector (SD) array of the Pierre Auger Observatory and are now taking data synchronously. In the framework of this thesis, system tests have been developed, a pre-unitary cell (PUC) of seven modules has been successfully operated and their trigger has been synchronised with the SD trigger. First data from the MD have been analysed and have been combined with data from the SD.

  6. Quarkonium Spectroscopy And Search for New States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G.

    2011-11-04

    The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the mass values suggest that they could be conventional charmonia, but also other interpretations like D{sup 0}{bar D}*{sup 0} molecule or diquark-antidiquark states among many other models have been advanced. Reviews can be found in Refs. [1][2]. In all cases the picture is not completely clear. This situation could be remedied by a coherent search of the decay pattern to D{bar D}, search for production in two-photon fusion and ISR, and of course improving the statistical precision upon the current measurements. The BaBar experiment at the PEP-II asymmetric collider, designed to perform precision measurement of CP violation in the B meson system, has an extensive quarkonium spectroscopy program. Recent

  7. Studies of high energy phenomena using muons: Progress report, January 1987-February 1988

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.

    1988-01-01

    This paper discusses the use of muons for detection systems in high energy physics experiments. Discussed are DO detectors, muon data acquisition and electronics, muon software, heavy quark physics, chamber fabrication and superconductor super collider related work. 11 refs

  8. Tests of the data acquisition system and detector control system for the muon chambers of the CMS experiment at the LHC

    CERN Document Server

    Sowa, Michael Christian

    The Phys. Inst. III A of RWTH Aachen University is involved in the development, production and tests of the Drift Tube (DT) muon chambers for the barrel muon system of the CMS detector at the LHC at CERN (Geneva). The thesis describes some test procedures which were developed and performed for the chamber local Data Acquisition (DAQ) system, as well as for parts of the Detector Control System (DCS). The test results were analyzed and discussed. Two main kinds of DAQ tests were done. On the one hand, to compare two different DAQ systems, the chamber signals were split and read out by both systems. This method allowed to validate them by demonstrating, that there were no relevant differences in the measured drift times, generated by the same muon event in the same chamber cells. On the other hand, after the systems were validated, the quality of the data was checked. For this purpose extensive noise studies were performed. The noise dependence on various parameters (threshold, HV) was investigated quantitativel...

  9. The LHCb Muon Upgrade

    CERN Multimedia

    Cardini, A

    2013-01-01

    The LHCb collaboration is currently working on the upgrade of the experiment to allow, after 2018, an efficient data collection while running at an instantaneous luminosity of 2x10$^{33}$/cm$^{-2}$s$^{-1}$. The upgrade will allow 40 MHz detector readout, and events will be selected by means of a very flexible software-based trigger. The muon system will be upgraded in two phases. In the first phase, the off-detector readout electronics will be redesigned to allow complete event readout at 40 MHz. Also, part of the channel logical-ORs, used to reduce the total readout channel count, will be removed to reduce dead-time in critical regions. In a second phase, higher-granularity detectors will replace the ones installed in highly irradiated regions, to guarantee efficient muon system performances in the upgrade data taking conditions.

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  11. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A., E-mail: antonioanastasi89@gmail.com [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dipartimento MIFT, Università di Messina, Messina (Italy); Basti, A.; Bedeschi, F.; Bartolini, M. [INFN, Sezione di Pisa (Italy); Cantatore, G. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Trieste, Trieste (Italy); Cauz, D. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Corradi, G. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dabagov, S. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Lebedev Physical Institute and NRNU MEPhI, Moscow (Russian Federation); Di Sciascio, G. [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Di Stefano, R. [INFN, Sezione di Napoli (Italy); Università di Cassino, Cassino (Italy); Driutti, A. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Escalante, O. [Università di Napoli, Napoli (Italy); Ferrari, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Fienberg, A.T. [University of Washington, Box 351560, Seattle, WA 98195 (United States); Fioretti, A.; Gabbanini, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Gioiosa, A. [INFN, Sezione di Lecce (Italy); Università del Molise, Pesche (Italy); Hampai, D. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Hertzog, D.W. [University of Washington, Box 351560, Seattle, WA 98195 (United States); and others

    2017-01-11

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  12. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Rossi, E.; Santi, L.; Venanzoni, G.

    2017-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  13. Development of a Data Acquisition Program for the Purpose of Monitoring Processing Statistics Throughout the BaBar Online Computing Infrastructure's Farm Machines

    Energy Technology Data Exchange (ETDEWEB)

    Stonaha, P.

    2004-09-03

    A current shortcoming of the BaBar monitoring system is the lack of systematic gathering, archiving, and access to the running statistics of the BaBar Online Computing Infrastructure's farm machines. Using C, a program has been written to gather the raw data of each machine's running statistics and compute various rates and percentages that can be used for system monitoring. These rates and percentages then can be stored in an EPICS database for graphing, archiving, and future access. Graphical outputs show the reception of the data into the EPICS database. The C program can read if the data are 32- or 64-bit and correct for overflows. This program is not exclusive to BaBar and can be easily modified for any system.

  14. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  15. 500 picosecond TDC for DIRC at BABAR

    International Nuclear Information System (INIS)

    Lebbolo, H.; Bailly, P.; Chauveau, J.

    1997-01-01

    A 16 channel TDC chip has been developed at LPNHE Paris, to equip the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) of the BABAR experiment at the SLAC B factory (Stanford, USA). Binning is 500 picosecond, conversion time is 32 ns, with a fall range of 32 μs. The chip integrates channel buffering and selective readout of data falling within a programmable window defined by the level one trigger latency and resolution. The selective readout allows to manage random inputs at a maximum average rate of 100 kHz on each channel and makes data available at any time a trigger occurs. The maximum average rate of L1 accept trigger will be 2 kHz. The chip, housed in a 68 pin PLCC package, is designed in 0.7 μm CMOS technology and manufactured by ATMEL ES2. The TDC section and channel FIFOs are full custom designs. The TDC uses 16 independent voltage controlled digital delay lines and a 17th calibration channel which allows to tune the delays on the 59.5 MHZ reference clock. The selective readout algorithm has been synthesized from Verilog description and uses ATMEL ES2 standard cells. Die size is 36 mm2 and power less than 100 mW with all inputs fired at 100 kHZ. Prototypes test results show performances better than the specifications for the chip to be used on the DIRC detector. The ten production prototypes have been delivered mid May 1997

  16. The DIRC, the particle identification detector of BaBar

    CERN Document Server

    Yéche, C

    1999-01-01

    A novel particle identification detector (PID) has been developed for the BABAR experiment which will operate at the PEP-II B factory at SLAC. The principles of this new concept of PID called the DIRC, based on ring imaging $9 Cherenkov techniques, are briefly described. The results obtained with a large scale prototype and pion, kaon and proton beams at CERN are presented. The performances of this prototype are compared to the Monte-Carlo simulations and $9 the BABAR requirements. (4 refs).

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  18. Study of charmonium decays of B mesons in the Babar experiment; Etude des desintegrations charmonium des mesons B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe

    2006-04-15

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e{sup +}e{sup -} collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2{beta}) 0.722 {+-} 0.040 {+-} 0.023; {alpha} = (103 + 11 - 9) degrees; {gamma} = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes.

  19. The monitoring system of the ATLAS muon spectrometer read out driver

    CERN Document Server

    Capasso, Luciano

    My PhD work focuses upon the Read Out Driver (ROD) of the ATLAS Muon Spectrometer. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller and it is located off-detector, in a counting room of the ATLAS cavern at the CERN. The readout data of the ATLAS’ RPC Muon spectrometer are collected by the front-end electronics and transferred via optical fibres to the ROD boards in the counting room. The ROD arranges all the data fragments of a sector of the spectrometer in a unique event. This is made by the Event Builder Logic, a cluster of Finite State Machines that parses the fragments, checks their syntax and builds an event containing all the sector data. In the presentation I will describe the Builder Monitor, developed by me in order to analyze the Event Builder timing performance. It is designed around a 32-bit soft-core microprocessor, embedded in the same FPGA hosting the Builder logic. This approach makes it possible to track the algorithm execution in the field. ...

  20. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    International Nuclear Information System (INIS)

    Jewett, C.; Anghel, V.N.P.; Armitage, J.; Boudjemline, K.; Botte, J.; Bryman, D.; Bueno, J.; Charles, E.; Cousins, T.; Didsbury, R.; Erhardt, L.; Erlandson, A.; Gallant, G.; Jason, A.; Jonkmans, G.; Liu, Z.; McCall, M.; Noel, S.; Oakham, F.G.; Ong, D.; Stocki, T.; Thompson, M.; Waller, D.

    2011-01-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  1. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, C.; Anghel, V.N.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Armitage, J.; Boudjemline, K.; Botte, J. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Bryman, D. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); Bueno, J. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Charles, E. [Canada Border Services Agency, Ottawa, Ontario (Canada); Cousins, T. [International Safety Research, Ottawa, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Erhardt, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Erlandson, A. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Gallant, G. [Canada Border Services Agency, Ottawa, Ontario (Canada); Jason, A. [Los Alamos National Laboratory, Los Alamos (United States); Jonkmans, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, Z. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); McCall, M.; Noel, S. [International Safety Research, Ottawa, Ontario (Canada); Oakham, F.G. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); TRIUMF, Vancouver, British Columbia, (Canada); Ong, D.; Stocki, T. [Health Canada, Ottawa, Ontario (Canada); Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Waller, D. [Defence Research and Development Canada, Ottawa, Ontario (Canada)

    2011-07-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  2. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  3. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  4. CPLEAR et BABAR, all aspects of CP violation

    International Nuclear Information System (INIS)

    Yeche, Ch.

    2003-06-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K 0 → π + π - decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; Δm d measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B 0 → ρ ± π ± and B 0 → π ± K ± decays. (author)

  5. Study of Charm Baryons with the BaBar Experiment

    International Nuclear Information System (INIS)

    Petersen, Brian Aa.

    2006-01-01

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the Ξ' c 0/+ , Ξ c (2980) + and Ξ c (3077) + baryons, measure branching ratios for Cabibbo-suppressed Λ c + decays and use baryon decays to study the properties of the light-quark baryons, (Omega) - and Ξ(1690) 0

  6. Time-dependent Dalitz-Plot Analysis of the Charmless Decay B^0 -> K^0S Pi Pi- at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, J

    2009-10-17

    A time-dependent amplitude analysis of B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} decays is performed in order to extract the CP violation parameters of f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} and direct CP asymmetries of K*{sup +}(892){pi}{sup -}. The results are obtained from the final BABAR data sample of (465 {+-} 5)10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The time dependent CP asymmetry for f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} are measured to be S(f{sub 0}(980)K{sub S}{sup 0}) = -0.97 {+-} 0.09 {+-} 0.01 {+-} 0.01, and S({rho}{sup 0}(770)K{sub S}{sup 0}) = 0.67 {+-} 0.20 {+-} 0.06 {+-} 0.04, respectively. In decays to K*{sup +}(892){pi}{sup -} the direct CP asymmetry is found to be A{sub CP}(K*{sup {+-}}(892){pi}{sup {-+}}) = -0.18 {+-} 0.10 {+-} 0.04 {+-} 0.00. The relative phases between B{sup 0} {yields} K*{sup +}(892){pi}{sup -} and {bar B}{sup 0} {yields} K*{sup -}(892){pi}{sup +}, relevant for the extraction of the unitarity triangle angle {gamma}, is measured to be {Delta}{phi}(K*(892){pi}) = (34.9 {+-} 23.1 {+-} 7.5 {+-} 4.7){sup o}, where uncertainties are statistical, systematic and model-dependent, respectively. Fit fractions, direct CP asymmetries and the relative phases of different other resonant modes have also been measured. A new method for extracting longitudinal shower development information from longitudinally unsegmented calorimeters is also presented. This method has been implemented as a part of the BABAR final particle identification algorithm. A significant improvement in low momenta muon identification at BABAR is obtained.

  7. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT Commissioning of the two negative wheels was done on the surface to gain time; YB-1 was completed in June and that of YB-2 on October 3. A new test is ongoing following their lowering into the experiment cavern (UX). In the UX cavern, YB0 and YB+1 testing was completed by the end of August, and the two last sectors of YB+2 will be finished by the end of November. The two negative wheels were lowered at the beginning of October and the installation of the chambers in the vertical sectors was done immediately. Three important events took place at the end of October: the last of the 250 DT +RPC packs was installed in Sector 7 of YB-2; full power was switched on for the first time in a full wheel (on YB0, albeit with temporary power distribution) and 50,000 events of cosmic muons, including many spectacular showers crossing the fully active YB0 (50 chambers), were recorded in about 15 minutes. Other crucial tests were achieved, in difficult conditions, to prove the performance of the DT DAQ. The DAQ ha...

  8. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  9. CPLEAR et BABAR, all aspects of CP violation; CPLEAR et BABAR la violation de CP dans tous ses etats

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Ch

    2003-06-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K{sup 0} {yields} {pi}{sup +} {pi}{sup -} decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; {delta}m{sub d} measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B{sup 0} {yields} {rho}{sup {+-}} {pi}{sup {+-}} and B{sup 0} {yields} {pi}{sup {+-}} K{sup {+-}} decays. (author)

  10. Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M. [Stanford Univ., CA (United States)

    2013-08-01

    The compact bound state consisting of a bottom and anti-bottom quark pair interacting via the strong nuclear force is called “bottomonium.” A wealth of long-lived bottomonium states can be both experimentally produced and theoretically described, providing a unique tool to probe calculation techniques with experiment. Bottomonia with total angular momentum J = 1 and orbital angular momentum L = 0 at a variety of radial excitations n – called Υ(nS) – can be produced at electron-positron colliders. The BABAR experiment, located at the interaction point of such a collider (the PEP-II storage ring), has observed 122 million Υ(3S) and 100 million Υ(2S) decays. Some of these involve a transition to the bottomonium state χbJ (nP) (L = 1 and J = (0, 1, 2)), emitting a photon, with subsequent transition to a lower Υ(nS), also emitting a photon. The final Υ(nS) can be identified through a decay to two muons. The dependence of the branching fractions and photon energies in this process on the spin state of the intermediate χbJ (nP) is a key test of phenomenological models. To this end, this dissertation contains a nearly comprehensive study of these transitions with an emphasis on experimentally optimal discrimination between various models. This focus spurs innovative techniques that complement a large array of physics results, both presented in detail herein.

  11. Production of high energy η' in B meson decays from BaBar experiment

    International Nuclear Information System (INIS)

    Hicheur, A.

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the Υ(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy η' in B decays has been studied through the two main contributions, B→ η' X s coming from the rare decay b → sg*, and B-bar 0 → η'D 0 coming from the internal tree color suppressed decay b → cud. The improvement of the measurement of the process B → η'X-s and the first. observation of the decay B-bar 0 → η'D 0 have led to the conclusion that the η' production is dominated by the decay b → sg* and enables to constrain its quark content. (author)

  12. The Level-1 Global Muon Trigger for the CMS Experiment

    OpenAIRE

    Sakulin, H; Taurok, Anton

    2003-01-01

    The three independent Level-1 muon trigger systems in CMS deliver up to 16 muon candidates per bunch crossing, each described by transverse momentum, direction, charge and quality. The Global Muon Trigger combines these measurements in order to find the best four muon candidates in the entire detector and attaches bits from the calorimeter trigger to denote calorimetric isolation and confirmation. A single-board logic design is presented: via a special front panel and a custom back plane more...

  13. A Detector Scenario for a Muon Cooling Demonstration Experiment

    Science.gov (United States)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a princeton.edu/mumu/mumu-97-8.ps>detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  14. Performance of the ATLAS Muon Trigger in Run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2018-01-01

    Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both standard model measurements and searches for new physics. To be able to study such events, it is required to have an efficient and well-understood muon trigger. The ATLAS muon trigger consists of a hardware based system (Level 1), as well as a software based reconstruction (High Level Trigger). Due to high luminosity and pile up conditions in Run 2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. Some examples of recent improvements include requiring coincidence hits between different layers of the muon spectrometer, improvements for handling overlapping muons, and optimised muon isolation. We will present an overview of how we trigger on muons, recent improvements, and the performance of the muon trigger in Run 2 data.

  15. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  16. Data acquisition and online control system for new gas-electron multiplier detectors in the endcap muon system of the CMS experiment

    CERN Document Server

    Ruiz Alvarez, Jose David

    2016-01-01

    A new data acquisition and on-line control system is being developed for gas-electron multiplier (GEM) detectors which will be installed in the forward region (1.6 \\( < \\eta < \\) 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, planned for the period 2018-2019. A prototype system employs the TOTEM VFAT2 ASIC that will eventually be replaced with the VFAT3 ASIC, under development. The front-end ASIC communicates over printed circuit lines with an intermediate on-detector board called the opto-hybrid. Data, trigger, and control information is transmitted via optical fiber between the opto-hybrid and an off-detector readout system using micro-TCA technology. On-line software, implemented in the CMS XDAQ framework, includes applications for latency and HV scans, and system management. We report on the operational status of the prototype system that has been tested using cosmic ray muons and extracted high-energy particle beams. This work is preparatory for the operation of a prot...

  17. BaBar MC production on the Canadian grid using a web services approach

    International Nuclear Information System (INIS)

    Agarwal, A; Armstrong, P; Desmarais, R; Gable, I; Popov, S; Ramage, S; Schaffer, S; Sobie, C; Sobie, R; Sulivan, T; Vanderster, D; Mateescu, G; Podaima, W; Charbonneau, A; Impey, R; Viswanathan, M; Quesnel, D

    2008-01-01

    The present paper highlights the approach used to design and implement a web services based BaBar Monte Carlo (MC) production grid using Globus Toolkit version 4. The grid integrates the resources of two clusters at the University of Victoria, using the ClassAd mechanism provided by the Condor-G metascheduler. Each cluster uses the Portable Batch System (PBS) as its local resource management system (LRMS). Resource brokering is provided by the Condor matchmaking process, whereby the job and resource attributes are expressed as ClassAds. The important features of the grid are automatic registering of resource ClassAds to the central registry, ClassAds extraction from the registry to the metascheduler for matchmaking, and the incorporation of input/output file staging. Web-based monitoring is employed to track the status of grid resources and the jobs for an efficient operation of the grid. The performance of this new grid for BaBar jobs, and the existing Canadian computational grid (GridX1) based on Globus Toolkit version 2 is found to be consistent

  18. BaBar MC production on the Canadian grid using a web services approach

    Science.gov (United States)

    Agarwal, A.; Armstrong, P.; Desmarais, R.; Gable, I.; Popov, S.; Ramage, S.; Schaffer, S.; Sobie, C.; Sobie, R.; Sulivan, T.; Vanderster, D.; Mateescu, G.; Podaima, W.; Charbonneau, A.; Impey, R.; Viswanathan, M.; Quesnel, D.

    2008-07-01

    The present paper highlights the approach used to design and implement a web services based BaBar Monte Carlo (MC) production grid using Globus Toolkit version 4. The grid integrates the resources of two clusters at the University of Victoria, using the ClassAd mechanism provided by the Condor-G metascheduler. Each cluster uses the Portable Batch System (PBS) as its local resource management system (LRMS). Resource brokering is provided by the Condor matchmaking process, whereby the job and resource attributes are expressed as ClassAds. The important features of the grid are automatic registering of resource ClassAds to the central registry, ClassAds extraction from the registry to the metascheduler for matchmaking, and the incorporation of input/output file staging. Web-based monitoring is employed to track the status of grid resources and the jobs for an efficient operation of the grid. The performance of this new grid for BaBar jobs, and the existing Canadian computational grid (GridX1) based on Globus Toolkit version 2 is found to be consistent.

  19. Study of charmonium decays of B mesons in the Babar experiment

    International Nuclear Information System (INIS)

    Grenier, Philippe

    2006-04-01

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e + e - collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2β) 0.722 ± 0.040 ± 0.023; α = (103 + 11 - 9) degrees; γ = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes

  20. Muon scattering into 1 to 5 muon final states

    International Nuclear Information System (INIS)

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1979-09-01

    Interactions of 209- and 90-GeV muons within a magnetized-steel calorimeter have produced final states containing one, two, three, four, and five muons. Redundant systems of proportional and drift chambers, fully sensitive in the forward direction, maintained 9% dimuon-mass resolution and high acceptance for multimuon final states. The first data are presented on F 2 (x, Q 2 ) from charged lepton-nucleon scattering spanning a range in ln (ln, Q 2 ) comparable to that measured in high energy neutrino scattering. The muon data confirm the decrease of F 2 with rising Q 2 in the region 0.2 80% of the world sample of fully-reconstructed 3μ final states containing the J/psi(3100), the first determination of the psi polarization yields sigma/sub L//sigma/sub T/ = xi 2 Q 2 /m/sub psi/ 2 with xi 2 = 4.0/sub -2.1/ +5 4 , 2.6 standard deviations above the vector-dominance expectation. A sample of 35539 two-muon final states contains a small excess of high p/sub perpendicular to/ high-Q 2 same-sign pairs and sets limits on neutral heavy lepton production by right-handed currents. Two five-muon final states are observed, of which only one is the likely result of a pure QED process. A single event with four muons in the final state is interpreted as diffractive b anti b production with anti b → psiX → μ + μ - X and b → μ - anti ν/sub μ/X. 42 references

  1. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    During the ongoing period before beam operation resumes, the Endcap Muon system is dedicated to bringing all components of the system up to the best possible performance condition. As CMS was opened, starting with the +Endcap side, electronic boards, cables, and connectors of the Cathode Strip Chamber (CSC) system were replaced or repaired as necessary as access became possible. Due to scheduling constraints, on the –Endcap side this effort has been delayed until the muon stations are each briefly accessible as the experiment is closed again. The CSC gas mixture includes 10% CF4 (carbon tetrafluoride) to reduce aging of the chambers when subjected to high levels of charged particle fluxes during LHC running. CF4, however, is the most expensive component of the gas mixture, and since it is not necessary to protect against aging during chamber commissioning with cosmic rays, the amount of CF4 was temporarily reduced by half to realize a substantial cost saving. Additional filters have been added to ...

  2. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  3. The Terabit/s Super-Fragment Builder and Trigger Throttling System for the Compact Muon Solenoid Experiment at CERN

    CERN Document Server

    Bauer, Gerry; Boyer, Vincent; Branson, James; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gómez-Reino, Robert; Gulmini, Michele; Gutíerrez-Mlot, Esteban; Gutleber, Johannes; Jacobs, Claude; Kim, Jin Cheol; Klute, Markus; Lipeles, Elliot; Lopez-Perez, Juan Antonio; Maron, Gaetano; Meijers, Frans; Meschi, Emilio; Moser, Roland; Murray, Steven; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Pollet, Lucien; Rácz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Sumorok, Konstanty; Suzuki, Ichiro; Tsirigkas, Dimitrios

    2007-01-01

    The Data Acquisition System of the Compact Muon Solenoid experiment at the Large Hadron Collider reads out event fragments of an average size of 2 kilobytes from around 650 detector front-ends at a rate of up to 100 kHz. The first stage of event-building is performed by the Super-Fragment Builder employing custom-built electronics and a Myrinet optical network. It reduces the number of fragments by one order of magnitude, thereby greatly decreasing the requirements for the subsequent event-assembly stage. By providing fast feedback from any of the front-ends to the trigger, the Trigger Throttling System prevents buffer overflows in the front-end electronics due to variations in the size and rate of events or due to back-pressure from the down-stream event-building and processing. This paper reports on new performance measurements and on the recent successful integration of a scaled-down setup of the described system with the trigger and with front-ends of all major sub-detectors. The on-going commissioning of...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  5. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2013-01-01

    Great progress has been made on the CSC improvement projects during LS1, the construction of the new ME4/2 muon station, and the refurbishing of the electronics in the high-rate inner ME1/1 muon station. CSC participated successfully in the Global Run in November (GRiN) cosmic ray test, but with just stations +2 and +3, due to the large amount of work going on. The test suite used for commissioning chambers is more comprehensive than the previous tests, and should lead to smoother running in the future. The chamber factory at Prevessin’s building 904 has just finished assembling all the new ME4/2 chambers, which number 67 to be installed plus five spares, and is now finishing up the long-term HV training and testing of the last chambers. At Point 5, installation of the new chambers on the positive endcap went well, and they are now all working well. Gas leak rates are very low. Services are in good shape, except for the HV system, which will be installed during the coming month. We will then be w...

  6. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  7. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  9. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  10. Tests of the data acquisition system and detector control system for the muon chambers of the CMS experiment at the LHC

    International Nuclear Information System (INIS)

    Sowa, Michael Christian

    2009-01-01

    The Phys. Inst. III A of RWTH Aachen University is involved in the development, production and tests of the Drift Tube (DT) muon chambers for the barrel muon system of the CMS detector at the LHC at CERN (Geneva). The present thesis describes some test procedures which were developed and performed for the chamber local Data Acquisition (DAQ) system, as well as for parts of the Detector Control System (DCS). The test results were analyzed and discussed. Two main kinds of DAQ tests were done. On the one hand, to compare two different DAQ systems, the chamber signals were split and read out by both systems. This method allowed to validate them by demonstrating, that there were no relevant differences in the measured drift times, generated by the same muon event in the same chamber cells. On the other hand, after the systems were validated, the quality of the data was checked. For this purpose extensive noise studies were performed. The noise dependence on various parameters (threshold,HV) was investigated quantitatively. Also detailed studies on single cells, qualified as ''dead'' and ''noisy'' were done. For the DAQ tests a flexible hardware and software environment was needed. The organization and installation of the supplied electronics, as well as the software development was realized within the scope of this thesis. The DCS tests were focused on the local gas pressure read-out components, attached directly to the chamber: pressure sensor, manifolds and the pressure ADC (PADC). At first it was crucial to proof, that the calibration of the mentioned chamber components for the gas pressure measurement is valid. The sensor calibration data were checked and possible differences in their response to the same pressure were studied. The analysis of the results indicated that the sensor output depends also on the ambient temperature, a new experience which implied an additional pedestal measurement of the chamber gas pressure sensors at CMS. The second test sequence

  11. Measurements of the drift velocity using a small gas chamber for monitoring of the CMS muon system

    CERN Document Server

    Frangenheim, J

    This diploma thesis presents measurements of the drift velocity of electrons in gas. A small gas detector (VDC1 ) is used. This chamber is intended for measurement and monitoring of the drift velocity in the gas of the muon chambers of the gas detector system in the barrel area of the CMS-detector2 at the European Research Center for Particle Physics CERN near Geneva. The drift velocity is, together with the drift time, a key parameter for measurements with drift chambers. The aim of this thesis is to perform test measurements to determine parameters of the chamber and also to estimate systematic errors. Beside the drift velocity, further parameters of the gas like the pressure and the temperature are measured and accounted for. For the further work with the VDCs, analysis software has been created which is used for the analysis of the measurements. Parallel to this work, necessary improvements, e.g. for the high voltage robustness, were also implemented and tested. In addition, studies and test measurements ...

  12. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  13. Rare muon processes: Experiment

    International Nuclear Information System (INIS)

    Walter, H.K.

    1998-01-01

    The decay properties of muons, especially their rare decays, can be used to study very accurately deviations from the Standard Model. Muons with extremely low energies and good spatial definition are preferred for the majority of such studies. With the upgrade of the 590-MeV ring accelerator, PSI possesses the most powerful cyclotron in the world. This makes it possible to operate high-intensity beams of secondary pions and muons. A short review on rare muon processes is presented, concerning μ-e conversion and muonium-antimuonium oscillations. A possible new search for μ→eγ is also mentioned

  14. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  15. Reconstruction of cosmic and beam-halo muons with the CMS detector

    CERN Document Server

    Liu, Chang; Amapane, Nicola; Fernandez Bedoya, Cristina; Bellan, Riccardo; Biallass, Philipp; Bolognesi, Sara; Cerminara, Gianluca; Fouz Iglesias, Mary-Cruz; Giunta, Marina; Guiducci, Luigi; Hoepfner, Kerstin; Lacaprara, Stefano; Masetti, Gianni; Meneguzzo, Anna; Paolucci, Pierluigi; Puerta Pelayo, Jesus; Travaglini, Riccardo; Zanetti, Marco; Villanueva, Carlos

    2008-01-01

    The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. This note discusses the design, implementation, and performance results of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e., cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II were studied and compared with simulated cosmic data. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  17. Searches for low-mass Higgs and dark bosons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Oberhof, Benjamin, E-mail: benjamin.oberhof@pi.infn.it [INFN sezione di Pisa and Universitá di Pisa, Polo Fibonacci - Edificio C, Largo B. Pontecorvo 3, 56125 - Pisa (Italy)

    2013-01-15

    We present BaBar latest results for the direct search of a light CP-odd Higgs boson using radiative decays of the ϒ(nS) (n=1,2,3) resonances in different final states. We also present the results for the search of a hidden sector gauge and Higgs bosons using the full BaBar datasample.

  18. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  19. SSC muon detector group report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  20. Studies on energy gain of muon catalyzed hybrid D-D Reactor and it comparison to D-T system

    International Nuclear Information System (INIS)

    Eskandari, M.R.; Hoseine-Motlagh, S.N.; Faghihi, F.

    1998-01-01

    Regarding the advantages of hybrid fusion reactors, in most recent studies, the energy gain of muon catalyzed D-T hybrid reactors are studied. Knowing advantages of D-D fuel such as availability, not being radio-active, no tritium inventory requirement and transport problems, the muon catalyzed hybrid D-D reactor (μCHDDR) gain is calculated here for a given net reaction by solving its dynamical equations for various deuterium densities. It is shown theμCHDDR has advantages even for previously suggested similar D-T reactor

  1. Detection of on-surface objects with an underground radiography detector system using cosmic-ray muons

    Science.gov (United States)

    Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko

    2017-05-01

    We have developed a compact muon radiography detector to investigate the status of the nuclear debris in the Fukushima Daiichi Reactors. Our previous observation showed that a large portion of the Unit-1 Reactor fuel had fallen to floor level. The detector must be located underground to further investigate the status of the fallen debris. To investigate the performance of muon radiography in such a situation, we observed 2 m cubic iron blocks located on the surface of the ground through different lengths of ground soil. The iron blocks were imaged and their corresponding iron density was derived successfully.

  2. Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-$\\eta$ muon system

    CERN Document Server

    Abbaneo, D; Armagnaud, C; Aspell, P; Ban, Y; Bally, S; Benussi, L; Berzano, U; Bianco, S; Bos, J; Bunkowski, K; Cai, J; Chatelain, J P; Christiansen, J; Colafranceschi, S; Colaleo, A; Conde Garcia, A; David, E; de Robertis, G; De Oliveira, R; Duarte Pinto, S; Ferry, S; Formenti, F; Franconi, L; Gnanvo, K; Gutierrez, A; Hohlmann, M; Karchin, P E; Loddo, F; Magazzú, G; Maggi, M; Marchioro, A; Marinov, A; Mehta, K; Merlin, J; Mohapatra, A; Moulik, T; Nemallapudi, M V; Nuzzo, S; Oliveri, E; Piccolo, D; Postema, H; Raffone, G; Rodrigues, A; Ropelewski, L; Saviano, G; Sharma, A; Staib, M J; Teng, H; Tytgat, M; Tupputi, S A; Turini, N; Smilkjovic, N; Villa, M; Zaganidis, N; Zientek, M

    2011-01-01

    Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6<| \\eta |<2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the pro...

  3. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  4. MUON DETECTOR

    CERN Multimedia

    F.Gasparini

    Barrel Good progress has been made since the last CMS Week: the RPC chambers with gas problems have been success¬fully replaced in YB+2 (4 chambers) and YB+1 (5 chambers). Replacing of two chambers in YB-1 is ongoing. All the alignment MABs have been installed (few repairs were needed) and control and monitoring system is under test. The LINK system connecting the Tracker to the Endcap Disks and to the MABs in YB+1 and YB+2 is well advanced and will be ready for CMS test closure. This system concerns the relative positions of three ele¬ments at the moment of the final closure, the Alignment Ring on the Tracker, the Link Disk on YEs and MABs on YBs. Final possible corrective actions are under discussion or planned. Significant progress was made in the UXC infrastructure with the completion of the power distribution from S4F and the refurbishing of the cooling distribution on all gas towers. A prototype of the small online drift velocity measuring chambers is operational in the gas room fo...

  5. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  6. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  7. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  8. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  9. System of data collection of muon super-telescope and neutron monitor

    International Nuclear Information System (INIS)

    Klepach, E.; Yanke, V.; Kryakunova, O.; Sarlanis, K.; Souvatsoglou, Zh.; Mavromichalaki, E.

    2005-01-01

    The system of collection of information, integrated with system of selection on concurrences which is easily modified and for collection of the neutron data for the multi directed telescopes and godoscopes is offered. The system of data collection completely is solved at program level on the basis of the super fast processor. Coincidences and decoding of directions of arrival of particles are executed at a program level, and also counters of impulses for necessary number of channels are organized. The system of data collection is executed as the universal external device. Depending on the loaded managing program, this device can be used as: 1) system of telescope data collection, combined with system of selection of double coincidences; or 2) 32-channel system of data collection, for example the neutron monitor; or 3) as the register of the multiple neutrons, generated in the neutron monitor. (author)

  10. Managing the BaBar object oriented database

    International Nuclear Information System (INIS)

    Hasan, A.; Trunov, A.

    2001-01-01

    The BaBar experiment stores its data in an Object Oriented federated database supplied by Objectivity/DB(tm). This database is currently 350TB in size and is expected to increase considerably as the experiment matures. Management of this database requires careful planning and specialized tools in order to make the data available to physicists in an efficient and timely manner. The authors discuss the operational issues and management tools that were developed during the previous run to deal with this vast quantity of data at SLAC

  11. The MEGA [Muon decays into an Electron and a GAmma ray] hardware trigger system

    International Nuclear Information System (INIS)

    Szymanski, J.J.; Amann, J.F.; Black, J.K.; Cooper, M.D.; Wright, S.C.; Crocker, J.; Sanders, H.

    1988-01-01

    The MEGA experiment is designed to search for the rare decay μ → e γ with a branching ratio sensitivity of /approximately/10 -13 . As is typical of rare-decay experiments, extensive, online filtering of the data is required for MEGA. The MEGA experiment uses a hardware pattern-recognition system based on Programmable Array Logic (PAL) devices. Additional events are eliminated in an online ACP system before data are written to tape. The MEGA trigger system is generally applicable where high-rate, short-propagation-delay trigger systems are required. This report contains an introduction to the MEGA experiment, a discussion of the MEGA hardware trigger system and a discussion of the system's measured performance. 4 refs., 3 figs

  12. Hermeticity control system for the BMS/BMF-MDT chambers of the muon spectrometer of ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Dedovich, D.V.; Demichev, M.A.; Zhemchugov, A.S.; Il'yushenko, E.N.; Korolevich, Ya.V.; Kruchonok, V.G.; Lomidze, D.D.; Nikolaev, K.V.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Shcherbakov, A.A.

    2005-01-01

    Description of hermeticity certification of the JINR made muon chambers for the ATLAS experiment is presented. A high precision stand was installed in the production area of the DLNP, JINR. The description of the stand and results of the measurements and the description and results of the second testing of the drift chambers carried out after transportation to CERN are presented

  13. Delivering the world’s most intense muon beam

    Directory of Open Access Journals (Sweden)

    S. Cook

    2017-03-01

    Full Text Available A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}, far in excess of other facilities. At full beam power (400 W, this implies a rate of muons of (4.2±1.1×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  14. Development of the optical components of an alignment system for the muon spectrometer of the ATLAS detector

    International Nuclear Information System (INIS)

    Widmann, P.

    1994-09-01

    In the framework of the development of an electro-optical alignment system for the muon spectrometer of the ATLAS detector different types of optical sensors as well as components of a glass fiber network for the light distribution were studied for their suitability for a possible application. For the sensors a resolution of 10-20 μm in one and about 100 μm in the other coordinate is required. Especially for the application in the ATLAS detector developed silicon strip detectors permit in their current state of development a position resolution of 5-7 μm in the strip coordinate and 30 μm in the ohter coordinate (with current division on the strip). In the combination of several sensors in a beam the beam deviation by light refraction has been proved as additional error source. as much promising alternative strip sensors of amorphous silicon have been proved. These sensors allow in both directions an equally high position resolution. With a not transparent prototype resolutions of 1.8 μm in one and 2.3 μm in the second coordinate were reached without corrections. Additionally it is possible to fabricate these sensors in transparent form on glass substrates with optical quality, which may permit a complet abandonment on corrections of the beam deviation. The transmission of these sensors amounts at a wavelength of 690 nm currently to about 60%. By optimization of the layer thicknesses however transmission rates of up to 80% should be reachable. The studied components for the light distribution via glass fibers corresponded to their specifications. The application of one-mode fibers guarantees thereby the Gaussian profile of the laser beams collimated with objectives desirable for the position measurement with strip detectors

  15. Measurement of the Decay B→ ωℓν with the BaBar Detector and Determination of |Vub|

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Martin [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    We measure the branching fraction of the exclusive charmless semileptonic decay B→ ωℓν, where ℓ is either an electron or a muon, with the charged B meson recoiling against a tag B meson decaying in the charmed semileptonic modes B → Dℓν or B → D*ℓν. The measurement is based on a dataset of 426.1 fb-1 of e+e- collisions at a CM energy of 10.58 GeV recorded with the BABAR detector at the PEP-II asymmetric B Factory located at the SLAC National Accelerator Laboratory. We also calculate the relevant B → ω hadronic form factors to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.

  16. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  17. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  18. The design of a flexible Global Calorimeter Trigger system for the Compact Muon Solenoid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brooke, J J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Cussans, D G [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Frazier, R J E [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Galagedera, S B [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Heath, G P [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Huckvale, B J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Nash, S J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Newbold, D M [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shah, A A [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2007-10-15

    We have developed a novel design of triggering system as part of the pipelined hardware Level-1 trigger logic for the CMS experiment at LHC. The Global Calorimeter Trigger is the last element in the processing of calorimeter data, and provides most of the input to the final Level-1 decision. We present the detailed functional requirements for this system. Our design meets the requirements using generic, configurable Trigger Processing Modules built from commercial programmable logic and high-speed serial data links. We describe the hardware, firmware and software components of this solution. CMS has chosen an alternative solution to build the final trigger system; we discuss the implications of our experiences for future development projects along similar lines.

  19. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  20. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  1. BaBar computing - From collisions to physics results

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The BaBar experiment at SLAC studies B-physics at the Upsilon(4S) resonance using the high-luminosity e+e- collider PEP-II at the Stanford Linear Accelerator Center (SLAC). Taking, processing and analyzing the very large data samples is a significant computing challenge. This presentation will describe the entire BaBar computing chain and illustrate the solutions chosen as well as their evolution with the ever higher luminosity being delivered by PEP-II. This will include data acquisition and software triggering in a high availability, low-deadtime online environment, a prompt, automated calibration pass through the data SLAC and then the full reconstruction of the data that takes place at INFN-Padova within 24 hours. Monte Carlo production takes place in a highly automated fashion in 25+ sites. The resulting real and simulated data is distributed and made available at SLAC and other computing centers. For analysis a much more sophisticated skimming pass has been introduced in the past year, ...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  3. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  4. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    International Nuclear Information System (INIS)

    Strother, Philip David; Imperial Coll., London

    2006-01-01

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e + e - collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B 0 → J/Ψ K s 0 has been studied in the two lepton, two π 0 final state. The contribution of this channel to the evaluation of the angle sin 2β of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity

  5. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  6. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  7. Search for scalar muons

    International Nuclear Information System (INIS)

    Bartel, W.; Becker, L.; Bowdery, C.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Steffen, P.; Junge, H.; Schmidt, D.; Laurikainen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kleinwort, C.; Kuhlen, M.; Meier, K.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Sechi-Zorn, B.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Whittaker, J.B.; Kawamoto, T.; Kobayashi, T.; Mashimo, T.; Minowa, M.; Takeda, H.; Takeshita, T.; Yamada, S.

    1984-12-01

    The supersymmetric partner of the muon was searched for in a systematic way. No candidate was found and 95% CL limits on its mass were given for different cases. If it is stable, the limit is 20.9 GeV/c 2 . If it decays into a muon and an invisible low mass particle, the limit is 20.3 GeV/c 2 . If it decays into a muon and an unstable neutral particle which decays further into a photon and an invisible massless particles, the limit is 19.2 GeV/c 2 . (orig.)

  8. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  9. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  10. BaBar - A Community Web Site in an Organizational Setting

    International Nuclear Information System (INIS)

    White, Bebo

    2003-01-01

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future

  11. BaBar - A Community Web Site in an Organizational Setting

    Energy Technology Data Exchange (ETDEWEB)

    White, Bebo

    2003-07-10

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future.

  12. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    CERN Document Server

    Lenzi, Thomas

    2016-01-01

    We will present the electronic and DAQ system being developed for TripleGEM detectors which will be installed in the CMS muon spectrometer. The microTCA system uses an Advanced Mezzanine Card equipped with an FPGA and the Versatile Link with the GBT chipset to link the front and back-end. On the detector an FPGA mezzanine board, the OptoHybrid, has to collect the data from the detector readout chips to transmit them optically to the microTCA boards using the GBT protocol. We will describe the hardware architecture, report on the status of the developments, and present results obtained with the system.In this contribution we will report on the progress of the design of the electronic readout and data acquisition (DAQ) system being developed for Triple-GEM detectors which will be installed in the forward region (1.5 < eta < 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, planed for the period 2018-2019. The architecture of the Triple-GEM readout system is based on the use of the...

  13. Tests of the data acquisition system and detector control system for the muon chambers of the CMS experiment at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Michael Christian

    2009-02-27

    The Phys. Inst. III A of RWTH Aachen University is involved in the development, production and tests of the Drift Tube (DT) muon chambers for the barrel muon system of the CMS detector at the LHC at CERN (Geneva). The present thesis describes some test procedures which were developed and performed for the chamber local Data Acquisition (DAQ) system, as well as for parts of the Detector Control System (DCS). The test results were analyzed and discussed. Two main kinds of DAQ tests were done. On the one hand, to compare two different DAQ systems, the chamber signals were split and read out by both systems. This method allowed to validate them by demonstrating, that there were no relevant differences in the measured drift times, generated by the same muon event in the same chamber cells. On the other hand, after the systems were validated, the quality of the data was checked. For this purpose extensive noise studies were performed. The noise dependence on various parameters (threshold,HV) was investigated quantitatively. Also detailed studies on single cells, qualified as ''dead'' and ''noisy'' were done. For the DAQ tests a flexible hardware and software environment was needed. The organization and installation of the supplied electronics, as well as the software development was realized within the scope of this thesis. The DCS tests were focused on the local gas pressure read-out components, attached directly to the chamber: pressure sensor, manifolds and the pressure ADC (PADC). At first it was crucial to proof, that the calibration of the mentioned chamber components for the gas pressure measurement is valid. The sensor calibration data were checked and possible differences in their response to the same pressure were studied. The analysis of the results indicated that the sensor output depends also on the ambient temperature, a new experience which implied an additional pedestal measurement of the chamber gas pressure

  14. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  15. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    The April Muon Barrel Workshop marked the boundary between DT maintenance work and preparation for the LHC run. The thrust of the DT group was then directed, on one side, towards system safety and reliability, and, on the other side, towards enlarging the pool of experts and shifters. Analysis of the 2008 CRAFT data has provided details on the performance and a first set of calibration constants. Improvements to the safety system (both DSS and DCS) have been made: flow-meters inserted in the cooling system provide on-line information; an interlock signal is available from the gas racks; electronics racks have thermostats and fire detection systems; power to the mini-crates is cut when DCS communication is lost. Water leak detection cables were installed on the wheels: they provide an early warning before the HV trips and help in localizing the leak. On April 28, a short circuit in an opto-receiver board recently installed and cabled in USC caused a minor rack fire. This was satisfactorily mastered by the DS...

  16. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  17. Muon identification in JADE

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The method of identification of high energy muons in the JADE detector is described in detail. The performance of the procedure is discussed in detail for the case of prompt identification in multihadronic final states. (orig.)

  18. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  19. LHCb - Novel Muon Identification Algorithms for the LHCb Upgrade

    CERN Multimedia

    Cogoni, Violetta

    2016-01-01

    The present LHCb Muon Identification procedure was optimised to guarantee high muon detection efficiency at the istantaneous luminosity $\\mathcal{L}$ of $2\\cdot10^{32}$~cm$^{-2}$~s$^{-1}$. In the current data taking conditions, the luminosity is higher than foreseen and the low energy background contribution to the visible rate in the muon system is larger than expected. A worse situation is expected for Run III when LHCb will operate at $\\mathcal{L} = 2\\cdot10^{33}$~cm$^{-2}$~s$^{-1}$ causing the high particle fluxes to deteriorate the muon detection efficiency, because of the increased dead time of the electronics, and in particular to worsen the muon identification capabilities, due to the increased contribution of the background, with deleterious consequences especially for the analyses requiring high purity signal. In this context, possible new algorithms for the muon identification will be illustrated. In particular, the performance on combinatorial background rejection will be shown, together with the ...

  20. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  2. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  3. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2012-01-01

      The CSC muon system has run well and very stably during the 2012 run. Problems with the delivery of low voltage to 10–15% of the ME1/1 chambers were mitigated in the trigger by triggering modes that make use of coincidences between stations 2, 3, and 4. Attention now focuses on the ambitious upgrade program in LS1. Simulation and reconstruction code has been prepared for the post-LS1 era, for which the CSC system will have a full set of 72 ME4/2 chambers installed, and the 3:1 ganging of strips in the inner section of ME1/1 (pseudorapidity 2.1–2.4) will be replaced by flash digitisation of each strip. Several improvements were made to the CSC system during the course of the year. Zero-suppression of the anode readout reduced 15% from the CSC data volume. The response to single-event upsets (SEUs) that cause downstream FED readout problems was improved in two ways: first, the FED monitoring software now detects FEDs that are stuck in a warning state and resets within about 4 ...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  6. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2011-01-01

    The DT system has behaved highly satisfactorily throughout the LHC 2010 data-taking period, with more than 99% of the system operational and very few downtime periods. This includes operation with heavy ions collisions in which the rate of muons was low and no impact was observed in the buffer occupancies. An unexpected out-of-time high occupancy was observed in the outermost chambers (MB4) and its origin is under investigation. During the winter technical shutdown many interventions took place with the main goal of optimising the system. One of the main improvements is in the slow control mechanism through the DTTF boards: the problem that was preventing us from monitoring the OptoRX modules properly has been fixed satisfactorily. Other main changes include the installation of a new VME PCI controller to minimise the downtime in case of crate power cycle and the reduction from 10 to the design 5 FEDs, that became possible thanks to the good agreement of the event size with our expectations during LHC operat...

  7. Measurement of branching fraction ratios and CP asymmetries in B → DCP0K decays with the BABAR detector

    International Nuclear Information System (INIS)

    Marchiori, Giovanni

    2010-01-01

    The primary goals of the BABAR experiment are the detection of CP violation (CPV) in the B meson system, the precise measurement of some of the elements of the CKM matrix and the measurement of the rates of rare B meson decays. At present, BABAR has achieved major successes: (1) the discovery, in neutral B decays, of direct and mixing-induced CP violation; (2) accurate measurements of the magnitudes of the CKM matrix elements |V cb | and |V ub |; (3) a precise measurement of the CKM parameter β (triple b ond) arg(- V cd V* cb /V td V* tb ); (4) a first measurement of the CKM parameters α (triple b ond) arg(- V td V* tb /V ud V* ub ), γ (triple b ond) arg(- V ud V* ub /V cd V* cb ); and (5) the observation of several rare B decays and the discovery of new particles (in the charmed and charmonium mesons spectroscopy). However, the physics program of BABAR is not yet complete. Two of the key elements of this program that still need to be achieved are: (1) the observation of direct CP violation in charged B decays, which would constitute the first evidence of direct CPV in a charged meson decay; and (2) the precise measurement of α and γ, which are necessary ingredients for a stringent test of the Standard Model predictions in the quark electroweak sector. A possibility for the discovery of direct CP violation in charged B decays would be the observation of a non-vanishing rate asymmetry in the Cabibbo-suppressed decay B - → D 0 K - , with the D 0 decaying to either a CP-even or a CP-odd eigenstate. This class of decays can also provide theoretically-clean information on γ.

  8. Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ)

    CERN Document Server

    Davier, Michel; Malaescu, Bogdan; Zhang, Zhiqing

    2011-01-01

    We reevaluate the hadronic contributions to the muon magnetic anomaly, and to the running of the electromagnetic coupling constant at the Z-boson mass. We include new pi+pi- cross-section data from KLOE, all available multi-hadron data from BABAR, a reestimation of missing low-energy contributions using results on cross sections and process dynamics from BABAR, a reevaluation of all experimental contributions using the software package HVPTools together with a reanalysis of inter-experiment and inter-channel correlations, and a reevaluation of the continuum contributions from perturbative QCD at four loops. These improvements lead to a decrease in the hadronic contributions with respect to earlier evaluations. For the muon g-2 we find lowest-order hadronic contributions of (692.3 +- 4.2) 10^-10 and (701.5 +- 4.7) 10^-10 for the e+e- based and tau-based analyses, respectively, and full Standard Model predictions that differ by 3.6 sigma and 2.4 sigma from the experimental value. For the e+e- based five-quark h...

  9. Measurement of the Spin of the Omega- Hyperon at Babar

    International Nuclear Information System (INIS)

    Aubert, B.

    2006-01-01

    A measurement of the spin of the (Omega) - hyperon produced through the exclusive process Ξ c 0 → (Omega) - K + is presented using a total integrated luminosity of 116 fb -1 recorded with the BABAR detector at the e + e - asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ c 0 has spin 1/2, the angular distribution of the Λ from (Omega) - → ΛK - decay is inconsistent with all half-integer (Omega) - spin values other than 3/2. Lower statistics data for the process (Omega) c 0 → (Omega) - π + from a 230 fb -1 sample are also found to be consistent with (Omega) - spin 3/2. If the Ξ c 0 spin were 3/2, an (Omega) - spin of 5/2 cannot be excluded

  10. Performance simulation of BaBar DIRC bar boxes in TORCH

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  11. submitter Performance simulation of BaBar DIRC bar boxes in TORCH

    CERN Document Server

    Föhl, K; Castillo García, L; Cussans, D; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  12. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2012-01-01

      During the current Technical Stop many “under the hood” improvements to the CSC system are being implemented. The system is currently up and running well with cosmic rays, etc. as evidenced by DQM plots of recent cosmic ray runs, one of which is shown below (Figure 1). With the start of 2012, our new Operations Manager is Misha Ignatenko, assisted by Deputy Evaldas Juska. During 2011 data-taking after 1st September, a 4% efficiency loss for endcap muons was traced to a problem of lost data blocks due to DDC-DCC event number synchronisation when the front-end readout rate exceeds 70 kHz. The problem was easily reproduced with high rate and/or data acquisition backpressure, and two firmware fixes have been identified and implemented in the CSC readout electronics, and additional diagnostics have been added to quickly flag and quantify this type of error. Firmware to allow zero-suppression of anode data has been downloaded to the ALCT boards and promises to reduce the CSC data...

  13. MUON DETECTORS: DT

    CERN Document Server

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  14. A GEM Detector System for an Upgrade of the High-eta Muon Endcap Stations GE1/1 + ME1/1 in CMS

    CERN Document Server

    Abbaneo, D; Aspell, P.; Bianco, S.; Hoepfner, K.; Hohlmann, M.; Maggi, M.; De Lentdecker, G.; Safonov, A.; Sharma, A.; Tytgat, M.

    2012-01-01

    Based on the CMS Upgrade R&D Proposal RD10.02, we describe the motivation and main features of the CMS GEM Project for LS2 and propose the addition of a full GE1/12 detector station comprising Gas Electron Multiplier (GEM) chambers to the forward muon system of CMS. The limitations of the currently existing forward muon detector when operating at increasingly high luminosity expected after LS1 are laid out followed by a brief description of the anticipated performance improvements achievable with a GE1/1 station. The second part describes the detector system followed by an overview of electronics and associated services including a discussion of the schedule and cost of the project. Plans for a precursor demonstrator installation in LS1 are presented. This proposal is intended as a concise follow-up of the detailed document CMS-IN-2012-023. If approved, this is to be followed by a detailed Technical Design Report.

  15. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  16. Portable cosmic muon telescope for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Barnafoeldi, Gergely Gabor [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklos Str., H-1121 Budapest (Hungary); Hamar, Gergo [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklos Str., H-1121 Budapest (Hungary); Department of Physics of Complex Systems, Eoetvoes University, 1/A Pazmany P. setany, H-1117 Budapest (Hungary); Melegh, Hunor Gergely [Budapest University of Technology and Economics, 3-9 Muegyetem rkp., H-1111 Budapest (Hungary); Olah, Laszlo [Department of Physics of Complex Systems, Eoetvoes University, 1/A Pazmany P. setany, H-1117 Budapest (Hungary); Suranyi, Gergely [Geological, Geophysical and Space Science Research Group of the HAS, Eoetvoes University, 1/C Pazmany P. setany, H-1117 Budapest (Hungary); Varga, Dezso, E-mail: dezso.varga@cern.ch [Department of Physics of Complex Systems, Eoetvoes University, 1/A Pazmany P. setany, H-1117 Budapest (Hungary)

    2012-10-11

    A portable, low power consumption cosmic muon tracking system based on Close Cathode MWPC technology is presented, which is designed for operation in highly humid environmental conditions such as underground caves, tunnels, or cellars. The system measures the angular distribution of cosmic muons with resolution of 10 mrad, allowing for a tomographic mapping of the soil density above the detector unit. The size of the detector, 0.1 m{sup 2} of total sensitive surface, was designed to fulfill the requirement of transport through humanly passable natural cave tunnels. First results from the Ariadne Cave System in Pilis Mountains, Hungary are shown, which constrains the necessary data taking time for meaningful tomographic mapping. -- Highlights: Black-Right-Pointing-Pointer Cosmic muon tracking system for underground applications presented. Black-Right-Pointing-Pointer Operation in highly humid environment of natural caves demonstrated. Black-Right-Pointing-Pointer Tomographic mapping at 60 m depth was performed during 50 days in Pilis Mountains, Hungary.

  17. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Lingemann, Joschka; Sakulin, Hannes; Jeitler, Manfred; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run 2 of the Large Hadron Collider pose new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run 1, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new microTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (GMT) which combines information from the muon trigger sub-systems and assigns the isolation variable. The upgraded GMT will be implemented using a Master Processor 7 card, built by Imperial College, that features a large Xilinx Virtex 7 FPGA. Up to 72 optical links at...

  18. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC system ran well during the June-November 2011 period as the luminosity climbed. After new firmware was loaded on 21st July onto the CSC readout boards, there have been very few synchronisation-lost “draining” errors. This has reduced the CSC contribution to CMS downtime from 1% to less than 0.2% since the change. A new issue has arisen in the data taken since 1st September with an apparent 4% efficiency loss for endcap muons. This may be a problem of lost data blocks when the front-end readout rate exceeds 70 kHz, and work to resolve the problem is foreseen during the upcoming Year-End Technical Stop. We also see evidence of SEUs: hard-to-explain occurrences that may corrupt data or stop data-taking but are always recoverable with a hard reset. Numerous “under-the-hood” improvements have been made or will be made soon. The procedure followed by the CSC DQM (Data Quality Monitoring) shift personnel has been changed to additionally check CSC Track Finder histog...

  19. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2013-01-01

      The CSC muon system ran with no downtime during the early-2013 heavy-ion run. The CSC group has now embarked on the ambitious upgrade programme during LS1, i.e. installation of 72 large ME4/2 chambers, and replacement of the current analogue electronics in ME1/1 by flash digitisation as well as undoing of the 3:1 ganging of strips in the inner section of ME1/1 (pseudorapidity 2.1–2.4). The CSC group’s internal organisational structure has been changed to add working groups that better reflect this work. The ME4/2 chamber factory at Prevessin’s building 904 has produced 39 of the needed 67 chambers, well into the second endcap, and continues to turn out at least the anticipated one chamber per week. Production of electronics and cables, and detailed plans for ME4/2 installation are going well. One change from earlier plans is that each endcap will be completely installed in one go, with only a minor delay following installation of the back chambers to ensure connec...

  20. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2012-01-01

    The CSC muon system has run well thus far during the 2012 run, coping well with the ever-increasing luminosity. Periodic hard resets, currently issued every 30 minutes, have greatly decreased the frequency of SEU-related problems. Near the end of 2011 a significant readout data loss at high Level-1 trigger rates was uncovered; before the collisions in 2012 several firmware and software fixes were made to eliminate this problem, and diagnostics were added to quickly identify this problem related to trigger number (L1A) mismatches if it were to occur in the future. Online trigger and offline reconstructed timing of the CSC chambers has not changed in 2012, even at the nanosecond level, relative to the well-adjusted timing of 2011. Removal of CASTOR has nearly equalised the background rate between the two endcaps except for station –2, where a gap in the inner ring shielding is suspected. From 2011 to 2012 the number of chambers that were inoperable due to loss of low-voltage power has grown from 9...

  1. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

      Since the start of data-taking in 2012, the RPCs have been operating in a stable manner with average chamber efficiencies above 95%. At present, the number of missing electronic channels is 1.2%; the number of disconnected chambers is 9, while 34 chambers are in single-gap mode. All those numbers are stable since the 2011 run. So far in 2012 no luminosity has been lost due to RPCs. During the winter shutdown, link board protections have been installed everywhere and are working properly, which makes the system more robust than before. A new “gas resistance” measurement campaign showed a clear stability of this parameter, which is proportional to the gap resistivity. No differences with respect to 2011 were found. A new efficiency calculation method has been validated, where now only DT/CSC segments of high quality that are associated with a stand-alone muon track are used to reduce the effect of punch-through segments. With this method, the observed oscillations in the RPC e...

  2. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  3. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2013-01-01

    The ambitious CSC upgrade programme during Long Shutdown 1 (LS1) includes the installation of 67 new ME4/2 chambers, and replacement of the cathode electronics in ME1/1 to use flash ADCs and undo the 3:1 ganging of strips in the inner section that covers pseudorapidity 2.1–2.4. The ME1/1 project passed a follow-up (MPR) review on 14 June and is now proceeding rapidly. A programme to eliminate a tin-gold interface in the low voltage connectors in our 60 peripheral crates is well underway. Meanwhile, a combined muon system (CSC+DT+RPC) performance paper has been submitted to JINST and arXiv at the end of June. The ME4/2 chamber factory at Prevessin’s building 904 has produced 51 of the needed 67 chambers, and continues to turn out at least the anticipated one chamber per week. Cathode (CFEB) boards are now being recuperated from ME1/1 for use on the ME4/2 chambers. Installation of associated infrastructure including cooling, low-voltage and cabling are going well. High-voltage boards are ...

  4. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  5. Muon physics possibilities at a muon-neutrino factory

    NARCIS (Netherlands)

    Jungmann, KP

    2001-01-01

    New intense proton accelerators with above GeV energies and MW beam power, such as they are discussed in connection with neutrino factories, appear to be excellently suited for feeding bright muon sources for low-energy muon science. Muon rates with several orders of magnitude increased flux

  6. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  7. Precision muon physics

    Science.gov (United States)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  8. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  9. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    International Nuclear Information System (INIS)

    Bick, Daniel

    2011-04-01

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced 11 C background. Finally, first results are presented. (orig.)

  10. The muon chambers take centre stage at CMS

    CERN Multimedia

    2003-01-01

    The CMS muon chambers are now starting to arrive at CERN in significant numbers. All in all, the muon system of the CMS detector will comprise some 1400 of these chambers. Twenty percent of those for the endcaps have already been installed, while the assembly of those for the barrel will start in December.

  11. Unexpected observations of muons from Cygnus X-3

    International Nuclear Information System (INIS)

    Elbert, J.W.

    1986-01-01

    One surface experiment (Kiel) and two underground experiments (Soudan and Mt. Blanc) have detected unexpectedly large fluxes of cosmic ray muons from the approximate direction of Cygnus X-3, with signals showing the precise period of the system. The muon signals cannot be produced by any known type of elementary particle unless unexpected processes are involved

  12. Prototype SDC Muon alignment-position monitoring concepts

    International Nuclear Information System (INIS)

    Eartly, D.; Johnson, P.

    1991-01-01

    We have developed and tested some prototype ideas, components, and systems for monitoring the relative planar orientations, spacings between, transverse positions and rotations of the multi Muon supermodule layers in a given SDC Muon chamber projective tower. These are described and parameterized from measurements. Their resolutions are given, and long term stabilities have been determined

  13. Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband

    CERN Document Server

    AUTHOR|(CDS)2074269; Grasso, L; Locke, J B; Quintero, A; Mitra, D

    2009-01-01

    Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

  14. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  15. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  16. Combined Time-Dependent CP Violation Measurements by the B factory experiments BaBar and Belle

    CERN Document Server

    CERN. Geneva

    2018-01-01

    During the 2000s, the BaBar experiment at SLAC in Stanford/USA and the Belle experiment at KEK in Tsukuba/Japan performed a very successful flavor physics program. In particular, BaBar and Belle discovered CP violation in the neutral and charged B meson system. In this talk, we present the results of two measurements from a novel analysis campaign by the former 'friendly competitors'. The novel approach combines the integrated luminosity of about 1.1 inverse attobarn collected by both experiments in single physics analyses. The first combined measurement presented is a time-dependent CP violation measurement of $B^{0} \\to D^{(*)}_{CP} h^{0}$ decays, where the light neutral hadron $h^{0}$ is a $\\pi^{0}$, $\\eta$ or $\\omega$ meson, and the neutral $D$ meson is reconstructed in decays to the two-body CP eigenstates $K^{+}K^{-}$, $K_{S}^{0}\\pi^{0}$ or $K_{S}^{0}\\omega$. A first observation of CP violation governed by mixing-induced CP violation according to $\\sin{2\\beta}$ is reported. The second combined measurem...

  17. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  18. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  19. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  20. Use of proportional tubes in a muon polarimeter

    International Nuclear Information System (INIS)

    Kenney, C.J.; Eckhause, M.; Ginkel, J.F.

    1988-01-01

    A prototype muon polarimeter was built to study the feasibility of measuring the positive muon polarization in the decay K/sub L/ → μ + μ/sup /minus//. The system consisted of alternating layers of extruded aluminum gas proportional tubes and polarization-retaining absorber plates of either aluminum or marble. Longitudinally polarized positive muons from the Stopped Muon Channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) were stopped in the absorber plates where they precessed in a field of 60 gauss. Decay times were recorded in 100 ns first-in-first-out memories for all wires hit during a 12.8 μs period centered about the muon stop trigger. The performance of the system was studied for different beam rates and absorber thicknesses. The value of imposing time and spacial cuts on track data to enhance the precession signal was also investigated. 7 refs., 4 figs., 1 tab

  1. Muon Reconstruction and Physics Commissioning of the CMS Experiment with Cosmic Muons

    CERN Document Server

    Liu, Chang

    In this thesis, the first physics measurements using the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) are presented. These physics measurements were performed using cosmic ray muons traversing the CMS detector. The CMS detector is optimized for the detection of muons and the results presented here also have a purpose of helping in the commissioning of the detector for the LHC collisions. Two analyses were conducted; the first is a measurement of the charge ratio of positive to negative muons, and the second is a measurement of the differential and absolute flux of incident cosmic rays. The charge ratio measurement was made using both the muon and tracking detectors and is highlighted by its data-driven method. The charge ratio over the momentum range starting from 10 GeV were measured at the detector center and then transferred to the earth's surface. The flux measurement was performed using the muon system only. The flux was measured over the momentum range from 15 GeV to over 1 TeV at the...

  2. Muon studies of heavy fermions

    International Nuclear Information System (INIS)

    Heffner, R.H.

    1991-01-01

    Recent muon spin relaxation (μSR) studies have been particularly effective in revealing important properties of the unusual magnetism and superconductivity found in heavy fermion (HF) systems. In this paper μSR experiments elucidating the symmetry of superconducting order parameter in UPt 3 and UBe 13 doped with thorium and reviewed. Also discussed is the correlation between the enhanced superconducting specific heat jump and the reduced Kondo temperature in B-doped UBe 13 , indicating possible direct experimental evidence for a magnetic pairing mechanism in HF superconductors. 23 refs., 3 figs

  3. The OPAL muon barrel detector

    International Nuclear Information System (INIS)

    Akers, R.J.; Allison, J.; Ashton, P.; Bahan, G.A.; Baines, J.T.M.; Banks, J.N.; Barlow, R.J.; Barnett, S.; Beeston, C.; Chrin, J.T.M.; Clowes, S.G.; Davies, O.W.; Duerdoth, I.P.; Hinde, P.S.; Hughes-Jones, R.E.; Lafferty, G.D.; Loebinger, F.K.; Macbeth, A.A.; McGowan, R.F.; Moss, M.W.; Murphy, P.G.; Nijjhar, B.; O'Dowd, A.J.P.; Pawley, S.J.; Phillips, P.D.; Richards, G.E.; Skillman, A.; Stephens, K.; Tresillian, N.J.; Wood, N.C.; Wyatt, T.R.

    1995-01-01

    The barrel part of the OPAL muon detector consists of 110 drift chambers forming four layers outside the hadron absorber. Each chamber covers an area of 1.2 m by up to 10.4 m and has two cells with wires parallel to the beam and a drift distance of 297 mm. A detailed description of the design, construction, operation and performance of the sub-detector is given. The system has been operating successfully since the start of LEP in 1989. ((orig.))

  4. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  5. Electron and muon physics sessions: Summary

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1988-06-01

    The electromagnetic interaction needs no introduction as a probe of the structure of systems on many scales. The continued use of this technique dominated the sessions on Electron and Muon Physics at the Samoset Meeting. The experimental results continue to stimulate large numbers of theorists and the results on polarized deep inelastic muon scattering and their various interpretations permeated beyond these sessions. The breadth of physics attacked with electrons and muons makes a summary such as this rather peculiar. As one of my nuclear physics friends (I think) commented after my summary, ''it was interesting to see Nuclear Physics from a long distance with the telescope inverted.'' The comment may well be applied to this written version of the summary talk. 21 refs

  6. Unparticles and muon decay

    International Nuclear Information System (INIS)

    Choudhury, Debajyoti; Ghosh, Dilip Kumar; Mamta

    2008-01-01

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios

  7. Unparticles and muon decay

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Debajyoti [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ghosh, Dilip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)], E-mail: dkghosh@physics.du.ac.in; Mamta [Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110 007 (India)

    2008-01-03

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios.

  8. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  9. Muons, neutrons and superconductivity

    International Nuclear Information System (INIS)

    Aeppli, G.; Risoe National Lab., Roskilde

    1988-01-01

    The principles of the neutron scattering and muon spin relaxation (μSR) techniques and their applications to studies of superconductors are described briefly. μSR and neutron scattering work on magnetic correlations in superconductors and materials directly related to superconductors are reviewed. (orig.)

  10. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  11. Muon capture in deuterium

    Czech Academy of Sciences Publication Activity Database

    Ricci, P.; Truhlík, Emil; Mosconi, B.; Smejkal, J.

    2010-01-01

    Roč. 837, - (2010), s. 110-144 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : Negative muon capture * Deuteron * Potential models Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010

  12. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  13. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  14. γ ray astronomy with muons

    International Nuclear Information System (INIS)

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-01-01

    Although γ ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard γ ray spectra there is a relative open-quotes enhancementclose quotes of muons from γ ray primaries as compared to that from nucleon primaries. All shower γ rays above the photoproduction threshold contribute to the number of muons N μ , which is thus proportional to the primary γ ray energy. With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ close-quote s of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10 4 . The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by γ ray detectors such as MILAGRO. TeV muons from γ ray primaries, on the other hand, are rare because they are only produced by higher energy γ rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. copyright 1997 The American Physical Society

  15. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    Science.gov (United States)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  16. The TRIUMF radiative muon capture facility

    International Nuclear Information System (INIS)

    Wright, D.H.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Ahmad, S.; Chen, C.Q.; Gorringe, T.P.; Hasinoff, M.D.; Sample, D.G.; Zhang, N.S.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; Bertl, W.; Henderson, R.S.; Robertson, B.C.; Taylor, G.

    1992-01-01

    Radiative muon capture (RMC) on hydrogen produces photons with a yield of ≅ 10 -8 per stopped muon. To measure RMC at TRIUMF we have constructed a lage-solid-angle photon pair-spectrometer which surrounds the liquid hydrogen target. The spectrometer consists of a cylindrical photon converter and a larget-volume cylindrical drift chamber to track the e + e - pairs. It is enclosed in a spectrometer magnet which produces a highly uniform axial magnetic field. The detector subsystems, the hardware trigger and the data acquisition system are described, chamber calibration and tracking techniques are presented, and the spectrometer performance and its Monte Carlo simulation are discussed. (orig.)

  17. Muon spin rotation studies of magnetic order and strong magnetic correlations in magnetic and superconducting systems based on the high Tc copper oxide structures

    International Nuclear Information System (INIS)

    Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.

    1990-01-01

    In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented

  18. The Evolution of the Control System for the Electromagnetic Calorimeter of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Lustermann, Werner; Zelepoukine, Serguei

    2011-01-01

    This paper discusses the evolution of the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) as well as the operational experience acquired during the LHC physics data taking periods of 2010 and 2011. The current implementation in terms of functionality and planned hardware upgrades are presented. Furthermore, a project for reducing the long-term software maintenance, including a year-long detailed analysis of the existing applications, is put forward and the current outcomes which have informed the design decisions for the next CMS ECAL DCS software generation are described. The main goals for the new version are to minimize external dependencies enabling smooth migration to new hardware and software platforms and to maintain the existing functionality whilst substantially reducing support and maintenance effort through homogenization, simplification and standardization of the contr...

  19. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  20. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  1. Concepts for a Muon Accelerator Front-End

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Berg, Scott [Brookhaven; Neuffer, David [Fermilab

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate the performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.

  2. RARE B DECAYS AND DIRECT CP VIOLATION AT BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, Sandrine

    2003-09-26

    The search for rare B decays and direct CF violation at BABAR is described. The following measurements (based on integrated luminosities ranging from 56.4 to 81.9 fb{sup -1}) are summarized: the inclusive branching fractions and direct CF asymmetries of B{sup +} {yields} h{sup +}h{sup -}H{sup +} (h = {pi}, K), the exclusive branching fractions of B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +} (where significant signals are observed in the B{sup +} {yields} K*{sup 0}(892){pi}{sup +}, B{sup +} {yields} f{sub 0}(98)K{sup +}, B{sup +} {yields} {chi}{sub c0}K{sup +}, B{sup +} {yields} {bar D}{sup 0}{pi}{sup +} and B{sup +} {yields} higher K*{sup 0}{pi}{sup +} channels), the branching fractions of B{sup +} {yields} {rho}{sup 0}{rho}{sup +} and B{sup +} {yields} {rho}{sup 0} K*{sup +}, and finally, the branching fractions, the longitudinal components, and the direct CF asymmetries in B {yields} {phi}K*.

  3. Charmed-B decays at BaBar

    International Nuclear Information System (INIS)

    Tisserand, Vincent

    2004-01-01

    We present recent results on charmed-B decays using data collected by the BaBaR experiment at the PEP-II storage ring. This report is subdivided in 3 parts. In a first step, we present preliminary results on the measurement of the branching fractions of seven color-suppressed anti B 0 -meson decays into D (*)0 π 0 , D (*)0 η, D (*)0 ω, and D 0 η ' . Then we discuss the preliminary measurement of the ratio of Cabibbo-suppressed to Cabibbo-favored branching fractions B(B - →D 0 K - )/B(B - →D 0 π - ), where the D 0 is possibly reconstructed in the CP-even π - π + and K - K + modes. For the D 0 decays into CP-eigenstates, a search for a direct CP asymmetry is performed. For the same category of decay processes, we show a precise preliminary measurement of both the branching fraction of B - decaying to D *0 K *- and of the fraction of longitudinal polarization in this decay. Finally, we present a study where the 22 possible B decays to anti D (*) D * K are reconstructed exclusively. The branching fractions of the anti B 0 and of the B + to anti D (*) D (*) K are presented and a search for decays B→anti D (*) D sJ + (→D (*)0 K + ), where the D sJ + represents the orbitally excited D s states, is also discussed. (orig.)

  4. A search for the decay of a B meson into a kaon and a tau lepton pair at the BaBar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cheaib, Racha [McGill Univ., Montreal, QC (Canada)

    2016-08-13

    The flavour changing neutral current (FCNC) process, $B^+$ → $K^+ τ^+ τ^-$ highly suppressed in the Standard Model (SM). This decay is forbidden at tree level and only occurs at lowest order via one-loop diagrams.$B^+$ → $K^+ τ^+ τ^-$ thus has the potential to provide a stringent test of the SM and a fertile ground for new physics searches. Contributions due to virtual particles in the loop allow one to probe, at relatively low energies, new physics at large mass scales. We search for the rare FCNC process $B^+$ → $K^+ τ^+ τ^-$ using data collected by the BaBaR detector at the SLAC National Accelerator Laboratory. The BaBaR data sample corresponds to a total integrated luminosity, at the energy of the Τ(4S) resonance, of 424.4 $fb^-1$ and 471 million $B\\bar{B}$ pairs. For this search, hadronic $B_{tag}$ reconstruction is employed, where one B is exclusively reconstructed via one of many possible hadronic modes. The remaining decay products in an event are then attributed to the signal B, on which the search for $B^+$ → $K^+ τ^+ τ^-$ is performed. Each τ is required to decay leptonically, into either an electron or a muon and the lepton neutrinos. Furthermore, a multi-variate analysis technique (neural network) is used to select for signal events and suppress dominant background modes. No significant signal is observed. The resulting branching fraction is measured to be $\\beta(B^+$ → $K^+ τ^+)$ = $1.31^{0:66}_{-0:61}$(stat.) $^{+0:35}_{-0:25}$(sys.) x 10$^{-3}$, which is consistent with zero at the 1.9σ level, with an upper limit of 2.25 x 10$^{-3}$, at the 90% confidence level.

  5. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  6. Di-muon event recorded by the CMS detector (Run 2, 13 TeV)

    CERN Multimedia

    Mc Cauley, Thomas

    2015-01-01

    This image shows a collision event with the largest-mass muon pair so far observed by the CMS detector in proton-collision data collected in 2015. The mass of the di-muon system is 2.4 TeV. One muon, with a transverse momentum of 0.7 TeV, goes through the Drift Tubes in the central region, while the second, with a transverse momentum of 1.0 TeV, hits the Cathode Strip Chambers in the forward region. Both muons satisfy the high-transverse-momentum muon selection criteria.

  7. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  8. Muon identification with Muon Telescope Detector at the STAR experiment

    Science.gov (United States)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  9. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  10. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  11. Recent results on search for new physics at BaBar

    Directory of Open Access Journals (Sweden)

    Oberhof Benjamin

    2017-01-01

    Full Text Available We present some recent measurements for the search of New Physics using 514 fb−1 of e+e− collisions collected with the BaBar detector at the PEP-II e+e− collider at SLAC. First we present a search for the decay ϒ (1S → γA0, A0 → cc̄, where A0 is a candidate for the CP-odd Higgs boson of the next-to-minimal supersymmetric standard model. No significant signal is observed and we set 90% confidence-level upper limits on B(ϒ(1S → γA0 × B(A0 → cc̄. We report the search for a light non-Standard Model gauge boson Z′ coupling only to the second and third lepton families. Our results significantly improve current limits and further constrain the remaining region of the allowed parameter space. Finally, we present a search for a long-lived particle L that is produced in e+e− annihilations and decays into two oppositely charged tracks. We do not observe a significant signal and we and set 90% confidence level upper limits on the product of the L production cross section, branching fraction, and reconstruction efficiency as a function of the L mass. In addition, upper limits are provided on the branching fraction B(B → XsL, where Xs is an hadronic system with strangeness -1.

  12. Study of the Rare Decay B0 to pi0 pi0 at BaBar

    CERN Document Server

    Bowerman, D A

    2003-01-01

    The BABAR experiment operating at the PEP-II e sup + e sup - collider is designed to study CP violation effects in the B-meson system. From May 1999 to June 2002 approximately 81 fb sup - sup 1 of data have been collected at the UPSILON(4S) resonance, containing (87.9 +- 1.4) Million BB pairs. From this data sample the branching fraction for the decay B sup 0 -> pi sup 0 pi sup 0 has been extracted using a multi-dimensional maximum likelihood technique. With an efficiency of 20.4%, we find 36 sub - sub 1 sub 4 sub - sub 1 sup + sup 1 sup 5 sup + sup 1 B sup 0 -> pi sup 0 pi sup 0 events and measure the branching fraction to be BETA(B sup 0 -> pi sup 0 pi sup 0) = (2.0 sub - sub 0 sub . sub 8 sub - sub 0 sub . sub 2 sup + sup 0 sup . sup 9 sup + sup 0 sup . sup 3) x 10 sup - sup 6 where the first error is statistical and the second systematic. The statistical significance is 3.1 sigma and we report an upper limit of BETA(B sup 0 -> pi sup 0 pi sup 0) < 3.6 x 10 sup - sup 6 (90%CL). The results of the fit ar...

  13. Study of the Rare Decay B0 to pi0 pi0 at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bowerman, Daniel

    2003-08-20

    The BABAR experiment operating at the PEP-II e{sup +}e{sup -} collider is designed to study CP violation effects in the B-meson system. From May 1999 to June 2002 approximately 81 fb{sup -1} of data have been collected at the {Upsilon}(4S) resonance, containing (87.9 {+-} 1.4) Million BB pairs. From this data sample the branching fraction for the decay B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} has been extracted using a multi-dimensional maximum likelihood technique. With an efficiency of 20.4%, we find 36{sub -14-1}{sup +15+1} B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} events and measure the branching fraction to be {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (2.0{sub -0.8-0.2}{sup +0.9+0.3}) x 10{sup -6} where the first error is statistical and the second systematic. The statistical significance is 3.1{sigma} and we report an upper limit of {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) < 3.6 x 10{sup -6} (90%CL). The results of the fit are confirmed using a simple cut based analysis technique.

  14. Measurement of B -> D Form Factors in the Semileptonic Decay B -> D* l nu at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Mandeep Singh; /SLAC

    2006-01-27

    We present here the results of a measurement of the three semileptonic form factors involved in the decay B{sup 0} {yields} D*{ell}{nu}, where {ell} is one of the two light charged leptons (i.e. an electron or muon--though the final results in this work are determined only for {ell} = electron). This measurement uses the Babar 2000-2002 data set, which is altogether approximately 85 x 10{sup 6} B{bar B}-pairs in 78 fb{sup -1} of integrated luminosity. The D*{sup +} was reconstructed in the channel D*{sup +} {yields} D{sup 0}{pi}{sup +}, and the D{sup 0} in the channel D{sup 0} {yields} K{sup -}{pi}{sup +}. This analysis was based ultimately on {approx} 16,386 reconstructed events with an estimated background contamination of {approx} 15%. The method of the measurement was to perform a unbinned maximum likelihood fit in the four kinematic variables that describe the decay for the three form factor parameters R{sub 1}, R{sub 2}, and {rho}{sup 2}. The results obtained for the form factor ratios are R{sub 1} = 1.328 {+-} 0.055 {+-} 0.025 {+-} 0.025 and R{sub 2} = 0.920 {+-} 0.044 {+-} 0.020 {+-} 0.013 for the ratios and {rho}{sup 2} = 0.769 {+-} 0.039 {+-} 0.019 {+-} 0.032 for the form factor slope. The errors given are statistical, Monte Carlo statistical and systematic respectively.

  15. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  16. Search for Exclusive Electroweak Penguin Decays at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, Natalia

    2003-04-03

    This dissertation describes the search for the flavor-changing neutral current decays B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -}, performed using a sample of (22.7 {+-} 0.4) x 10{sup 6} {Upsilon}(4S) {yields} B {bar B} decays collected with the BABAR detector at the PEP-II B Factory. The following final states have been reconstructed: B{sup +} {yields} K{sup +}{ell}{sup +}{ell}{sup -}, B{sup 0} {yields} K{sup 0}{ell}{sup +}{ell}{sup -} (K{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}), B{sup +} {yields} K*{sup +}{ell}{sup +}{ell}{sup -} (K*{sup +} {yields} K{sub s}{sup 0}{pi}{sup +}), and B{sup 0} {yields} K*{sup 0}{ell}{sup +}{ell}{sup -} (K*{sup 0} {yields} K{sup +}{pi}{sup -}), where {ell}{sup +}{ell}{sup -}is either an e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pair. The established 90% C.L. upper limits are: {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) < 0.6 x 10{sup -6}; {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) < 2.5 x 10{sup -6}. These limits represent a significant improvement over previously published results and are close to Standard Model predictions.

  17. The First Year of the BABAR Experiment at PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-12-18

    The BABAR detector, situated at the SLAC PEP-II asymmetric e{sup +}e{sup -} collider, has been recording data at energies on and around the {Upsilon}(4S) resonance since May 1999. In this paper, we briefly describe the PEP-II B Factory and the BABAR detector. The performance presently achieved by the experiment in the areas of tracking, vertexing, calorimetry and particle identification is reviewed. Analysis concepts that are used in the various papers submitted to this conference are also discussed.

  18. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  19. Operational Aspects of Dealing with the Large BaBar Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Trunov, Artem G

    2003-06-13

    To date, the BaBar experiment has stored over 0.7PB of data in an Objectivity/DB database. Approximately half this data-set comprises simulated data of which more than 70% has been produced at more than 20 collaborating institutes outside of SLAC. The operational aspects of managing such a large data set and providing access to the physicists in a timely manner is a challenging and complex problem. We describe the operational aspects of managing such a large distributed data-set as well as importing and exporting data from geographically spread BaBar collaborators. We also describe problems common to dealing with such large datasets.

  20. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  1. Production and test of the LHCb Muon Chamber

    CERN Multimedia

    2005-01-01

    - The Muon System of LHCb - The Multi-Wire Proportional Chambers for LHCb - Wire tension meter - Wire pitch measurement - Gas leakage test - Test with cosmic rays - Production and test summary - Gap gain uniformity - Production and test summary

  2. PSI: Very slow polarized muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the 'pion factory' of the Swiss Paul Scherrer Institute, a collaboration of PSI, Heidelberg and Zurich (ETH) has recently produced intense beams of positive muons which have kinetic energies as low as 10 eV and with complete polarization (spin orientation). The new results were achieved at a surface muon channel, transporting positive muons from the decay of positive pions stopped at the surface of a pion production target. Surface muons with 4 MeV kinetic energy were transported by a conventional secondary beam channel and partially stopped in a moderator consisting of a layer of solidified noble gas deposited on a cold metallic substrate

  3. Measurement of branching fraction ratios and CP asymmetries in B →D0 CPK decays with the BABAR detector

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, Giovanni [Univ. of Pisa (Italy)

    2005-06-23

    The primary goals of the BABAR experiment are the detection of CP violation (CPV) in the B meson system, the precise measurement of some of the elements of the CKM matrix and the measurement of the rates of rare B meson decays. At present, BABAR has achieved major successes: (1) the discovery, in neutral B decays, of direct and mixing-induced CP violation; (2) accurate measurements of the magnitudes of the CKM matrix elements |Vcb| and |Vub|; (3) a precise measurement of the CKM parameter β {triple_bond} arg[- VcdV*cb/VtdV*tb]; (4) a first measurement of the CKM parameters α (triple bond) arg[- VtdV*tb/VudV*ub], γ (triple bond) arg[- VudV*ub/VcdV*cb]; and (5) the observation of several rare B decays and the discovery of new particles (in the charmed and charmonium mesons spectroscopy). However, the physics program of BABAR is not yet complete. Two of the key elements of this program that still need to be achieved are: (1) the observation of direct CP violation in charged B decays, which would constitute the first evidence of direct CPV in a charged meson decay; and (2) the precise measurement of α and γ, which are necessary ingredients for a stringent test of the Standard Model predictions in the quark electroweak sector. A possibility for the discovery of direct CP violation in charged B decays would be the observation of a non-vanishing rate asymmetry in the Cabibbo-suppressed decay B- → D0 K-, with the D0 decaying to either a CP-even or a CP-odd eigenstate. This class of decays can also provide theoretically-clean information on γ.

  4. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  5. Studies of high energy phenomena using muons: Progress report

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Willis, S.

    1989-01-01

    The primary effort of the NIU group is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. In addition, a portion of the group is involved in Fermilab Experiments 605/772 and 789. Finally, a minor effort is being given to analyzing data from Fermilab Experiment 653 and to the measurement of the cosmic-ray muon flux from astrophysical sources (a by-product of D0 muon-detector tests). This report covers the activities of the NIU group during the period from March of 1988 to February of 1989. 8 refs

  6. The muon trigger of the SAPHIR shower detector

    International Nuclear Information System (INIS)

    Rufeger-Hurek, H.

    1989-12-01

    The muon trigger system of the SAPHIR shower counter consists of 4 scintillation counters. The total trigger rate of cosmic muons is about 55 Hz which is reduced to about 45 Hz by the selecting algorithms. This rate of clean muon events allows a simultaneous monitoring of the whole electronics system and the calibration of the gas sandwich detector by measuring the gas gain. The dependences of the signals on the geometry have been simulated with the help of a Monte Carlo program. The comparison of simulated and measured pulse heights shows that faults in the electronics as well as defects in the detector hardware, e.g., the HV system, or temperature effects, can be recognized at the level of a few percent. In addition the muon signals are used to determine the calibration factor for each cathode channel individually. (orig.) [de

  7. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  8. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  9. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  10. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F.Y.; Zheng, S.X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; de Bari, A.; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J.S.; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D.E.; Bradshaw, T.W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J.H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F.J.P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Clark, D.; Clark, I.; Dobbs, A.; Dornan, P.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.; Tunnell, C.D.; Witte, H.; Yang, S.; Booth, C.N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M.A.C.; Roberts, T.J.; DeMello, A.; Green, M.A.; Li, D.; Virostek, S.; Zisman, M.S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D.M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R.A.; Cremaldi, L.M.; Gregoire, G.; Hart, T.L.; Sanders, D.A.; Summers, D.J.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R.B.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  11. On the Muon Decay Parameters

    CERN Document Server

    Chizhov, M V

    1996-01-01

    Predictions for the muon decay spectrum are usually derived from the derivative-free Hamiltonian. However, it is not the most general form of the possible interactions. Additional simple terms with derivatives can be introduced. In this work the distortion of the standard energy and angular distribution of the electrons in polarized muon decay caused by these terms is presented.

  12. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  13. Search for Invisible Decays of a Dark Photon Produced in e(+)e(-) Collisions at BABAR

    NARCIS (Netherlands)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Derdzinski, M.; Giuffrida, A.; Kolomensky, Yu. G.; Fritsch, M.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Chao, D. S.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Rohrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Mallik, U.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.

    2017-01-01

    We search for single-photon events in 53  fb−1 of e+e− collision data collected with the BABAR detector at the PEP-II B-Factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A′ through the process

  14. Databases for BaBar Datastream Calibrations and Prompt Reconstruction Processes

    International Nuclear Information System (INIS)

    Bartelt, John E

    1998-01-01

    We describe the design of databases used for performing datastream calibrations in the BABAR experiment, involving data accumulated on multiple processors and possibly over several blocks of events (''ConsBlocks''). The database for tracking the history and status of the ConsBlocks, along with similar databases needed by ''Prompt Reconstruction'' are also described

  15. Electronics for the BaBar experiment at PEP-II: A short review

    International Nuclear Information System (INIS)

    Cavallo, N.

    1999-01-01

    The BaBar detector at the SLAC B-Factory is currently under construction and scheduled for completion at the end of 1998. An innovative data acquisition architecture design has been adopted. Following a brief introduction on the main requirements and concepts, an overview of the architecture, the hardware implementation and status will be presented

  16. BABAR - the detector for the PEP II B Factory at SLAC

    International Nuclear Information System (INIS)

    Lueth, V.

    1994-09-01

    BABAR refers to the detector that is being designed for the PEP II B-Factory at SLAC to perform a comprehensive study of CP violation in B meson decays. The design requirements and the principal detector components are briefly described. A summary of the expected physics performance is presented

  17. CPLEAR and BaBar: CP violation in all its states

    CERN Document Server

    Yeche, Christophe

    2003-01-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K0 → π+ π- decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; Δmd measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B0 → ρ± π± and B0 �...

  18. studies of radiative penguin decays at BaBar (*) + - * -6 * ' * * * -E ...

    Indian Academy of Sciences (India)

    We summarize results on a number of observations of penguin dominated radiative decays of the B meson. Such decays are forbidden at tree level and proceed via electroweak loops. As such they may be sensitive to physics beyond the standard model. The observations have been made at the BaBar experiment at PEP-II, ...

  19. Installation of the first of the big wheels of the ATLAS muon spectrometer, a thin gap chamber (TGC) wheel

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons

  20. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  1. The measurements of angle γ of the unitarity triangle with the BaBar detector

    International Nuclear Information System (INIS)

    Derkach, D.

    2010-06-01

    In this thesis, we present studies of the B mesons system performed using the full dataset collected by the BABAR experiment at the PEP-II collider at SLAC. The first analysis presented here is the search of the rare V ub mediated decays B + → D + K *0 . The experimental analysis is performed looking at several D + decay modes. No signals have been found and upper limits have been set to be: Br(B + → D + K 0 ) -6 at 90% prob.; Br(B + → D + K *0 ) -6 at 90% prob. In the second part we present the CP violation studies in the B-meson system, and in particular the measurements of the γ angle of the unitarity triangle. The γ angle is the relative weak phase between the V ub and V cb elements of the CKM matrix. We present and describe the analysis using the charged B meson decays: B + → D 0 K + . These decays are studied through the ADS method, where the neutral D mesons are reconstructed into Kππ 0 final states. Combining this analysis with a similar one that used Kπ as a D 0 final state, we have obtained the following values: ratio r(DK) 0.083+0.028-0.043; γ angle = (86+51-45) degrees. If the results of this thesis are used in the full system of the B → DK and B → DK * decay amplitudes, other interesting results can be obtained. The error on the ratio r(DK * ) for the charged B decays is improved by a factor 3 resulting in r(DK * ) = (0.08 ± 0.03). The ration between the V ub mediated annihilation (A) and the color suppressed (C) amplitudes is obtained to be A/C 0 ) for neutral B decays is found to be (0.27 ± 0.09)

  2. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    OpenAIRE

    Zisman, Michael S.

    2011-01-01

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to ...

  3. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  5. The ATLAS muon trigger: Experience and performance in the first 3 years of LHC pp runs

    International Nuclear Information System (INIS)

    Ventura, Andrea

    2013-01-01

    The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-level processing scheme for the trigger system. The Level-1 muon trigger system gets its input from fast muon trigger detectors. Sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a Level-2 trigger followed by an event filter for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. The ATLAS experiment has taken data with high efficiency continuously over entire running periods from 2010 to 2012, for which sophisticated triggers to guard the highest physics output while reducing effectively the event rate were mandatory. The ATLAS muon trigger has successfully adapted to this challenging environment. The selection strategy has been optimized for the various physics analyses involving muons in the final state. This work briefly summarizes these three years of experience in the ATLAS muon trigger and reports about efficiency, resolution, and general performance of the muon trigger

  6. A Muon Identification and Combined Reconstruction Procedure for the ATLAS Detector at the LHC at CERN

    CERN Document Server

    Lagouri, T; Assamagan, Ketevi A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Farilla, A; Fisyak, Yu; Goldfarb, S; Gorini, E; Mair, K; Merola, L; Nairz, A; Poppleton, A; Primavera, M; Rosati, S; Shank, S; Spagnolo, S; Spogli, S; Stavropoulos, G D; Verducci, M; Wenaus, T; IEEE-NSS-MIC-2003

    2004-01-01

    Muon identification and high momentum measurement accuracy is crucial to fully exploit the physics potential that will be accessible with ATLAS experiment at the LHC. The muon energy of physics interest ranges in a large interval from few GeV, where the b-physics studies dominate the physics program, up to the highest values that could indicate the presence of new physics. The muon detection system of the ATLAS detector is characterized by two high precision tracking systems, namely the Inner Detector and the Muon Spectrometer plus a thick calorimeter that ensures a safe hadron absorption filtering with high purity muons with energy above 3 GeV. In order to combine the muon tracks reconstructed in the Inner Detector and the Muon Spectrometer the Muon Identification (MUID) Object-Oriented software package has been developed. The purpose of the MUID procedure is to associate tracks found in the Muon Spectrometer with the corresponding Inner Detector track and calorimeter information in order to identify muons a...

  7. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Wright, D.H.; Ahmad, S.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; Macdonald, J.A.; Poutissou, J.M.; Bertl, W.; Chen, C.Q.; Ding, Z.H.; Zhang, N.S.; Henderson, R.; McDonald, S.; Taylor, G.N.; Robertson, B.C.

    1989-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. One of these, the induced pseudoscalar coupling g p , is still very poorly determined experimentally. Using PCAC and the Goldberger-Treiman relation, one can obtain the estimate g p /g a = 6.8 for the nucleon. At present, the world average of 5 measurements of the rate of ordinary muon capture (each with an error in excess of 40%) yields g p /g a = 6.9 ± 1.5. Radiative Muon Capture (RMC) is considerably more sensitive to the pseudoscalar coupling. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p→ μnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large-volume drift chamber acting as a pair spectrometer. The drift chamber covers a solid angle of about 2π. At a magnetic field of 2.4 kG the acceptance for 70 MeV photons is about 0.9% using a 1.2 mm thick Pb photon converter. The expected photon energy resolution is about 10% FWHM. A detailed discussion of the systematic errors expected in the experiment and the preliminary results on the performance of the detector will be presented

  8. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  9. Calibration of the calorimeter of the ATLAS muon cosmic

    International Nuclear Information System (INIS)

    Federic, P.

    2006-01-01

    This summer is for the ATLAS experiment at CERN scheduled calibration with cosmic muons ECC. It is one of the standard methods of calibrating calorimeters. Before these measurements it is necessary to perform precise Monte Carlo simulation, which is essential to a detailed understanding of the physics of the processes. Based on the known data on the spectra of cosmic muons, such as the frequency (flux) or the energy spectrum can be achieved highly accurate results. So far were simulated 3 samples for max. muon angle of incidence 45, 60 and 75 degrees, each containing 1 M events. Based on this we found the first necessary data and in particular, they allow us to determine the best angle for the ratio of the number of muons generated a number of events in the calorimetric system. (author)

  10. The muon tomography Diaphane project : recent upgrades and measurements

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele

    2014-05-01

    Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Large density heterogeneities were detected on la Soufrière de Guadeloupe revealing its very active phreatic system. These measurements were made possible thanks to electronic and signal processing developments. Indeed the telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. A high precision clock permitted to measure upward-going particles coming from the rear of the telescope that used to mix with the volcano signal. Also the particles energy deposit inside the telescope shows that other particles than muons take part to the noise. We present data acquired on la Soufrière, mount Etna in Italy, and in the Mont Terri tunnel in Switzerland. Biases produced on density muon radiographies are quantified and correction procedures are applied.

  11. A method of detector correction for cosmic ray muon radiography

    International Nuclear Information System (INIS)

    Liu Yuanyuan; Zhao Ziran; Chen Zhiqiang; Zhang Li; Wang Zhentian

    2008-01-01

    Cosmic ray muon radiography which has good penetrability and sensitivity to high-Z materials is an effective way for detecting shielded nuclear materials. The problem of data correction is one of the key points of muon radiography technique. Because of the influence of environmental background, environmental yawp and error of detectors, the raw data can not be used directly. If we used the raw data as the usable data to reconstruct without any corrections, it would turn up terrible artifacts. Based on the characteristics of the muon radiography system, aimed at the error of detectors, this paper proposes a method of detector correction. The simulation experiments demonstrate that this method can effectively correct the error produced by detectors. Therefore, we can say that it does a further step to let the technique of cosmic muon radiography into out real life. (authors)

  12. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  13. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  14. Muon Simulation at the Daya Bay SIte

    International Nuclear Information System (INIS)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-01-01

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  15. Muon energy estimate through multiple scattering with the MACRO detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; De Deo, M.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lindozzi, M.; Lipari, P.; Longley, N.P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E. E-mail: eugenio.scapparone@bo.infn.it; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M. E-mail: maximiliano.sioli@bo.infn.it; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C.W.; Webb, R

    2002-10-21

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E{sub {mu}}<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.

  16. Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession

    CERN Multimedia

    2002-01-01

    Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...

  17. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  18. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  19. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  20. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  1. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  2. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  3. Beta and muon decays

    International Nuclear Information System (INIS)

    Galindo, A.; Pascual, P.

    1967-01-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  4. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A; Pascual, P

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  5. CP violation in b → s penguin decays and T, CPT violation at BaBar and BELLE

    International Nuclear Information System (INIS)

    Emery-Schrenk, S.

    2014-01-01

    We report on the first direct observation of time reversal violation at BABAR in the interference between direct decay and decay with B 0 - B-bar 0 mixing, as well as on the most precise search for CPT violation in B 0 - B-bar 0 mixing at BELLE. We then present recent CP violation studies at BABAR in rare b → s penguin decays B → KKK and B → K*l + l - . (author)

  6. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  7. The Muon $g$-$2$ Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, Wesley [Kentucky U.

    2017-12-29

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory (BNL) and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model value of $a_\\mu$. The new measurement will accumulate 21 times the BNL statistics using upgraded magnet, detector, and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent improvements in our understanding of the QCD contributions to the muon $g$-$2$, could provide a discrepancy from the standard model greater than 7$\\sigma$ if the central value is the same as that measured by the BNL experiment, which would be a clear indication of new physics.

  8. The performance of the Muon Veto of the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Ritter, F.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Lubsandorzhiev, B. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-05-15

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0νββ decay of {sup 76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of ε{sub μd} = (99.935 ± 0.015)% was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of ε{sub μr} = (99.2{sub -0.4}{sup +0.3})% was found. Without veto condition the muons by themselves would cause a background index of BI{sub μ} = (3.16 ± 0.85) x 10{sup -3} cts/(keV . kg . year) at Q{sub ββ}. (orig.)

  9. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  10. Muon Event Filter Software for the ATLAS Experiment at LHC

    CERN Document Server

    Biglietti, M; Assamagan, Ketevi A; Baines, J T M; Bee, C P; Bellomo, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde, P; Conde-Muíño, P; De Santo, A; De Seixas, J M; Di Mattia, A; Dos Anjos, A; Dosil, M; Díaz-Gómez, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pinfold, J L; Pinto, P; Primavera, M; Pérez-Réale, V; Qian, Z; Resconi, S; Rosati, S; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S; Sutton, M; Sánchez, C; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Ventura, A; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    At LHC the 40 MHz bunch crossing rate dictates a high selectivity of the ATLAS Trigger system, which has to keep the full physics potential of the experiment in spite of a limited storage capability. The level-1 trigger, implemented in a custom hardware, will reduce the initial rate to 75 kHz and is followed by the software based level-2 and Event Filter, usually referred as High Level Triggers (HLT), which further reduce the rate to about 100 Hz. In this paper an overview of the implementation of the offline muon recostruction algortihms MOORE (Muon Object Oriented REconstruction) and MuId (Muon Identification) as Event Filter in the ATLAS online framework is given. The MOORE algorithm performs the reconstruction inside the Muon Spectrometer providing a precise measurement of the muon track parameters outside the calorimeters; MuId combines the measurements of all ATLAS sub-detectors in order to identify muons and provides the best estimate of their momentum at the production vertex. In the HLT implementatio...

  11. Optimized capture section for a muon accelerator front end

    Directory of Open Access Journals (Sweden)

    Hisham Kamal Sayed

    2014-07-01

    Full Text Available In a muon accelerator complex, a target is bombarded by a multi-MW proton beam to produce pions, which decay into the muons which are thereafter bunched, cooled, and accelerated. The front end of the complex captures those pions, then manipulates their phase space, and that of the muons into which they decay, to maximize the number of muons within the acceptance of the downstream systems. The secondary pion beam produced at the target is captured by a high field target solenoid that tapers down to a constant field throughout the rest of the front end. In this study we enhance the useful muon flux by introducing a new design of the longitudinal profile of the solenoid field at, and downstream of, the target. We find that the useful muon flux exiting the front end is larger when the field at the target is higher, the distance over which the field tapers down is shorter, and the field at the end of the taper is higher. We describe how the solenoid field profile impacts the transverse and longitudinal phase space of the beam and thereby leads to these dependencies.

  12. Additive versus multiplicative muon conservation

    International Nuclear Information System (INIS)

    Nemethy, P.

    1981-01-01

    Experimental elucidation of the question of muon conservation is reviewed. It is shown that neutral-current experiments have not yet yielded information about muonium-antimuonium conversion at the weak-interaction level and that all the charged-current experiments agree that there is no evidence for a multiplicative law. The best limits, from the muon-decay neutrino experiment at LAMPF and from the inverse muon-decay experiment in the CERN neutrino beam, definitely exclude multiplicative law schemes with a branching ratio R approximately 1/2. It is concluded that unless the dynamics conspire to make a multiplicative law with very small R it would appear that muon conservation obeys conserved additive lepton flavor law. (U.K.)

  13. submitter The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    CERN Document Server

    Antonuccio, V; Becciani, U; Bonanno, D L; Bonanno, G; Bongiovanni, D; Fallica, P G; Garozzo, S; Grillo, A; La Rocca, P; Leonora, E; Longhitano, F; Lo Presti, D; Marano, D; Parasole, O; Pugliatti, C; Randazzo, N; Riggi, F; Riggi, S; Romeo, G; Romeo, M; Russo, G V; Santagati, G; Timpanaro, M C; Valvo, G

    2017-01-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype $(6×3×7 m^3)$ for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as o...

  14. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Energy Technology Data Exchange (ETDEWEB)

    Antonuccio, V. [INAF - Osservatorio Astrofisico di Catania (Italy); Bandieramonte, M. [CERN, Geneva (Switzerland); Becciani, U. [INAF - Osservatorio Astrofisico di Catania (Italy); Bonanno, D.L., E-mail: danilo.bonanno@ct.infn.it [INFN Sezione di Catania, Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Bongiovanni, D. [INFN Sezione di Catania, Catania (Italy); Fallica, P.G. [STMicroelectronics, Catania (Italy); Garozzo, S.; Grillo, A. [INAF - Osservatorio Astrofisico di Catania (Italy); La Rocca, P. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Leonora, E.; Longhitano, F. [INFN Sezione di Catania, Catania (Italy); Lo Presti, D. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Parasole, O. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Pugliatti, C. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Randazzo, N. [INFN Sezione di Catania, Catania (Italy); Riggi, F. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Riggi, S. [INAF - Osservatorio Astrofisico di Catania (Italy); INFN Sezione di Catania, Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); and others

    2017-02-11

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m{sup 3}) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  15. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Science.gov (United States)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  16. Muon spin rotation in superconductors

    International Nuclear Information System (INIS)

    Gladisch, M.; Orth, H.; Putlitz, G. zu; Wahl, W.; Wigand, M.; Herlach, D.; Seeger, A.; Metz, H.; Teichler, H.

    1979-01-01

    By means of the muon spin rotation technique (μ + SR), the temperature dependence of the magnetic field inside the normal-conducting domains of high-purity tantalum crystals in the intermediate state has been measured in the temperature range 2.36 K + SR. Possible applications of these findings to the study of long-range diffusion of positive muons at low temperatures are indicated. (Auth.)

  17. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Bertl, W.; Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Schott, W.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Azuelos, G.; Depommier, P.; Jonkmans, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Von Egidy, T.; Zhang, N.S.; Robertson, B.D.

    1992-01-01

    The radiative capture of negative muons by protons can be used to measure the weak induced pseudoscalar form factor. Brief arguments why this method is preferable to ordinary muon capture are given followed by a discussion of the experimental difficulties. The solution to these problems as attempted by experiment no. 452 at TRIUMF is presented together with preliminary results from the first run in August 1990. An outlook on the expected final precision and the experimental schedule is also given. (orig.)

  18. The Gran Sasso muon puzzle

    CERN Document Server

    Fernandez-Martinez, Enrique

    2012-01-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2 sigmas. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a s...

  19. CMS - The Compact Muon Solenoid

    CERN Multimedia

    Bergauer, T; Waltenberger, W; Kratschmer, I; Treberer-treberspurg, W; Escalante del valle, A; Andreeva, I; Innocente, V; Camporesi, T; Malgeri, L; Marchioro, A; Moneta, L; Weingarten, W; Beni, N T; Cimmino, A; Rovere, M; Jafari, A; Lange, C G; Vartak, A P; Gilbert, A J; Pantaleo, F; Reis, T; Cucciati, G; Alipour tehrani, N; Stakia, A; Fallavollita, F; Pizzichemi, M; Rauco, G; Zhang, S; Hu, T; Yazgan, E; Zhang, H; Thomas-wilsker, J; Reithler, H K V; Philipps, B; Merschmeyer, M K; Heidemann, C A; Mukherjee, S; Geenen, H; Kuessel, Y; Weingarten, S; Gallo, E; Schwanenberger, C; Walsh bastos rangel, R; Beernaert, K S; De wit, A M; Elwood, A C; Connor, P; Lelek, A A; Wichmann, K H; Myronenko, V; Kovalchuk, N; Bein, S L; Dreyer, T; Scharf, C; Quast, G; Dierlamm, A H; Barth, C; Mol, X; Kudella, S; Schafer, D; Schimassek, R R; Matorras, F; Calderon tazon, A; Garcia ferrero, J; Bercher, M J; Sirois, Y; Callier, S; Depasse, P; Laktineh, I B; Grenier, G; Boudoul, G; Heath, G P; Hartley, D A; Quinton, S; Tomalin, I R; Harder, K; Francis, V B; Thea, A; Zhang, Z; Loukas, D; Hernath, S T; Naskar, K; Colaleo, A; Maggi, G P; Maggi, M; Loddo, F; Calabria, C; Campanini, R; Cuffiani, M; D'antone, I; Grandi, C; Navarria, F; Guiducci, L; Battilana, C; Tosi, N; Gulmini, M; Meola, S; Longo, E; Meridiani, P; Marzocchi, B; Schizzi, A; Cho, S; Ha, S; Kim, D H; Kim, G N; Md halid, M F B; Yusli, M N B; Dominik, W M; Bunkowski, K; Olszewski, M; Byszuk, A P; Rasteiro da silva, J C; Varela, J; Leong, Q; Sulimov, V; Vorobyev, A; Denisov, A; Murzin, V; Egorov, A; Lukyanenko, S; Postoev, V; Pashenkov, A; Solovey, A; Rubakov, V; Troitsky, S; Kirpichnikov, D; Lychkovskaya, N; Safronov, G; Fedotov, A; Toms, M; Barniakov, M; Olimov, K; Fazilov, M; Umaraliev, A; Dumanoglu, I; Bakirci, N M; Dozen, C; Demiroglu, Z S; Isik, C; Zeyrek, M; Yalvac, M; Ozkorucuklu, S; Chang, Y; Dolgopolov, A; Gottschalk, E E; Maeshima, K; Heavey, A E; Kramer, T; Kwan, S W L; Taylor, L; Tkaczyk, S M; Mokhov, N; Marraffino, J M; Mrenna, S; Yarba, V; Banerjee, B; Elvira, V D; Gray, L A; Holzman, B; Dagenhart, W; Canepa, A; Ryu, S C; Strobbe, N C; Adelman-mc carthy, J K; Contescu, A C; Andre, J O; Wu, J; Dittmer, S J; Bucinskaite, I; Zhang, J; Karchin, P E; Thapa, P; Zaleski, S G; Gran, J L; Wang, S; Zilizi, G; Raics, P P; Bhardwaj, A; Naimuddin, M; Smiljkovic, N; Stojanovic, M; Brandao malbouisson, H; De oliveira martins, C P; Tonelli manganote, E J; Medina jaime, M; Thiel, M; Laurila, S H; Graehling, P; Tonon, N; Blekman, F; Postiau, N J S; Leroux, P J; Van remortel, N; Janssen, X J; Di croce, D; Aleksandrov, A; Shopova, M F; Dogra, S M; Shinoda, A A; Arce, P; Daniel, M; Navarrete marin, J J; Redondo fernandez, I; Guirao elias, A; Cela ruiz, J M; Lottin, J; Gras, P; Kircher, F; Levesy, B; Payn, A; Guilloux, F; Negro, G; Leloup, C; Pasztor, G; Panwar, L; Bhatnagar, V; Bruzzi, M; Sciortino, S; Starodubtsev, O; Azzi, P; Conti, E; Lacaprara, S; Margoni, M; Rossin, R; Tosi, M; Fano', L; Lucaroni, A; Biino, C; Dattola, D; Rotondo, F; Ballestrero, A; Obertino, M M; Kiani, M B; Paterno, A; Magana villalba, R; Ramirez garcia, M; Reyes almanza, R; Gorski, M; Wrochna, G; Bluj, M J; Zarubin, A; Nozdrin, M; Ladygin, V; Malakhov, A; Golunov, A; Skrypnik, A; Sotnikov, A; Evdokimov, N; Tiurin, V; Lokhtin, I; Ershov, A; Platonova, M; Tyurin, N; Slabospitskii, S; Talov, V; Belikov, N; Ryazanov, A; Chao, Y; Tsai, J; Foord, A; Wood, D R; Orimoto, T J; Luckey, P D; Jaditz, S H; Stephans, G S; Darlea, G L; Di matteo, L; Maier, B; Trovato, M; Bhattacharya, S; Roberts, J B; Padley, P B; Tu, Z; Rorie, J T; Clarida, W J; Tiras, E; Khristenko, V; Cerizza, G; Pieri, M; Krutelyov, V; Saiz santos, M D; Klein, D S; Derdzinski, M; Murray, M J; Gray, J A; Minafra, N; Castle, J R; Bowen, J L S; Buterbaugh, K; Morrow, S I; Bunn, J; Newman, H; Spiropulu, M; Balcas, J; Lawhorn, J M; Thomas, S D; Panwalkar, S M; Kyriacou, S; Xie, Z; Ojalvo, I R; Salfeld-nebgen, J; Laird, E M; Wimpenny, S J; Yates, B R; Perry, T M; Schiber, C C; Diaz, D C; Uniyal, R; Mesic, B; Kolosova, M; Snow, G R; Lundstedt, C; Johnston, D; Zvada, M; Weitzel, D J; Damgov, J V; Cowden, C S; Giammanco, A; David, P N Y; Zobec, J; Cabrera jamoulle, J B; Daubie, E; Nash, J A; Evans, L; Hall, G; Nikitenko, A; Ryan, M J; Huffman, M A J; Styliaris, E; Evangelou, I; Sharan, M K; Roy, A; Rout, P K; Kalbhor, P N; Bagliesi, G; Braccini, P L; Ligabue, F; Boccali, T; Rizzi, A; Minuti, M; Oh, S; Kim, J; Sen, S; Boz evinay, M; Xiao, M; Hung, W T; Jensen, F O; Mulholland, T D; Kumar, A; Jones, M; Roozbahani, B H; Neu, C C; Thacker, H B; Wolfe, E M; Jabeen, S; Gilmore, J; Winer, B L; Rush, C J; Luo, W; Alimena, J M; Ko, W; Lander, R; Broadley, W H; Shi, M; Furic, I K; Low, J F; Bortignon, P; Alexander, J P; Zientek, M E; Conway, J V; Padilla fuentes, Y L; Florent, A H; Bravo, C B; Crotty, I M; Wenman, D L; Sarangi, T R; Ghabrous larrea, C; Gomber, B; Smith, N C; Long, K D; Roberts, J M; Hildreth, M D; Jessop, C P; Karmgard, D J; Loukas, N; Ferbel, T; Zielinski, M A; Cooper, S I; Jung, A; Van driessche, W G M; Fagot, A; Vermassen, B; Valchkova-georgieva, F K; Dimitrov, D S; Roumenin, T S; Podrasky, V; Re, V; Zucca, S; De canio, F; Romaniuk, R; Teodorescu, L; Krofcheck, D; Anderson, N G; Bell, S T; Salazar ibarguen, H A; Kudinov, V; Onishchenko, S; Naujikas, R; Lyubynskiy, V; Sobolev, O; Khan, M S; Adeel-ur-rehman, A; Hassan, Q U; Ali, I; Kreuzer, P K; Robson, A J; Gadrat, S G; Ivanov, A; Mendis, D; Da silva di calafiori, D R; Zeinali, M; Behnamian, H; Moroni, L; Malvezzi, S; Park, I; Pastika, N J; Oropeza barrera, C; Elkhateeb, E A A; Elmetenawee, W; Mohammed, Y; Tayel, E S A; Mcclatchey, R H; Kovacs, Z; Munir, K; Odeh, M; Magradze, E; Oikashvili, B; Shingade, P; Shukla, R A; Banerjee, S; Kumar, S; Jashal, B K; Grzanka, L; Adam, W; Ero, J; Fabjan, C; Jeitler, M; Rad, N K; Auffray hillemanns, E; Charkiewicz, A; Fartoukh, S; Garcia de enterria adan, D; Girone, M; Glege, F; Loos, R; Mannelli, M; Meijers, F; Sciaba, A; Meschi, E; Ricci, D; Petrucciani, G; Daguin, J; Vazquez velez, C; Karavakis, E; Nourbakhsh, S; Rabady, D S; Ceresa, D; Karacheban, O; Beguin, M; Kilminster, B J; Ke, Z; Meng, X; Zhang, Y; Tao, J; Romeo, F; Spiezia, A; Cheng, L; Zhukov, V; Feld, L W; Autermann, C T; Fischer, R; Erdweg, S; Kress, T H; Dziwok, C; Hansen, K; Schoerner-sadenius, T M; Marfin, I; Keaveney, J M; Diez pardos, C; Muhl, C W; Asawatangtrakuldee, C; Defranchis, M M; Asmuss, J P; Poehlsen, J A; Stober, F M H; Vormwald, B R; Kripas, V; Gonzalez vazquez, D; Kurz, S T; Niemeyer, C; Rieger, J O; Borovkov, A; Shvetsov, I; Sieber, G; Caspart, R; Iqbal, M A; Sander, O; Metzler, M B; Ardila perez, L E; Ruiz jimeno, A; Fernandez garcia, M; Scodellaro, L; Gonzalez sanchez, J F; Curras rivera, E; Semeniouk, I; Ochando, C; Bedjidian, M; Giraud, N A; Mathez, H; Zoccarato, Y D; Ianigro, J; Galbit, G C; Flacher, H U; Shepherd-themistocleous, C H; French, M J; Hill, J A; Jones, L L; Markou, A; Bencze, G L; Mishra, D K; Netrakanti, P K; Jha, V; Chudasama, R; Katta, S; Venditti, R; Cristella, L; Braibant-giacomelli, S; Dallavalle, G; Fabbri, F; Codispoti, G; Borgonovi, L; Caponero, M A; Berti, L; Fienga, F; Dafinei, I; Organtini, G; Del re, D; Pettinacci, V; Park, S K; Lee, K S; Kang, M; Kim, B; Park, H K; Kong, D J; Lee, S; Pak, S I; Zolkapli, Z B; Konecki, M A; Walczak, M B; Bargassa, P; Viegas guerreiro leonardo, N T; Levchenko, P; Orishchin, E; Suvorov, V; Uvarov, L; Gruzinskii, N; Pristavka, A; Kozlov, V; Radovskaia, A; Solovey, A; Kolosov, V; Vlassov, E; Parygin, P; Tumasyan, A; Topakli, H; Boran, F; Akin, I V; Oz, C; Gulmez, E; Atakisi, I O; Bakken, J A; Govi, G M; Lewis, J D; Shaw, T M; Bailleux, D; Stoynev, S E; Sexton-kennedy, E M; Huang, C; Lincoln, D W; Roser, R; Ito, A; Adams, M R; Apanasevich, L; Varelas, N; Sandoval gonzalez, I D; Hangal, D A; Yoo, J H; Ovcharova, A K; Bradmiller-feld, J W; Amin, N J; Miller, M P; Patterson, A S; Sharma, R K; Santoro, A; Lassila-perini, K M; Tuominiemi, J; Voutilainen, M A; Wu, X; Gross, L O; Le bihan, A; Fuks, B; Kieffer, E; Pansanel, J; Jansova, M; D'hondt, J; Abuzeid hassan, S A; Bilin, B; Beghin, D; Soultanov, G; Vankov, I D; Konstantinov, P B; Marra da silva, J; De souza santos, A; Arruda ramalho, L; Renker, D; Erdmann, W; Molinero vela, A; Fernandez bedoya, C; Bachiller perea, I; Chipaux, R; Faure, J D; Hamel de monchenault, G; Mandjavidze, I; Rander, J; Ferri, F; Leroy, C L; Machet, M; Nagy, M I; Felcini, M; Kaur, S; Saizu, M A; Civinini, C; Latino, G; Checchia, P; Ronchese, P; Vanini, S; Fantinel, S; Cecchi, C; Leonardi, R; Arneodo, M; Ruspa, M; Pacher, L; Rabadan trejo, R I; Mondragon herrera, C A; Golutvin, I; Zhiltsov, V; Melnichenko, I; Mjavia, D; Cheremukhin, A; Zubarev, E; Kalagin, V; Alexakhin, V; Mitsyn, V; Shulha, S; Vishnevskiy, A; Gavrilenko, M; Boos, E E; Obraztsov, S; Dubinin, M; Demiyanov, A; Dudko, L; Azhgirey, I; Chikilev, O; Turchanovich, L; Rurua, L; Hou, G W; Wang, M; Chang, P; Kumar, A; Liau, J; Lazic, D; Lawson, P D; Zou, D; Wisecarver, A L; Sumorok, K C; Klute, M; Lee, Y; Iiyama, Y; Velicanu, D A; Mc ginn, C; Abercrombie, D R; Tatar, K; Hahn, K A; Nussbaum, T W; Southwick, D C; Cittolin, S; Martin, T; Welke, C V; Wilson, G W; Baringer, P S; Sanders, S J; Mcbrayer, W J; Engh, D J; Sheldon, P D; Gurrola, A; Velkovska, J A; Melo, A M; Padeken, K O; Johnson, C N; Ni, H; Montalvo, R J; Heindl, M D; Ferguson, T; Vogel, H; Mudholkar, T K; Elmer, P; Tully, C; Luo, J; Hanson, G; Jandir, P S; Askew, A W; Kadija, K; Dimovasili, E; Attikis, A; Vasilas, I; Chen, G; Bockelman, B P; Kamalieddin, R; Barrefors, B P; Farleigh, B S; Akchurin, N; Demin, P; Pavlov, B A; Petkov, P S; Goranova, R; Tomsa, J; Lyons, L; Buchmuller, O; Magnan, A; Laner ogilvy, C; Di maria, R; Dutta, S; Thakur, S; Bettarini, S; Bosi, F; Giassi, A; Massa, M; Calzolari, F; Androsov, K; Lee, H; Komurcu, Y; Kim, D W; Wagner, S R; Perloff, A S; Rappoccio, S R; Harrington, C I; Baden, A R; Ricci-tam, F; Kamon, T; Rathjens, D; Pernie, L; Larsen, D; Ji, W; Pellett, D E; Smith, J; Acosta, D E; Field, R D; Yelton, J M; Kotov, K; Wang, S; Smolenski, K W; Mc coll, N W; Dasu, S R; Lanaro, A; Cook, J R; Gorski, T A; Buchanan, J J; Jain, S; Musienko, Y; Taroni, S; Meng, H; Siddireddy, P K; Xie, W; Rott, C; Benedetti, D; Everett, A A; Schulte, J; Mahakud, B; Ryckbosch, D D E; Crucy, S; Cornelis, T G M; Betev, B; Dimov, H; Raykov, P A; Uzunova, D G; Mihovski, K T; Mechinsky, V; Makarenko, V; Yermak, D; Yevarouskaya, U; Salvini, P; Manghisoni, M; Fontaine, J; Agram, J; Palinkas, J; Reid, I D; Bell, A J; Clyne, M N; Zavodchikov, S; Veelken, C; Kannike, K; Dewanjee, R K; Skarupelov, V; Piibeleht, M; Ehataht, K; Chang, S; Kuchinski, P; Bukauskas, L; Zhmurin, P; Kamal, A; Mubarak, M; Asghar, M I; Ahmad, N; Muhammad, S; Mansoor-ul-islam, S; Saddique, A; Waqas, M; Irshad, A; Veckalns, V; Toda, S; Choi, Y K; Yu, I; Hwang, C; Yumiceva, F X; Djambazov, L; Meinhard, M T; Becker, R J U; Grimm, O; Wallny, R S; Tavolaro, V R; Eller, P D; Meister, D; Paktinat mehdiabadi, S; Chenarani, S; Dini, P; Leporini, R; Dinardo, M; Brianza, L; Hakkarainen, U T; Parashar, N; Malik, S; Ramirez vargas, J E; Dharmaratna, W; Noh, S; Uang, A J; Kim, J H; Lee, J S H; Jeon, D; You, Z; Assran, Y; Elgammal, S; Ellithi kamel, A Y; Nayak, A K; Dash, D; Koca, N; Kothekar, K K; Karnam, R; Patil, M R; Torims, T; Hoch, M; Schieck, J R; Valentan, M; Spitzbart, D; Lucio alves, F L; Blanchot, G; Gill, K A; Orsini, L; Petrilli, A; Sharma, A; Tsirou, A; Deile, M; Hudson, D A; Gutleber, J; Folch, R; Tropea, P; Cerminara, G; Vichoudis, P; Pardo, T; Sabba, H; Selvaggi, M; Verzetti, M; Ngadiuba, J; Kornmayer, A; Niedziela, J; Aarrestad, T K; He, K; Li, B; Huang, Q; Pierschel, G; Esch, T; Louis, D; Quast, T; Nowack, A S; Beissel, F; Borras, K A; Mankel, R; Pitzl, D D; Kemp, Y; Meyer, A B; Krucker, D B; Mittag, G; Burgmeier, A; Lenz, T; Arndt, T M; Pflitsch, S K; Danilov, V; Dominguez damiani, D; Cardini, A; Kogler, R; Troendle, D C; Aggleton, R C; Lange, J; Reimers, A C; De boer, W; Weber, M M; Theel, A; Mozer, M U; Wayand, S; Harrendorf, M A; Harbaum, T R; El morabit, K; Marco, J; Rodrigo, T; Vila alvarez, I; Lopez garcia, A; Rembser, J; Mathieu, A; Kurca, T; Mirabito, L; Verdier, P; Combaret, C; Newbold, D M; Smith, V; Brooke, J J; Metson, S; Coughlan, J A; Torbet, M J; Belyaev, A; Kyriakis, A; Horvath, D; Veszpremi, V; Topkar, A; Selvaggi-maggi, G; Nuzzo, S V; Romano, F; Marangelli, B; Spinoso, V; Lezki, S; Castro, A; Rovelli, T; Brigliadori, L; Bianco, S; Fabbricatore, P; Farinon, S; Musenich, R; Ferro, F; Gozzelino, A; Buontempo, S; Casolaro, P; Paramatti, R; Vignati, M; Belforte, S; Hong, B; Roh, Y J; Choi, S Y; Son, D; Yang, Y C; Butanov, K; Kotobi, A; Krolikowski, J; Pozniak, K T; Misiura, M; Seixas, J C; Jain, A K; Nemallapudi, M V; Shchipunov, L; Lebedev, V; Skorobogatov, V; Klimenko, K; Terkulov, A; Kirakosyan, M; Azarkin, M; Krasnikov, N; Stepanova, L; Gavrilov, V; Spiridonov, A; Semenov, S; Krokhotin, A; Rusinov, V; Chistov, R; Zhemchugov, E; Nishonov, M; Hmayakyan, G; Khachatryan, V; Ozdemir, K; Ozturk, S; Tali, B; Kangal, E E; Turkcapar, S; Zorbakir, I S; Aliyev, T; Demir, D A; Liu, W; Apollinari, G; Osborne, I; Genser, K; Lammel, S; Whitmore, J; Mommsen, R; Apyan, A; Badgett jr, W F; Atac, M; Joshi, U P; Vidal, R A; Giacchetti, L A; Merkel, P; Johnson, M E; Soha, A L; Tran, N V; Rapsevicius, V; Hirschauer, J F; Voirin, E; Altunay cheung, M; Liu, T T; Mosquera morales, J F; Gerber, C E; Chen, X; Clarke, C J; Stuart, D D; Franco sevilla, M; Marsh, B J; Shivpuri, R K; Adzic, P; De almeida pacheco, M A; Matos figueiredo, D; De queiroz franco, A B; Melo de almeida, M; Bernardo valadao, R; Linden, T; Tuovinen, E V; Jarvinen, T T; Siikonen, H J L; Ripp-baudot, I L; Richer, M; Vander velde, C; Randle-conde, A S; Dong, J; Van haevermaet, H J H; Dimitrov, L; De paula bianchini, C; Muller cascadan, A; Kotlinski, B; Alcaraz maestre, J; Josa mutuberria, M I; Gonzalez lopez, O; Marin munoz, J; Puerta pelayo, J; Rodriguez vazquez, J J; Denegri, D; Jarry, P; Rosowsky, A; Tsipolitis, G; Grunewald, M; Singh, J; Chawla, R; Gupta, R; Giordano, F; Parrini, G; Russo, L; Dosselli, U; Mazzucato, M; Verlato, M; Wulzer, A; Traldi, S; Bortolato, D; Biasini, M; Bilei, G M; Movileanu, M; Santocchia, A; Mariani, V; Mariotti, C; Monaco, V; Accomando, E; Pinna angioni, G L; Boimska, B; Yuldashev, B; Kamenev, A; Belotelov, I; Filozova, I; Bunin, P; Golovanov, G; Gribushin, A; Kaminskiy, A; Volkov, P; Vorotnikov, G; Bityukov, S; Kryshkin, V; Petrov, V; Volkov, A; Troshin, S; Levin, A; Sumaneev, O V; Kalinin, A; Kulagin, N; Mandrik, P; Lin, C; Kovalskyi, D; Demiragli, Z; Hsu, D G; Michlin, B A; Fountain, M; Debbins, P A; Durgut, S; Tadel, M; White, A; Molina-perez, J A; Dost, J M; Boren, S S; Klein, A; Bhatti, A; Mesropian, C; Wilkinson, R; Xie, S; Marlow, D R; Jindal, P; Palmer, C A; Narain, M; Berry, E A; Usai, E; Korotkov, A L; Strossman, W; Kennedy, E; Burt, K F; Saha, A; Starodumov, A; Mavromanolakis, G; Nicolaou, C; Mao, Y; Claes, D R; Sill, A F; Lamichhane, K; Antunovic, Z; Piotrzkowski, K; Bondu, O; Dimitrov, A A; Albajar, C; Torga teixeira, R F; Iles, G M; Borg, J; Cripps, N A; Uchida, K; Fayer, S W; Wright, J C; Kokkas, P; Manthos, N; Bhattacharya, S; Nandan, S; Bellazzini, R; Carboni, A; Arezzini, S; Yang, U K; Roskes, J; Corcodilos, L A; Nauenberg, U; Johnson, D; Kharchilava, A; Mc lean, C A; Cox, B B; Hirosky, R J; Cummings, G E; Skuja, A; Bard, R L; Mueller, R D; Puigh, D M; Chertok, M B; Calderon de la barca sanchez, M; Gunion, J F; Vogt, R; Conway, R T; Gearhart, J W; Band, R E; Kukral, O; Korytov, A; Fu, Y; Madorsky, A; Brinkerhoff, A W; Rinkevicius, A; Mcdermott, K P; Tao, Z; Bellis, M; Gronberg, J B; Hauser, J; Bachtis, M; Kubic, J; Nash, W A; Greenler, L S; Caillol, C S; Woods, N; De jesus pardal vicente, M; Trembath-reichert, S; Singovski, A; Wolf, M; Smith, G N; Bucci, R E; Reinsvold, A C; Rupprecht, N C; Taus, R A; Buccilli, A T; Kroeger, R S; Reidy, J J; Barnes, V E; Kress, M K; Thieman, J R; Mccartin, J W; Gul, M; Khvastunov, I; Georgiev, I G; Biselli, A; Berzano, U; Vai, I; Braghieri, A; Cardoso lopes, R; Cuevas maestro, J F; Palencia cortezon, J E; Reucroft, S; Bheesette, S; Butler, A; Ivanov, A; Mizelkov, M; Kashpydai, O; Kim, J; Janulis, M; Zemleris, V; Ali, A; Ahmed, U S; Awan, M I; Lee, J; Dissertori, G; Pauss, F; Musella, P; Gomez espinosa, T A; Pigazzini, S; Vesterbacka olsson, M L; Klijnsma, T; Khakzad, M; Arfaei, H; Bonesini, M; Ciriolo, V; Gomez moreno, B; Linares garcia, L E; Bae, S; Ko, B; Hatakeyama, K; Mahmoud mohammed, M A; Aly, A; Ahmad, A; Bahinipati, S; Kim, T J; Goh, J; Fang, W; Kemularia, O; Melkadze, A; Sharma, S; Rane, A P; Ayala amaya, E R; Akle, B; Palomo pinto, F R; Madlener, T; Spanring, M; Pol, M E; Alda junior, W L; Rodrigues simoes moreira, P; Kloukinas, K; Onnela, A T O; Passardi, G; Perez, E F; Postema, W J; Petagna, P; Gaddi, A; Vieira de castro ferreira da silva, P M; Gastal, M; Dabrowski, A E; Mersi, S; Bianco, M; Alandes pradillo, M; Chen, Y; Kieseler, J; Bawej, T A; Roedne, L T; Hugo, G; Baschiera, M; Loiseau, T L; Donato, S; Wang, Y; Liu, Z; Yue, X; Teng, C; Wang, Z; Liao, H; Zhang, X; Chen, Y; Ahmad, M; Zhao, H; Qi, F; Li, B; Raupach, F; Tonutti, M P; Radziej, M; Fluegge, G; Haj ahmad, W; Kunsken, A; Roy, D M; Ziemons, T; Behrens, U; Henschel, H M; Kleinwort, C H; Dammann, D J; Van onsem, G P; Contreras campana, C J; Penno, M; Haranko, M; Singh, A; Turkot, O; Scheurer, V; Schleper, P; Schwandt, J; Schwarz, D; Hartmann, F; Muller, T; Mallows, S; Funke, D; Baselga bacardit, M; Mitra, S; Martinez rivero, C; Moya martin, D; Hidalgo villena, S; Chazin quero, B; Mine, P M G; Poilleux, P R; Salerno, R A; Martin perez, C; Amendola, C; Caponetto, L; Pugnere, D Y; Giraud, Y A N; Sordini, V; Grimes, M A; Burns, D J P; Harper, S J; Hajdu, C; Vami, T A; Dutta, D; Pant, L M; Kumar, V; Sarin, P; Di florio, A; Giacomelli, P; Montanari, A; Siroli, G P; Robutti, E; Maron, G; Fabozzi, F; Galati, G; Rovelli, C I; Della ricca, G; Vazzoler, F; Oh, Y D; Park, W H; Kwon, K H; Choi, J; Kalinowski, A; Santos amaral, L C; Di francesco, A; Velichko, G; Smirnov, I; Kozlov, V; Vavilov, S; Kirianov, A; Dremin, I; Rusakov, S; Nechitaylo, V; Kovzelev, A; Toropin, A; Anisimov, A; Barniakov, A; Gasanov, E; Eskut, E; Polatoz, A; Karaman, T; Zorbilmez, C; Bat, A; Tok, U G; Dag, H; Kaya, O; Tekten, S; Lin, T; Abdoulline, S; Bauerdick, L; Denisov, D; Gingu, C; Green, D; Nahn, S C; Prokofiev, O E; Strait, J B; Los, S; Bowden, M; Tanenbaum, W M; Guo, Y; Dykstra, D W; Mason, D A; Chlebana, F; Cooper, W E; Anderson, J M K; Weber, H A; Christian, D C; Alyari, M F; Diaz cruz, J A; Wang, M; Berry, D R; Siehl, K F; Poudyal, N; Kyre, S A; Mullin, S D; George, C; Szabo, Z; Malhotra, S; Milosevic, J; Prado da silva, W L; Martins mundim filho, L; Sanchez rosas, L J; Karimaki, V J; Toor, S Z; Karadzhinova, A G; Maazouzi, C; Van hove, P J; Hosselet, J; Goorens, R; Brun, H L; Kalsi, A K; Wang, Q; Vannerom, D; Antchev, G; Iaydjiev, P S; Mitev, G M; Amadio, G; Langenegger, U; Kaestli, H C; Meier, B; Fernandez ramos, J P; Besancon, M; Fabbro, B; Ganjour, S; Locci, E; Gevin, O; Suranyi, O; Bansal, S; Kumar, R; Sharma, S; Tuve, C N; Tricomi, A; Meschini, M; Paoletti, S; Sguazzoni, G; Gori, V; Carlin, R; Dal corso, F; Simonetto, F; Torassa, E; Zumerle, G; Borsato, E; Gonella, F; Dorigo, A; Larsen, H; Peroni, C; Trapani, P P; Buarque franzosi, D; Tamponi, U; Mejia guisao, J A; Zepeda fernandez, C H; Szleper, M; Zalewski, P D; Rybka, D K; Gorbunov, I; Perelygin, V; Kozlov, G; Semenov, R; Khvedelidze, A; Kodolova, O; Klyukhin, V; Snigirev, A; Kryukov, A; Ukhanov, M; Sobol, A; Bayshev, I; Akimenko, S; Lei, Y; Chang, Y; Kao, K; Lin, S; Yu, P; Li, Y; Fantasia, C; Gastler, D E; Paus, C; Wyslouch, B; Knuteson, B O; Azzolini, V; Goncharov, M; Brandt, S; Chen, Z; Liu, J; Chen, Z; Freed, S M; Zhang, A; Nachtman, J M; Penzo, A; Akgun, U; Yi, K; Rahmat, R; Gandrajula, R P; Dilsiz, K; Letts, J; Sharma, V A; Holzner, A G; Wuerthwein, F K; Padhi, S; Suarez silva, I M; Tapia takaki, D J; Stringer, R W; Kropivnitskaya, A; Majumder, D; Al-bataineh, A A; Gabella, W E; Johns, W E; Mora, J G; Shi, Z; Ciesielski, R A; Bornheim, A; Bartz, E H; Doroshenko, J; Halkiadakis, E; Salur, S; Robles, J A; Gray, R C; Saka, H; Osherson, M A; Hughes, E J; Paulini, M G; Russ, J S; Jang, D W; Piroue, P; Olsen, J D; Sands, W; Saluja, S; Cutts, D; Hadley, M H; Hakala, J C; Clare, R; Luthra, A P; Paneva, M I; Seto, R K; Mac intire, D A; Tentindo, S; Wahl, H; Chokheli, D; Micanovic, S; Razis, P; Mousa, J; Pantelides, S; Qian, S; Li, W; Stieger, B B; Lee, S W; Michotte de welle, D; De favereau de jeneret, J; Bakhshiansohi, H; Krintiras, G; Caputo, C; Sabev, C; Batinkov, A I; Zenz, S C; Pesaresi, M F; Summers, S P; Saoulidou, N; Koraka, C K; Ghosh, S; Sikdar, A K; Castaldi, R; Dell'orso, R; Palmonari, F; Rolandi, L; Moggi, A; Fedi, G; Coscetti, S; Seo, S H; Cankocak, K; Cumalat, J P; Smith, J G; Iashvili, I; Gallo, S M; Parker, A M; Ledovskoy, A; Hung, P Q; Vaman, D; Goodell, J D; Gomez, J A; Celik, A; Luo, S; Hill, C S; Francis, B P; Tripathi, S M; Squires, M K; Thomson, J A; Brainerd, C; Tuli, S; Bourilkov, D; Mitselmakher, G; Patterson, J R; Kuznetsov, V Y; Tan, S M; Strohman, C R; Rebassoo, F O; Valouev, V; Zelepukin, S; Lusin, S; Vuosalo, C O U; Ruggles, T H; Rusack, R; Woodard, A E; Meng, F; Dev, N; Vishnevskiy, D; Cremaldi, L M; Oliveros tautiva, S J; Jones, T M; Wang, F; Zaganidis, N; Tytgat, M G; Fedorov, A; Korjik, M; Panov, V; Montagna, P; Vitulo, P; Traversi, G; Gonzalez caballero, I; Eysermans, J; Logatchev, O; Orlov, A; Tikhomirov, A; Kulikova, T; Strumia, A; Nam, S K; Soric, I; Padimanskas, M; Siddiqi, H M; Qazi, S F; Ahmad, M; Makouski, M; Chakaberia, I; Mitchell, T B; Baarmand, M; Hits, D; Theofilatos, K; Mohr, N; Jimenez estupinan, R; Micheli, F; Pata, J; Corrodi, S; Mohammadi najafabadi, M; Menasce, D L; Pedrini, D; Malberti, M; Linn, S L; Mesa, D; Tuuva, T; Carrillo montoya, C A; Roque romero, G A; Suwonjandee, N; Kim, H; Khalil ibrahim, S S; Mahrous mohamed kassem, A M; Trojman, L; Sarkar, U; Bhattacharya, S; Babaev, A; Okhotnikov, V; Nakad, Z S; Fruhwirth, R; Majerotto, W; Mikulec, I; Rohringer, H; Strauss, J; Krammer, N; Hartl, C; Pree, E; Rebello teles, P; Ball, A; Bialas, W; Brachet, S B; Gerwig, H; Lourenco, C; Mulders, M P; Vasey, F; Wilhelmsson, M; Dobson, M; Botta, C; Dunser, M F; Pol, A A; Suthakar, U; Takahashi, Y; De cosa, A; Hreus, T; Chen, G; Chen, H; Jiang, C; Yu, T; Klein, K; Schulz, J; Preuten, M; Millet, P N; Keller, H C; Pistone, C; Eckerlin, G; Jung, J; Mnich, J; Jansen, H; Wissing, C; Savitskyi, M; Eichhorn, T V; Harb, A; Botta, V; Martens, I; Knolle, J; Eren, E; Reichelt, O; Schutze, P J; Saibel, A; Schettler, H H; Schumann, S; Kutzner, V G; Husemann, U; Giffels, M; Akbiyik, M; Friese, R M; Baur, S S; Faltermann, N; Kuhn, E; Gottmann, A I D; Muller, D; Balzer, M N; Maier, S; Schnepf, M J; Wassmer, M; Renner, C W; Tcherniakhovski, D; Piedra gomez, J; Vilar cortabitarte, R; Trevisani, N; Boudry, V; Charlot, C P; Tran, T H; Thiant, F; Lethuillier, M M; Perries, S O; Popov, A; Morrissey, Q; Brummitt, A J; Bell, S J; Assiouras, P; Sikler, F; De palma, M; Fiore, L; Pompili, A; Marzocca, C; Errico, F; Soldani, E; Cavallo, F R; Rossi, A M; Torromeo, G; Masetti, G; Virgilio, S; Thyssen, F D M; Iorio, A O M; Montecchi, M; Santanastasio, F; Bulfon, C; Zanetti, A M; Casarsa, M; Han, D; Song, J; Ibrahim, Z A B; Faccioli, P; Gallinaro, M; Beirao da cruz e silva, C; Kuznetsova, E; Levchuk, L; Andreev, V; Toropin, A; Dermenev, A; Karpikov, I; Epshteyn, V; Uliyanov, A; Polikarpov, S; Markin, O; Cagil, A; Karapinar, G; Isildak, B; Yu, S; Banicz, K B; Cheung, H W K; Butler, J N; Quigg, D E; Hufnagel, D; Rakness, G L; Spalding, W J; Bhat, P; Kreis, B J; Jensen, H B; Chetluru, V; Albert, M; Hu, Z; Mishra, K; Vernieri, C; Larson, K E; Zejdl, P; Matulik, M; Cremonesi, M; Doualot, N; Ye, Z; Wu, Z; Geffert, P B; Dutta, V; Heller, R E; Dorsett, A L; Choudhary, B C; Arora, S; Ranjeet, R; Melo da costa, E; Torres da silva de araujo, F; Da silveira, G G; Alves coelho, E; Belchior batista das chagas, E; Buss, N H; Luukka, P R; Tuominen, E M; Havukainen, J J; Tigerstedt, U B S; Goerlach, U; Patois, Y; Collard, C; Mathieu, C; Lowette, S R J; Python, Q P; Moortgat, S; Vanlaer, P; De lentdecker, G W P; Rugovac, S; Tavernier, F F; Beaumont, W; Van de klundert, M; Vankov, P H; Verguilov, V Z; Hadjiiska, R M; De moraes gregores, E; Iope, R L; Ruiz vargas, J C; Barcala riveira, M J; Hernandez calama, J M; Oller, J C; Flix molina, J; Navarro tobar, A; Sastre alvaro, J; Redondo ferrero, D D; Titov, M; Bausson, P; Major, P; Bala, S; Dhingra, N; Kumari, P; Costa, S; Pelli, S; Meneguzzo, A T; Passaseo, M; Pegoraro, M; Montecassiano, F; Dorigo, T; Silvestrin, L; Del duca, V; Demaria, N; Ferrero, M I; Mussa, R; Cartiglia, N; Mazza, G; Maina, E; Dellacasa, G; Covarelli, R; Cotto, G; Sola, V; Monteil, E; Shchelina, K; Castilla-valdez, H; De la cruz burelo, E; Kazana, M; Gorbunov, N; Kosarev, I; Smirnov, V; Korenkov, V; Savina, M; Lanev, A; Semenyushkin, I; Kashunin, I; Krouglov, N; Markina, A; Bunichev, V; Zotov, N; Miagkov, I; Nazarova, E; Uzunyan, A; Riutin, R; Tsverava, N; Paganis, E; Chen, K; Lu, R; Psallidas, A; Gorodetzky, P P; Hazen, E S; Avetisyan, A; Richardson, C A; Busza, W; Roland, C E; Cali, I A; Marini, A C; Wang, T; Schmitt, M H; Geurts, F; Ecklund, K M; Repond, J O; Schmidt, I; George, N; Ingram, F D; Wetzel, J W; Ogul, H; Spanier, S M; Mrak tadel, A; Zevi della porta, G J; Maguire, C F; Janjam, R K; Chevtchenko, S; Zhu, R; Voicu, B R; Mao, J; Stone, R L; Schnetzer, S R; Nash, K C; Kunnawalkam elayavalli, R; Laflotte, I; Weinberg, M G; Mc cracken, M E; Kalogeropoulos, A; Raval, A H; Cooperstein, S B; Landsberg, G; Kwok, K H M; Ellison, J A; Gary, J W; Si, W; Hagopian, V; Hagopian, S L; Bertoldi, M; Brigljevic, V; Ptochos, F; Ather, M W; Konstantinou, S; Yang, D; Li, Q; Attebury, G; Siado castaneda, J E; Lemaitre, V; Caebergs, T P M; Litov, L B; Fernandez de troconiz, J; Colling, D J; Davies, G J; Raymond, D M; Virdee, T S; Bainbridge, R J; Lewis, P; Rose, A W; Bauer, D U; Sotiropoulos, S; Papadopoulos, I; Triantis, F; Aslanoglou, X; Majumdar, N; Devadula, S; Ciocci, M A; Messineo, A; Palla, F; Grippo, M T; Yu, G B; Willemse, T; Lamsa, J; Blumenfeld, B J; Maksimovic, P; Gritsan, A; Cocoros, A A; Arnold, P; Tonwar, S C; Eno, S C; Mignerey, A L C; Nabili, S; Dalchenko, M; Maghrbi, Y; Huang, T; Sheharyar, A; Durkin, L S; Wang, Z; Tos, K M; Kim, B J; Guo, Y; Ma, P; Rosenzweig, D J; Reeder, D D; Smith, W; Surkov, A; Mohapatra, A K; Maurisset, A; Mans, J M; Kubota, Y; Frahm, E J; Chatterjee, R M; Ruchti, R; Mc cauley, T P; Ivie, P A; Betchart, B A; Hindrichs, O H; Sultana, M; Henderson, C; Sanders, D; Summers, D; Perera, L; Miller, D H; Miyamoto, J; Peng, C; Zahariev, R Z; Peynekov, M M; Ratti, L; Ressegotti, M; Czellar, S; Molnar, J; Khan, A; Morton, A; Vischia, P; Erice cid, C F; Carpinteyro bernardino, S; Chmelev, D; Smetannikov, V; Hektor, A; Kadastik, M; Godinovic, N; Simelevicius, D; Alvi, O I; Hoorani, H U R; Shahzad, H; Shah, M A; Shoaib, M; Rao, M A S; Sidwell, R; Roettger, T J; Corkill, S; Lustermann, W; Roeser, U H; Backhaus, M; Perrin, G L; Naseri, M; Rapuano, F; Redaelli, N; Carbone, L; Spiga, F; Brivio, F; Monti, F; Markowitz, P E; Rodriguez, J L; Morelos pineda, A; Norberg, S R; Ryu, M S; Jeng, Y G; Esteban lallana, M C; Trabelsi, A; Dittmann, J R; Elsayed, E; Khan, Z A; Soomro, K; Janikashvili, M; Kapoor, A; Rastogi, A; Remnev, G; Hrubec, J; Wulz, C; Fichtinger, S K; Abbaneo, D; Janot, P; Racz, A; Roche, J; Ryjov, V; Sphicas, P; Treille, D; Wertelaers, P; Cure, B R; Fulcher, J R; Moortgat, F W; Bocci, A; Giordano, D; Hegeman, J G; Hegner, B; Gallrapp, C; Cepeda hermida, M L; Riahi, H; Chapon, E; Orfanelli, S; Guilbaud, M R J; Seidel, M; Merlin, J A; Heidegger, C; Schneider, M A; Robmann, P W; Salerno, D N; Galloni, C; Neutelings, I W; Shi, J; Li, J; Zhao, J; Pandoulas, D; Rauch, M P; Schael, S; Hoepfner, K; Weber, M K; Teyssier, D F; Thuer, S; Rieger, M; Albert, A; Muller, T; Sert, H; Lohmann, W F; Ntomari, E; Grohsjean, A J; Wen, Y; Ron alvarez, E; Hampe, J; Bin anuar, A A; Blobel, V; Mattig, S; Haller, J; Sonneveld, J M; Malara, A; Rabbertz, K H; Freund, B; Schell, D B; Savoiu, D; Geerebaert, Y; Becheva, E L; Nguyen, M A; Stahl leiton, A G; Magniette, F B; Fay, J; Gascon-shotkin, S M; Ille, B; Viret, S; Finco, L; Brown, R; Cockerill, D; Williams, T S; Markou, C; Anagnostou, G; Mohanty, A K; Creanza, D M; De robertis, G; Verwilligen, P O J; Perrotta, A; Fanfani, A; Ciocca, C; Ravera, F; Toniolo, N; Badoer, S; Paolucci, P; Khan, W A; Voevodina, E; De iorio, A; Cavallari, F; Bellini, F; Cossutti, F; La licata, C; Da rold, A; Lee, K; Go, Y; Park, J; Kim, M S; Wan abdullah, W; Toldaiev, O; Golovtcov, V; Oreshkin, V; Sosnov, D; Soroka, D; Gninenko, S; Pivovarov, G; Erofeeva, M; Pozdnyakov, I; Danilov, M; Tarkovskii, E; Chadeeva, M; Philippov, D; Bychkova, O; Kardapoltsev, L; Onengut, G; Cerci, S; Vergili, M; Dolek, F; Sever, R; Gamsizkan, H; Ocalan, K; Dogan, H; Kaya, M; Kuo, C; Chang, Y; Albrow, M G; Banerjee, S; Berryhill, J W; Chevenier, G; Freeman, J E; Green, C H; O'dell, V R; Wenzel, H; Lukhanin, G; Di luca, S; Spiegel, L G; Deptuch, G W; Ratnikova, N; Paterno, M F; Burkett, K A; Jones, C D; Klima, B; Fagan, D; Hasegawa, S; Thompson, R; Gecse, Z; Liu, M; Pedro, K J; Jindariani, S; Zimmerman, T; Skirvin, T M; Hofman, D J; Evdokimov, O; Jung, K E; Trauger, H C; Gouskos, L; Karancsi, J; Kumar, A; Garg, R B; Keshri, S; Nogima, H; Sznajder, A; Vilela pereira, A; Eerola, P A; Pekkanen, J T K; Guldmyr, J H; Gele, D; Charles, L; Bonnin, C; Bourgatte, G; De clercq, J T; Favart, L; Grebenyuk, A; Yang, Y; Allard, Y; Genchev, V I; Galli mercadante, P; Tomei fernandez, T R; Ahuja, S; Ingram, Q; Rohe, T V; Colino, N; Ferrando, A; Garcia-abia, P; Calvo alamillo, E; Goy lopez, S; Delgado peris, A; Alvarez fernandez, A; Couderc, F; Moudden, Y; Potenza, R; D'alessandro, R; Landi, G; Viliani, L; Bisello, D; Gasparini, F; Michelotto, M; Benettoni, M; Bellato, M A; Fanzago, F; De castro manzano, P; Mantovani, G; Menichelli, M; Passeri, D; Placidi, P; Manoni, E; Storchi, L; Cirio, R; Romero, A; Staiano, A; Pastrone, N; Solano, A M; Argiro, S; Bellan, R; Duran osuna, M C; Ershov, Y; Zamyatin, N; Palchik, V; Afanasyev, S; Nikonov, E; Miller, M; Baranov, A; Ivanov, V; Petrushanko, S; Perfilov, M; Eyyubova, G; Baskakov, A; Kachanov, V; Korablev, A; Bordanovskiy, A; Kepuladze, Z; Hsiung, Y B; Wu, S; Rankin, D S; Jacob, C J; Alverson, G; Hortiangtham, A; Roland, G M; Gomez ceballos retuerto, G; Innocenti, G M; Allen, B L; Baty, A A; Narayanan, S M; Hu, M; Bi, R; Sung, K K H; Gunter, T K; Bueghly, J D; Yepes stork, P P; Mestvirishvili, A; Miller, M J; Norbeck, J E; Snyder, C M; Branson, J G; Sfiligoi, I; Rogan, C S; Edwards-bruner, C R; Young, R W; Verweij, M; Goulianos, K; Galvez, P D; Zhu, K; Lapadatescu, V; Dutta, I; Somalwar, S V; Park, M; Kaplan, S M; Feld, D B; Vorobiev, I; Lange, D; Zuranski, A M; Mei, K; Knight iii, R R; Spencer, E; Hogan, J M; Syarif, R; Olmedo negrete, M A; Ghiasi shirazi, S; Erodotou, E; Ban, Y; Xue, Z; Kravchenko, I; Keller, J D; Knowlton, D P; Wigmans, M E J; Volobouev, I; Peltola, T H T; Kovac, M; Bruno, G L; Gregoire, G; Delaere, C; Bodlak, M; Della negra, M J; James, T O; Shtipliyski, A M; Tziaferi, E; Karageorgos, V W; Karasavvas, D; Fountas, K; Mukhopadhyay, S; Basti, A; Raffaelli, F; Spandre, G; Mazzoni, E; Manca, E; Mandorli, G; Yoo, H D; Aerts, A; Eminizer, N C; Amram, O; Stenson, K M; Ford, W T; Green, M L; Kellogg, R; Jeng, G; Kunkle, J M; Baron, O; Feng, Y; Wong, K; Toufique, Y; Sehgal, V; Breedon, R E; Cox, P T; Mulhearn, M J; Gerhard, R M; Taylor, D N; Konigsberg, J; Sperka, D M; Lo, K H; Carnes, A M; Quach, D M; Li, T; Andreev, V; Herve, L A M; Klabbers, P R; Svetek, A; Hussain, U; Evans, A C; Lannon, K P; Fedorov, S; Bodek, A; Demina, R; Khukhunaishvili, A; West, C A; Perez, C U; Godang, R; Meier, M; Neumeister, N; Gruchala, M M; Zagurski, K B; Prosolovich, V; Kuhn, J; Ratti, S P; Riccardi, C M; Vacchi, C; Szekely, G; Hobson, P R; Fernandez menendez, J; Rodriguez bouza, V; Butler, P; Pedraza morales, M I; Barakat, N; Sakharov, V; Lavrenov, P; Ahmed, I; Kim, T Y; Pac, M Y; Sculac, T; Gajdosik, T; Tamosiunas, K; Juodagalvis, A; Dudenas, V; Barannik, S; Bashir, A; Khan, F; Saeed, F; Khan, M T; Maravin, Y; Mohammadi, A; Noonan, D C; Saunders, M D; Dittmar, M; Donega, M; Perrozzi, L; Nageli, C; Dorfer, C; Zhu, D H; Spirig, Y A; Ruini, D; Alishahiha, M; Ardalan, F; Saramad, S; Mansouri, R; Eskandari tadavani, E; Ragazzi, S; Tabarelli de fatis, T; Govoni, P; Ghezzi, A; Stringhini, G; Sevilla moreno, A C; Smith, C J; Abdelalim, A A; Hassan, A F A; Swain, S K; Sahoo, D K; Carrera jarrin, E F; Chauhan, S; Munoz chavero, F; Ambrogi, F; Hensel, C; Alves, G A; Baechler, J; Christiansen, J; De roeck, A; Gayde, J; Hansen, M; Kienzle, W; Reynaud, S; Schwick, C; Troska, J; Zeuner, W D; Osborne, J A; Moll, M; Franzoni, G; Tinoco mendes, A D; Milenovic, P; Garai, Z; Bendavid, J L; Dupont, N A; Gulhan, D C; Daponte, V; Martinez turtos, R; Giuffredi, R; Rapacz, K J; Otiougova, P; Zhu, G; Leggat, D A; Kiesel, M K; Lipinski, M; Wallraff, W; Meyer, A; Pook, T; Pooth, O; Behnke, O; Eckstein, D; Fischer, D J; Garay garcia, J; Vagnerini, A; Klanner, R; Stadie, H; Perieanu, A; Benecke, A; Abbas, S M; Schroeder, M; Lobelle pardo, P; Chwalek, T; Heidecker, C; Floh, K M; Gomez, G; Cabrillo bartolome, I J; Orviz fernandez, P; Duarte campderros, J; Busson, P; Dobrzynski, L; Fontaine, G R R; Granier de cassagnac, R; Paganini, P R J; Arleo, F P; Balagura, V; Martin blanco, J; Ortona, G; Kucher, I; Contardo, D C; Lumb, N; Baulieu, G; Lagarde, F; Shchablo, K; Heath, H F; Kreczko, L; Clement, E J; Paramesvaran, S; Bologna, S; Bell, K W; Petyt, D A; Moretti, S; Durkin, T J; Daskalakis, G; Kataria, S K; Iaselli, G; Pugliese, G; My, S; Sharma, A; Abbiendi, G; Taneja, S; Benussi, L; Fabbri, F; Calvelli, V; Frizziero, E; Barone, L M; De notaristefani, F; D'imperio, G; Gobbo, B; Yusupov, H; Liew, C S; Zabolotny, W M; Sobolev, S; Gavrikov, Y; Kozlov, I; Golubev, N; Andreev, Y; Tlisov, D; Zaytsev, V; Stepennov, A; Popova, E; Kolchanova, A; Shtol, D; Sirunyan, A; Gokbulut, G; Kara, O; Damarseckin, S; Guler, A M; Ozpineci, A; Hayreter, A; Li, S; Gruenendahl, S; Yarba, J; Para, A; Ristori, L F; Rubinov, P M; Reichanadter, M A; Churin, I; Beretvas, A; Muzaffar, S M; Lykken, J D; Gutsche, O; Baldin, B; Uplegger, L A; Lei, C M; Wu, W; Derylo, G E; Ruschman, M K; Lipton, R J; Whitbeck, A J; Schmitt, R; Contreras pasuy, L C; Olsen, J T; Cavanaugh, R J; Betts, R R; Wang, H; Sturdy, J T; Gutierrez jr, A; Campagnari, C F; White, D T; Brewer, F D; Qu, H; Ranjan, K; Lalwani, K; Md, H; Shah, A H; Fonseca de souza, S; De jesus damiao, D; Revoredo, E A; Chinellato, J A; Amadei marques da costa, C; Lampen, P T; Wendland, L A; Brom, J; Andrea, J; Tavernier, S; Van doninck, W K; Van mulders, P K A; Clerbaux, B; Rougny, R; Rashevski, G D; Rodozov, M N; Padula, S; Bernardes, C A; Dias maciel, C; Deiters, K; Feichtinger, D; Wiederkehr, S A; Cerrada, M; Fouz iglesias, M; Senghi soares, M; Pasquetto, E; Ferry, S C; Georgette, Z; Malcles, J; Csanad, M; Lal, M K; Walia, G; Kaur, A; Ciulli, V; Lenzi, P; Zanetti, M; Costa, M; Dughera, G; Bartosik, N; Ramirez sanchez, G; Frueboes, T M; Karjavine, V; Skachkov, N; Litvinenko, A; Petrosyan, A; Teryaev, O; Trofimov, V; Makankin, A; Golunov, A; Savrin, V; Korotkikh, V; Vardanyan, I; Lukina, O; Belyaev, A; Korneeva, N; Petukhov, V; Skvortsov, V; Konstantinov, D; Efremov, V; Smirnov, N; Shiu, J; Chen, P; Rohlf, J; Sulak, L R; St john, J M; Morse, D M; Krajczar, K F; Mironov, C M; Niu, X; Wang, J; Charaf, O; Matveev, M; Eppley, G W; Mccliment, E R; Ozok, F; Bilki, B; Zieser, A J; Olivito, D J; Wood, J G; Hashemi, B T; Bean, A L; Wang, Q; Tuo, S; Xu, Q; Roberts, J W; Anderson, D J; Lath, A; Jacques, P; Sun, M; Andrews, M B; Svyatkovskiy, A; Hardenbrook, J R; Heintz, U; Lee, J; Wang, L; Prosper, H B; Adams, J R; Liu, S; Wang, D; Swanson, D; Thiltges, J F; Undleeb, S; Finger, M; Beuselinck, R; Rand, D T; Tapper, A D; Malik, S A; Lane, R C; Panagiotou, A; Diamantopoulou, M; Vourliotis, E; Mallios, S; Mondal, K; Bhattacharya, R; Bhowmik, D; Libby, J F; Azzurri, P; Foa, L; Tenchini, R; Verdini, P G; Ciampa, A; Radburn-smith, B C; Park, J; Swartz, M L; Sarica, U; Borcherding, F O; Barria, P; Goadhouse, S D; Xia, F; Joyce, M L; Belloni, A; Bouhali, O; Toback, D; Osipenkov, I L; Almes, G T; Walker, J W; Bylsma, B G; Lefeld, A J; Conway, J S; Flores, C S; Avery, P R; Terentyev, N; Barashko, V; Ryd, A P E; Tucker, J M; Heltsley, B K; Wittich, P; Riley, D S; Skinnari, L A; Chu, J Y; Ignatenko, M; Lindgren, M A; Saltzberg, D P; Peck, A N; Herve, A A M; Savin, A; Herndon, M F; Mason, W P; Martirosyan, S; Grahl, J; Hansen, P D; Saradhy, R; Mueller, C N; Planer, M D; Suh, I S; Hurtado anampa, K P; De barbaro, P J; Garcia-bellido alvarez de miranda, A A; Korjenevski, S K; Moolekamp, F E; Fallon, C T; Acosta castillo, J G; Gutay, L; Barker, A W; Gough, E; Poyraz, D; Verbeke, W L M; Beniozef, I S; Krasteva, R L; Winn, D R; Fenyvesi, A C; Makovec, A; Munro, C G; Sanchez cruz, S; Bernardino rodrigues, N A; Lokhovitskiy, A; Uribe estrada, C; Rebane, L; Racioppi, A; Kim, H; Kim, T; Puljak, I; Boyaryntsev, A; Saeed, M; Tanwir, S; Butt, U; Hussain, A; Nawaz, A; Khurshid, T; Imran, M; Sultan, A; Naeem, M; Kaadze, K; Modak, A; Taylor, R D; Kim, D; Grab, C; Nessi-tedaldi, F; Fischer, J; Manzoni, R A; Zagozdzinska-bochenek, A A; Berger, P; Reichmann, M P; Hashemi, M; Rezaei hosseinabadi, F; Paganoni, M; Farina, F M; Joshi, Y R; Avila bernal, C A; Cabrera mora, A L; Segura delgado, M A; Gonzalez hernandez, C F; Asavapibhop, B; U-ruekolan, S; Kim, G; Choi, M; Aly, S; El sawy, M; Castaneda hernandez, A M; Pinna, D; Shamdasani, J; Tavkhelidze, D; Hegde, V; Aziz, T; Sur, N; Sutar, B J; Karmakar, S; Ghete, V M; Dragicevic, M G; Brandstetter, J; Marques moraes, A; Molina insfran, J A; Aspell, P; Baillon, P; Barney, D; Honma, A; Pape, L; Sakulin, H; Macpherson, A L; Bangert, N; Guida, R; Steggemann, J; Voutsinas, G G; Da silva gomes, D; Ben mimoun bel hadj, F; Bonnaud, J Y R; Canelli, F M; Bai, J; Qiu, J; Bian, J; Cheng, Y; Kukulies, C; Teroerde, M; Erdmann, M; Hebbeker, T; Zantis, F; Scheuch, F; Erdogan, Y; Campbell, A J; Kasemann, M; Lange, W; Raspiareza, A; Melzer-pellmann, I; Aldaya martin, M; Lewendel, B; Schmidt, R S; Lipka, E; Missiroli, M; Grados luyando, J M; Shevchenko, R; Babounikau, I; Steinbrueck, G; Vanhoefer, A; Ebrahimi, A; Pena rodriguez, K J; Niedziela, M A; Eich, M M; Froehlich, A; Simonis, H J; Katkov, I; Wozniewski, S; Marco de lucas, R J; Lopez virto, A M; Jaramillo echeverria, R W; Hennion, P; Zghiche, A; Chiron, A; Romanteau, T; Beaudette, F; Lobanov, A; Grasseau, G J; Pierre-emile, T B; El mamouni, H; Gouzevitch, M; Goldstein, J; Cussans, D G; Seif el nasr, S A; Titterton, A S; Ford, P J W; Olaiya, E O; Salisbury, J G; Paspalaki, G; Asenov, P; Hidas, P; Kiss, T N; Zalan, P; Shukla, P; Abbrescia, M; De filippis, N; Donvito, G; Radogna, R; Miniello, G; Gelmi, A; Capiluppi, P; Marcellini, S; Odorici, F; Bonacorsi, D; Genta, C; Ferri, G; Saviano, G; Ferrini, M; Minutoli, S; Tosi, S; Lista, L; Passeggio, G; Breglio, G; Merola, M; Diemoz, M; Rahatlou, S; Baccaro, S; Bartoloni, A; Talamo, I G; Cipriani, M; Kim, J Y; Oh, G; Lim, J H; Lee, J; Mohamad idris, F B; Gani, A B; Cwiok, M; Doroba, K; Martins galinhas, B E; Kim, V; Krivshich, A; Vorobyev, A; Ivanov, Y; Tarakanov, V; Lobodenko, A; Obikhod, T; Isayev, O; Kurov, O; Leonidov, A; Lvova, N; Kirsanov, M; Suvorova, O; Karneyeu, A; Demidov, S; Konoplyannikov, A; Popov, V; Pakhlov, P; Vinogradov, S; Klemin, S; Blinov, V; Skovpen, I; Chatrchyan, S; Grigorian, N; Kayis topaksu, A; Sunar cerci, D; Hos, I; Guler, Y; Kiminsu, U; Serin, M; Deniz, M; Turan, I; Eryol, F; Pozdnyakov, A; Liu, Z; Doan, T H; Hanlon, J E; Mcbride, P L; Pal, I; Garren, L; Oleynik, G; Harris, R M; Bolla, G; Kowalkowski, J B; Evans, D E; Vaandering, E W; Patrick, J F; Rechenmacher, R; Prosser, A G; Messer, T A; Tiradani, A R; Rivera, R A; Jayatilaka, B A; Duarte, J M; Todri, A; Harr, R F; Richman, J D; Bhandari, R; Dordevic, M; Cirkovic, P; Mora herrera, C; Rosa lopes zachi, A; De paula carvalho, W; Kinnunen, R L A; Lehti, S T; Maeenpaeae, T H; Bloch, D; Chabert, E C; Rudolf, N G; Devroede, O; Skovpen, K; Lontkovskyi, D; De wolf, E A; Van mechelen, P; Van spilbeeck, A B E; Georgiev, L S; Novaes, S F; Costa, M A; Costa leal, B; Horisberger, R P; De la cruz, B; Willmott, C; Perez-calero yzquierdo, A M; Dejardin, M M; Mehta, A; Barbagli, G; Focardi, E; Bacchetta, N; Gasparini, U; Pantano, D; Sgaravatto, M; Ventura, S; Zotto, P; Candelori, A; Pozzobon, N; Boletti, A; Servoli, L; Postolache, V; Rossi, A; Ciangottini, D; Alunni solestizi, L; Maselli, S; Migliore, E; Amapane, N C; Lopez fernandez, R; Sanchez hernandez, A; Heredia de la cruz, I; Matveev, V; Kracikova, T; Shmatov, S; Vasilev, S; Kurenkov, A; Oleynik, D; Verkheev, A; Voytishin, N; Proskuryakov, A; Bogdanova, G; Petrova, E; Bagaturia, I; Tsamalaidze, Z; Zhao, Z; Arcaro, D J; Barberis, E; Wamorkar, T; Wang, B; Ralph, D K; Velasco, M M; Odell, N J; Sevova, S; Li, W; Merlo, J; Onel, Y; Mermerkaya, H; Moeller, A R; Haytmyradov, M; Dong, R; Bugg, W M; Ragghianti, G C; Delannoy sotomayor, A G; Thapa, K; Yagil, A; Gerosa, R A; Masciovecchio, M; Schmitz, E J; Kapustinsky, J S; Greene, S V; Zhang, L; Vlimant, J V; Mughal, A; Cury siqueira, S; Gershtein, Y; Arora, S R R; Lin, W X; Stickland, D P; Mc donald, K T; Pivarski, J M C; Lucchini, M T; Higginbotham, S L; Rosenfield, M; Long, O R; Johnson, K F; Adams, T; Susa, T; Rykaczewski, H; Ioannou, A; Ge, Y; Levin, A M; Li, J; Li, L; Bloom, K A; Monroy montanez, J A; Kunori, S; Wang, Z; Favart, D; Maltoni, F; Vidal marono, M; Delcourt, M; Markov, S I; Seez, C; Richards, A J; Ferguson, W; Chatziangelou, M; Karathanasis, G; Kontaxakis, P; Jones, J A; Strologas, J; Katsoulis, P; Dutt, S; Roy chowdhury, S; Bhardwaj, R; Purohit, A; Singh, B; Behera, P K; Sharma, A; Spagnolo, P; Tonelli, G E; Giannini, L; Poulios, S; Groote, J F; Untuc, B; Oztirpan, F O; Koseoglu, I; Luiggi lopez, E E; Hadley, N J; Shin, Y H; Safonov, A; Eusebi, R; Rose, A K; Overton, D A; Erbacher, R D; Funk, G N; Pilot, J R; Regnery, B J; Klimenko, S; Matchev, K; Gleyzer, S; Wang, J; Cadamuro, L; Sun, W M; Soffi, L; Lantz, S R; Wright, D; Cline, D; Cousins jr, R D; Erhan, S; Yang, X; Schnaible, C J; Dasgupta, A; Loveless, R; Bradley, D C; Monzat, D; Dodd, L M; Tikalsky, J L; Kapusta, J; Gilbert, W J; Lesko, Z J; Marinelli, N; Wayne, M R; Heering, A H; Galanti, M; Duh, Y; Roy, A; Arabgol, M; Hacker, T J; Salva, S; Petrov, V; Barychevski, V; Drobychev, G; Lobko, A; Gabusi, M; Fabris, L; Conte, E R E; Kasprowicz, G H; Kyberd, P; Cole, J E; Lopez, J M; Salazar gonzalez, C A; Benzon, A M; Pelagio, L; Walsh, M F; Postnov, A; Lelas, D; Vaitkus, J V; Jurciukonis, D; Sulmanas, B; Ahmad, A; Ahmed, W; Jalil, S H; Kahl, W E; Taylor, D R; Choi, Y I; Jeong, Y; Roy, T; Schoenenberger, M A; Khateri, P; Etesami, S M; Fiorini, E; Pullia, A; Magni, S; Gennai, S; Fiorendi, S; Zuolo, D; Sanabria arenas, J C; Florez bustos, C A; Holguin coral, A; Mendez, H; Srimanobhas, N; Jaikar, A H; Arteche gonzalez, F J; Call, K R; Vazquez valencia, E F; Calderon monroy, M A; Abdelmaguid, A; Mal, P K; Yuan, L; Lomidze, I; Prangishvili, I; Adamov, G; Dube, S S; Dugad, S; Mohanty, G B; Bhat, M A; Bheesette, S; Malawski, M L; Abou kors, D J

    CMS is a general purpose proton-proton detector designed to run at the highest luminosity at the LHC. It is also well adapted for studies at the initially lower luminosities. The CMS Collaboration consists of over 1800 scientists and engineers from 151 institutes in 31 countries. The main design goals of CMS are: \\begin{enumerate} \\item a highly performant muon system, \\item the best possible electromagnetic calorimeter \\item high quality central tracking \\item hermetic calorimetry \\item a detector costing less than 475 MCHF. \\end{enumerate} All detector sub-systems have started construction. Engineering Design Reviews of parts of these sub-systems have been successfully carried-out. These are held prior to granting authorization for purchase. The schedule for the LHC machine and the experiments has been revised and CMS will be ready for first collisions now expected in April 2006. \\\\\\\\ ~~~~$\\bullet$ Magnet \\\\ The detector (see Figure) will be built around a long (13~m) and large bore ($\\phi$=5.9~m) high...

  20. User Defined Data in the New Analysis Model of the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, G.

    2005-04-06

    The BaBar experiment has recently revised its Analysis Model. One of the key ingredient of BaBar new Analysis Model is the support of the capability to add to the Event Store user defined data, which can be the output of complex computations performed at an advanced stage of a physics analysis, and are associated to analysis objects. In order to provide flexibility and extensibility with respect to object types, template generic programming has been adopted. In this way the model is non-intrusive with respect to reconstruction and analysis objects it manages, not requiring changes in their interfaces and implementations. Technological details are hidden as much as possible to the user, providing a simple interface. In this paper we present some of the limitations of the old model and how they are addressed by the new Analysis Model.

  1. Object oriented reconstruction software for the Instrumented Flux Return of BABAR

    CERN Document Server

    Nardo, E D; Lista, L

    2001-01-01

    BABAR experiment is the first High Energy Physics experiment to extensively use object oriented technology and the C++ programming language for online and offline software. Object orientation permits to reach a high level of flexibility and maintainability of the code, which is a key point in a large project with many developers. These goals are reached with the introduction of reusable code elements, with abstraction of code behaviours and polymorphism. Software design, before code implementation, is the key task that determines the achievement of such a goal. We present the experience with the application of object oriented technology and design patterns to the reconstruction software of the Instrumented Flux Return detector of BABAR experiment. The use of abstract interfaces improved the development of reconstruction code and permitted to flexibly apply modification to reconstruction strategies, and eventually to reduce the maintenance load. The experience during the last years of development is presented....

  2. Water resistant rhodium plated reflectors for use in the DIRC BaBar Cherenkov detector

    CERN Document Server

    Benkebil, M; Plaszczynski, S; Schune, M H; Wormser, G

    2000-01-01

    Early simulation studies showed that reflectors mounted on the photomultipliers would be useful for the DIRC BaBar Cherenkov detector, showing a gain between 20% and 30% in the number of Cherenkov photons. The proof of principle for these reflectors has been obtained during the beam test of a large-scale prototype of the DIRC detector. An extensive R and D has been conducted in order to test different metallization procedures. Indeed, the challenge was to find a metallization technique which can resist the pure de-ionized water (>15 M OMEGA) up to 10 yr. The chosen technology was rhodium plated reflectors. During the first BaBar cosmic run, the measured performance confirmed the results of the simulation, the prototype-II and the R and D.

  3. First results on material identification and imaging with a large-volume muon tomography prototype

    Energy Technology Data Exchange (ETDEWEB)

    Pesente, S. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Vanini, S. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy)], E-mail: sara.vanini@pd.infn.it; Benettoni, M. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Bonomi, G. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); Viesti, G. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Zumerle, G. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The muon tomography technique, based on the Multiple Coulomb Scattering of cosmic ray muons, has been proposed recently as a tool to perform non-destructive assays of large-volume objects without any radiation hazard. In this paper we discuss experimental results obtained with a scanning system prototype, assembled using two large-area CMS Muon Barrel drift chambers. The capability of the apparatus to produce 3D images of objects and to classify them according to their density is presented. We show that the absorption of low-momentum muons in the scanned objects produces an underestimate of their scattering density, making the discrimination of materials heavier than lead more difficult.

  4. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  5. Next Generation Muon g − 2 Experiments

    Directory of Open Access Journals (Sweden)

    Hertzog David W.

    2016-01-01

    Full Text Available I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of aμ from Brookhaven E821 by a factor of 4; that is, δaμ ∼ 16 × 10−11, a relative uncertainty of 140 ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase 1 installation.

  6. Next Generation Muon g-2 Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, David W. [Washington U., Seattle

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  7. Muons and Muonium in Molecular Physics

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to gain some insight on the most fundamental processes involved in the reaction of muons and muonium with organic molecules. Two components of the @mSR signal in an organic sample can be identified: a diamagnetic fraction precessing at (or very close to) the Larmor frequency and a paramagnetic fraction giving rise to frequencies characteristic of the muon's coupling with an unpaired electron spin.\\\\ \\\\ .uc 1) diamagnetic fraction \\\\ \\\\ We intend to study the occurence of an acid-base reaction of the type: .ce @m|+ + B @A (MuB)|+ and its competition with reactions that produce muonium. The best suited model systems for this process are aqueous solutions in which muon and electron scavengers, or anionic bases, in high concentration can be added. In order to further distinguish between different types of (MuB)|+ species the chemical shifts of these products will be studied.\\\\ \\\\ .uc 2) paramagnetic fraction \\\\ \\\\ Work will continue on muonic radicals formed by muonium addition at a ...

  8. The BaBar silicon vertex tracker, performance and running experience

    International Nuclear Information System (INIS)

    Re, V.; Borean, C.; Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Piemontese, L.; Breon, A.B.; Brown, D.; Clark, A.R.; Goozen, F.; Hernikl, C.; Kerth, L.T.; Gritsan, A.; Lynch, G.; Perazzo, A.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Brenna, E.; Citterio, M.; Lanni, F.; Palombo, F.; Ratti, L.; Manfredi, P.F.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ceccanti, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.I.; Roat, C.; Bona, M.; Bianchi, F.; Gamba, D.; Trapani, P.; Bosisio, L.; Della Ricca, G.; Dittongo, S.; Lanceri, L.; Pompili, A.; Poropat, P.; Rashevskaia, I.; Vuagnin, G.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Mazur, M.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.A.; Grothe, M.; Johnson, R.P.; Kroeger, W.; Lockman, W.S.; Pulliam, T.; Rowe, W.; Schmitz, R.E.; Seiden, A.; Spencer, E.N.; Turri, M.; Walkowiak, W.; Wilder, M.; Wilson, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is de