WorldWideScience

Sample records for babar detector messung

  1. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  2. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  3. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  4. Internal alignement of the BABAR silicon vertex tracking detector

    CERN Document Server

    Brown, D; Roberts, D

    2007-01-01

    The BABAR Silicon Vertex Tracker (SVT ) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e¡ collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 Silicon Vertex Trackerwafers. This procedure uses a tuned mix of lab-bench measurements and complementary in-situ experimental data to control systematic distortions. Wafer positions and orientations are determined by minimizing a Â2 computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables evaluated in special co...

  5. First year operational experience with the Cherenkov Detector (DIRC) of BaBar

    International Nuclear Information System (INIS)

    Adam, I.; BaBar Collaboration

    2000-01-01

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Y(4s) resonance

  6. BABAR - the detector for the PEP II B Factory at SLAC

    International Nuclear Information System (INIS)

    Lueth, V.

    1994-09-01

    BABAR refers to the detector that is being designed for the PEP II B-Factory at SLAC to perform a comprehensive study of CP violation in B meson decays. The design requirements and the principal detector components are briefly described. A summary of the expected physics performance is presented

  7. Final Report: BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    International Nuclear Information System (INIS)

    Judd, Dennis J.

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas

  8. Final Report BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    CERN Document Server

    Judd, D J

    2000-01-01

    The Prairie View AandM University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR-. With the GEANT3 simulation essentially FR-ozen, and the GEANT4 full simulation of the IFR- done, we have decided to redirect our efforts toward other areas.

  9. The IFR Online Detector Control system at the BaBar Experiment

    International Nuclear Information System (INIS)

    Paolucci, Pierluigi

    1999-01-01

    The Instrumented Flux Return (IFR)[1] is one of the five subdetectors of the BaBar[2] experiment on the PEP II accelerator at SLAC. The IFR consists of 774 Resistive Plate Chamber (RPC) detectors, covering an area of about 2,000 m 2 and equipped with 3,000 Front-end Electronic Cards (FEC) reading about 50,000 channels (readout strips). The first aim of a B-factory experiment is to run continuously without any interruption and then the Detector Control system plays a very important role in order to reduce the dead-time due to the hardware problems. The I.N.F.N. group of Naples has designed and built the IFR Online Detector Control System (IODC)[3] in order to control and monitor the operation of this large number of detectors and of all the IFR subsystems: High Voltage, Low Voltage, Gas system, Trigger and DAQ crates. The IODC consists of 8 custom DAQ stations, placed around the detector and one central DAQ station based on VME technology and placed in electronic house. The IODC use VxWorks and EPICS to implement slow control data flow of about 2500 hardware channels and to develop part of the readout module consisting in about 3500 records. EPICS is interfaced with the BaBar Run Control through the Component Proxy and with the BaBar database (Objectivity) through the Archiver and KeyLookup processes

  10. Improving the Security and Performance of the BaBar Detector Controls System

    International Nuclear Information System (INIS)

    Kotturi, Karen D.

    2003-01-01

    It starts out innocently enough--users want to monitor Online data and so run their own copies of the detector control GUIs in their offices and at home. But over time, the number of processes making requests for values to display on GUIs, webpages and stripcharts can grow, and affect the performance of an Input/Output Controller (IOC) such that it is unable to respond to requests from requests critical to data-taking. At worst, an IOC can hang, its CPU having been allocated 100% to responding to network requests. For the BaBar Online Detector Control System, we were able to eliminate this problem and make great gains in security by moving all of the IOCs to a non-routed, virtual LAN and by enlisting a workstation with two network interface cards to act as the interface between the virtual LAN and the public BaBar network. On the interface machine, we run the Experimental Physics Industrial Control System (EPICS) Channel Access (CA) gateway software (originating from Advanced Photon Source). This software accepts as inputs, all the channels which are loaded into the EPICS databases on all the IOCs. It polls them to update its copy of the values. It answers requests from applications by sending them the currently cached value. We adopted the requirement that data-taking would be independent of the gateway, so that, in the event of a gateway failure, data-taking would be uninterrupted. In this way, we avoided introducing any new risk elements to data-taking. Security rules already in use by the IOC were propagated to the gateway's own security rules and the security of the IOCs themselves was improved by removing them from the public BaBar network

  11. Study of Rare Radiative B Decay to K*(1430) Meson Using the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qinghua; /Pennsylvania U.

    2005-09-14

    Radiative B Meson decay through the b {yields} s{gamma} process has been one of the most sensitive probe of new physics beyond the Standard Model, because of its importance in understanding the phenomenon of CP violation, which is believed to be necessary to explain the excess of matter over anti-matter in our universe. The inclusive picture of the b {yields} s{gamma} process is well established; however, our knowledge of the exclusive final states in radiative B meson decays is rather limited. We have investigated one of them, the exclusive, radiative B decay to the charmless K*{sub 2}(1430) meson, in a sample of 88.5 x 10{sup 6} B{bar B} events with the BABAR detector at the PEP-II storage ring. We present a measurement of the branching fractions {Beta}(B{sup 0} {yields} K*{sub 2}(1430){sup 0}{gamma}) = (1.22 {+-} 0.25 {+-} 0.10) x 10{sup -5} and {Beta}(B{sup +} {yields} K*{sub 2}(1430){sup +}){gamma} = (1.45 {+-} 0.40 {+-} 0.15) x 10{sup -5}, where the first error is statistical and the second systematic. In addition, we have performed the first search for direct CP violation in this decay with the measured asymmetry in B{sup 0} {yields} K*{sub 2}(1430){sup 0}{gamma} of {Alpha}{sub CP} = -0.08 {+-} 0.15 {+-} 0.01.

  12. Investigation of B-->D{sup (*)}anti-D{sup (*)}K Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jean-Pierre

    2001-07-30

    Using about 23M B{bar B} events collected in 1999-2000 with the BABAR detector, they report the observation of several hundred B {yields} D{sup (*)} {bar D}(*) K decays with two completely reconstructed D mesons. The preliminary branching fractions of the low background decay modes B{sup 0} {yields} D*{sup -} D{sup (*)}{sup 0} K{sup +} are determined to be {Beta}(B{sup 0} {yields} D*{sup -} D{sup 0}K{sup +}) = (2.8 {+-} 0.7 {+-} 0.05) x 10{sup -3} and {Beta}(B{sup 0} {yields} D*{sup -} D*{sup 0} K{sup +}) = (6.8 {+-} 1.7 {+-} 1.7) x 10{sup -3}. Observation of a significant number of candidates in the color-suppressed decay mode B{sup +} {yields} D*{sup +} D*{sup -} K{sup +} is reported with a preliminary branching fraction {Beta}(B{sup +} {yields} D*{sup +} D*{sup -} K{sup +}) = (3.4 {+-} 1.6 {+-} 0.9) x 10{sup -3}.

  13. Study of B --> D*{sup +}D*{sup -} Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-02-10

    Decays of the type B {yields} D(*){bar D}(*) can be used to provide a measurement of the parameter sin2{beta} of the Unitarity Triangle that is complementary to that derived from the mode B{sup 0} {yields} J/{psi}K{sub S}{sup 0}. Here we report a measurement of the branching fraction and a study of the CP parity content for the decay B{sup 0} {yields} D*{sup +}D*{sup -} with the BABAR detector. With data corresponding to an integrated luminosity of 20.7 fb{sup -1} collected at the {Upsilon}(4S) resonance during 1999-2000, we determine the branching fraction to be {Beta}(B{sup 0} {yields} D*{sup +}D*{sup -}) = (8.0 {+-} 1.6(stat ) {+-} 1.2(syst.)) x 10{sup -4}. The measured fraction of the component with odd CP parity is 0.22 {+-} 0.18(stat) {+-} 0.03(syst). Observation of a significant number of candidates in the decay modes B{sup 0} {yields} D*{sup +}D{sup -} and B{sup +} {yields} D*{sup +}D*{sup 0} is reported. All results presented in this note are preliminary.

  14. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  15. The study of CP violation in the B0 → D+D- by means of the BABAR detector. Measurement of the performances of DIRC Cherenkov detector of BABAR: Prototype-II and final detector

    International Nuclear Information System (INIS)

    Benkebil, Mehdi

    1999-01-01

    The work presented in this thesis is divided into two parts: the physics analysis of the decay mode B 0 → D + D - and the performance obtained with a new type of a particle identification detector using the Cherenkov effect technique: the DIRC. The analysis of this decay mode has been performed with data generated from fast simulation and a preliminary version of the reconstruction program. The branching ratio of this channel is predicted to be 4.5 x 10 -4 . The uncertainty in the sin 2 β measurement obtained with this mode is: σ(sin 2β)0.19 and 0.32 for fast simulation and preliminary version of the reconstruction program, respectively. The comparison of this result with the one obtained in the B 0 → J/ψK s 0 mode will bring very useful theoretical insights. The performance study of the DIRC has been done on the prototype-II and the final detector. The beam-test results in terms resolution on the θ c angle and number of Cherenkov photons are the following: σ(θ c ) = 10.2 ± 0.1 mrad per photon, σ(θ c ) = 3.2 ± 0.2 mrad per track and N γ 15.7 ± 0.1 at θ dip = 20 angle and 0 transmission in the bar. The analysis of the first cosmic data collected by the BABAR detector has allowed to study the DIRC in its final configuration. Among all the results obtained, we give the following ones: σ(θ c ) = 10.09 ± 0.06 mrad per photon, σ(θ c ) = 4.71 ± 0.14 mrad per track and N γ 35.2 ± 3.8 at θ dip = 20 angle and 0 transmission in the bar. The extrapolation to the real condition of BABAR for all these results shows that the DIRC will run with performances similar to the nominal values. A detailed study of the background shows that, even though it will not be negligible, it will not compromise the DIRC performances in BABAR. (author)

  16. Search for Rare Multi-Pion Decays of the Tau Lepton Using the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Antonyan, Ruben [The Ohio State Univ., Columbus, OH (United States)

    2007-09-18

    A search for the decay of the τ lepton to rare multi-pion final states is performed using the BABAR detector at the PEP-II asymmetric-energy e+e- collider. The analysis uses 232 fb-1 of data at center-of-mass energies on or near the Y(4S) resonance. In the search for the τ- → 3π-+0vτ decay, we observe 10 events with an expected background of 6.5$+2.0\\atop{-1.4}$ events. In the absence of a signal, we calculate the decay branching ratio upper limit β(τ- → 3π-2π+2π0vτ) < 3.4 x 10-6 at the 90% confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode τ- → 2ωπ-vτ with the further decay of ω →π-π+π0. We observe 1 event, expecting 0.4$+1.0\\atop{-0.4}$ background events, and calculate the upper limit βτ-→ 2ωπ-vτ < 5.4 x 10-7 at the 90% confidence level. This is the first upper limit for this mode.

  17. A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Frank; /Manchester U.

    2006-04-26

    The branching fraction is measured for the decay channels B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} and B{sup +} {yields} {eta}{sub c}K{sup +} where {eta}{sub c} {yields} K{bar K}{pi}, using the BABAR detector. The {eta}{sub c} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} decay channels are used, including non-resonant decays and possibly those through intermediate resonances.

  18. Measurement of Exclusive B Decays to Charmonium and K or K* Branching Fractions with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2004-08-11

    The authors report preliminary results on the measurement of branching fractions of exclusive decays of neutral and charged B mesons into two-body final states containing a charmonium state and a light strange meson. The charmonium mesons considered are J/{psi}, {psi}(2S) and {chi}{sub c1}, and the light mesons are either K or K*. They use a sample of about 124 million B{bar B} events collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center.

  19. Studies of Hadronic Physics with the BaBar Detector at SLAC and the Atlas Detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [Univ. of Louisville, KY (United States). Dept. of Physics

    2016-06-30

    The University of Louisville High Energy Physics group contributed significantly to the success of the BaBar Experiment at SLAC and the Mu2e Experiment at Fermilab. In particular, they have contributed to understanding hadronic processes in electron-positron annihilation and charged lepton flavor violation in a very rare muon conversion process. Both are high-precision undertakings at the Intensity Frontier of High Energy Physics.

  20. Recent results of BABAR

    International Nuclear Information System (INIS)

    Bernard, D.

    2001-01-01

    The BABAR detector at SLAC's PEP-II storage ring has collected data amounting to about 30.4 fb -1 until june 2001. Results on CP violation, and in particular search for direct CP violation, and measurement of rare B decays are presented

  1. Evaluation of the Electronic Bubbler Gas Monitoring System for High Flow in the BaBar Detector

    International Nuclear Information System (INIS)

    Little, Angela

    2003-01-01

    We evaluated the gas monitoring system in the Instrumented Flux Return (IFR) portion of the BaBar detector at the Stanford Linear Accelerator Center (SLAC) to determine its suitability for flows greater than 80 cc/min. Future modifications to the IFR involve particle detectors with a higher gas flow rate than currently in use. Therefore, the bubbler system was tested to determine if it can handle high flow rates. Flow rates between 80 and 240 cc/min were analyzed through short term calibration and long term stability tests. The bubbler system was found to be reliable for flow rates between 80 and 160 cc/min. For flow rates between 200 and 240 cc/min, electronic instabilities known as baseline spikes caused a 10-20% error in the bubble rate. An upgrade would be recommended for use of the bubbler system at these flow rates. Since the planned changes in the IFR will require a maximum flow of 150 cc/min, the bubbler system can sufficiently handle the new gas flow rates

  2. Status of the SLAC/LBL/LLNL B-factory and the BABAR detector

    International Nuclear Information System (INIS)

    Oddone, P.

    1994-10-01

    After a brief introduction on the physics reach of the SLAC/LBL/LLNL Asymmetric B-Factory, the author describes the status of the accelerator and the detector as of the end of 1994. At this time, essentially all major decisions have been made, including the choice of particle identification for the detector. The author concludes this report with the description of the schedule for the construction of both accelerator and detector

  3. The measurements of angle γ of the unitarity triangle with the BaBar detector

    International Nuclear Information System (INIS)

    Derkach, D.

    2010-06-01

    In this thesis, we present studies of the B mesons system performed using the full dataset collected by the BABAR experiment at the PEP-II collider at SLAC. The first analysis presented here is the search of the rare V ub mediated decays B + → D + K *0 . The experimental analysis is performed looking at several D + decay modes. No signals have been found and upper limits have been set to be: Br(B + → D + K 0 ) -6 at 90% prob.; Br(B + → D + K *0 ) -6 at 90% prob. In the second part we present the CP violation studies in the B-meson system, and in particular the measurements of the γ angle of the unitarity triangle. The γ angle is the relative weak phase between the V ub and V cb elements of the CKM matrix. We present and describe the analysis using the charged B meson decays: B + → D 0 K + . These decays are studied through the ADS method, where the neutral D mesons are reconstructed into Kππ 0 final states. Combining this analysis with a similar one that used Kπ as a D 0 final state, we have obtained the following values: ratio r(DK) 0.083+0.028-0.043; γ angle = (86+51-45) degrees. If the results of this thesis are used in the full system of the B → DK and B → DK * decay amplitudes, other interesting results can be obtained. The error on the ratio r(DK * ) for the charged B decays is improved by a factor 3 resulting in r(DK * ) = (0.08 ± 0.03). The ration between the V ub mediated annihilation (A) and the color suppressed (C) amplitudes is obtained to be A/C 0 ) for neutral B decays is found to be (0.27 ± 0.09)

  4. A Measurement of Neutral B Mixing using Di-Lepton Events with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardane, Naveen [Imperial College, London (United Kingdom)

    2000-12-01

    This thesis reports on a measurement of the neutral B meson mixing parameter, Δmd, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software.

  5. Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States

    Energy Technology Data Exchange (ETDEWEB)

    Mihalyi, Attila; /Wisconsin U., Madison

    2006-10-16

    This thesis contains the results of an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 {+-} 52 events, the longitudinal polarizations fraction, f{sub L}, of the decay is measured to be 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst). The nearly fully longitudinal dominance of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay allows for a measurement of the time dependent CP parameters S{sub L} and C{sub L}, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = - 0.03 {+-} 0.18(stat) {+-} 0.09(syst). The CKM angle {alpha} is then determined, using these results and the branching fractions and polarizations of the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} and B{sup +} {yields} {rho}{sup +}{rho}{sup 0}. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A {chi}{sup 2} expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on {alpha}. Selecting the solution compatible with the Standard Model, one obtains {alpha} = 100{sup o} {+-} 13{sup o}.

  6. Amplitude Analysis of the Charmless Decays of Charged B Mesons to the Final States K+- Pi-+ Pi+- Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Thomas Edward; /Bristol U.

    2006-09-18

    Results of an amplitude analysis of the B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +} Dalitz plot are presented. The analysis uses a data sample with an integrated luminosity of 210.6 fb{sup -1}, recorded by the BABAR detector at the PEP-II asymmetric B Factory. This sample corresponds to 231.8 million B{bar B} pairs. Branching fractions and 90% confidence level upper limits are calculated, averaged over charge conjugate states (B). For those modes that have significant branching fraction measurements CP violating charge asymmetry measurements are also presented (A{sub CP}). The results from the nominal fit are summarized.

  7. Search for Lepton Flavour Violating Decays τ → l K0s with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cenci, Riccardo [Univ. of Pisa (Italy)

    2009-03-01

    We present the search for the lepton flavour violating decay τ→ lK0s with the BaBar experiment data. This process and many other lepton flavour violating τ decays, like τ→ μγ and τ→ lll, are one of the most promising channel to search for evidence of new physics. According to the Standard Model and the neutrino mixing parameters, branching fractions are estimated well below 10-14, but many models of new physics allow for branching fractions values close to the present experimental sensitivity. This analysis is based on a data sample of 469fb-1 collected by BABAR detector at the PEP-II storage ring from 1999 to 2007, equivalent to 431 millions of τ pairs. the BABAR experiment, initially designed for studying CP violation in B mesons, has demonstrated to be one of the most suitable environments for studying τ decays. The tracking system, the calorimeter and the particle identification of BABAR, together with the knowledge of the τ initial energy, allow an extremely powerful rejection of background events that, for this analysis, is better than 10-9. Being τ→lK0s a decay mode without neutrinos, the signal τ decay can be fully reconstructed. Kinematical constraints are used in a fit that provides a decay tree reconstruction with a high resolution. For this analysis MC simulated events play a decisive role for estimating the signal efficiency and study the residual background. High statistics MC sample are produced simulating detector conditions for different periods of data collection, in order to reduce any discrepancies with the data. When discrepancies can not be removed, we perform studies to compute a correction factor or an estimation of systematic errors that need to be included in the final measurement. A significant improvement of the current result can be reached only with a higher statistics and, therefore, with a new collider providing a luminosity from 10 to 100

  8. A MEASUREMENT OF THE LIFETIME AND MIXING FREQUENCY OF NEUTRAL B MESONS WITH SEMILEPTONIC DECAYS IN THE BABAR DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Hsiang

    2003-08-29

    The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson {tau}{sub B0} and the B{sup 0}-{bar B}{sup 0} mixing frequency {Delta}m{sub d} are measured with a sample of approximately 14,000 exclusively reconstructed B{sup 0} {yields} D*{sup -} {ell}{sup +}{nu}{sub {ell}} signal events, selected from 23 million B{bar B} pairs recorded at the {Upsilon}(4S)resonance with the BABAR detector at the asymmetric-energy e{sup +}e{sup -} collider, PEP-II. The decay position of the exclusively reconstructed B is determined by the charged tracks in the final state, and its b-quark flavor at the time of decay is known unambiguously from the charge of the lepton. The decay position of the other B is determined inclusively, and its b-quark flavor at the time of decay is determined (tagged) with the charge of tracks in the final state, where identified leptons or kaons give the most information. The decay time difference of two B mesons in the event is calculated from the distance between their decay vertices and the Lorentz boost of the center of mass. Additional samples of approximately 50,000 events are selected for studies of background events. The lifetime and mixing frequency, along with wrong-tag probabilities and the time-difference resolution function, are measured simultaneously with an unbinned maximum-likelihood fit that uses, for each event, the measured difference in B decay times ({Delta}t), the calculated uncertainty on {Delta}t, the signal and background probabilities, and b

  9. A Study of the Rare Charmless Hadronic B Decay B → a00 Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, William Panduro [Imperial College, London (United Kingdom)

    2007-02-01

    An upper limit has been extracted, at the 90% C.L, for the rare charmless hadronic B meson decay B ± → a0(980)±π0, where a0(980)± →ηπ± and η→γγ or η→ π+π-π0. The analysis was based on a sample of approximately 340.7 fb-1 of data taken at the (4S) resonance with the BABAR detector at the PEP-II e+e- collider at SLAC from May 1999 to August 2006. The sample contains (379.9 ± 4.2) million B$\\bar{B}$ pairs.

  10. Measurement of the Decay B→ ωℓν with the BaBar Detector and Determination of |Vub|

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Martin [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    We measure the branching fraction of the exclusive charmless semileptonic decay B→ ωℓν, where ℓ is either an electron or a muon, with the charged B meson recoiling against a tag B meson decaying in the charmed semileptonic modes B → Dℓν or B → D*ℓν. The measurement is based on a dataset of 426.1 fb-1 of e+e- collisions at a CM energy of 10.58 GeV recorded with the BABAR detector at the PEP-II asymmetric B Factory located at the SLAC National Accelerator Laboratory. We also calculate the relevant B → ω hadronic form factors to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.

  11. Determination of the CKM-matrix element |Vub| from the electron energy spectrum measured in inclusive B→Xueν decay with the BABAR detector

    International Nuclear Information System (INIS)

    Lueck, Thomas

    2013-01-01

    This document presents a measurement of the CKM matrix-element vertical stroke V ub vertical stroke in inclusive semileptonic B→X u eν events on a dataset of 471 million B anti B events recorded by the BABAR detector. Inclusive B→X u eν decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B→X u eν decays. A B→D * eν veto is applied to further suppress background. This veto uses D * mesons which have been reconstructed with a partial reconstruction technique.

  12. The study of CP violation in the B{sup 0} {yields} D{sup +}D{sup -} by means of the BABAR detector. Measurement of the performances of DIRC Cherenkov detector of BABAR: Prototype-II and final detector; L'etude de la violation de CP dans le canal B{sup 0} {yields} D{sup +}D{sup -} a l'aide du detecteur BABAR. La mesure des performances du detecteur Cerenkov DIRC de BABAR: Prototype -II et detecteur final

    Energy Technology Data Exchange (ETDEWEB)

    Benkebil, Mehdi [Lab. de l' Accelerateur Lineaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-16

    The work presented in this thesis is divided into two parts: the physics analysis of the decay mode B{sup 0} {yields} D{sup +}D{sup -} and the performance obtained with a new type of a particle identification detector using the Cherenkov effect technique: the DIRC. The analysis of this decay mode has been performed with data generated from fast simulation and a preliminary version of the reconstruction program. The branching ratio of this channel is predicted to be 4.5 x 10{sup -4}. The uncertainty in the sin 2 {beta} measurement obtained with this mode is: {sigma}(sin 2{beta})0.19 and 0.32 for fast simulation and preliminary version of the reconstruction program, respectively. The comparison of this result with the one obtained in the B{sup 0} {yields} J/{psi}K{sub s}{sup 0} mode will bring very useful theoretical insights. The performance study of the DIRC has been done on the prototype-II and the final detector. The beam-test results in terms resolution on the {theta}{sub c} angle and number of Cherenkov photons are the following: {sigma}({theta}{sub c}) = 10.2 {+-} 0.1 mrad per photon, {sigma}({theta}{sub c}) = 3.2 {+-} 0.2 mrad per track and N{sub {gamma}} 15.7 {+-} 0.1 at {theta}{sub dip} = 20 angle and 0 transmission in the bar. The analysis of the first cosmic data collected by the BABAR detector has allowed to study the DIRC in its final configuration. Among all the results obtained, we give the following ones: {sigma}({theta}{sub c}) = 10.09 {+-} 0.06 mrad per photon, {sigma}({theta}{sub c}) = 4.71 {+-} 0.14 mrad per track and N{sub {gamma}} 35.2 {+-} 3.8 at {theta}{sub dip} = 20 angle and 0 transmission in the bar. The extrapolation to the real condition of BABAR for all these results shows that the DIRC will run with performances similar to the nominal values. A detailed study of the background shows that, even though it will not be negligible, it will not compromise the DIRC performances in BABAR.

  13. Microstrip gas detectors development for the CMS tracker and branching fractions measurement of hadronic B decays with the BaBar experiment

    International Nuclear Information System (INIS)

    Zghiche, A.

    2007-01-01

    The Compact Muon Solenoid (CMS) is one of the two detectors, designed for the search of the Higgs boson at the Large Hadron Collider (LHC), to operate late 2007 at CERN. Micro Strip Gas Counters (MSGC) have been extensively studied to qualify as part of the CMS tracker. When exposed to highly ionizing particles and to high rates of incident particles, MSGCs have shown a good behavior allowing them to cope with the LHC environment. Similar micro pattern gaseous detectors such as Gas Electron Multiplier (GEM) and Micro Mesh gas detectors (MicroMegas) are developed to be used in high energy physics. BaBar, the detector for the Slac PEP-II asymmetric e + e - B Factory operating at the Y(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. First observation of CP violation has been realized in 2001. Since then an impressive amount of B decays measurements has been performed. Among those, we present here the branching fraction measurements of charged and neutral B decays to Dπ - , D * π - , and D ** π - with a missing mass method, based on a sample of 231 million Y(4S) → BB-bar pairs. In order to do this, one of the B mesons is fully reconstructed and the 'recoil' one decays into a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. The same sample is used to reconstruct charmed mesons (D, Ds) and baryons (Λ c ) in the 'recoil side' allowing the measurement of the charm number in the B decays. (author)

  14. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    International Nuclear Information System (INIS)

    Yi, M.

    2004-01-01

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO 2 , argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 ± 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 ± 1000SCCM and a time requirement of 56 ± 5 seconds to flush an entire module

  15. Study of |Vtd/Vts| Using a Sum of Exclusive B → X Gamma Final States Reconstructed With the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, Mark James [Imperial College, London (United Kingdom)

    2013-06-01

    Experimental data collected with the BABAR detector consisting of 470.9 ± 2.8 million BB events are used to measure the sum of seven exclusive B → Xd(s) γ transitions, where Xd(s) is any non-strange (strange) charmless hadronic state. For each transition avour, measurements are made in the hadronic mass ranges 0.5 ≤ mX < 1.0 GeV=c2 and 1.0 ≤ mX ≤ 2.0 GeV=c2. These are extrapolated and combined in a model-dependent way to obtain the ratio of the total branching fractions, B(B→ X)=B(B→ X ) = 0.0456 ± 0.0110 ± 0.0097 where the first error is statistical and the second error is systematic. This is interpreted as a measurement of the ratio of CKM matrix elements |Vtd/Vts| = 0.211 ± 0.023 ± 0.022 ± 0.001 where the final error is due to theoretical uncertainty.

  16. Study of Branching Fractions and CP-Violating Asymmetries in B Meson Decays to Rho And Pion Final State with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinwei; /Wisconsin U., Madison

    2006-03-22

    We present measurements of branching fractions and CP-violating asymmetries in B-meson decays to {rho}{sup +}{pi}{sup 0}, {rho}{sup 0}{pi}{sup +} and {rho}{sup 0}{pi}{sup 0}. The data sample comprises 89 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions {Beta}(B{sup +} {yields} {rho}{sup +}{pi}{sup 0}) = (10.9 {+-} 1.9(stat) {+-} 1.9(syst)) x 10{sup -6} and {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup +}) = (9.5 {+-} 1.1 {+-} 0.9) x 10{sup -6}, and we set a 90% confidence-level upper limit {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup 0}) < 2.9 x 10{sup -6}. We measure the charge asymmetries A{sub CP}{rho}{sup +}{pi}{sup 0} = 0.24 {+-} 0.16 {+-} 0.06 and {Alpha}{sub CP}{sup {rho}{sup 0}{pi}{sup +}} = -0.19 {+-} 0.11 {+-} 0.02. We also present the preliminary measurement of CP-violating asymmetries in B{sup 0} {yields} ({rho}{pi}){sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} decays using a time-dependent Dalitz plot analysis. The results are obtained from a data sample of 213 million {Upsilon}(4S) {yields} B{bar B} decays, collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This analysis extends the narrow-{rho} quasi-two-body approximation used in the previous analysis, by taking into account the interference between the {rho} resonances of the three charges. We measure 16 coefficients of the bilinear form factor terms occurring in the time-dependent decay rate of the B{sup 0} meson with the use of a maximum-likelihood fit. We derive the physically relevant quantities from these coefficients. We measure the direct CP-violation parameters {Alpha}{sub {rho}{pi}} = -0.088 {+-} 0.049 {+-} 0.013 and C = 0.34 {+-} 0.11 {+-} 0.05, where the first errors are statistical and the second systematic. For the mixing-induced CP-violation parameter we find S = -0.10 {+-} 0.14 {+-} 0.04, and for the dilution and

  17. Development of a monitor system for gas based detectors and measurement of electron attachment in the chamber gas; Aufbau eines Monitorsystems fuer gasbasierte Detektoren und Messung der Elektronenanlagerung im Kammergas

    Energy Technology Data Exchange (ETDEWEB)

    Linzmaier, Diana

    2009-01-15

    In the framework of an international collaboration a new electron-positron linear accelerator (ILC) with a c. m. energy up to 500 GeV is planned. For the International Large Detector Concept (ILD) a time projection chamber (TPC) shall perform precise measurements of the particle tracks. In order to fulfil the high requirements on the resolution, a microstructure gas-amplification system is used for read-out. For research and development of the detector principle for the application at the ILC at DESY a large TPC prototype is developed. For the operation of the detector it is necessary to monitor its state and especially that of the measurement gas. For this purpose in the framework of this thesis a slow control system is built, which shall make possible for the different collaboration partners to operate the prototype and to integrate the slow control data into their measurement. For this with an object-oriented control system a graphic user interface was created, which makes an overview over the applied measurement devices and a driving allows. Furthermore the influence of impurities of the gas mixture by oxygen was studied. For this with a small TPC prototype measurements of the electron attachment coefficient at different oxygen concentrations were performed with a magnetic flux density of 4 T. From the amplitude of the measurement signal a rate for the electron attachment could be determined. The values obtained for this agree sufficiently in comparison with literature values. [German] Im Rahmen einer internationalen Kollaboration ist ein neuer Elektronen-Positronen-Linearbeschleuniger (ILC) mit einer Schwerpunktsenergie bis zu 500 GeV geplant. Fuer das International Large Detector Concept (ILD) soll eine Zeitprojektionskammer (TPC) praezise Vermessungen der Teilchenspuren durchfuehren. Um die hohen Anforderungen an die Aufloesung zu erfuellen, wird ein Mikrostruktur-Gasverstaerkungssystem zur Auslese verwendet. Zur Erforschung und Entwicklung des

  18. Measurement of the CP Content and CP Violating Asymmetries in Neutral B Decays to Two D Mesons with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lillard, V.

    2005-04-25

    This dissertation presents a measurement of time-dependent CP-violating asymmetries and a measurement of the CP-odd parity fraction in the decay B{sup 0} {yields} D*{sup +} D*{sup -}. The measurements are derived from a data sample of 88 x 10{sup 6} B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory located at the Stanford Linear Accelerator Center. A one-dimensional angular analysis of the decay products measures the CP-odd fraction to be 0.063 {+-} 0.055(stat) {+-} 0.009(syst), indicating that the D*{sup +}D*{sup -} final state is mostly CP-even. The time-dependent CP asymmetry parameters Im({lambda}{sub +}) and |{lambda}{sub +}| are determined from an analysis of the time-dependence of flavor-tagged B decays. One neutral B meson is fully reconstructed in a D*{sup +} D*{sup -} final state, while the other B is inclusively reconstructed in order to determine its flavor. The Standard Model predicts the CP asymmetry parameters Im({lambda}{sub +}) and |{lambda}{sub +}| to be sin2{beta} and 1, respectively, in the absence of penguin diagram contributions. They are determined to be 0.05 {+-} 0.29(stat) {+-} 0.10(syst) and 0.75 {+-} 0.19(stat) {+-} 0.02(syst), respectively, which corresponds to a 2.5 sigma deviation from Standard Model predictions with penguin contributions ignored.

  19. Measurement of CP Asymmetries and Branching Fractions in Neutral B Meson Decays to Charged Pions and Kaons with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Farbin, A.

    2005-02-10

    This dissertation presents a measurement of CP asymmetries and branching fractions for neutral B meson decays to two-body final states of charged pions and kaons. The results are obtained from a data sample of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B factory located at the Stanford Linear Accelerator Center. A fit to kinematic, topological, and particle identification information measures the charge-averaged branching fractions {Beta}(B{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (4.7 {+-} 0.6 {+-} 0.2) x 10{sup -6} and {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}) = (17.9 {+-} 0.9 {+-} 0.7) x 10{sup -6}; the 90% confidence level upper limit {Beta}(B{sup 0} {yields} K{sup +}K{sup -}) < 0.6 x 10{sup -6}; and the direct CP-violating charge asymmetry {Alpha}{sub K{pi}} = -0.102 {+-} 0.050 {+-} 0.016 [-0.188, -0.016], where the first uncertainties are statistical and the second are systematic and the ranges in square brackets indicate the 90% confidence interval. A fit which adds decay time and b-flavor tagging information measures the CP-violating parameters for B{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays S{sub {pi}{pi}} = 0.02 {+-} 0.34 {+-} 0.05 [-0.54, +0.58] and C{sub {pi}{pi}} = -0.30 {+-} 0.25 {+-} 0.04 [-0.72, +0.12].

  20. A measurement of the lambda-c baryon decays to proton kaon(-) pion(+) absolute branching fraction with the BaBar detector

    Energy Technology Data Exchange (ETDEWEB)

    Roat, C

    2003-11-06

    A measurement of {Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}) is presented based on data collected with the BaBar detector at the Stanford Linear Accelerator Center. Branching fraction measurements represent a large portion of what is known about short-lived particles, the strong force that binds them, and the weak force that causes them to decay. While the majority of branching fraction measurements are done as ratios between two decay modes, it is the absolute measurements of a few particular decay modes that set the scale for these relative measurements. The {Lambda}{sub c}{sup +} particle is one of the four weakly decaying hadrons into which more than 90% of the known heavy quark hadrons will eventually decay. Thus, an absolute measurement of the branching fraction for {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} is important for many studies of the heavy quark sector, from spectroscopy to B meson decays. The number of produced {Lambda}{sub c}{sup +}'s is inferred from the number of events reconstructed with an antiproton and an accompanying D meson. The final result of {Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}) = [6.12 {+-} 0.31(stat.) {+-} 0.42(syst.)]% represents more than a two-fold improvement in precision over the world average. The dominant source of systematic uncertainty is the irreducible background of {Xi}{sub c} baryons.

  1. Recent Results of BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Denis

    2001-11-07

    The BABAR detector at SLAC's PEP-II storage ring has collected data equivalent to about 30.4 fb{sup -1} through June 2001. Results on CP violation, and in particular searches for direct CP violation, and measurement of rare B decays are presented.

  2. Measurement of the angle alpha at BABAR

    International Nuclear Information System (INIS)

    Perez, A.

    2009-01-01

    The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.

  3. Rare B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Datta, M

    2005-03-14

    The authors present recent results on rare B meson decays based on data taken by the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} collider. Included in this report are measurements of branching fractions and other quantities of interest for several hadronic, radiative, electroweak, and purely leptonic decays of B mesons.

  4. Rare B Decays in BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Hicheur, A

    2004-08-25

    Measurements and searches for rare B decays have been performed with the BaBar detector at the PEP-II e{sup +}e{sup -} asymmetric B Factory, operating at the {Upsilon}(4S) resonance. The authors report some recent branching fraction measurements on hadronic and radiative B decays, occurring from b --> s/d and b --> u transitions. Most of the results presented here are based on a data sample corresponding to a luminosity of 81.9 fb{sup -1}.

  5. Measurement of the Branching Fraction for the DecayB^{\\pm} to K^{*\\pm} gamma, K^{*\\pm} toK^{\\pm} \\pi^{0} with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    koeneke, K

    2006-09-08

    The branching fraction of the radiative penguin B meson decay B{sup {+-}} {yields} K*{sup {+-}}{gamma} is measured at the PEP-II asymmetric energy e{sup +}e{sup -} collider, operating at a center of momentum energy of 10.58 GeV, the {Upsilon}(4S) resonance. This document concentrates on the case K*{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0}; {pi}{sup 0} {yields} {gamma}{gamma}. This analysis is based on a dataset of 88.2-million {Upsilon}(4S) {yields} B{bar B} events corresponding to 81.3 fb{sup -1} collected with the BABAR detector.

  6. Studies of the Strange Hadronic Tau Decay Tau- to K0(S) Pi- Nu-Tau Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Andrew J.; /Manchester U. /SLAC

    2006-01-27

    A study of the decay {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} (K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) using the BABAR detector is presented. Using 124.4 fb{sup -1} of data we measure {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) = (0.830 {+-} 0.005(stat) {+-} 0.042(syst))%, which is the world's most precise measurement to date of this branching ratio, and is consistent with the current world average. This preliminary result, unlike most of the {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) measurements already published, is systematics dominated and so the biggest future improvement to this number should come from reducing the systematic uncertainties in the analysis. A study of the K{pi} mass spectrum, from which the strange (K{pi}) spectral function can be measured, reveals excess contributions above the K*(892) tail at higher K{pi} mass. While in the past this has been thought to be due to K*(892) - K*(1410) interference, we find that the K*(1410), whose branching ratio to K{pi} is approximately 7%, seems insufficient to explain the excess mass observed in the data. Instead, we perform a fit using a K*(892) - K*(1680) interference model and find better agreement. The discrepancy that remains could be due to an s-wave contribution to the interference that is not parameterized in the model used, and/or detector smearing that is not accounted for in our fit. We also attempt to find an s-wave contribution to the K{pi} mass spectrum by searching for an sp-interference effect. While we find a hint that such an effect exists, we have neither the confidence in the statistics nor systematics in the higher K{pi} mass region to announce an observation. We conclude that it would be a worthwhile study to pursue.

  7. BaBar Data Aquisition

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C; Russell, J J

    1998-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by analysing the decays of a very large sample of B and Bbar mesons produced at the high luminosity PEP-11 accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detector subsystems. Data from the front end electronics is read into commercial VME processors via a custom "personality card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data are read out via a non-blocking network switch to a farm of commercial UNIX processors. Careful design of the core data acquisition code has enabled us to sustain events rates in excess of 20 kHz while maintaini...

  8. The DIRC Particle Identification System for the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adam, I

    2004-06-30

    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail.

  9. Study of the machine background induced by the PEP-II collider with a mini-TPC. Study of the doubly-charmed decay of the B meson with the detector BaBar

    International Nuclear Information System (INIS)

    Trincaz-Duvoid, S.

    2001-01-01

    The work presented in this thesis is divided into two parts. The first one deals with the machine background induced by the PEP-II collider. This study has been performed with a mini-TPC before the start of the BaBar experiment. The second part concerns the measurements of the branching ratio of the decay modes B 0 → D *- D(*) 0 K + and of the inclusive branching ratio Br(B 0 → K ± X). These measurements have been obtained with the first BaBar data. During the commissioning of the PEP-II collider, the charged tracks rate close to the interaction point has been measured with the mini-TPC. This study has pointed to the fact that the machine background was much higher than predicted by the simulation. These bad background conditions were due to the poor quality of the vacuum in the rings. This relatively high pressure in the rings produces electro-magnetic showers at the interaction point due to beam gas interactions. The potential risks for the BaBar detector due to the machine backgrounds have been clearly pointed out by the studies performed for this thesis. The addition of some collimators and a deep understanding of the machine have greatly reduced the background. Nevertheless, the radiation level in BaBar is continuously monitored in order to protect the detector. The study of the b → cc-bar channel is an important point for the understanding of the overall picture of the B meson decay. With an integrated luminosity of 17.3 fb -1 recorded by the BaBar detector the following branching ratio using exclusive reconstruction technique have been measured: Br(B 0 → D *- D 0 K + ) = (0.29 ± 0.06 (stat) ± (syst)) % Br(B 0 → D *- D *0 K + ) = (1.16 ± 0.15 (stat) ± 0.16 (syst)) % A partial reconstruction has also been developed. With an integrated luminosity of 8.9 fb -1 , the branching ratio of B 0 into D *- D 0 K + has been measured: Br(B 0 → D *- D 0 K + ) = (0.45 ± 0.12 (stat) ± 0.25 (syst)) % This result is in good agreement with the value obtained

  10. Measurement of the angle alpha at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; /Orsay, LAL

    2009-06-25

    The authors present recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory, operating at the {Upsilon}(4S) resonance. They present constraints on {alpha} from B {yields} {pi}{pi}, B {yields} {rho}{rho} and B {yields} {rho}{pi} decays.

  11. Measurement of CP Parameters in B- --> D(pi+pi-pi0)K- and Study of the X(3872) in B --> J/psi pi+ pi- K with the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Winklmeier, Frank; /SLAC

    2006-09-18

    This dissertation presents two analyses performed on data collected with the BABAR detector at the SLAC PEP-II e{sup +}e{sup -} asymmetric-energy B Factory. First, a Dalitz analysis is shown that performs the first measurement of CP violation parameters in the decay B{sup -} {yields} D{sub {pi}{sup +}{pi}{sup -}{pi}{sup 0}}K{sup -} using the decay rate asymmetry and D{sup 0} - {bar D}{sup 0} interference. The results can be used to further constrain the value of the CKM angle {gamma}. The second analysis studies the properties of the X(3872) in neutral and charged B {yields} J/{psi}{pi}{sup +}{pi}{sup -}K decays. Measurements of the branching ratio and mass are presented as well as the search for additional resonances at higher masses.

  12. Determination of the CKM-matrix element |V{sub ub}| from the electron energy spectrum measured in inclusive B→X{sub u}eν decay with the BABAR detector

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, Thomas

    2013-01-30

    This document presents a measurement of the CKM matrix-element vertical stroke V{sub ub} vertical stroke in inclusive semileptonic B→X{sub u}eν events on a dataset of 471 million B anti B events recorded by the BABAR detector. Inclusive B→X{sub u}eν decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B→X{sub u}eν decays. A B→D{sup *}eν veto is applied to further suppress background. This veto uses D{sup *} mesons which have been reconstructed with a partial reconstruction technique.

  13. Microstrip gas detectors development for the CMS tracker and branching fractions measurement of hadronic B decays with the BaBar experiment; Developpement de detecteur gazeux a micropistes pour le trajectographe de l'experience CMS et mesures de rapports d'embranchement de desintegrations hadroniques du meson B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Zghiche, A

    2007-01-15

    The Compact Muon Solenoid (CMS) is one of the two detectors, designed for the search of the Higgs boson at the Large Hadron Collider (LHC), to operate late 2007 at CERN. Micro Strip Gas Counters (MSGC) have been extensively studied to qualify as part of the CMS tracker. When exposed to highly ionizing particles and to high rates of incident particles, MSGCs have shown a good behavior allowing them to cope with the LHC environment. Similar micro pattern gaseous detectors such as Gas Electron Multiplier (GEM) and Micro Mesh gas detectors (MicroMegas) are developed to be used in high energy physics. BaBar, the detector for the Slac PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the Y(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. First observation of CP violation has been realized in 2001. Since then an impressive amount of B decays measurements has been performed. Among those, we present here the branching fraction measurements of charged and neutral B decays to D{pi}{sup -}, D{sup *}{pi}{sup -}, and D{sup **}{pi}{sup -} with a missing mass method, based on a sample of 231 million Y(4S) {yields} BB-bar pairs. In order to do this, one of the B mesons is fully reconstructed and the 'recoil' one decays into a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. The same sample is used to reconstruct charmed mesons (D, Ds) and baryons ({lambda}{sub c}) in the 'recoil side' allowing the measurement of the charm number in the B decays. (author)

  14. The BaBar Data Acquisition System

    CERN Document Server

    Scott, I; Grosso, P; Huffer, M E; O'Grady, C; Russell, J J

    1999-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by ana-lyzing the decays of a very large sample of B and B(Bar) mesons produced at the high luminosity PEP-II accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detec-tor subsystems. Data from the front end electronics is read into commercial VME processors via a custom "Personality Card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data is read out via a non-blocking network switch to a farm of commercial UNIX processors. The current implementation of the BaBar data acquisition sys-tem has been shown to sustain a Level 1 trigger rate of 1.3...

  15. Study of the decays: B {yields} {eta}{sub c} K with the detector BaBar; Etude des desintegrations B {yields} {eta}{sub c} K avec le detecteur BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Langer, M

    2003-04-01

    This thesis presents a study of the exclusive decays B{sup {+-}} {yields} {eta}{sub c}K{sup {+-}} and B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} with {eta}{sub c} {yields} K{sub S}{sup 0}K{sup {+-}}{pi}{sup {+-}}, {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} and {eta}{sub c} {yields} K{sup +}K{sup -}K{sup +}K{sup -}, and the measurement of their branching ratios. We use 20.7 fb{sup -1} of data collected by the experiment BABAR at the {gamma}(4S) resonance between October 1999 and October 2000. These data correspond to 23 million BB-bar pairs. In the decays {eta}{sub c} {yields} K{sub S}{sup 0}K{sup {+-}}{pi}{sup {+-}} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} the observed signals are statistically significant; they allow to measure the branching ratios. Upper limits are set, in the channels with {eta}{sub c} {yields} K{sup +}K{sup -}K{sup +}K{sup -}: B(B{sup +}{yields}{eta}{sub c}K{sup +}) * B({eta}{sub c}{yields}K{sup +}K{sup -}K{sup +}K{sup -}) < 5,6 x 10{sup -6} (90% confidence level); B(B{sup +}{yields}{eta}{sub c}K{sup +}) * B({eta}{sub c}{yields}K{sup 0}K{sup -}{pi}{sup +}+c.c.) (52,8{+-}7,9{+-}7,3) x 10{sup -6}; B(B{sup +}{yields}{eta}{sub c}K{sup +}) * B({eta}{sub c}{yields}K{sup +}K{sup -}{pi}{sup 0}) (15,5{+-}3,6{+-}2,5) x 10{sup -6}; B(B{sup 0}{yields}{eta}{sub c}K{sup 0}) * B({eta}{sub c}{yields} K{sup +}K{sup -}K{sup +}K{sup -}) < 2,3 x 10{sup -6} (90% confidence level); B(B{sup 0}{yields}{eta}{sub c}K{sup 0}) * B({eta}{sub c}{yields}K{sup 0}K{sup -}{pi}{sup +}+c.c.) (36,8{+-}11,6{+-}6,0)x 10{sup -6}; B(B{sup 0}{yields}{eta}{sub c}K{sup 0}) * B({eta}{sub c}{yields} K{sup +}K{sup -}{pi}{sup 0}) = (11,3{+-}5,1{+-}2,4) x 10{sup -6}; where the first error is statistical and the second systematic. The average of the branching ratio of {eta}{sub c} {yields}K{sub S}{sup 0}K{sup {+-}}{pi}{sup {+-}} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} for the channels B{sup {+-}} {yields} {eta}{sub c}K{sup {+-}} and B{sup 0} {yields} {eta

  16. The BaBar Light Pulser System

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P

    2004-03-18

    The BABAR experiment and the PEP-II e{sup +}e{sup -} collider at SLAC in California started taking data in May 1999. The aim of the experiment is to study CP violation in the B meson system. A central part of the BABAR detector is the CsI(Tl) electromagnetic calorimeter. To make precision measurements with a calorimeter in a high luminosity environment requires that the crystals are well calibrated and continually monitored for radiation damage. However, this should not impact the total integrated luminosity. To achieve this goal a fiber-optic light pulser system was designed. The light sources chosen were xenon flash lamps. A novel light distribution method was developed using an array of graded index microlenses. Initial results from performance studies are presented.

  17. Study of the CP violation in the partially reconstructed B{sup 0}{yields} D{sup *}{pi} to with the BaBar detector; Etude de la violation de la symetrie CP dans les desintegrations B{sup 0} {yields} D{sup *}{pi} partiellement reconstruites avec le detecteur BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, M

    2005-04-01

    The main part of this work is dedicated to the analysis of the data collected in the BaBar experiment in order to study CP violation in the B {yields} D{sup *{+-}}{pi}{sup {+-}} decay. This decay leads to the measurement of sin(2{beta} + {gamma}) through the analysis of a CP violation varying with time. B{sup 0} can decay into D{sup *-}{pi}{sup +} either directly or after mixing with B{sup 0}-bar. As a consequence we can consider a CP violation effect in the interference between mixing and decay. The weak {gamma} phase stems from the interference between the b {yields} c and b {yields} u transitions and the 2{beta} weak phase of the B{sup 0} B{sup 0}-bar mixing. The main difficulty of the measurement lies in the fact that asymmetries are very small, it is necessary to have important statistics in order to study CP violation in this mode. The B {yields} D{sup *{+-}}{pi}{sup {+-}} decay is followed by the D{sup *{+-}} {yields} D{sup 0}{pi}{sub s}{sup {+-}} decay. We have used a partial reconstruction technique of the B{sup 0} that decays into D{sup *}{pi} in order to maximize the number of possible events. In this technique only the 2 pions issued from B and D{sup *} decays are reconstructed. The other part of this work deals with the alignment of the particle identification detector. This detector, based on the measurement of the emission angle of Cherenkov photons, is of prime importance for discriminating pions from kaons. The measurement resolution is all the better as the alignment of the detector is more accurate. (A.C.)

  18. Measurement of the Branching Fractions and CP Asymmetries of B{sup -} --> D{sup 0}{sub (CP)}K{sup -} Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2004-08-17

    The authors have reconstructed B{sup -} --> D{sup 0}K{sup -} decays with D{sup 0} mesons decaying to non-CP (K{sup -}{pi}{sup +}), CD-even (K{sup -}K{sup +}, {pi}{sup -}{pi}{sup +}) and CP-odd (K{sup 0}{sub s}{pi}{sup 0}) eigenstates. They have measured the CP asymmetries A{sub CP{sup +}} = 0.40 {+-} 0.15(stat) {+-} 0.08(syst), A{sup CP{sup -}} = 0.21 {+-} 0.17(stat) {+-} 0.07(syst), and the double ratio of branching fractions R{sub +} = 0.87 {+-} 0.14(stat) {+-} 0.06(syst), R{sub -} = 0.80 {+-} 0.14(stat) {+-} 0.08(syst). These results improve the previous existing measurements from BABAR. All results presented in this document are preliminary.

  19. Study of the background noise generated by the accelerator PEP-2 with a CsI(Na) scanning ring. Study of mass difference between B neutral mesons by using BABAR detector and DI-leptons events; Etude du bruit de fond engendre par l'accelerateur PEP-2 avec un anneau de cristaux de CsI(Na). Etude des oscillations des mesons B neutres avec le detecteur BaBar en utilisant les evenements DI-Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Domenico, G. de

    2000-06-14

    The first part of this report is dedicated to the CP-violation in the sector of B quarks and to its experimental proof through 2 major equipment: the B meson factory PEP-2 and the detector BABAR. The second part deals with the background noise generated by PEP-2. The third part presents the study of the oscillations of neutral B mesons with the detector BABAR. The study of the background noise shows important differences between the experimental data and the simulation. These differences are thought to be due on one hand to the lack of accuracy of pressure models that set the normalisation of the simulated background noise, and on the other hand to the absence of simulation of particles that undergo Coulomb diffusion and do more than a lap before bumping into the void tube. The second hypothesis is backed by the evaluation of the collimation effect of the beam that appears to be more important in experimental data than in the simulation. Among the main results given by the BABAR collaboration, the measurement of the oscillation frequency of the neutral B meson is very important. This measurement is based on semi-leptonic decays of B mesons in order to tag the favour of neutral B mesons at the very moment of their decay. The data analysis was performed over 2.3 10{sup 6} decays of B meson pairs and we obtained: {delta}m{sub d} = (0.495 {+-} 0.026 {+-} 0.023) {Dirac_h}ps{sup -1}. The accuracy on the value of {delta}m{sub d} could be improved by using tagging methods based on the semi-exclusive then exclusive reconstruction of neutral B mesons. (A.C.)

  20. Recent BABAR Results

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, Gerald [University of Bergen, Bergen (Norway). Dept. of Physics

    2015-04-29

    We present herein the most recent BABAR results on direct CP asymmetry measurements in B → Xsγ, on partial branching fraction and CP asymmetry measurements in B → Xs+-, on a search for B → π/ηℓ+- decays, on a search for lepton number violation in B+ → X-+ℓ'+ modes and a study of B0 →ωω and B0 → ωφ decays.

  1. CP Violation at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Christophe; /DSM, DAPNIA, Saclay

    2011-11-15

    We report recent measurements of the three CKM angles of the Unitarity Triangle using about 383 millions b{bar b} pairs collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The results of the angles ({beta}, {alpha}, {gamma}) of the unitarity triangle are consistent with Belle results, and with other CKM constraints such as the measurement of {epsilon}{sub K}, the length of the sides of the unitarity triangle determined from the measurements of {Delta}m{sub d}, {Delta}m{sub s}, |V{sub ub}|. This is an impressive confirmation of Standard Model in quark-flavor sector.

  2. Study of the machine background induced by the PEP-II collider with a mini-TPC. Study of the doubly-charmed decay of the B meson with the detector BaBar; Etude du bruit de fond engendre par la machine PEP-2 a l'aide d'une mini-TPC. Etude de la desintegration doublement charmee du meson B avec le detecteur BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Trincaz-Duvoid, S

    2001-01-01

    The work presented in this thesis is divided into two parts. The first one deals with the machine background induced by the PEP-II collider. This study has been performed with a mini-TPC before the start of the BaBar experiment. The second part concerns the measurements of the branching ratio of the decay modes B{sup 0} {yields} D{sup *-}D(*){sup 0}K{sup +} and of the inclusive branching ratio Br(B{sup 0} {yields} K{sup {+-}}X). These measurements have been obtained with the first BaBar data. During the commissioning of the PEP-II collider, the charged tracks rate close to the interaction point has been measured with the mini-TPC. This study has pointed to the fact that the machine background was much higher than predicted by the simulation. These bad background conditions were due to the poor quality of the vacuum in the rings. This relatively high pressure in the rings produces electro-magnetic showers at the interaction point due to beam gas interactions. The potential risks for the BaBar detector due to the machine backgrounds have been clearly pointed out by the studies performed for this thesis. The addition of some collimators and a deep understanding of the machine have greatly reduced the background. Nevertheless, the radiation level in BaBar is continuously monitored in order to protect the detector. The study of the b {yields} cc-bar channel is an important point for the understanding of the overall picture of the B meson decay. With an integrated luminosity of 17.3 fb{sup -1} recorded by the BaBar detector the following branching ratio using exclusive reconstruction technique have been measured: Br(B{sup 0} {yields} D{sup *-}D{sup 0}K{sup +}) = (0.29 {+-} 0.06 (stat) {+-} (syst)) % Br(B{sup 0} {yields} D{sup *-}D{sup *0}K{sup +}) = (1.16 {+-} 0.15 (stat) {+-} 0.16 (syst)) % A partial reconstruction has also been developed. With an integrated luminosity of 8.9 fb{sup -1}, the branching ratio of B{sup 0} into D{sup *-}D{sup 0}K{sup +} has been measured

  3. The BABAR Event Building and Level-3 Trigger Farm Upgrade

    International Nuclear Information System (INIS)

    Bartoldus, Rainer

    2003-01-01

    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system

  4. A measurement of B0 meson properties using partially reconstructed B0 to D*- pi+ and B0 tp D*- lepton+ nu-lepton decays with the BABAR detector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-10-13

    The two B{sup 0} decay processes B{sup 0} {yields} D*{sup -} {pi}{sup +} and B{sup 0} {yields} D*{sup -} {ell}{sup +} {nu}{sub {ell}} have been studied by means of a partial reconstruction technique using a data sample collected with the BABAR detector at the PEP-II storage ring. To increase statistics, only the soft {pi}{sup -} from the decay D*{sup -} {yields} {pi}{sup -} D{sup 0} was used in association with either an oppositely-charged high-momentum pion or lepton. Events were then identified by exploiting the constraints from the simple kinematics of {Upsilon}(4S) decays. A clear signature is obtained in each case. The position of the B{sup 0} decay point was obtained from the reconstructed {pi}{sup +} ({ell}{sup +}){pi}{sup -} vertex. The position of the other {bar B}{sup 0} in the event was also determined. Taking advantage of the boost given to the {Upsilon}(4S) system by the asymmetric beam energies of PEP-II, the lifetime of the B{sup 0} meson has been measured from the separation distance between the two vertices along the beam direction.

  5. Performance simulation of BaBar DIRC bar boxes in TORCH

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  6. submitter Performance simulation of BaBar DIRC bar boxes in TORCH

    CERN Document Server

    Föhl, K; Castillo García, L; Cussans, D; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  7. Measurements of b → u amplitude and CKM weak phase γ using B0 → D0K*0 decays reconstructed with the BABAR detector

    International Nuclear Information System (INIS)

    Sordini, V.

    2008-06-01

    In this thesis we present CP violation studies in the B mesons system, and in particular measurements of the angle γ of the Unitarity Triangle, using data collected by the BABAR experiment. The angle γ is the relative weak phase between the V ub and V cb elements of the CKM matrix. A crucial parameter, which drives the sensitivity to γ, is the ratio r between b → u and b → c transition amplitudes. In the first part of the thesis, general issues on γ studies and the status of the present measurements are introduced. The experimental work is then detailed. It is composed of two different analyses of B 0 → D 0 (D-bar 0 )K *0 . In the first analysis, these decays are studied through the ADS method, where the neutral D mesons are reconstructed into K ± π ± , K ± π ± π 0 and K ± π ± π ± π ± final states. This analysis allows us to determine, for the first time, the ratio r for B 0 → D 0 (D-bar 0 )K *0 , which is found to be r equals (0.260 +0.077 -0.088). The large value for the parameter r makes the use of this channel interesting for present and future facilities, for the determination of γ. In the second analysis, the channel B 0 → D 0 (D-bar 0 )K *0 is studied with a Dalitz method and the neutral D mesons are reconstructed into K S π + π - final states. The determination of γ from this analysis is γ equals (162 ± 56) degrees, with a 180 degrees ambiguity. The result for r from the combination of the two analyses is: r equals (0.259 +0.073 -0.079). These results represent the first constraints on γ and r obtained from neutral B decays. Finally, data driven simulation studies are discussed, which show that the study of the B 0 → D 0 (D-bar 0 )K *0 is competitive, for the determination of γ, with the other analysis aiming to extract γ from charged B decays. (author)

  8. Charm Decays at BABAR

    International Nuclear Information System (INIS)

    Charles, M.

    2004-01-01

    The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays

  9. Performances of RPCs in the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Robert

    2003-09-26

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m{sup 2} of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behavior. These problems started very soon after the installation of the chambers on the detector when the high ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R&D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes.

  10. Performances of RPCs in the BaBar experiment

    International Nuclear Information System (INIS)

    Anulli, F.; Baldini, R.; Band, H.; Bionta, R.; Brau, J.; Brigljevic, V.; Buzzo, A.; Calcaterra, A.; Carpinelli, M.; Cartaro, T.; Cavallo, N.; Crosetti, G.; De Nardo, G.; De Sangro, R.; Eichenbaum, A.; Falciai, D.; Fabozzi, F.; Ferroni, F.; Finocchiaro, G.; Forti, F.; Frey, R.; Johnson, J.; Gatto, C.; Grauges-Pous, E.; Iwasaki, M.; Lange, D.; Lista, L.; Lo Vetere, M.; Lu, C.; Neal, H.; Neri, N.; Macri, M.; Messener, B.; Monge, M.R.; Moore, T.; Morganti, S.; Palano, A.; Paoloni, E.; Paolucci, P.; Passaggio, S.; Pastore, F.; Patrignani, C.; Patteri, P.; Peruzzi, I.; Piccolo, D.; Piccolo, M.; Piredda, G.; Pompili, A.; Robutti, E.; Roodman, A.; Santroni, A.; Sciacca, C.; Sinev, N.; Soha, A.; Storm, D.; Tosi, S.; Va'vra, J.; Xie, Y.; Wright, D.; Wisniewski, W.

    2003-01-01

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m 2 of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behaviour. These problems started very soon after the installation of the chambers on the detector when the high-ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R and D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes

  11. CPLEAR et BABAR, all aspects of CP violation; CPLEAR et BABAR la violation de CP dans tous ses etats

    Energy Technology Data Exchange (ETDEWEB)

    Yeche, Ch

    2003-06-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K{sup 0} {yields} {pi}{sup +} {pi}{sup -} decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; {delta}m{sub d} measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B{sup 0} {yields} {rho}{sup {+-}} {pi}{sup {+-}} and B{sup 0} {yields} {pi}{sup {+-}} K{sup {+-}} decays. (author)

  12. The First Year of the BABAR Experiment at PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-12-18

    The BABAR detector, situated at the SLAC PEP-II asymmetric e{sup +}e{sup -} collider, has been recording data at energies on and around the {Upsilon}(4S) resonance since May 1999. In this paper, we briefly describe the PEP-II B Factory and the BABAR detector. The performance presently achieved by the experiment in the areas of tracking, vertexing, calorimetry and particle identification is reviewed. Analysis concepts that are used in the various papers submitted to this conference are also discussed.

  13. Measurement of the CKM matrix angle {gamma} in B{sup {+-}} {yields} D{sup 0} (K{sub S}{pi}{pi}) K{sup *{+-}} using BABAR detector at Slac; Mesure de l'angle {gamma} de la matrice CKM a l'aide des desintegrations B{sup {+-}} {yields} D{sup 0} (K{sub S}{pi}{pi}) K{sup *{+-}} en utilisant le detecteur BABAR a Slac

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, St

    2007-07-15

    CP violation in the B mesons system has been studied by the B factories for almost 8 years. After a first success with the high precision measurement of the Unitarity Triangle angle {beta}, they are now facing a new challenge: the study of the 2 last angles, {alpha} and {gamma}, which are still poorly known. The work presented in this thesis is related to the measurement of the angle {gamma} using the B{sup -} {yields} D{sup 0}K{sup *-} events from data collected by the BABAR detector at Slac (Stanford linear accelerator). The method is based on the interferences between two amplitudes along the Dalitz plot of the three-body decay D{sup 0} {yields} K{sub S}{pi}{pi}, one related to the V{sub ub} element of the CKM matrix and the other related to the V{sub cb} element. This method has already been used in the measurement of {gamma}in B{sup -} {yields} D{sup 0}K{sup -} and B{sup -} {yields} D{sup *0}K{sup -} decays. Adding the new mode B{sup -} {yields} D{sup 0}K{sup *-} helps improving the statistical error of the measurement by 3 degrees which leads to: {gamma} (67 {+-} 28 {+-} 13 {+-} 11) degrees. The first error is statistical, the second one comes from experimental systematic uncertainties and the third one is the systematic uncertainty associated to the model used to describe the Dalitz plot D{sup 0} {yields} K{sub S}{pi}{pi}. Since this model is a crucial point for the analysis, we describe it in detail. For the future, in order to improve the measurement of {gamma}, it will be necessary to refine the Dalitz model as the number of events available at the B factories will increase. (author)

  14. BaBar Physics Book

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Helen

    1998-11-04

    This book presents the results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory. The workshop brought together a number of theorists with experimentalists from the BABAR Collaboration. Each chapter represents the contribution of a working group and presents both a theoretical summary of the relevant topics and the results of related simulation studies. The working group convenors, listed below, were teams that included both theorists and experimentalists. The book represents the status of work around the beginning of 1998. Both the state of the theory and of the experiment's simulation and analysis tools continue to advance. The results presented here are thus not a final view of what the experiment can achieve, but represent an interim study. The studies are more detailed and comprehensive than those made at the time of the Technical Design Report, but still lack many features that will be needed for the real data analysis. The book is intended as a guide to the work that still needs to be done, and as a detailed introduction which will assist new members, joining the Collaboration, and, we hope, other researchers in the field.

  15. B→ (ρ/ω) γ at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Koeneke, Karsten [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2007-06-01

    This document describes the measurements of the branching fractions and isospin violations of the radiative electroweak penguin decays B→ (ρ/ω) γ at the asymmetric-energy e+e- PEP-II collider with the BABAR detector. Together with the previously measured branching fractions of the decays B→ K*γ the ratio of CKM-matrix elements |V td/Vts| are extracted and the length of the far side of the unitarity triangle is determined.

  16. Study of the breaking of the CP symmetry in the BABAR experiment; Etude de la violation de la symetrie CP dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ganjour, S

    2007-09-15

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e{sup +}e{sup -} asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B{sup 0} {yields} D{sub s}{sup *} + D{sup *-} decays; measurement of CP violation in the B{sup 0} {yields} D{sup *{+-}}{pi}{sup {+-}} decays and constraint on the Unitary Triangle parameter sin(2{beta} + {gamma}) using these decays. (author)

  17. BABAR IFR Replacement R and D

    CERN Document Server

    Berry, M

    2003-01-01

    The Instrumented Flux Return (IFR) of the BaBar detector will soon need to be replaced by a more robust muon detection system. Scintillator bars with embedded Wavelength Shifting (WLS) fibers and Limited Streamer Tubes are two replacement technology options. The scintillator bars are tested for attenuation length; and causes for the large width of the Photo Multiplier Tube (PMT) signal are analyzed by Monte Carlo simulation. Cooling techniques for Avalanche Photo Diodes (APD) are investigated. The fairly high attenuation length coupled with the narrow PMT signal make the scintillator a viable option for a muon detecting system. Continuing work will focus on increasing timing resolution using an APD to read the signal from the WLS fibers, and investigating the lifetime of the APD. The ability to read a signal from the LST on external copper strips is tested and signals are found to be clearly distinguishable from noise. The voltage is compared to count rate to find that the optimal operating voltage for the LS...

  18. The BaBar Event Building and Level-3 Trigger Farm Upgrade

    International Nuclear Information System (INIS)

    Luitz, Steffen

    2003-01-01

    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system

  19. BABAR

    DEFF Research Database (Denmark)

    Andersson, Per; Köpsén, Susanne; Gross, Marin

    in the public and political agendas, internationally and nationally. According to the authors of the report, an increased interest in adult education generates an increased interest in the professionalization of the adult education sector, and thereby in the qualification of those teaching adults: adult...

  20. The design and construction of the BaBar silicon vertex tracker

    CERN Document Server

    Bozzi, C; Ramusino, A C; Dittongo, S; Folegani, M; Piemontese, L; Abbott, B K; Breon, A B; Clark, A R; Dow, S; Fan, Q; Goozen, F; Hernikl, C; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Lynch, G; Levi, M; Luft, P; Luo, L; Nyman, M A; Pedrali-Noy, M; Roe, N A; Zizka, G; Roberts, D; Barni, D; Brenna, E; Defendi, I; Forti, A C; Giugni, D; Lanni, F; Palombo, F; Vaniev, V; Leona, A; Mandelli, E; Manfredi, P F; Perazzo, A; Re, V; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Calderini, G; Carpinelli, M; Dutra, F; Forti, F; Gagliardi, D; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Paoloni, E; Profeti, A; Rama, M; Rampino, G; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Tritto, S; Vitale, R; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T; Roat, C; Bóna, M; Bianchi, F; Daudo, F; Girolamo, B D; Gamba, D; Giraudo, G; Grosso, P; Romero, A; Smol, A; Trapani, P; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Rastelli, C; Vallazza, E; Vuagnin, G; Hast, C; Potter, E P; Sharma, V; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Eppich, A; Hale, D; Hall, K; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A; Grothe, M; Johnson, R; Kröger, W; Lockman, W; Pulliam, T; Rowe, W; Schmitz, R; Seiden, A; Spencer, E; Turri, M; Wilder, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Walsh, J; Zobernig, H

    2000-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory consists of five layers of double-sided, AC-coupled silicon strip detectors. The detectors are readout with a custom IC, capable of simultaneous acquisition, digitization and transmission of data. The SVT geometry is shown and the construction phases of its modules are described in detail, with emphasis on the bending procedures needed for the arch-modules of the outer layers.

  1. Study of the breaking of the CP symmetry in the BABAR experiment

    International Nuclear Information System (INIS)

    Ganjour, S.

    2007-09-01

    This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e + e - asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B 0 → D s * + D *- decays; measurement of CP violation in the B 0 → D *± π ± decays and constraint on the Unitary Triangle parameter sin(2β + γ) using these decays. (author)

  2. CPLEAR and BaBar: CP violation in all its states

    CERN Document Server

    Yeche, Christophe

    2003-01-01

    This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K0 → π+ π- decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; Δmd measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B0 → ρ± π± and B0 �...

  3. A Measurement of the Exclusive Branching Fraction for B → π K at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aspinwall, Marie Louise [Imperial College, London (United Kingdom)

    2002-02-01

    This thesis presents an exclusive measurement of the branching fraction B for the rare charmless hadronic B decays to πK final states. A sample of 22.57±0.36 million BB pairs was collected with the BaBar detector at the Stanford Linear Accelerator Center's PEP-II B Factory, during the Run 1 data taking period (1999-2000).

  4. The BaBar silicon vertex tracker, performance and running experience

    CERN Document Server

    Re, V; Bozzi, C; Carassiti, V; Cotta-Ramusino, A; Piemontese, L; Breon, A B; Brown, D; Clark, A R; Goozen, F; Hernikl, C; Kerth, L T; Gritsan, A; Lynch, G; Perazzo, A; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Brenna, E; Citterio, M; Lanni, F; Palombo, F; Ratti, L; Manfredi, P F; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Forti, F; Gagliardi, D J; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T I; Roat, C; Bóna, M; Bianchi, F; Gamba, D; Trapani, P; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Pompili, A; Poropat, P; Rashevskaia, I; Vuagnin, G; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Hale, D; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Mazur, M; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Rowe, W; Schmitz, R E; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Wilder, M; Wilson, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies.

  5. The RPC-based IFR system at BaBar experiment preliminary results

    CERN Document Server

    Piccolo, D; Bagnasco, S; Baldini, R; Band, H R; Bionta, R; Buzzo, A; Calcaterra, A; Cavallo, N; Contri, R; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Fabozzi, F; Falciai, D; Finocchiaro, G; Gatto, C; Johnson, J; Lista, L; Lo Vetere, M; Macri, M; Monge, R; Palano, A; Paolucci, P; Passaggio, S; Patrignani, C; Patteri, P; Peruzzi, I; Piccolo, M; Robutti, E; Santroni, A; Sciacca, C; Wright, D; Yu, Z; Zallo, A

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported.

  6. The RPC-based IFR system at BaBar experiment: preliminary results

    International Nuclear Information System (INIS)

    Piccolo, Davide; Palano, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Anulli, F.; Baldini, R.; Calcaterra, A.; De Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I.; Piccolo, M.; Yu, Z.; Zallo, A.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Sciacca, C.; Bionta, R.; Wright, D.; Band, H.; Johnson, J.

    2002-01-01

    The IFR system is a RPC-based detector used to identify muons and neutral hadrons in the BaBar experiment at PEP II machine in SLAC. The RPC system can be used to reconstruct the trajectory of muons, pions and neutral hadrons interacting in the iron of the IFR. The different range and hit pattern allow to discriminate different particles crossing the IFR. An overview of the system design and the preliminary results on the IFR performances are reported

  7. Measurement of the Spin of the Omega- Hyperon at Babar

    International Nuclear Information System (INIS)

    Aubert, B.

    2006-01-01

    A measurement of the spin of the (Omega) - hyperon produced through the exclusive process Ξ c 0 → (Omega) - K + is presented using a total integrated luminosity of 116 fb -1 recorded with the BABAR detector at the e + e - asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ c 0 has spin 1/2, the angular distribution of the Λ from (Omega) - → ΛK - decay is inconsistent with all half-integer (Omega) - spin values other than 3/2. Lower statistics data for the process (Omega) c 0 → (Omega) - π + from a 230 fb -1 sample are also found to be consistent with (Omega) - spin 3/2. If the Ξ c 0 spin were 3/2, an (Omega) - spin of 5/2 cannot be excluded

  8. The New BaBar Data Reconstruction Control System

    Energy Technology Data Exchange (ETDEWEB)

    Ceseracciu, Antonio

    2003-06-02

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is actively distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 12 farms.

  9. Xic' Production at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2006-09-26

    Using 232 fb{sup -1} of data collected by the BABAR detector, the {Xi}'{sub c}{sup +} and {Xi}'{sub c}{sup 0} baryons are reconstructed through the decays: {Xi}'{sub c}{sup +} {yields} {Xi}{sub c}{sup +}{gamma} and {Xi}'{sub c}{sup 0} {yields} {Xi}{sub c}{sup 0}{gamma}, where {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} and {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}. By measuring the efficiency-corrected yields in different intervals of the center-of-mass momentum, the production rates from B decays and from the continuum are extracted. For production from B decays, the branching fractions are found to be {Beta}(B {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = [1.69 {+-} 0.17 (exp.) {+-} 0.10 (model)] x 10{sup -4} and {Beta}(B {yields} {Xi}'{sub c}{sup 0}X) x {Beta} {Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +} = [0.67 {+-} 0.07 (exp.) {+-} 0.03 (model)] x 10{sup -4}. For production from the continuum the cross-sections are found to be {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup +}X) x {Beta}({Xi}{sub c}{sup +} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup +}) = 141 {+-} 24 (exp.) {+-} 19 (model) fb and {sigma}(e{sup +}e{sup -} {yields} {Xi}'{sub c}{sup 0}X) x {Beta}({Xi}{sub c}{sup 0} {yields} {Xi}{sup -} {pi}{sup +}) = 70 {+-} 11 (exp.) {+-} 6 (model) fb. The helicity angle distributions of {Xi}'{sub c} decays are studied and found to be consistent with J = 1/2.

  10. Measurement of the e+e-→ hadrons cross-section at low energy with ISR events at BABAR

    International Nuclear Information System (INIS)

    Malaescu, B.

    2011-01-01

    The precise measurement of the cross section e + e - →π + π - (γ) from threshold to an energy of 3 GeV, using events with Initial State Radiation (ISR) collected with the BABAR detector, is presented. The ISR luminosity is determined from a study of the leptonic process e + e - →μ + μ - γ(γ), and the method is tested by the comparison with the next-to-leading order (NLO) QED prediction. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the BABAR ππ cross section measured from threshold to 1.8 GeV is (514.1±2.2(stat)±3.1(syst))x10 -10 . Other results on ISR multihadronic cross sections from BABAR are presented.

  11. Study of B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} and B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} decay modes with the BABAR detector and constraints from B {yields} {pi}{pi}, K{pi}, KK modes on the CKM matrix; Etude des desintegrations B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} et B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} avec le detecteur BABAR et contraintes des modes B {yields} {pi}{pi}, K{pi}, KK sur la matrice CKM

    Energy Technology Data Exchange (ETDEWEB)

    Malcles, J

    2006-04-15

    The analysis of B{sup {+-}} {yields} pi{sup {+-}}{pi}{sup 0} and B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} modes has been done with a sample of 227 millions of B pairs corresponding to 205 fb{sup -1} of data collected between october 1999 and july 2004 with the BABAR detector. The branching ratios and CP asymmetries obtained are: Br({pi}{pi}{sup 0}) = (5.57 {+-} 0.60 {+-} 0.33)*10{sup -6}; Br(K{pi}{sup 0}) (11.50 {+-} 0.65 {+-} 0.57)*10{sup -6}; A({pi}{pi}{sup 0}) = (-0.007 {+-} 0.104 {+-} 0.023); and A(K{pi}{sup 0}) = (0.066 {+-} 0.055 {+-} 0.010). The constraints on the angle alpha of the unitarity triangle have been derived from the isospin analysis of B {yields} {pi}{pi} modes. The isospin symmetry has also been used to relate B {yields} K{pi} modes in order to constraint the CKM matrix. More significant constraints have been obtained with the SU(3) symmetry for B, Bs {yields} {pi}{pi}/ K{pi}/ KK modes. They are in good agreement with the Standard CKM fit. It has been shown that such an analysis will be competitive with the Standard CKM fit in the future and will allow to determine SU(3) breaking or New Physics parameters from data. (author)

  12. In vivo measurement of Pb-210 in the skull for retrospective assessment of exposure to radon; Die in-vivo Messung von Pb-210 im Schaedel zur retrospektiven Bestimmung von Radon-Expositionen

    Energy Technology Data Exchange (ETDEWEB)

    Doerfel, H. [Forschungszentrum Karlsruhe GmbH (Germany). Hauptabteilung Sicherheit/Dosimetrie

    1997-12-01

    The study shows that the new HPGe detectors with a larger surface are significantly better in terms of results and performance than the Phoswich detectors hitherto used for in vivo measurement of Pb-210 in the human skull. The experimental evaluations indicate that smaller HPGe detectors likewise are better than the Phoswich detectors, but some additional studies are required for final evaluation of these instruments. (orig./CB) [Deutsch] Die Untersuchungen haben gezeigt, dass die neuen grossflaechigen HPGe-Detektoren wesentlich besser zur in-vivo Messung von Pb-210 im Skelett geeignet sind als die bisher eingesetzten Phoswich-Detektoren. Auch kleinere HPGe-Detektoren sind offenbar besser geeignet als Phoswich-Detektoren, allerdings sind hier noch einige ergaenzende Untersuchungen erforderlich. (orig./SR)

  13. Events simulation production for the BaBar experiment using the grid approach content

    International Nuclear Information System (INIS)

    Fella, A.; Andreotti, D.; Luppi, E.

    2007-01-01

    The BaBar experiment is taking data since 1999, investigating the violation of charge and parity (CP) symmetry in the field of High Energy Physics. Event simulation is an intensive computing task, due to the complexity of algorithm based on Monte-Carlo method implemented using the GEANT engine. Data needed as input for the simulation, stored in the ROOT format, are classified into two categories: conditions data for describing the detector status when data are recorded, and background triggers data for including noise signal necessary to obtain a realistic simulation. In order to satisfy these requirements, in the traditional BaBar computing model events are distributed over several sites involved in the collaboration where each site manager centrally manages a private farm dedicated to simulation production. The new grid approach applied to the BaBar production framework is discussed along with the schema adopted for data deployment via Xrootd servers, including data management using grid middle ware on distributed storage facilities spread over the INFN-GRID network. A comparison between the two models is provided, describing also the custom application developed for performing the whole production task on the grid and showing results achieved. (Author)

  14. Managing the BABAR Object Oriented Database

    International Nuclear Information System (INIS)

    Hasan, Adil

    2002-01-01

    The BaBar experiment stores its data in an Object Oriented federated database supplied by Objectivity/DB(tm). This database is currently 350TB in size and is expected to increase considerably as the experiment matures. Management of this database requires careful planning and specialized tools in order to make the data available to physicists in an efficient and timely manner. We discuss the operational issues and management tools that were developed during the previous run to deal with this vast quantity of data at SLAC

  15. Hadronic Physics Studies at BaBar

    International Nuclear Information System (INIS)

    Stroili, R.

    2006-01-01

    A new resonance Y(4260) with a mass of 4259 ± 8 -6 +2 MeV/c 2 and J PC = 1 -- , discovered by the BaBar experiment shows peculiar behavior in his decay mode. The Λ c + baryon mass has been measured, using its decays to ΛK S 0 K + and Σ 0 K S 0 K + , and its value is 2286.46 ± 0.14 MeV/c 2 , the precision is greatly improved w.r.t. PDG value. Ξ c 0 and (Omega) c 0 decays and production have been studied with results greatly improved w.r.t. PDG

  16. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  17. Study of charmonium decays of B mesons in the Babar experiment; Etude des desintegrations charmonium des mesons B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe

    2006-04-15

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e{sup +}e{sup -} collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2{beta}) 0.722 {+-} 0.040 {+-} 0.023; {alpha} = (103 + 11 - 9) degrees; {gamma} = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes.

  18. Study of Charmless Semileptonic B Decays And a Measurement of the CKM Matrix Element |Vub| at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary Peter [Imperial College, London (United Kingdom)

    2004-04-01

    This thesis presents a measurement of exclusive charmless semileptonic branching fractions of B mesons measured using 81.9fb-1 of data (approximately 90 million BB pairs) collected between 1999 and 2002 by the BaBar detector operating at the PEP-II e+e- storage ring, at SLAC.

  19. Observation of Y(3940) --> J/psiomega in B --> J/psiomegaK at BABAR.

    Science.gov (United States)

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A

    2008-08-22

    We present a study of the decays B;{0,+}-->J/psiomegaK;{0,+} using 383x10;{6} BB[over ] events obtained with the BABAR detector at PEP-II. We observe Y(3940)-->J/psiomega, with mass 3914.6_{-3.4};{+3.8}(stat)+/-2.0(syst) MeV/c;{2}, and width 34_{-8};{+12}(stat)+/-5(syst) MeV. The ratio of B0 and B+ decay to YK is 0.27_{-0.23};{+0.28}(stat)-0.01+0.04(syst), and the relevant B0 and B+ branching fractions are reported.

  20. Search for D{sub (sJ)}(2632) at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-08-17

    The authors performed a search for the D{sub sJ}*(2632){sup +} state recently reported by the SELEX Collaboration at FNAL. This preliminary analysis makes use of an integrated luminosity of 125 fb{sup -1} collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. The resulting D{sub s}{sup +}{eta} and D{sup 0}K{sup +} mass spectra show no evidence for the D{sub sJ}*(2632){sup +} state. In addiition, no signal is observed in the D*{sup +} K{sub S} mass spectrum.

  1. Pin Photodiodes for Radiation Monitoring and Protection in the Babar Silicon Vertex Tracker

    Science.gov (United States)

    Meyer, T. I.

    We discuss the design, implementation and performance of the radiation monitoring and protection system used by the Silicon Vertex Tracker (SVT) in the BaBar detector. Using 12 reverse-biased PIN photodiodes mounted around the beampipe near the IP, we are able to provide instantaneous radiation dose rates, absorbed dose integrals, and active protection that aborts the circulating beams in the PEP-II storage ring when radiation levels exceed user-defined thresholds. The systems has reliably protected the SVT from excessive radiation damage and has also served as a key diagnostic tool in understanding radiation backgrounds at PEP-II.

  2. Measurements of the CKM Angle Alpha at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-04

    The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

  3. Performance of 2nd Generation BaBar Resistive Plate Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F.; Baldini, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Zallo, A.; /Frascati; Cheng, C.H.; Lange, D.J.; Wright, D.M.; /LLNL,; Messner, R.; Wisniewski, William J.; /SLAC; Pappagallo, M.; /Bari U. /INFN, Bari; Andreotti, M.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; /Ferrara; Capra, R.; /Genoa U. /INFN, Genoa /Naples U. /INFN, Naples /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Rome U. /INFN, Rome /Oregon U. /UC, Riverside

    2005-07-12

    The BaBar detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm{sup 2}) depending on position within the endcap. Some regions have integrated over 0.3 C/cm{sup 2}. RPC efficiency measured with cosmic rays is high and stable. The average efficiency measured with beam is also high. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques and minimal use of linseed oil, many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current. Studies of the above aging effects are presented and correlated with detector operating conditions.

  4. A Barrel IFR Instrumented With Limited Streamer Tubes for BABAR Experiment

    International Nuclear Information System (INIS)

    Andreotti, M.; Ferrara U.; INFN, Ferrara

    2006-01-01

    The new barrel Instrumented Flux Return (IFR) of BABAR detector will be reported here. Limited Streamer Tubes (LSTs) have been chosen to replace the existing RPCs as active elements of the barrel IFR. The layout of the new detector will be discussed: in particular, a cell bigger than the standard one has been used to improve efficiency and reliability. The extruded profile is coated with a resistive layer of graphite having a typical surface resistivity between 0.2 and 0.4 MOhm/square. The tubes are assembled in modules and installed in 12 active layers of each sextant of the IFR detector. R and D studies to choose the final design and Quality Control procedure adopted during the tube production will be briefly discussed. Finally the performances of installed LSTs into 2/3 of IFR after 8 months of operations will be reported

  5. Results in Charm Physics from BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pompili, A

    2004-06-03

    Recent measurements in the charm sector at BABAR are reviewed. The scope of the presentation includes the observation of two new narrow mesons in the D{sub s}{sup +}{pi}{sup 0} and D{sub s}{sup +}{pi}{sup 0}{gamma} final states as well as the measurement of D{sup 0}-{bar D}{sup 0} mixing parameters by means of two methods: using the doubly-Cabibbo-suppressed D{sup 0} decay to K{sup +}{pi}{sup -} and using the ratios of lifetimes extracted from samples of D{sup 0} mesons decaying to K{sup -} {pi}{sup +}, K{sup -}K{sup +}, and {pi}{sup -}{pi}{sup +}.

  6. Study of charmonium decays of B mesons in the Babar experiment

    International Nuclear Information System (INIS)

    Grenier, Philippe

    2006-04-01

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e + e - collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2β) 0.722 ± 0.040 ± 0.023; α = (103 + 11 - 9) degrees; γ = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes

  7. The DIRC front-end electronics chain for BaBar

    CERN Document Server

    Bailly, P; Del Buono, L; Genat, J F; Lebbolo, H; Roos, L; Zhang, B; Beigbeder-Beau, C; Bernier, R; Breton, D; Cacéres, T; Chase, Robert L; Ducorps, A; Hrisoho, A; Imbert, P; Sen, S; Tocut, V; Truong, K; Wormser, G; Zomer, F; Bonneaud, G; Dohou, F; Gastaldi, F; Matricon, P; Renard, C; Thiebaux, C; Vasileiadis, G; Verderi, M; Oxoby, G; Vavra, J; Warner, D; Wilson, R J

    1999-01-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  8. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    International Nuclear Information System (INIS)

    Lu, Changguo

    2003-01-01

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement

  9. Search for Exclusive Electroweak Penguin Decays at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, Natalia

    2003-04-03

    This dissertation describes the search for the flavor-changing neutral current decays B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -}, performed using a sample of (22.7 {+-} 0.4) x 10{sup 6} {Upsilon}(4S) {yields} B {bar B} decays collected with the BABAR detector at the PEP-II B Factory. The following final states have been reconstructed: B{sup +} {yields} K{sup +}{ell}{sup +}{ell}{sup -}, B{sup 0} {yields} K{sup 0}{ell}{sup +}{ell}{sup -} (K{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}), B{sup +} {yields} K*{sup +}{ell}{sup +}{ell}{sup -} (K*{sup +} {yields} K{sub s}{sup 0}{pi}{sup +}), and B{sup 0} {yields} K*{sup 0}{ell}{sup +}{ell}{sup -} (K*{sup 0} {yields} K{sup +}{pi}{sup -}), where {ell}{sup +}{ell}{sup -}is either an e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pair. The established 90% C.L. upper limits are: {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) < 0.6 x 10{sup -6}; {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) < 2.5 x 10{sup -6}. These limits represent a significant improvement over previously published results and are close to Standard Model predictions.

  10. Measurement of the reaction {gamma}p{yields}K{sup 0}{sigma}{sup +} for photon energies up to 2.65 GeV with the SAPHIR detector at ELSA; Messung der Reaktion {gamma}p {yields} K{sup 0}{sigma}{sup +} fuer Photonenergien bis 2.65 GeV mit dem SAPHIR-Detektor an ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Lawall, R.

    2004-01-01

    The reaction {gamma}p {yields} K{sup 0}{sigma}{sup +} was measured with the SAPHIR-detector at ELSA during the run periods 1997 and 1998. Results were obtained for cross sections in the photon energy range from threshold up to 2.65 GeV for all production angles and for the {sigma}{sup +}-polarization. Emphasis has been put on the determination and reduction of the contributions of background reactions and the comparison with other measurements and theoretical predictions. (orig.)

  11. BaBar Explores CP Violation

    Energy Technology Data Exchange (ETDEWEB)

    Karyotakis, Jean Yannis

    2003-05-16

    The most recent results obtained by the BABAR experiment at the PEP-II asymmetric-energy B Factory at SLAC on CP-violating asymmetries and branching fractions for neutral and charged B decays are presented here. The analysis was performed on a data sample of {approx} 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. Using b {yields} c{bar c}s decays, we measure sin2{beta} = 0.741 {+-} 0.067(stat) {+-} 0.034(syst). We also present sin2{beta} measurements from, b {yields} s{bar s}s and b {yields} c{bar c}d processes. From neutral B meson decays to two-body final states of charged pions and kaons, we derive for the CP violating parameters, S{sub {pi}{pi}} = 0.02 {+-} 0.34 {+-} 0.05 [-0.54, +0.58] and C{sub {pi}{pi}} = -0.30 {+-} 0.25 {+-} 0.04 [-0.72, +0.12]. First results for B {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and K{sup {+-}}{pi}{sup {-+}}{pi}{sup 0} final states dominated by the {rho}{sup {+-}} resonance, are also presented.

  12. Measurement of Charmless B to Vector-Vector decays at BaBar

    International Nuclear Information System (INIS)

    Olaiya, Emmanuel

    2011-01-01

    The authors present results of B → vector-vector (VV) and B → vector-axial vector (VA) decays B 0 → φX(X = φ,ρ + or ρ 0 ), B + → φK (*)+ , B 0 → K*K*, B 0 → ρ + b 1 - and B + → K* 0 α 1 + . The largest dataset used for these results is based on 465 x 10 6 Υ(4S) → B(bar B) decays, collected with the BABAR detector at the PEP-II B meson factory located at the Stanford Linear Accelerator Center (SLAC). Using larger datasets, the BABAR experiment has provided more precise B → VV measurements, further supporting the smaller than expected longitudinal polarization fraction of B → φK*. Additional B meson to vector-vector and vector-axial vector decays have also been studied with a view to shedding light on the polarization anomaly. Taking into account the available errors, we find no disagreement between theory and experiment for these additional decays.

  13. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  14. Measurement of the CP violating asymmetry of K{sup {+-}}{yields}{pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} with the NA48 detector; Messung der CP-verletzenden Asymmetrie von K{sup {+-}}{yields}{pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} mit dem NA48-Detektor

    Energy Technology Data Exchange (ETDEWEB)

    Wache, Martin

    2007-07-01

    It is still not clear, why matter was favoured over anti-matter during the creation of the universe and thus the matter universe known today developed. An important requirement for the creation of the matter anti-matter asymmetry is the violation of the combination of the charge (C) and the parity (P) symmetry, the CP violation. CP violation can occur in several places, one of them are the decays K{sup {+-}}{yields}{pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0}. During the years 2003 and 2004, the NA48/2 collaboration recorded over 200{proportional_to}TB of data containing decays of charged kaons. In this analysis, the CP violating asymmetry of K{yields}{pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} has been measured, using over 90{proportional_to}millions K{yields}{pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} decays. Predictions of the CP violation in the standard model expect a CP violation in the range of 10{sup -6} to 10{sup -5}. The CP violation may be larger in models beyond the standard model. The NA48/2 experiment was built to ensure very small systematic uncertainties. To achieve this, positive and negative kaons were produced simultaneously at one target. The kaons were limited to a momentum of about 60{proportional_to}GeV/c by two partly separated beam lines. In the decay region the beams superimposed each other by a few millimeters. The beam lines of positive and negative kaons, as well as the polarity of the magnet of the magnetic spectrometer were changed periodically. This allowed a charge symmetrization of the beam lines and the detector during the analysis. A quadrupole ration of the four possible magnetic field configurations was used to ensure that all systematic uncertainties due to imperfect symmetry of beam line or detector cancel at first order. The events were reweighted to correct for different production spectra of positive and negative kaons. A search for possible systematic uncertainties has been performed, which showed, that the systematic uncertainty of this

  15. Charakterisierung von dotierten Zinnoxidschichten für die Detektion von Gasen durch ellipsometrische Messung der Oberflächenplasmonenresonanz

    OpenAIRE

    Fischer, Daniel

    2017-01-01

    In der vorliegenden Dissertation wird die Verbesserung von Gassensoren durch Beschichtung mit dotierten Zinnoxidschichten untersucht, wobei zur Messung der Gase die Methode der oberflächenplasmonenresonanzverstärkten Ellipsometrie (SPREE) angewendet wurde. Die vorgestellten Ergebnisse unterteilen sich dabei in drei Schritte: Herstellung der Schichtsysteme, Analyse der chemischen, strukturellen und optischen Eigenschaften, sowie die Anwendung in der SPREE Gasmessung. Die dotierten Zinnoxid...

  16. A Study of Production and Decay of Omegac0 Baryons in BABAR

    International Nuclear Information System (INIS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-01-01

    Production and decay of (Omega) c 0 baryons is studied with ∼ 230 fb -1 of data recorded with the BABAR detector at the PEP-II e + e - asymmetric-energy storage ring at SLAC. The (Omega) c 0 is reconstructed through its decays into (Omega) - π + , (Omega) - π + π - π + , Ξ - K - π + π + final states. The invariant mass spectra are presented and the signal yields are extracted. Ratios of branching fractions are measured relative to the (Omega) c 0 → (Omega) - π + mode Β((Omega) c 0 → Ξ - K - π + π + )/Β((Omega) c 0 → (Omega) - π + ) = 0.31 ± 0.15(stat.) ± 0.04(syst.), Β((Omega) c 0 → (Omega) - π + π - π + )/Β((Omega) c 0 → (Omega) - π + ) c 0 baryons is extracted from decays into (Omega) - π + , establishing the first observation of (Omega) c 0 production from B decays

  17. Simulation and measurement of the fringe field of the 1.5 T BABAR solenoid

    CERN Document Server

    Antokhin, E; Chupyra, A G; Fedorov, D; Ganzhur, S; Kolachev, G M; Litvinov, A V; Medvedko, A; Mikerov, V; Mikhailov, S; Onuchin, A P; Singatulin, S; Aleksan, Roy; Bourgeois, P; Gosset, L; Graffin, P; London, G W; Mols, J P; Toussaint, J C; Berndt, M; Coombes, R; Ecklund, S; Jensen, D; Keller, L; Krebs, J; Lynch, H; Wolf, Z

    1999-01-01

    In the context of the SLAC PEP-II asymmetric e sup + e sup - collider and the BABAR detector with its 1.5 T solenoid, we have calculated and measured the fringe field at the nearby beam elements and at the position of the photomultipliers external to the return iron but within a specially designed iron shield. The comparisons of these measurements with the simulations based on finite element analysis are remarkably good, within about 5 G at the most critical beam element. The field at the photomultipliers is less than 1 G, in agreement with the simulation. With a simple method of demagnetization of the shield, a maximum field of 0.6 G is obtained. (author)

  18. Study of Charm Baryons with the BaBar Experiment

    International Nuclear Information System (INIS)

    Petersen, Brian Aa.

    2006-01-01

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the Ξ' c 0/+ , Ξ c (2980) + and Ξ c (3077) + baryons, measure branching ratios for Cabibbo-suppressed Λ c + decays and use baryon decays to study the properties of the light-quark baryons, (Omega) - and Ξ(1690) 0

  19. Measurement of Inclusive Production of Charmonium at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Milek, M

    2003-12-19

    This thesis presents a study of inclusive production of charmonium mesons at the {Upsilon}(4S) resonance ({radical}s = 10.58 GeV) and in the continuum up to 50 MeV below the resonance. The full dataset of BABAR Run 1 (an integrated luminosity of 23.3 fb{sup -1}) is used in the analysis.

  20. studies of radiative penguin decays at BaBar

    Indian Academy of Sciences (India)

    We summarize results on a number of observations of penguin dominated radiative decays of the meson. Such decays are forbidden at tree level and proceed via electroweak loops. As such they may be sensitive to physics beyond the standard model. The observations have been made at the BaBar experiment at PEP-II, ...

  1. CP Violation Results from B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Biassoni, Pietro; /Milan U. /INFN, Milan

    2011-08-22

    In the present paper we review recent experimental results from the BABAR experiment concerning the measurement of the CKM angles. A particular highlight is given to the novel independent determination of the angle {alpha} from B{sup 0} {yields} a{sub 1}(1260){sup {+-}}{pi}{sup {-+}} and to the recent full-luminosity updates of several angle {gamma} measurements.

  2. Measurement of Inclusive Production of Charmonium at BaBar

    International Nuclear Information System (INIS)

    Milek, M

    2003-01-01

    This thesis presents a study of inclusive production of charmonium mesons at the Υ(4S) resonance (√s = 10.58 GeV) and in the continuum up to 50 MeV below the resonance. The full dataset of BABAR Run 1 (an integrated luminosity of 23.3 fb -1 ) is used in the analysis

  3. Measurement of hydrogen distributions in iron and steel by means of neutron radiography and tomography; Messung von Wasserstoffverteilungen in Eisen und Stahl mittels Neutronenradiographie und -tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Griesche, Axel; Kannengiesser, Thomas [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Kardjilov, Nikolay; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany); Schillinger, Burkhard [Technische Univ. Muenchen, Garching (Germany)

    2015-07-01

    In recent years, the optimization of the radiography measuring stations at research reactors and in particular the development of the neutron detectors has enabled the measurement of hydrogen distributions with ever higher spatial resolution at the same time more sensitive detection limit. Compared to iron, hydrogen has a high interaction cross-section for neutrons, and thus allows simple radiographic methods of the two and three dimensional visualization of hydrogen distribution in the structure. This allowed us for the first time the measurement of hydrogen diffusion flows in centimeter-thick steel samples with a temporal resolution of 20 s and the quantitative measurement of hydrogen accumulation of crack edges in hydrogen embrittled iron samples. It was also the first gaseous hydrogen detected in the cavities of the cracks and the pressure can be determined. This new quality of information on the microstructure scale granted unprecedented insights for the investigation of damage mechanisms e.g. in the hydrogen embrittlement. By providing local in-situ information that is not accessible by conventional methods such as carrier gas hot extraction, as well as analyzes can be performed in three dimensions with a spatial resolution of 20-30 μm. This article provides examples that use the spatial and temporal resolution of the neutron radiography and tomography to visualize hydrogen distributions in and around cracks and to quantify. The measurements were conducted at the research reactors BER II of HZB in Berlin and FRM II of teh neutron source Heinz Maier-Leibnitz in Garching. (This article contains PowerPoint slides). [German] In den letzten Jahren hat die Optimierung der Radiographie-Messplaetze an Forschungsreaktoren und hier insbesondere die Weiterentwicklung der Neutronendetektoren die Messung von Wasserstoffverteilungen mit immer hoeherer Ortsaufloesung bei gleichzeitig empfindlicherer Nachweisgrenze ermoeglicht. Wasserstoff besitzt im Vergleich zu Eisen

  4. Measurement of Mixing and CP Violation in the Two-Body D0 decays to KK, pipi and Kpi with the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Casarosa, Giulia [Univ. of Pisa (Italy)

    2012-12-01

    In this thesis we present the measurement of D0 - $\\bar{D}$0 mixing parameter yCP using the full BABAR data sample. We also searched for CP violation in the D0 → K+K-, π+π- channels, finding the parameter ΔY compatible with zero. In Chapter 1, we briefly review the SM and introduce the theoretical framework of neutral meson mixing and CP violation. The BABAR detector and the performance of each sub-detector are described in Chapter 2. In Chapter 3, we present an overview of the analysis including a brief description of the previous similar BABAR analyses and the expected improvements in the present analysis. The candidate reconstruction and selection are described in Chapter 4, together with the optimization of the signal region. The signal and background event classes are described in Chapter 5, where we also provide the probability density functions used to extract the mixing and CP violating parameter. In Chapter 6 we describe the various crosschecks performed to validate the analysis and the evaluation of the systematic error. Finally in Chapter 7 we present the final results and their interpretation.

  5. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  6. Status and prospects of the BaBar SVT

    Science.gov (United States)

    Re, V.; Bruinsma, M.; Curry, S.; Kirkby, D.; Berryhill, J.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kyre, S.; Levy, S.; Long, O.; Mazur, M.; Richman, J.; Stoner, J.; Verkerke, W.; Beck, T.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Seiden, A.; Spradlin, P.; Walkowiak, W.; Wilson, M.; Bozzi, C.; Cibinetto, G.; Piemontese, L.; Snoek, H. L.; Brown, D.; Charles, E.; Dardin, S.; Goozen, F.; Kerth, L. T.; Gritsan, A.; Lynch, G.; Roe, N. A.; Chen, C.; Hulsbergen, W.; Lae, C. K.; Lillard, V.; Roberts, D.; Lazzaro, A.; Palombo, F.; Ratti, L.; Manfredi, P. F.; Mandelli, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ceccanti, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Marchiori, G.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rizzo, G.; Simi, G.; Walsh, J.; Elmer, P.; Perazzo, A.; Burchat, P.; Edwards, A. J.; Majewski, S.; Petersen, B. A.; Roat, C.; Bona, M.; Bianchi, F.; Gamba, D.; Trapani, P.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Vitale, L.; Datta, M.; Mihalyi, A.

    2006-05-01

    The BABAR Silicon Vertex Tracker (SVT) has been efficiently operated for five years since the start of data taking in 1999. It has met design requirements and no degradation in its performance has been observed thus far. However, because of higher than expected background levels, and anticipated further increases in luminosity and dose rates, we have done a thorough study to assess the viability of operating the SVT until the end of the decade.

  7. Recent results on hadronic final states from Babar

    Directory of Open Access Journals (Sweden)

    Gary J. William

    2015-01-01

    Full Text Available Two recent studies from the Babar Collaboration at SLAC are presented on the production of hadrons at low energies. The first is a study of exclusive K+K− production in e+e− annihilation events with initial-state photon radiation. The second is a study of ηc production in two-photon interactions and a three-body Dalitz-plot analysis searching for intermediate scalar meson production in ηc decays.

  8. The BaBar Software Architecture and Infrastructure

    International Nuclear Information System (INIS)

    Cosmo, Gabriele

    2003-01-01

    The BaBar experiment has in place since 1995 a software release system (SRT Software Release Tools) based on CVS (Concurrent Version System) which is in common for all the software developed for the experiment, online or offline, simulation or reconstruction. A software release is a snapshot of all BaBar code (online, offline, utilities, scripts, makefiles, etc.). This set of code is tested to work together, and is indexed by a release number (e.g., 6.8.2) so a user can refer to a particular release and get reproducible results. A release will involve particular versions of packages. A package generally consists of a set of code for a particular task, together with a GNU makefile, scripts and documentation. All BaBar software is maintained in AFS (Andrew File System) directories, so the code is accessible worldwide within the Collaboration. The combination SRT, CVS, AFS, has demonstrated to be a valid, powerful and efficient way of organizing the software infrastructure of a modern HEP experiment with collaborating Institutes distributed worldwide, both in a development and production phase

  9. Time-dependent Dalitz-Plot Analysis of the Charmless Decay B^0 -> K^0S Pi Pi- at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, J

    2009-10-17

    A time-dependent amplitude analysis of B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} decays is performed in order to extract the CP violation parameters of f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} and direct CP asymmetries of K*{sup +}(892){pi}{sup -}. The results are obtained from the final BABAR data sample of (465 {+-} 5)10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The time dependent CP asymmetry for f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} are measured to be S(f{sub 0}(980)K{sub S}{sup 0}) = -0.97 {+-} 0.09 {+-} 0.01 {+-} 0.01, and S({rho}{sup 0}(770)K{sub S}{sup 0}) = 0.67 {+-} 0.20 {+-} 0.06 {+-} 0.04, respectively. In decays to K*{sup +}(892){pi}{sup -} the direct CP asymmetry is found to be A{sub CP}(K*{sup {+-}}(892){pi}{sup {-+}}) = -0.18 {+-} 0.10 {+-} 0.04 {+-} 0.00. The relative phases between B{sup 0} {yields} K*{sup +}(892){pi}{sup -} and {bar B}{sup 0} {yields} K*{sup -}(892){pi}{sup +}, relevant for the extraction of the unitarity triangle angle {gamma}, is measured to be {Delta}{phi}(K*(892){pi}) = (34.9 {+-} 23.1 {+-} 7.5 {+-} 4.7){sup o}, where uncertainties are statistical, systematic and model-dependent, respectively. Fit fractions, direct CP asymmetries and the relative phases of different other resonant modes have also been measured. A new method for extracting longitudinal shower development information from longitudinally unsegmented calorimeters is also presented. This method has been implemented as a part of the BABAR final particle identification algorithm. A significant improvement in low momenta muon identification at BABAR is obtained.

  10. Searches for low-mass Higgs and dark bosons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Oberhof, Benjamin, E-mail: benjamin.oberhof@pi.infn.it [INFN sezione di Pisa and Universitá di Pisa, Polo Fibonacci - Edificio C, Largo B. Pontecorvo 3, 56125 - Pisa (Italy)

    2013-01-15

    We present BaBar latest results for the direct search of a light CP-odd Higgs boson using radiative decays of the ϒ(nS) (n=1,2,3) resonances in different final states. We also present the results for the search of a hidden sector gauge and Higgs bosons using the full BaBar datasample.

  11. Penguin and rare decays in BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Simon [Univ. Denis, Paris (France)

    2015-04-29

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xs+ inclusive decays.

  12. Recent BaBar Results on $B$ Decays

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; /Edinburgh U.

    2011-11-15

    Several recent key results from the BABAR experiment are presented, most using 383.6 fb{sup -1} of data. In particular, the search for B{sup +} {yields} {tau}{sup +}{nu}, inclusive and exclusive measurements of |V{sub ub}|, measurements of b {yields} d{gamma} decays and new observations of rare charmless hadronic decays. The new results provide important experimental constraints on the Standard Model and new physics models. Keywords: B decays; flavor; leptonic; semi-leptonic, radiative, hadronic.

  13. Investigation of the Charmless Decay B±→ K± K K± Using a Dalitz Plot Analysis at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Alistair Jepson [Univ. of Birmingham (United Kingdom)

    2006-09-01

    Results of an amplitude analysis of the B±→ K± K K± Dalitz plot are presented. The analysis is made using an integrated luminosity of 210.6 fb-1, recorded by the BABAR detector at the PEP-II asymmetric B Factory. This dataset corresponds to 231.8 million B$\\bar{B}$ pairs.

  14. Searches for New Physics in CP Violation from BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Palombo, Fernando [Universita di Milano, Dipartimento di Fisica, Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy). et al.

    2015-05-12

    Results of recent searches for new physics in CP violation in charm decays from the BABAR experiment are presented. These results include a measurement of D0 - anti D0 mixing and searches for CP violation in two-body D0 decays, a search for CP violation in the charm decays D± → KS0K ± and D s± → KS0K± , KS0π± , and a search for direct CP violation in the singly-Cabibbo suppressed D± → K+K-π±decays. These studies are based on the final dataset collected by BABAR at the PEP-II B factory at SLAC in the period 1999-2008. No evidence of CP violation is found in these charm decays. The measured mixing parameter yCP = [0.72 ± 0.18(stat) ± 0.12(syst)]% excludes the no-mixing null hypothesis with a significance of 3.3σ .

  15. BaBar computing - From collisions to physics results

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The BaBar experiment at SLAC studies B-physics at the Upsilon(4S) resonance using the high-luminosity e+e- collider PEP-II at the Stanford Linear Accelerator Center (SLAC). Taking, processing and analyzing the very large data samples is a significant computing challenge. This presentation will describe the entire BaBar computing chain and illustrate the solutions chosen as well as their evolution with the ever higher luminosity being delivered by PEP-II. This will include data acquisition and software triggering in a high availability, low-deadtime online environment, a prompt, automated calibration pass through the data SLAC and then the full reconstruction of the data that takes place at INFN-Padova within 24 hours. Monte Carlo production takes place in a highly automated fashion in 25+ sites. The resulting real and simulated data is distributed and made available at SLAC and other computing centers. For analysis a much more sophisticated skimming pass has been introduced in the past year, ...

  16. Simulation and Measurement of the Fringe Field of the 1.5 Tesla BaBar Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    London, Georges W

    1998-11-17

    In the context of the SLAC PEP-II asymmetric e{sup +}e{sup {minus}} collider and the BABAR detector with its 1.5 Tesla solenoid, we have calculated and measured the fringe field at the nearby beam elements and at the position of the photomultipliers external to the return iron but within a specially designed iron shield. The comparisons of these measurements with the simulations based on finite element analysis are remarkably good, within about 5 Gauss at the most critical beam element. The field at the photomultipliers is less than 1 Gauss, in agreement with the simulation. With a simple method of demagnetization of the shield, a maximum field of 0.6 Gauss is obtained.

  17. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  18. CP violation in BaBar: tagging of B mesons and study of the B → 3 π channel

    International Nuclear Information System (INIS)

    Versille, S.

    1999-04-01

    My thesis took place in LPNHE Paris 6/7 in the BaBar experiment. It is divided in three main topics: the analysis of CP violation in the B 0 → π + π - π 0 channel, the tagging of neutral B meson and a study of the background of the PEPII collider. CP violation is naturally present in the Standard Model but has not been demonstrated yet in the B 0 B-bar 0 system. For this purpose, a collider (PEPII) and a detector (BaBar) have been installed in SLAC. In order to demonstrate CP violation, a new variable Kin, is described: it is optimal in several ways, for example when one wants to combine several channels and/or experiments. One of the favoured channel to measure the α angle is B 0 → 3 π, as it is the only one which permits to extract this parameter without theoretical uncertainties from penguin diagrams. But this analysis is subtle: it needs a nine parameter fit which is difficult to handle. This thesis establishes that the experimental limitations are three-fold: hadronic background, combinatorial background as well as low energy photons, the theoretical uncertainty being the resonant contributions other than the ρ(770). For a CP violation analysis, we need to determine the flavor (B 0 or B-bar 0 ) of the non-CP B at its decay time. To tackle this problem, we set-up in BaBar the 'tagging' group which is in charge of providing the collaboration with a software for multivariate analysis. This program, Cornelius, gives the opportunity to the user of having access to different multivariate methods with a common interface: it is the official package for B-tagging. Taking into account the fact that the number of events useful for CP violation studies is rather low, we need to study all kinds of background and, amongst others, the one coming from the collider. We need several detectors installed in the interaction region for this study. An analysis of this background and of the pressure in the machine is also presented in this thesis. (author)

  19. BaBar - A Community Web Site in an Organizational Setting

    Energy Technology Data Exchange (ETDEWEB)

    White, Bebo

    2003-07-10

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future.

  20. BaBar - A Community Web Site in an Organizational Setting

    International Nuclear Information System (INIS)

    White, Bebo

    2003-01-01

    The BABAR Web site was established in 1993 at the Stanford Linear Accelerator Center (SLAC) to support the BABAR experiment, to report its results, and to facilitate communication among its scientific and engineering collaborators, currently numbering about 600 individuals from 75 collaborating institutions in 10 countries. The BABAR Web site is, therefore, a community Web site. At the same time it is hosted at SLAC and funded by agencies that demand adherence to policies decided under different priorities. Additionally, the BABAR Web administrators deal with the problems that arise during the course of managing users, content, policies, standards, and changing technologies. Desired solutions to some of these problems may be incompatible with the overall administration of the SLAC Web sites and/or the SLAC policies and concerns. There are thus different perspectives of the same Web site and differing expectations in segments of the SLAC population which act as constraints and challenges in any review or re-engineering activities. Web Engineering, which post-dates the BABAR Web, has aimed to provide a comprehensive understanding of all aspects of Web development. This paper reports on the first part of a recent review of application of Web Engineering methods to the BABAR Web site, which has led to explicit user and information models of the BABAR community and how SLAC and the BABAR community relate and react to each other. The paper identifies the issues of a community Web site in a hierarchical, semi-governmental sector and formulates a strategy for periodic reviews of BABAR and similar sites. A separate paper reports on the findings of a user survey and selected interviews with users, along with their implications and recommendations for future

  1. Study of Rare B Meson Decays Related to the CKM Angle Beta at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Keith; /Amherst Coll.

    2007-06-06

    This study reports measurements of the branching fractions of B meson decays to {eta}{prime}K{sup +}, {eta}{prime}K{sup 0}, {omega}{pi}{sup +}, {omega}K{sup +}, and {omega}K{sup 0}. Charge asymmetries are measured for the charged modes and the time-dependent CP-violation parameters S and C are measured for the neutral modes. The results are based on a data sample of 347 fb{sup -1} containing 383 million B{bar B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring located at the Stanford Linear Accelerator Center. Statistically significant signals are observed for all channels with the following results: B(B{sup +} {yields} {eta}{prime}K{sup +}) = (70.0{+-}1.5{+-}2.8)x10{sup -6}, B(B{sup 0} {yields} {eta}{prime}K{sup 0}) = (66.6{+-}2.6{+-}2.8)x10{sup -6}, B(B{sup +} {yields} {omega}{pi}{sup +}) = (6.7{+-}0.5{+-}0.4)x10{sup -6}, B(B{sup +} {yields} {omega}K{sup +}) = (6.3{+-}0.5{+-}0.3)x10-6, and B(B{sup 0} {yields} ?K0) = (5.6{+-}0.8{+-}0.3)x10-6, where the first uncertainty is statistical and the second is systematic. We measure A{sub ch}({eta}{prime}K{sup +}) = +0.010{+-}0.022{+-}0.006, A{sub ch}({omega}{pi}{sup +}) = -0.02{+-}0.08{+-}0.01, A{sub ch}({omega}K{sup +}) = -0.01{+-}0.07{+-}0.01, S{sub {eta}{prime}K{sup 0}{sub S}} = 0.56{+-}0.12{+-}0.02, C{sub {eta}{prime}K{sup 0}{sub S}} = -0.24 {+-} 0.08 {+-} 0.03, S{sub {omega}{prime}K{sup 0}{sub S}} = 0.62+0.25 -0.29 {+-} 0.02, and C{sub {omega}{prime}K{sup 0}{sub S}} = -0.39+0.25 -0.24 {+-} 0.03. The result in S{sub {eta}{prime}K{sup 0}{sub S}} contributes to the published measurement from BABAR, which differs from zero by 5.5 standard deviations and is the first observation of mixing-induced CP-violation in a charmless B decay.

  2. Messung der Vorwärts-Rückwärts-Ladungsassymetrie von b-Quarks bei Energien nahe der Z0-Resonanz. Untersuchung von Ereignissen mit initialem b-Quark unter Verwendung der Jetladungstechnik mit dem DELPHI Detektor

    CERN Document Server

    Schwering, Britta

    Messung der Vorwärts-Rückwärts-Ladungsassymetrie von b-Quarks bei Energien nahe der Z0-Resonanz. Untersuchung von Ereignissen mit initialem b-Quark unter Verwendung der Jetladungstechnik mit dem DELPHI Detektor

  3. Messung des differentiellen Wirkungsquerschnitts $d\\delta/dt$ der elastischen Proton-Proton Streuung an den CERN-Protonen-Speicherringen bei $\\sqrt{s}$ = 23 GeV und $\\sqrt{s}$ = 62 GeV Schwerpunktsenergie

    CERN Document Server

    Brandt, A; Schmidt-Parzefall, W; Schubert, Klaus R; Winter, Klaus; Dibon, Heinz; Flügge, G; Niebergall, F; Schumacher, P E; Aubert, Jean-Jacques; Broll, C; Coignet, G; Favier, Jean; Massonet, L; Vivargent, M; Bartl, Walter; Eichinger, H; Gottfried, Christian; Neuhofer, Günther; Brandt, A; Nagy, E no 2; Schmidt-Parzefall, W no 2; Schubert, K R no 2; Winter, K no 2; Dibon, H no 2; Fluegge, G; Niebergall, F; Schumacher, P E; Aubert, J J no 3; Broll, C no 3; Coignet, G no 3; Favier, J no 3; Massonet, L no 3; Vivargent, M no 3; Bartl, W no 4; Eichinger, H no 4; Gottfried, C no 4; Neuhofer, G no 4

    1975-01-01

    Messung des differentiellen Wirkungsquerschnitts $d\\delta/dt$ der elastischen Proton-Proton Streuung an den CERN-Protonen-Speicherringen bei $\\sqrt{s}$ = 23 GeV und $\\sqrt{s}$ = 62 GeV Schwerpunktsenergie

  4. KANGA(ROO): Handling the micro-DST of the BaBar Experiment with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, Stephen J.

    2002-06-24

    A system based on ROOT for handling the micro-DST of the BABAR experiment is described. The purpose of the KANGA system is to have micro-DST data available in a format well suited for data distribution within a world-wide collaboration with many small sites. The design requirements, implementation and experience in practice after three years of data taking by the BABAR experiment are presented.

  5. First Observation of C P Violation in B¯ 0→DCP (*)h0 Decays by a Combined Time-Dependent Analysis of BABAR and Belle Data

    Science.gov (United States)

    Abdesselam, A.; Adachi, I.; Adametz, A.; Adye, T.; Ahmed, H.; Aihara, H.; Akar, S.; Alam, M. S.; Albert, J.; Al Said, S.; Andreassen, R.; Angelini, C.; Anulli, F.; Arinstein, K.; Arnaud, N.; Asner, D. M.; Aston, D.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bahinipati, S.; Bakich, A. M.; Band, H. R.; Banerjee, Sw.; Barberio, E.; Bard, D. J.; Barlow, R. J.; Batignani, G.; Beaulieu, A.; Bellis, M.; Ben-Haim, E.; Bernard, D.; Bernlochner, F. U.; Bettarini, S.; Bettoni, D.; Bevan, A. J.; Bhardwaj, V.; Bhuyan, B.; Bianchi, F.; Biasini, M.; Biswal, J.; Blinov, V. E.; Bloom, P. C.; Bobrov, A.; Bomben, M.; Bondar, A.; Bonneaud, G. R.; Bonvicini, G.; Bozek, A.; Bozzi, C.; Bračko, M.; Briand, H.; Browder, T. E.; Brown, D. N.; Brown, D. N.; Bünger, C.; Burchat, P. R.; Buzykaev, A. R.; Calabrese, R.; Calcaterra, A.; Calderini, G.; Carpinelli, M.; Cartaro, C.; Casarosa, G.; Cenci, R.; Červenkov, D.; Chang, P.; Chao, D. S.; Chauveau, J.; Cheaib, R.; Chekelian, V.; Chen, A.; Chen, C.; Cheng, C. H.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, H. H. F.; Choi, S.-K.; Chrzaszcz, M.; Cibinetto, G.; Cinabro, D.; Cochran, J.; Coleman, J. P.; Contri, R.; Convery, M. R.; Cowan, G.; Cowan, R.; Cremaldi, L.; Dalseno, J.; Dasu, S.; Davier, M.; Davis, C. L.; De Mori, F.; De Nardo, G.; Denig, A. G.; Derkach, D.; de Sangro, R.; Dey, B.; Di Lodovico, F.; Dingfelder, J.; Dittrich, S.; Doležal, Z.; Dorfan, J.; Drásal, Z.; Drutskoy, A.; Druzhinin, V. P.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Dutta, D.; Ebert, M.; Echenard, B.; Eidelman, S.; Eigen, G.; Eisner, A. M.; Emery, S.; Ernst, J. A.; Faccini, R.; Farhat, H.; Fast, J. E.; Feindt, M.; Ferber, T.; Ferrarotto, F.; Ferroni, F.; Field, R. C.; Filippi, A.; Finocchiaro, G.; Fioravanti, E.; Flood, K. T.; Ford, W. T.; Forti, F.; Franco Sevilla, M.; Fritsch, M.; Fry, J. R.; Fulsom, B. G.; Gabathuler, E.; Gabyshev, N.; Gamba, D.; Garmash, A.; Gary, J. W.; Garzia, I.; Gaspero, M.; Gaur, V.; Gaz, A.; Gershon, T. J.; Getzkow, D.; Gillard, R.; Li Gioi, L.; Giorgi, M. A.; Glattauer, R.; Godang, R.; Goh, Y. M.; Goldenzweig, P.; Golob, B.; Golubev, V. B.; Gorodeisky, R.; Gradl, W.; Graham, M. T.; Grauges, E.; Griessinger, K.; Gritsan, A. V.; Grosdidier, G.; Grünberg, O.; Guttman, N.; Haba, J.; Hafner, A.; Hamilton, B.; Hara, T.; Harrison, P. F.; Hast, C.; Hayasaka, K.; Hayashii, H.; Hearty, C.; He, X. H.; Hess, M.; Hitlin, D. G.; Hong, T. M.; Honscheid, K.; Hou, W.-S.; Hsiung, Y. B.; Huard, Z.; Hutchcroft, D. E.; Iijima, T.; Inguglia, G.; Innes, W. R.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Izen, J. M.; Jaegle, I.; Jawahery, A.; Jessop, C. P.; Joffe, D.; Joo, K. K.; Julius, T.; Kang, K. H.; Kass, R.; Kawasaki, T.; Kerth, L. T.; Khan, A.; Kiesling, C.; Kim, D. Y.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, P.; Kim, S. H.; Kim, Y. J.; King, G. J.; Kinoshita, K.; Ko, B. R.; Koch, H.; Kodyš, P.; Kolomensky, Yu. G.; Korpar, S.; Kovalskyi, D.; Kowalewski, R.; Kravchenko, E. A.; Križan, P.; Krokovny, P.; Kuhr, T.; Kumar, R.; Kuzmin, A.; Kwon, Y.-J.; Lacker, H. M.; Lafferty, G. D.; Lanceri, L.; Lange, D. J.; Lankford, A. J.; Latham, T. E.; Leddig, T.; Le Diberder, F.; Lee, D. H.; Lee, I. S.; Lee, M. J.; Lees, J. P.; Leith, D. W. G. S.; Leruste, Ph.; Lewczuk, M. J.; Lewis, P.; Libby, J.; Lockman, W. S.; Long, O.; Lopes Pegna, D.; LoSecco, J. M.; Lou, X. C.; Lueck, T.; Luitz, S.; Lukin, P.; Luppi, E.; Lusiani, A.; Luth, V.; Lutz, A. M.; Lynch, G.; MacFarlane, D. B.; Malaescu, B.; Mallik, U.; Manoni, E.; Marchiori, G.; Margoni, M.; Martellotti, S.; Martinez-Vidal, F.; Masuda, M.; Mattison, T. S.; Matvienko, D.; McKenna, J. A.; Meadows, B. T.; Miyabayashi, K.; Miyashita, T. S.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Monge, M. R.; Moon, H. K.; Morandin, M.; Muller, D. R.; Mussa, R.; Nakano, E.; Nakazawa, H.; Nakao, M.; Nanut, T.; Nayak, M.; Neal, H.; Neri, N.; Nisar, N. K.; Nishida, S.; Nugent, I. M.; Oberhof, B.; Ocariz, J.; Ogawa, S.; Okuno, S.; Olaiya, E. O.; Olsen, J.; Ongmongkolkul, P.; Onorato, G.; Onuchin, A. P.; Onuki, Y.; Ostrowicz, W.; Oyanguren, A.; Pakhlova, G.; Pakhlov, P.; Palano, A.; Pal, B.; Palombo, F.; Pan, Y.; Panduro Vazquez, W.; Paoloni, E.; Park, C. W.; Park, H.; Passaggio, S.; Patel, P. M.; Patrignani, C.; Patteri, P.; Payne, D. J.; Pedlar, T. K.; Peimer, D. R.; Peruzzi, I. M.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piccolo, M.; Piemontese, L.; Piilonen, L. E.; Pilloni, A.; Piredda, G.; Playfer, S.; Poireau, V.; Porter, F. C.; Posocco, M.; Prasad, V.; Prell, S.; Prepost, R.; Puccio, E. M. T.; Pulliam, T.; Purohit, M. V.; Pushpawela, B. G.; Rama, M.; Randle-Conde, A.; Ratcliff, B. N.; Raven, G.; Ribežl, E.; Richman, J. D.; Ritchie, J. L.; Rizzo, G.; Roberts, D. A.; Robertson, S. H.; Röhrken, M.; Roney, J. M.; Roodman, A.; Rossi, A.; Rostomyan, A.; Rotondo, M.; Roudeau, P.; Sacco, R.; Sakai, Y.; Sandilya, S.; Santelj, L.; Santoro, V.; Sanuki, T.; Sato, Y.; Savinov, V.; Schindler, R. H.; Schneider, O.; Schnell, G.; Schroeder, T.; Schubert, K. R.; Schumm, B. A.; Schwanda, C.; Schwartz, A. J.; Schwitters, R. F.; Sciacca, C.; Seiden, A.; Sekula, S. J.; Senyo, K.; Seon, O.; Serednyakov, S. I.; Sevior, M. E.; Shapkin, M.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Simard, M.; Simi, G.; Simon, F.; Simonetto, F.; Skovpen, Yu. I.; Smith, A. J. S.; Smith, J. G.; Snyder, A.; So, R. Y.; Sobie, R. J.; Soffer, A.; Sohn, Y.-S.; Sokoloff, M. D.; Sokolov, A.; Solodov, E. P.; Solovieva, E.; Spaan, B.; Spanier, S. M.; Starič, M.; Stocchi, A.; Stroili, R.; Stugu, B.; Su, D.; Sullivan, M. K.; Sumihama, M.; Sumisawa, K.; Sumiyoshi, T.; Summers, D. J.; Sun, L.; Tamponi, U.; Taras, P.; Tasneem, N.; Teramoto, Y.; Tisserand, V.; Todyshev, K. Yu.; Toki, W. H.; Touramanis, C.; Trabelsi, K.; Tsuboyama, T.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Usov, Y.; Uwer, U.; Vahsen, S. E.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vasseur, G.; Va'vra, J.; Verderi, M.; Vinokurova, A.; Vitale, L.; Vorobyev, V.; Voß, C.; Wagner, M. N.; Wagner, S. R.; Waldi, R.; Walsh, J. J.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; West, C. A.; Williams, K. M.; Wilson, F. F.; Wilson, J. R.; Wisniewski, W. J.; Won, E.; Wormser, G.; Wright, D. M.; Wu, S. L.; Wulsin, H. W.; Yamamoto, H.; Yamaoka, J.; Yashchenko, S.; Yuan, C. Z.; Yusa, Y.; Zallo, A.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; BaBar Collaboration

    2015-09-01

    We report a measurement of the time-dependent C P asymmetry of B¯0 →DCP (*)h0 decays, where the light neutral hadron h0 is a π0, η , or ω meson, and the neutral D meson is reconstructed in the C P eigenstates K+K-, KS0π0, or KS0ω . The measurement is performed combining the final data samples collected at the ϒ (4 S ) resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 ±3 )×106 B B ¯ pairs recorded by the BABAR detector and (772 ±11 )×106 B B ¯ pairs recorded by the Belle detector. We measure the C P asymmetry parameters -ηfS =+0.66 ±0.10 (stat)±0.06 (syst) and C =-0.02 ±0.07 (stat)±0.03 (syst). These results correspond to the first observation of C P violation in B¯0 →DCP (*)h0 decays. The hypothesis of no mixing-induced C P violation is excluded in these decays at the level of 5.4 standard deviations.

  6. A Study of Production and Decay of Omega_c^0 Baryons in BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-09-28

    Production and decay of {Omega}{sub c}{sup 0} baryons is studied with {approx} 230 fb{sup -1} of data recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} asymmetric-energy storage ring at SLAC. The {Omega}{sub c}{sup 0} is reconstructed through its decays into {Omega}{sup -}{pi}{sup +}, {Omega}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}, {Xi}{sup -}K{sup -}{pi}{sup +}{pi}{sup +} final states. The invariant mass spectra are presented and the signal yields are extracted. Ratios of branching fractions are measured relative to the {Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +} mode {Beta}({Omega}{sub c}{sup 0} {yields} {Xi}{sup -} K{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) = 0.31 {+-} 0.15(stat.) {+-} 0.04(syst.), {Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -} {pi}{sup +}{pi}{sup -}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) < 0.30 (90%CL). The momentum spectrum (not corrected for efficiency) of {Omega}{sub c}{sup 0} baryons is extracted from decays into {Omega}{sup -}{pi}{sup +}, establishing the first observation of {Omega}{sub c}{sup 0} production from B decays.

  7. Charmed-B decays at BaBar

    International Nuclear Information System (INIS)

    Tisserand, Vincent

    2004-01-01

    We present recent results on charmed-B decays using data collected by the BaBaR experiment at the PEP-II storage ring. This report is subdivided in 3 parts. In a first step, we present preliminary results on the measurement of the branching fractions of seven color-suppressed anti B 0 -meson decays into D (*)0 π 0 , D (*)0 η, D (*)0 ω, and D 0 η ' . Then we discuss the preliminary measurement of the ratio of Cabibbo-suppressed to Cabibbo-favored branching fractions B(B - →D 0 K - )/B(B - →D 0 π - ), where the D 0 is possibly reconstructed in the CP-even π - π + and K - K + modes. For the D 0 decays into CP-eigenstates, a search for a direct CP asymmetry is performed. For the same category of decay processes, we show a precise preliminary measurement of both the branching fraction of B - decaying to D *0 K *- and of the fraction of longitudinal polarization in this decay. Finally, we present a study where the 22 possible B decays to anti D (*) D * K are reconstructed exclusively. The branching fractions of the anti B 0 and of the B + to anti D (*) D (*) K are presented and a search for decays B→anti D (*) D sJ + (→D (*)0 K + ), where the D sJ + represents the orbitally excited D s states, is also discussed. (orig.)

  8. The BaBar Data Reconstruction Control System

    Energy Technology Data Exchange (ETDEWEB)

    Ceseracciu, A

    2005-04-20

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 9 farms.

  9. Recent Results in Semileptonic B Decays with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, B.K.; /Maryland U.

    2012-04-02

    In this note, recent results of studies of semileptonic B meson decays from BABAR are discussed and preliminary results given. In particular, a recent measurement of {Beta}(B {yields} D{sup (*)}{tau}{nu}) and the ratio {Beta}(B {yields} D{sup (*)}{tau}{nu})/{Beta}(B {yields} D{sup (*)}{ell}{nu}) is presented. For the D* mode, a branching fraction of 1.79 {+-} 0.13(stat) {+-} 0.17(syst) is found, with a ratio of 0.325 {+-} 0.023(stat) {+-} 0.027(syst). For the D mode, the results are 1.04 {+-} 0.12(stat) {+-} 0.14(syst) and 0.456 {+-} 0.053(stat) {+-} 0.056(syst), respectively. In addition, a study of B{sub s} production and semileptonic decays using data collected in a center-of-mass energy region above the {Upsilon}(4S) resonance is discussed. The semileptonic branching fraction {Beta}(B{sub s} {yields} {ell}{nu}X) is measured to be 9.9{sub -2.1}{sup +2.6}(stat){sub -2.0}{sup +1.3}(syst).

  10. Results from the BABAR Fully Inclusive Measurement of B? Xs?

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-09-20

    We present preliminary results from a lepton-tagged fully-inclusive measurement of B {yields} X{sub s}{gamma} decays, where X{sub s} is any strange hadronic state. Results are based on a BABAR data set of 88.5 million B{bar B} pairs at the {Upsilon}(4S) resonance. We present a reconstructed photon energy spectrum in the {Upsilon}(4S) frame, and partial branching fractions above minimum reconstructed photon energies of 1.9, 2.0, 2.1 and 2.2 GeV. We then convert these to measurements of partial branching fractions and truncated first and second moments of the true photon energy distribution in the B rest frame, above the same minimum photon energy values. The full correlation matrices between the first and second moments are included to allow fitting to any parameterized theoretical calculation. We also measure the direct CP asymmetry {Alpha}{sub CP}(B {yields} X{sub s+d{gamma}}) (based on the charge of the tagging lepton) above a reconstructed photon energy of 2.2 GeV.

  11. Quality of energy consultancy services - Requirements, criteria for evaluation, and a case report; Energieberatungsqualitaet - Anforderungen, Messung und ein Fallbeispiel

    Energy Technology Data Exchange (ETDEWEB)

    Hausser, K.

    1999-07-01

    The article initially pictures an optimized model of energy consultancy and continues with explaining an instrument available for quality assessment of services in general, (SERVQUAL), presenting approaches for modifying this tool so as to make it applicable to evaluating the quality of energy consultancy activities. Finally, the capabilities of the modified tool are discussed referring to a case study in an electric utility, the Neckarwerke Stuttgart. (orig./CB) [German] Energieberatung durch Energieversorgungsunternehmen wird in Deutschland fast flaechendeckend angeboten. Im Beitrag wird zuerst aufgezeigt, welche Anforderungen eine optimale Energieberatung erfuellen muss. Danach wird ein Instrument vorgestellt, das die Qualitaet von Dienstleistungen im allgemeinen misst und im Rahmen der o.g. Arbeit so weiterentwickelt wurde, dass es von nun an auch als Instrument zur Messung der Qualitaet von Energieberatung im Besonderen dienen kann: SERVQUAL (von SERVice QUALity). Zuletzt werden die Ergebnisse praesentiert, die in der o.g. Untersuchung unter Anwendung von SERVQUAL bei den Neckarwerken Stuttgart erzielt wurden. (orig./RHM)

  12. A 96-channel, 500 ps resolution TDC board for the BaBar experiment at SLAC

    CERN Document Server

    Minutoli, S

    2000-01-01

    A TDC board has been designed and built to complete the readout of the Instrumented Flux Return of the BABAR experiment at the Stanford Linear Accelerator Center. The board has 96 input channels and makes use of 3 general purpose TDC chips designed at CERN, with time resolution up to 500 ps and configurable via a Test Access Port (IEEE standard 1149). Data are stored before readout in a multievent buffer. Communication with BABAR DAQ system is realized through 3 serial lines on the backplane connector. All the logic, including internal registers and the interfaces with the BABAR protocol and the TAP controller, is implemented in two fast FPGAs. The board is designed to work at 59.5 MHz clock frequency. (7 refs).

  13. BaBar Simulation Production—A Millennium of Work in Under a Year

    Science.gov (United States)

    Smith, D. A.; Blanc, F.; Bozzi, C.; Khan, A.

    2006-06-01

    The BaBar experiment requires simulated events beyond the ability of a single computing site to provide. This paper describes the evolution of simulation and job management methods to meet the physics community requirements and how production became distributed to use resources beyond any one computing center. The evolution of BaBar simulation along with the development of the distribution of the computing effort is described. As the computing effort is distributed to more sites there is a need to simplify production so the effort does not multiply with number of production centers. Tools are created to be flexible in handling errors and failures that happen in the system and respond accordingly, this reduces failure rates and production effort. This paper will focus on one cycle of simulation production within BaBar as a description of a large scale computing effort which was fully performed, and provided new simulation data to the users on time.

  14. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  15. Operational Aspects of Dealing with the Large BaBar Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Trunov, Artem G

    2003-06-13

    To date, the BaBar experiment has stored over 0.7PB of data in an Objectivity/DB database. Approximately half this data-set comprises simulated data of which more than 70% has been produced at more than 20 collaborating institutes outside of SLAC. The operational aspects of managing such a large data set and providing access to the physicists in a timely manner is a challenging and complex problem. We describe the operational aspects of managing such a large distributed data-set as well as importing and exporting data from geographically spread BaBar collaborators. We also describe problems common to dealing with such large datasets.

  16. Measurement of the branching fractions of radiative leptonic τ decays τ → ℓγν anti-ν (ℓ=e,μ) at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Oberhof, Benjamin [Dipartimento di Fisica Universita di Pisa, Pisa (Italy); Laboratori Nazionali dell' INFN, Frascati (Italy). et al.

    2015-04-29

    We perform a measurement of the branching fractions for τ → ℓγν anti ν, (ℓ = e, μ) decays for a minimum photon energy of 10 MeV in the τ rest frame using 430 fb-1 of e+e- collisions collected at the center-of-mass energy of the Υ(4S) resonance with the BABAR detector at the PEP-II storage rings. We find B(τ → μγνν) = (3.69±0.03±0.10)×103 and B(τ → eγνν) = (1.847 ± 0.015 ± 0.052) × 10-2 where the first quoted error is statistical and the second is systematic. These results represent a substantial improvement with respect to existing measurements for both channels.

  17. Search for Physics Beyond the Standard Model at BaBar and Belle

    Directory of Open Access Journals (Sweden)

    Calderini G.

    2012-06-01

    Full Text Available Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different γ resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

  18. studies of radiative penguin decays at BaBar (*) + - * -6 * ' * * * -E ...

    Indian Academy of Sciences (India)

    The observations have been made at the BaBar experiment at PEP-II, the asymmetric B factory at SLAC. Keywords. Radiative decays; B mesons. PACS Nos 13.20.He; 12.15.Ji; 12.60.Cn. 1. Introduction. Penguin dominated B decays are decays which proceed via higher order electroweak loops as illustrated in figure 1. such ...

  19. Measurement of Branching Fractions for Two-Body Charmless B Decays to Charged Pions and Kaons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for charmless two-body B decays to charged pions and kaons using data collected by the BaBar detector at the Stanford Linear Accelerator Center's PEP-II Storage ring. In a sample of 8.8 million produced B anti-B pairs the authors measure the branching fractions beta(B{sup 0} --> pi{sup +}pi{sup {minus}}) = (9.3{sub {minus}2.3{minus}1.4}{sup +2.6+1.2}) x 10{sup {minus}6} and beta(B{sup 0} --> K{sup +}pi{sup {minus}}) = (12.5{sub {minus}2.6{minus}1.7}{sup +3.0+1.3}) x 10{sup {minus}6}, where the first uncertainty is statistical and the second is systematic. For the decay B{sup 0} --> K{sup +}K{sup {minus}} they find no significant signal and set an upper limit of beta(B{sup 0} --> K{sup +}K{sup {minus}}) < 6.6 x 10{sup {minus}6} at the 90% confidence level.

  20. Study of the Rare Decay B Mesons Decaying to X Mesons Positive And Negative Leptons at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Koptchev, Ventzislav B.; /Massachusetts U., Amherst

    2005-08-30

    Flavor-changing neutral current transitions are forbidden at tree level in the Standard Model and can only occur via higher order diagrams. Since the amplitudes for such loops are dominated by the heaviest known particles, and non-SM effects are expected to contribute at the same order as the SM, such processes are an ideal place to look for new physics. We present a measurement of the inclusive branching fraction for the flavor-changing neutral current process B {yields} X{sub s}{ell}{sup +}{ell}{sup -} with a sample of 81.9 fb{sup -1}, collected with the BABAR detector at the Stanford Linear Accelerator Center. The final state is reconstructed from e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pairs and a hadronic system consisting of one K{sup {+-}} or K{sub s} and up to two pions, with at most one {pi}{sup 0}. They observe a signal of 40 {+-} 10(stat) {+-} 2(syst) events and extract a branching fraction {Beta}(B {yields} X{sub s}{ell}{sup +}{ell}{sup -}) = (5.6 {+-} 1.5(stat) {+-} 0.6(exp. syst) {+-} 1.1(model syst)) x 10{sup -6} for m{sub ll} > 0.2 GeV.

  1. A Study of $e^+e^-\\to p\\bar{p}$ Using Initial StateRadiation with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-12-13

    The e{sup +}e{sup -} {yields} p{bar p} cross-section is determined over a range of p{bar p} masses, from threshold to 4.5 GeV/c{sup 2}, by studying the e{sup +}e{sup -} {yields} p{bar p}{gamma} process. The data set corresponds to an integrated luminosity of 232 fb{sup -1}, collected with the BABAR detector at the PEP-II storage ring, at an e{sup +}e{sup -} center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G{sub E}/G{sub M}|, is measured for p{bar p} masses below 3 GeV/c{sup 2}; its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c{sup 2}. We also measure J/{psi} {yields} p{bar p} and {psi}(2S) {yields} p{bar p} branching fractions and set an upper limit on Y(4260) {yields} p{bar p} production and decay.

  2. On Decays of B Mesons to a Strange Meson and an Eta or Eta' Meson at Babar

    Energy Technology Data Exchange (ETDEWEB)

    Hirschauer, James Francis [Univ. of Colorado, Boulder, CO (United States)

    2009-01-01

    We describe studies of the decays of B mesons to final states ηK*(892), ηK*0(S-wave), ηK*2(1430), and η'K based on data collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collier at the Stanford Linear Accelerator Center. We measure branching fractions and charge asymmetries for the decays B → ηK*, where K* indicates a spin 0, 1, or 2 Kπ system, making first observations of decays to final states ηK0*0(S-wave), ηK+*0 (S-wave), and ηK0*2(1430). We measure the time-dependent CP-violation parameters S and C for the decays B0 → η'K0, observing CP violation in a charmless B decay with 5σ significance considering both statistical and systematic uncertainties.

  3. Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC; Etude des desintegrations doublement charmees des mesons B avec l'experience BABAR a SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, P

    2002-04-01

    The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e{sup +}e{sup -} collisions at the {gamma}(4S) resonance. The first goal of the collaboration was to measure the sin (2{beta}) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2{beta}) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B{yields} DX). Doubly charmed decays (B{yields} D{sup (*)}D-bar{sup (*)}) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B{yields} D{sup (*)}D-bar{sup (*)} K decays are not the only source of wrong sign D mesons in B decays. (author)

  4. First Observation of CP Violation in B[over ¯]^{0}→D_{CP}^{(*)}h^{0} Decays by a Combined Time-Dependent Analysis of BABAR and Belle Data.

    Science.gov (United States)

    Abdesselam, A; Adachi, I; Adametz, A; Adye, T; Ahmed, H; Aihara, H; Akar, S; Alam, M S; Albert, J; Al Said, S; Andreassen, R; Angelini, C; Anulli, F; Arinstein, K; Arnaud, N; Asner, D M; Aston, D; Aulchenko, V; Aushev, T; Ayad, R; Babu, V; Badhrees, I; Bahinipati, S; Bakich, A M; Band, H R; Banerjee, Sw; Barberio, E; Bard, D J; Barlow, R J; Batignani, G; Beaulieu, A; Bellis, M; Ben-Haim, E; Bernard, D; Bernlochner, F U; Bettarini, S; Bettoni, D; Bevan, A J; Bhardwaj, V; Bhuyan, B; Bianchi, F; Biasini, M; Biswal, J; Blinov, V E; Bloom, P C; Bobrov, A; Bomben, M; Bondar, A; Bonneaud, G R; Bonvicini, G; Bozek, A; Bozzi, C; Bračko, M; Briand, H; Browder, T E; Brown, D N; Brown, D N; Bünger, C; Burchat, P R; Buzykaev, A R; Calabrese, R; Calcaterra, A; Calderini, G; Carpinelli, M; Cartaro, C; Casarosa, G; Cenci, R; Červenkov, D; Chang, P; Chao, D S; Chauveau, J; Cheaib, R; Chekelian, V; Chen, A; Chen, C; Cheng, C H; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, H H F; Choi, S-K; Chrzaszcz, M; Cibinetto, G; Cinabro, D; Cochran, J; Coleman, J P; Contri, R; Convery, M R; Cowan, G; Cowan, R; Cremaldi, L; Dalseno, J; Dasu, S; Davier, M; Davis, C L; De Mori, F; De Nardo, G; Denig, A G; Derkach, D; de Sangro, R; Dey, B; Di Lodovico, F; Dingfelder, J; Dittrich, S; Doležal, Z; Dorfan, J; Drásal, Z; Drutskoy, A; Druzhinin, V P; Dubois-Felsmann, G P; Dunwoodie, W; Dutta, D; Ebert, M; Echenard, B; Eidelman, S; Eigen, G; Eisner, A M; Emery, S; Ernst, J A; Faccini, R; Farhat, H; Fast, J E; Feindt, M; Ferber, T; Ferrarotto, F; Ferroni, F; Field, R C; Filippi, A; Finocchiaro, G; Fioravanti, E; Flood, K T; Ford, W T; Forti, F; Franco Sevilla, M; Fritsch, M; Fry, J R; Fulsom, B G; Gabathuler, E; Gabyshev, N; Gamba, D; Garmash, A; Gary, J W; Garzia, I; Gaspero, M; Gaur, V; Gaz, A; Gershon, T J; Getzkow, D; Gillard, R; Li Gioi, L; Giorgi, M A; Glattauer, R; Godang, R; Goh, Y M; Goldenzweig, P; Golob, B; Golubev, V B; Gorodeisky, R; Gradl, W; Graham, M T; Grauges, E; Griessinger, K; Gritsan, A V; Grosdidier, G; Grünberg, O; Guttman, N; Haba, J; Hafner, A; Hamilton, B; Hara, T; Harrison, P F; Hast, C; Hayasaka, K; Hayashii, H; Hearty, C; He, X H; Hess, M; Hitlin, D G; Hong, T M; Honscheid, K; Hou, W-S; Hsiung, Y B; Huard, Z; Hutchcroft, D E; Iijima, T; Inguglia, G; Innes, W R; Ishikawa, A; Itoh, R; Iwasaki, Y; Izen, J M; Jaegle, I; Jawahery, A; Jessop, C P; Joffe, D; Joo, K K; Julius, T; Kang, K H; Kass, R; Kawasaki, T; Kerth, L T; Khan, A; Kiesling, C; Kim, D Y; Kim, J B; Kim, J H; Kim, K T; Kim, P; Kim, S H; Kim, Y J; King, G J; Kinoshita, K; Ko, B R; Koch, H; Kodyš, P; Kolomensky, Yu G; Korpar, S; Kovalskyi, D; Kowalewski, R; Kravchenko, E A; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kuzmin, A; Kwon, Y-J; Lacker, H M; Lafferty, G D; Lanceri, L; Lange, D J; Lankford, A J; Latham, T E; Leddig, T; Le Diberder, F; Lee, D H; Lee, I S; Lee, M J; Lees, J P; Leith, D W G S; Leruste, Ph; Lewczuk, M J; Lewis, P; Libby, J; Lockman, W S; Long, O; Lopes Pegna, D; LoSecco, J M; Lou, X C; Lueck, T; Luitz, S; Lukin, P; Luppi, E; Lusiani, A; Luth, V; Lutz, A M; Lynch, G; MacFarlane, D B; Malaescu, B; Mallik, U; Manoni, E; Marchiori, G; Margoni, M; Martellotti, S; Martinez-Vidal, F; Masuda, M; Mattison, T S; Matvienko, D; McKenna, J A; Meadows, B T; Miyabayashi, K; Miyashita, T S; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Monge, M R; Moon, H K; Morandin, M; Muller, D R; Mussa, R; Nakano, E; Nakazawa, H; Nakao, M; Nanut, T; Nayak, M; Neal, H; Neri, N; Nisar, N K; Nishida, S; Nugent, I M; Oberhof, B; Ocariz, J; Ogawa, S; Okuno, S; Olaiya, E O; Olsen, J; Ongmongkolkul, P; Onorato, G; Onuchin, A P; Onuki, Y; Ostrowicz, W; Oyanguren, A; Pakhlova, G; Pakhlov, P; Palano, A; Pal, B; Palombo, F; Pan, Y; Panduro Vazquez, W; Paoloni, E; Park, C W; Park, H; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pedlar, T K; Peimer, D R; Peruzzi, I M; Pesántez, L; Pestotnik, R; Petrič, M; Piccolo, M; Piemontese, L; Piilonen, L E; Pilloni, A; Piredda, G; Playfer, S; Poireau, V; Porter, F C; Posocco, M; Prasad, V; Prell, S; Prepost, R; Puccio, E M T; Pulliam, T; Purohit, M V; Pushpawela, B G; Rama, M; Randle-Conde, A; Ratcliff, B N; Raven, G; Ribežl, E; Richman, J D; Ritchie, J L; Rizzo, G; Roberts, D A; Robertson, S H; Röhrken, M; Roney, J M; Roodman, A; Rossi, A; Rostomyan, A; Rotondo, M; Roudeau, P; Sacco, R; Sakai, Y; Sandilya, S; Santelj, L; Santoro, V; Sanuki, T; Sato, Y; Savinov, V; Schindler, R H; Schneider, O; Schnell, G; Schroeder, T; Schubert, K R; Schumm, B A; Schwanda, C; Schwartz, A J; Schwitters, R F; Sciacca, C; Seiden, A; Sekula, S J; Senyo, K; Seon, O; Serednyakov, S I; Sevior, M E; Shapkin, M; Shebalin, V; Shen, C P; Shibata, T-A; Shiu, J-G; Simard, M; Simi, G; Simon, F; Simonetto, F; Skovpen, Yu I; Smith, A J S; Smith, J G; Snyder, A; So, R Y; Sobie, R J; Soffer, A; Sohn, Y-S; Sokoloff, M D; Sokolov, A; Solodov, E P; Solovieva, E; Spaan, B; Spanier, S M; Starič, M; Stocchi, A; Stroili, R; Stugu, B; Su, D; Sullivan, M K; Sumihama, M; Sumisawa, K; Sumiyoshi, T; Summers, D J; Sun, L; Tamponi, U; Taras, P; Tasneem, N; Teramoto, Y; Tisserand, V; Todyshev, K Yu; Toki, W H; Touramanis, C; Trabelsi, K; Tsuboyama, T; Uchida, M; Uglov, T; Unno, Y; Uno, S; Usov, Y; Uwer, U; Vahsen, S E; Van Hulse, C; Vanhoefer, P; Varner, G; Vasseur, G; Va'vra, J; Verderi, M; Vinokurova, A; Vitale, L; Vorobyev, V; Voß, C; Wagner, M N; Wagner, S R; Waldi, R; Walsh, J J; Wang, C H; Wang, M-Z; Wang, P; Watanabe, Y; West, C A; Williams, K M; Wilson, F F; Wilson, J R; Wisniewski, W J; Won, E; Wormser, G; Wright, D M; Wu, S L; Wulsin, H W; Yamamoto, H; Yamaoka, J; Yashchenko, S; Yuan, C Z; Yusa, Y; Zallo, A; Zhang, C C; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2015-09-18

    We report a measurement of the time-dependent CP asymmetry of B[over ¯]^{0}→D_{CP}^{(*)}h^{0} decays, where the light neutral hadron h^{0} is a π^{0}, η, or ω meson, and the neutral D meson is reconstructed in the CP eigenstates K^{+}K^{-}, K_{S}^{0}π^{0}, or K_{S}^{0}ω. The measurement is performed combining the final data samples collected at the ϒ(4S) resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6} BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6} BB[over ¯] pairs recorded by the Belle detector. We measure the CP asymmetry parameters -η_{f}S=+0.66±0.10(stat)±0.06(syst) and C=-0.02±0.07(stat)±0.03(syst). These results correspond to the first observation of CP violation in B[over ¯]^{0}→D_{CP}^{(*)}h^{0} decays. The hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.

  5. Rapid 3D Track Reconstruction with the BaBar Trigger Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S

    2004-05-24

    As the PEP-II luminosity increases the BaBar trigger and dataflow systems must accommodate the increasing data rate. A significant source of background events at the first trigger level comes from beam particle interactions with the beampipe and synchrotron masks, which are separated from the interaction region by more than 20 cm. The BaBar trigger upgrade will provide 3D tracking capabilities at the first trigger level in order to remove background events by distinguishing the origin of particle tracks. Each new z{sub 0} p{sub T} Discriminator (ZPD) board processes over 1 gigabyte of data per second in order to reconstruct the tracks and make trigger decisions based upon the 3D track parameters.

  6. User Defined Data in the New Analysis Model of the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, G.

    2005-04-06

    The BaBar experiment has recently revised its Analysis Model. One of the key ingredient of BaBar new Analysis Model is the support of the capability to add to the Event Store user defined data, which can be the output of complex computations performed at an advanced stage of a physics analysis, and are associated to analysis objects. In order to provide flexibility and extensibility with respect to object types, template generic programming has been adopted. In this way the model is non-intrusive with respect to reconstruction and analysis objects it manages, not requiring changes in their interfaces and implementations. Technological details are hidden as much as possible to the user, providing a simple interface. In this paper we present some of the limitations of the old model and how they are addressed by the new Analysis Model.

  7. Search for exotics in the rare decay B → J/ψKKK at BABAR

    Directory of Open Access Journals (Sweden)

    Prencipe Elisabetta

    2015-01-01

    Full Text Available One of the most intriguing puzzles in hadron spectroscopy are the numerous charmonium-like states observed in the last decade, including charged states that are manifestly exotic. Over the years, the experiment BABAR has extensively studied those in B meson decays, initial state radiation processes and two photon reactions. We report in this paper a new study on some of those states, performed using the entire data sample collected by BABAR in e+e− collisions, at center of mass energies near 10.58 GeV/c2. The study of the process B → J/ψϕK will be presented, and the search for the resonant states X(4140 and X(4270 in their decays to J/ψϕ, will be highlighted.

  8. A search for the decay of a B meson into a kaon and a tau lepton pair at the BaBar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cheaib, Racha [McGill Univ., Montreal, QC (Canada)

    2016-08-13

    The flavour changing neutral current (FCNC) process, $B^+$ → $K^+ τ^+ τ^-$ highly suppressed in the Standard Model (SM). This decay is forbidden at tree level and only occurs at lowest order via one-loop diagrams.$B^+$ → $K^+ τ^+ τ^-$ thus has the potential to provide a stringent test of the SM and a fertile ground for new physics searches. Contributions due to virtual particles in the loop allow one to probe, at relatively low energies, new physics at large mass scales. We search for the rare FCNC process $B^+$ → $K^+ τ^+ τ^-$ using data collected by the BaBaR detector at the SLAC National Accelerator Laboratory. The BaBaR data sample corresponds to a total integrated luminosity, at the energy of the Τ(4S) resonance, of 424.4 $fb^-1$ and 471 million $B\\bar{B}$ pairs. For this search, hadronic $B_{tag}$ reconstruction is employed, where one B is exclusively reconstructed via one of many possible hadronic modes. The remaining decay products in an event are then attributed to the signal B, on which the search for $B^+$ → $K^+ τ^+ τ^-$ is performed. Each τ is required to decay leptonically, into either an electron or a muon and the lepton neutrinos. Furthermore, a multi-variate analysis technique (neural network) is used to select for signal events and suppress dominant background modes. No significant signal is observed. The resulting branching fraction is measured to be $\\beta(B^+$ → $K^+ τ^+)$ = $1.31^{0:66}_{-0:61}$(stat.) $^{+0:35}_{-0:25}$(sys.) x 10$^{-3}$, which is consistent with zero at the 1.9σ level, with an upper limit of 2.25 x 10$^{-3}$, at the 90% confidence level.

  9. Final Report, CONTRIBUTIONS TO STUDIES OF CP VIOLATION AND HADRONIC PHYSICS WITH THE BABAR COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [University of Louisville

    2013-07-25

    The University of Louisville High Energy Physics group has undertaken a long-term effort in understanding baryon production in elementary particle processes in the 10 GeV energy region. We have contributed significantly to the broad program of the BaBar Collaboration, particularly in support of computing, data visualization, and simulation. We report here on progress in the areas of service to the Collaboration and understanding of baryon production via measurement of inclusive hadronic particle spectra.

  10. Distributing File-Based Data to Remote Sites Within the BABAR Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, Stephen J.

    2002-05-02

    BABAR [1] uses two formats for its data: Objectivity database and root [2] files. This poster concerns the distribution of the latter--for Objectivity data see [3]. The BABAR analysis data is stored in root files--one per physics run and analysis selection channel--maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,000 root files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centers throughout the us and Europe. Two basic problems confront us when we seek to import bulk data from slac to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and we must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync [4], the widely-used mirror/synchronization program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimize the network transfer by using multiple streams, adjusting the tcp window size, or separating encrypted authentication from unencrypted data channels.

  11. Choosing CPUs in an Open Market: System Performance Testing for the BaBar Online Farm

    International Nuclear Information System (INIS)

    Pavel, Tomas J

    1998-01-01

    BABAR is a high-rate experiment to study CP violation in asymmetric e + e - collisions. The BABAR Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full reconstruction of selected events and for monitoring functions. A large number of machine architectures were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU performance. Factors of general interest to others making hardware decisions are highlighted. Performance of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations in memory system performance exist. No single operating system has an overall edge in the performance of its primitives. In particular, freeware operating systems perform no worse overall than the commercial offerings

  12. Choosing CPUs in an Open Market: System Performance Testing for the BaBar Online Farm

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Tomas J

    1998-11-17

    BABAR is a high-rate experiment to study CP violation in asymmetric e{sup +}e{sup {minus}} collisions. The BABAR Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full reconstruction of selected events and for monitoring functions. A large number of machine architectures were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU performance. Factors of general interest to others making hardware decisions are highlighted. Performance of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations in memory system performance exist. No single operating system has an overall edge in the performance of its primitives. In particular, freeware operating systems perform no worse overall than the commercial offerings.

  13. Two- and Three-Body Charmless B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-05

    We report recent measurements of rare charmless B decays performed by BaBar. The results are based on the final BaBar dataset of 424 fb{sup -1} collected at the PEP-II B-factory based at the SLAC National Accelerator Laboratory. The study of rare B decays is a key ingredient to meet two of the main goals of the B-factories: assessing the validity of the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP-violation by precisely measuring the elements of the Unitarity Triangle (UT), and searching for hints of New Physics (NP), or otherwise constraining NP scenarios, in processes which are suppressed in the Standard Model (SM). In loop processes, in particular, NP at some higher energy scale may manifest itself in the low energy effective theory as new couplings, such as those introduced by new very massive virtual particles in the loop. In NP searches hadronic uncertainties can play a major role, expecially for branching fraction measurements. Many theoretical uncertainties cancel in ratios of amplitudes, and most NP probes are therefore of this kind. In the following sections we report recent measurements, performed by the BaBar Collaboration, that are relevant to NP searches in charmless hadronic B decays.

  14. Quarkonium Spectroscopy And Search for New States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G.

    2011-11-04

    The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the mass values suggest that they could be conventional charmonia, but also other interpretations like D{sup 0}{bar D}*{sup 0} molecule or diquark-antidiquark states among many other models have been advanced. Reviews can be found in Refs. [1][2]. In all cases the picture is not completely clear. This situation could be remedied by a coherent search of the decay pattern to D{bar D}, search for production in two-photon fusion and ISR, and of course improving the statistical precision upon the current measurements. The BaBar experiment at the PEP-II asymmetric collider, designed to perform precision measurement of CP violation in the B meson system, has an extensive quarkonium spectroscopy program. Recent

  15. Study of Rare B-Meson Decays Related to the CPObservable sin(2beta+gamma) at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Orimoto, Toyoko Jennifer [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This study reports the observation of the decays B0→D$*+\\atop{s}$π- and B0→D(*)-K+ in a sample of 230 x 106 Y(4S) → B$\\bar{B}$ events collected with the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring, located at the Stanford Linear Accelerator Center. The branching fractions β(B0 → D$+\\atop{S}$π-) = (1.3 ± 0.3 (stat) ± 0.2 (syst)) x 10-5, β(B0 → D$+\\atop{S}$K+) = (2.5 ± 0.4 (stat) ± 0.4 (syst)) x 10-5, β(B0→D$*+\\atop{s}$π-) = (2.8 ± 0.6 (stat) ± 0.5 (syst)) x 10-5, and β(B0→D(*)-K+) = (2.0 ± 0.5 (stat) ± 0.4 (syst)) x 10-5 are measured. The significance of the measurements to differ from zero are 5, 9, 6, and 5 standard deviations, respectively. This is a first observation of the decaysB+→D$*+\\atop{s}$π- and B0→D(*)-K+. These results may potentially be useful in determining the CP asymmetry parameter sin(2β + γ) in the decays B0→D$*+\\atop{s}$π-.

  16. A Measurement of the CP Parameter sine two beta Using Fully Reconstructed B to ccbar Decays at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Eric A

    2003-04-22

    This dissertation presents a measurement of the time-dependent CP-violating asymmetries in the neutral B-meson system performed with data collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample used consists of 29.7 fb{sup -1} collected at the {Upsilon}(4S) resonance and 3.9 fb{sup -1} collected off-resonance. We analyze three samples of fully-reconstructed B-meson decays: a sample of decays to CP eigenstates in the modes J/{psi} K{sub s}{sup 0}, {psi}(2S) K{sub s}{sup 0}, {chi}{sub cl} K{sub s}{sup 0}, and J/{psi} K*{sup 0} (822 events); as well as both charged (14304 events) and neutral (10457 events) B decays to flavor-eigenstates including D{sup (*)} and {pi}/{rho}/{alpha}{sub 1}. In all cases, the proper decay time difference between the reconstructed B-meson and the recoiling B-meson is determined by measuring the separation of the two decay vertices. Furthermore, the flavor of the recoiling B-meson is tagged using a neural network algorithm. We use the flavor-eigenstate samples to calibrate both the vertexing and tagging performance. We measure the amplitude of the CP asymmetry, sin2{beta} = 0.61 {+-} 0.14(stat) {+-} 0.06(syst). These results indicate the existence of indirect CP violation in the B-meson system.

  17. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  18. Study of B --> S Gamma at BaBar Using the Sum of Exclusive Modes

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, T

    2003-12-17

    The electromagnetic penguin process b {yields} s{gamma} is very interesting to theorists because it can be used to constrain contributions from new physics that could enter at the one loop level. The high statistics of B{bar B} events collected at the BABAR experiment make a measurement of this rare decay possible. The branching fraction of a sum of exclusive b {yields} s{gamma} decay modes is measured as a function of the strange hadronic mass. This is a large step toward the measurement of the b {yields} s{gamma} rate.

  19. Sun Microsystem's AutoClient and management of computer farms at BaBar

    OpenAIRE

    Telnov, A. V.; Luitz, S.; Pavel, T. J.; Saxton, O. H.; Simonson, M. R.

    2000-01-01

    Modern HEP experiments require immense amounts of computing power. In the BaBar experiment at SLAC, most of it is provided by Solaris SPARC systems. AutoClient, a product of Sun Microsystems, was designed to make setting up and managing large numbers of Solaris systems more straightforward. AutoClient machines keep all filesystems, except swap, on a server and employ CacheFS to cache them onto a local disk, which makes them Field Replaceable Units with performance of stand-alone systems. We b...

  20. Managing Bias Leakage Currents and High Data Rates in the BABAR Silicon Vertex Tracker

    CERN Document Server

    Garra-Tico, J; Bondioli, M; Bruinsma, M; Curry, S; Kirkby, D; Burke, S; Callahan, D; Campagnari, C; Cunha, A; Hale, D; Kyre, S; Richman, J; Beck, T; Eisner, A M; Kroseberg, J; Lockman, W S; Nesom, G; Seiden, A; Spradlin, P; Winstrom, L; Brown, D; Dardin, S; Goozen, F; Kerth, L T; Lynch, G; Roe, N A; Anderson, J; Chen, C; Lae, C K; Roberts, D; Simi, G; Tuggle, J; Lazzaro, A; Lombardo, V; Palombo, F; Ratti, L; Angelini, C; Batignani, G; Bettarini, S; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Mammini, P; Manfredi, P F; Marchiori, G; Mazur, M; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Walsh, J; Elmer, P; Long, O; Charles, E; Perazzo, A; Burchat, P; Edwards, A J; Miyashita, T S; Majewski, S; Petersen, B A; Bona, M; Bianchi, F; Gamba, D; Trapani, P; Bomben, M; Bosisio, L; Cartaro, C; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Gao, Y Y; Gritsan, A V; Guo, Z J

    2008-01-01

    The silicon vertex tracker at the BABAR experiment is the primary device used in measuring the distance between B0 and meson decay vertices for the extraction of CP asymmetries. It consists of five layers of double-sided, AC-coupled silicon modules, read out by custom integrated circuits. It has run well consistently for eight years. I report on three years of experience in managing problematic bias leakage currents in the fourth layer. In addition, I report on recent success in decreasing the data acquisition time by reducing the readout window.

  1. New results on low energy exclusive hadronic final states from BABAR

    OpenAIRE

    Gary J. William

    2018-01-01

    The 3.6 standard deviation discrepancy between the standard model (SM) prediction for the muon anomalous magnetic moment gμ - 2 and the corresponding experimental measurement is one of the most persistent and intriguing potential signals in particle physics for physics beyond the SM. The largest uncertainty in the SM prediction for gμ - 2 arises from the uncertainty in the measured low energy inclusive e+e- → hadrons cross section. New results from the BABAR experiment at SLAC for the e+e- → ...

  2. The GlueX DIRC detector

    Science.gov (United States)

    Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwarz, C.; Schwiening, J.; Stevens, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2017-12-01

    The GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed in 2017. We present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.

  3. Measurement of the Branching Fraction And Search for Direct CP-Violation in the B+- --> J/Psi Pi+- Decay Mode at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Fobozzi, Francesco; /Naples U.

    2006-08-22

    The phenomenon of CP-violation in weak interactions, discovered in 1964 in decays of neutral kaons, receives a simple and elegant explanation in the Standard Model with three generations of quarks. Indeed, in this model the common source of CP-asymmetry phenomena is represented by a simple complex phase in the unitary matrix (the Cabibbo-Kobayashi-Maskawa matrix) describing the charged weak couplings of the quarks. This simple scheme has never received an accurate validation, because the phenomenological parameters determined from measurements of CP-violation in kaons decays are related to the fundamental parameters of the theory in a complex way, sensitive to large theoretical uncertainties. On the contrary, decays of neutral B mesons like B{sup 0} {yields} J/{psi} K{sub S}{sup 0} represent a unique laboratory to test the predictions of the theory because they are expected to show significant CP-violation effects, the magnitude of which is cleanly related to the Standard Model parameters. Thus experimental facilities have been built with the purpose of performing extensive studies of B decays. The BABAR experiment is operating at one of these facilities, at the Stanford Linear Accelerator Center. It is collecting data at the PEP-II asymmetric e{sup +}e{sup -} collider (E{sub e{sup -}} = 9.0 GeV; E{sub e{sup +}} = 3.1 GeV), a high-luminosity accelerator machine (L = 3 x 10{sup 33} cm{sup -2}s{sup -1}). The center-of-mass energy (10.58 GeV) of the e{sup +}e{sup -} system at PEP-II allows resonant production of the {Upsilon}(4S), a b{bar b} bound state, which decays almost exclusively in a B{sup 0}{bar B}{sup 0} or a B{sup +}B{sup -} pair. A high-acceptance detector, projected and built by a wide international collaboration, detects and characterizes the decay products of the B mesons. From the analysis of the data collected during the first two years of operation, the BABAR collaboration has established CP-violation in decays of neutral B mesons at the 4.1{sigma

  4. Erwartete Messung der Z Produktionsrate mit dem CMS Detektor und Simulation des Tracker Laser Alignment Systems

    CERN Document Server

    Thomas, Maarten

    2009-01-01

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100µm). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first ...

  5. Messung von Myonen, Jets und Top-Quarks mit dem CMS-Detektor am LHC

    CERN Document Server

    Görner, Martin; Haller, Johannes

    2010-01-01

    In this diploma thesis first differential measurements of event topologies containing an isolated muon and additional jets are presented. The measurement corresponds to an integrated luminosity of $3 pb^{-1}$ of data collected by the CMS-detector at a center of mass energy of $\\sqrt{s} = 7 TeV$. The cross sections are shown as a function of the transverse momentum and the pseudo-rapidity of isolated muons in event categories with at least one, two, three or four jets. The transition from regions of phase space dominated by the production of vector bosons with additional jets towards regions dominated by the production of top anti-top quark pairs is studied. Especially for the lower jet multiplicity categories such measurements are possible in an early state of the experiment. When normalized to the inclusive event yield they provide robust measurements. Based on this the production cross section of top anti-top quark pairs is estimated. Furthermore, also differential cross sections for the production of top a...

  6. Studying b --> s gamma at BABAR Using a Fully Inclusive Method

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, R

    2004-02-23

    The b {yields} s{gamma} decay represents a possible electromagnetic ''loop'' penguin decay of the B meson. This FCNC process is of high theoretical interest because various scenarios of new physics are expected to have contributions at the same (one loop) level as the Standard Model. The large sample of B{bar B} meson decays collected by the BaBar experiment makes a precision measurement of this rare decay possible. In conjunction with Standard Model predictions at the 10% level, it brings new physics effects into the realm of detection--or seriously constrains models that could predict them. A fully inclusive technique is presented to study the b {yields} s{gamma} transition as a function of photon energy, using 88.5 {+-} 1.0 x 10{sup 6} B{bar B} meson decays collected by the BaBar experiment in the years 2000 to 2002. The expected statistical and systematic uncertainties have been fully determined which enables first comparisons with theoretical predictions and other experimental results. It also lays the basis for the determination of the inclusive branching fraction {Beta}(B {yields} X{sub s}{gamma}) and the measurement of the photon energy spectrum.

  7. BaBar MC production on the Canadian grid using a web services approach

    International Nuclear Information System (INIS)

    Agarwal, A; Armstrong, P; Desmarais, R; Gable, I; Popov, S; Ramage, S; Schaffer, S; Sobie, C; Sobie, R; Sulivan, T; Vanderster, D; Mateescu, G; Podaima, W; Charbonneau, A; Impey, R; Viswanathan, M; Quesnel, D

    2008-01-01

    The present paper highlights the approach used to design and implement a web services based BaBar Monte Carlo (MC) production grid using Globus Toolkit version 4. The grid integrates the resources of two clusters at the University of Victoria, using the ClassAd mechanism provided by the Condor-G metascheduler. Each cluster uses the Portable Batch System (PBS) as its local resource management system (LRMS). Resource brokering is provided by the Condor matchmaking process, whereby the job and resource attributes are expressed as ClassAds. The important features of the grid are automatic registering of resource ClassAds to the central registry, ClassAds extraction from the registry to the metascheduler for matchmaking, and the incorporation of input/output file staging. Web-based monitoring is employed to track the status of grid resources and the jobs for an efficient operation of the grid. The performance of this new grid for BaBar jobs, and the existing Canadian computational grid (GridX1) based on Globus Toolkit version 2 is found to be consistent

  8. Measurement of the branching fractions of the radiative leptonic τ decays τ → eγνν¯ and τ → μγνν¯ at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J. P. [Univ. de Savoie, CNRS/IN2P3, Annecy-Le-Vieux (France). et al.

    2015-03-25

    We perform a measurement of the τ → lγνν¯ (l = e,μ) branching fractions for a minimum photon energy of 10 MeV in the τ rest frame, using 431 fb–1 of e+e collisions collected at the center-of-mass energy of the Υ(4S) resonance with the BABAR detector at the PEP-II storage rings. We find B(τ → μγνν¯) = (3.69±0.03±0.10)×10–3 and B(τ → eγνν¯)=(1.847±0.015±0.052)×10–2, where the first quoted error is statistical and the second is systematic. In addition, these results are substantially more precise than previous measurements.

  9. Design of Dataflow Monitoring and Searches for B to omega gamma, B to phi gamma and B to phi K-short gamma at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Swain, J

    2004-03-16

    In May 2003 PEP-II achieved instantaneous luminosities in excess of 6 x 10{sup 33} cm{sup -2}s{sup -1}, twice the design luminosity. To permit BABAR to operate in this challenging environment, development work on the data acquisition system continued after detector commissioning. A vital part of this process is understanding the performance of the data acquisition system. Considerable effort was invested in the design and implementation of an application capable of collecting performance statistics from hundreds of CPUs in the data acquisition system during data collection. The monitoring application and some examples of its operation are presented in this thesis. Also presented here are the searches for the exclusive radiative one-loop decays, B {yields} {omega}{gamma}, B {yields} {phi}{gamma} and B{sup 0} {yields} {phi}K{sub S}{sup 0}{gamma}, using a sample of 89 million B{bar B} events. No significant signal is seen in any of the channels. Upper limits on the branching ratios, {Beta}, were found to be {Beta}(B {yields} {omega}{gamma}) < 3.0 x 10{sup -6}, {Beta}(B {yields} {phi}{gamma}) < 2.9 x 10{sup -6}, and {Beta}(B{sup 0} {yields} {phi}K{sub S}{sup 0}{gamma}) < 3.8 x 10{sup -6}, at the 90% confidence level.

  10. Measurement of the Branching Fraction of B{bar B} {yields} K{sub S}{sup 0}X Decay at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tumanov, Alexander

    2003-04-09

    This thesis presents various studies of K{sub s}{sup 0} mesons carried out at the BABAR experiment. Studying multiplicities of K{sub s}{sup 0} in B{bar B} decays provides deeper knowledge of the detector performance and produces an important physical result. The branching fraction of B{bar B} {yields} K{sub s}{sup 0}X decay is measured using 286 pb{sup -1} of data collected during the first year of physics running. The result obtained is BR(B{bar B} {yields} XK{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = 0.216 {+-} 0.003(stat.) {+-} 0.015(syst.). Implications of this result to the presence of the new physics at TeV scale are discussed. The momentum spectrum of K{sub s}{sup 0} coming from B{bar B} {yields} XK{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -} is also presented.

  11. Study ofe+e- to Lambda anti-Lambda, Lambda anti-Sigma^0,Sigma^0 anti-Sigma^0 using Initial State Radiation with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2007-09-14

    We study the e+e- --> Lambda anti-Lambda gamma, Lambda anti-Sigma0 gamma, Sigma0 anti-Sigma0 gamma processes using 230 fb-1 of integrated luminosity collected by the BaBar detector at e+e- center-of-mass energy of 10.58 GeV. From the analysis of the baryon-antibaryon mass spectra the cross sections for e+e- --> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 are measured in the dibaryon mass range from threshold up to 3 GeV/c{sup 2}. The ratio of electric and magnetic form factors, |G{sub E}/G{sub M}|, is measured for e+e- --> Lambda anti-Lambda, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi --> Lambda anti-Lambda, Sigma0 anti-Sigma0 and psi(2S) --> Lambda anti-Lambda branching fractions.

  12. BaBar experiment: CP violation in the B0 B-bar0 system. Vector-vector channels of charmonium K*0 type

    International Nuclear Information System (INIS)

    Roussot, E.

    1999-04-01

    Following a summary of CP violation phenomenology in the context of the Standard Model, we focus on the particular case of CP violation by interference between B 0 B-bar 0 mixing and decay to a CP final state. We study the feasibility of the unitary triangle parameter sin (2β) measurement in the vector-vector like decay channel Charmonium K * . A full angular analysis is required in order to separate contribution between final states of opposite CP. With simulated data, we develop a kinematic selection of signal events. A likelihood allows to extract the value of sin (2β) with an expecting resolution of 0.39 for the first 30 fb -1 . This contribution constitutes the first quantitative analysis on this particular hadronic decay channel, in the framework of the BaBar experiment at the PEPII e + /e - asymmetric collider situated at SLAC (California). Besides, particle identification is assumed by a new type of Cherenkov detector (the DIRC), the principle, the architecture, the data acquisition and the online control system of which are fully described. (author)

  13. First observation of CP violation in B¯0 → D(*)CP h0 decays by a combined time-dependent analysis of BaBar And Belle Data

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, A. [Univ. of Tabuk, Tabuk (Kingdom of Saudi Arabia). et al.

    2015-09-16

    We report a measurement of the time-dependent CP asymmetry of B¯0 → D(*)CPh0 decays, where the light neutral hadron h0 is a π0, η, or ω meson, and the neutral D meson is reconstructed in the CP eigenstates K+K, K0Sπ0, or K0Sω. The measurement is performed combining the final data samples collected at the Υ(4S) resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×106 BB¯ pairs recorded by the BABAR detector and (772±11)×106 BB¯ pairs recorded by the Belle detector. We measure the CP asymmetry parameters –ηfS=+0.66±0.10(stat)±0.06(syst) and C=–0.02±0.07(stat)±0.03(syst). These results correspond to the first observation of CP violation in B¯0 → D(*)CPh0 decays. As a result, the hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.

  14. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  15. Dalitz Plot Analyses of B^- \\to D^+ \\pi^-\\pi^-, B^+ \\to \\pi^+ \\pi^- \\pi^+ and D^+_s \\to \\pi^+ \\pi^- \\pi^+ at BABAR

    OpenAIRE

    Dong, Liaoyuan; Collaboration, for the BABAR

    2009-01-01

    We report on the Dalitz plot analyses of B^- \\to D^+ \\pi^-\\pi^-, B^+ \\to \\pi^+ \\pi^- \\pi^+ and D^+_s \\to \\pi^+ \\pi^- \\pi^+. The Dalitz plot method and the most recent BABAR results are discussed.

  16. Radiative Penguin Decays at the BaBar Experiment B to K*gamma, B to rho gamma, B to omega gamma and B to Xs gamma

    International Nuclear Information System (INIS)

    Grauges, E.

    2004-01-01

    A review of the results obtained from the analysis of the B meson decays that involve Radiative Penguin processes, recorded at the BaBar experiment at the Stanford Linear Accelerator Center PEP-II B-Factory, is presented. The physics interest of these processes and their SM prediction are discussed briefly. The most relevant selection techniques used in the analysis are described before quoting the latest results made public by the BaBar collaboration as of July 2003

  17. The PANDA DIRC detectors at FAIR

    Science.gov (United States)

    Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.

    2017-07-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.

  18. Messung der qql$\

    CERN Document Server

    Niessen, Thomas

    2000-01-01

    The LEP storage ring at CERN allows to determine the parameters of the standard model with very high precision. Since 1996 the center of mass energy of the collider is well above the W-pair-production threshold, giving access to the decay products of the W-Bosons. Goal of this thesis was the design of a selection for the so called qqln final states (l = e,m,t) of the W-pair-production independent of the lepton flavor. In the events of this class one W-Boson decays into a lepton and the associated neutrino, the other W-Boson decays hadronicaly into two jets of particles. The so called "flavor blind selection" was used to determine the production cross section, brunching ratios, the mass and the width of the W-Boson from the data recorded with the L3 experiment between 1997 and 1999 at centre-of-mass energies between 183 and 202 GeV. Although the selection does not explicitly distinguish between the different lepton flavors, it is possible to separate electrons and muons from a leptonic tau decay from those pro...

  19. For information: Geneva University - Recent results of the BaBar experiment on CP Violation in the B mesons decays

    CERN Multimedia

    Université de Genève

    2005-01-01

    UNIVERSITE DE GENEVE ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 18 May PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Recent results of the BaBar experiment on CP Violation in the B mesons decays by Prof. Jean-Pierre Lees / LAPP, Annecy After a brief introduction on B physics at B factories and the current status of the BaBar experiment, I will show how CP violation effects in the decays B->D(*)K(*) and B->D(*)pi/rho can be used to probe the value of the angle gamma of the Unitarity triangle, and what precision can be expected on this measurement by the end of the BaBar running, in 2008. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  20. First Observation of An Excited Charm Baryon Decaying to Omega Charm Baryon at the BaBar Experiment

    International Nuclear Information System (INIS)

    Bula, Rahmi; SUNY, Albany

    2007-01-01

    We have carried out a search for a charmed baryon (Omega) * c decaying to (Omega) 0 c and a γ where (Omega) c candidates are reconstructed using decay modes (Omega) - π + (c1), (Omega) - π + π 0 (c2), (Omega) - π + π - π + (c3) and Ξ - K - π + π + (c4). This search is performed by analyzing integrated luminosity of 230.7 fb -1 data collected by the BABAR detector at the Stanford Linear Accelerator Center. In decay channel (Omega) * c → (Omega) 0 c ((Omega) - π + )γ (C1), we observe a signal yield of 39.2 +9.8 -9.1 (stat)±6.0(syst) events with a significance of 4.2 standard deviations. In decay channels (Omega) * c → (Omega) 0 c ((Omega) - π + π 0 )γ (C2) and (Omega) * c → (Omega) 0 c (Ξ - K - π + π + )γ (C4), we observe signal yields of 55.2 16.1 -15.2 ± 5.6 and 20.2 +9.3 -8.5 ± 3.1 with significances of 3.4 and 2.0 σ, respectively. As for the (Omega) * c → (Omega) 0 c ((Omega) - π + π - π + )γ (C3) decay channel, we observe signal yields of -5.1 +5.3.8 -4.7 ±1.0 without a positive significance. We assume the same production mechanism for the four decay channels of (Omega) * c studied. By combining these four channels, the fit results in a signal yield of 105.3 +21.2 -20.5 ± 6.0 events with a significance of 5.2 σ. We report the mass difference (Omega) * c - (Omega) 0 c ((delta)m) of the singly charmed baryon (Omega) * c to be 70.8 +1.0 -1.0 ± 1.1 MeV. Finally, the ratios of production cross sections are calculated: σ(e + e - →C1)/σ(e + e - →c1) = 0.71 +0.19 -0.18 ±0.11, σ(e + e - →C2)/σ(e + e - →c2) = 1.76 +0.71 -0.69 ±0.19, σ(e + e - →C3)/σ(e + e - →c3) = -0.66 +0.74 -0.66 ±0.13, σ(e + e - →C4)/σ(e + e - →c4) = 1.70 +1.0 -1.0 ±0.27 and σ(e + e - →(Omega) * c (combined))/σ(e + e - →(Omega) 0 c ) = 1.0 +0.23 -0.22 ±0.11

  1. Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M. [Stanford Univ., CA (United States)

    2013-08-01

    The compact bound state consisting of a bottom and anti-bottom quark pair interacting via the strong nuclear force is called “bottomonium.” A wealth of long-lived bottomonium states can be both experimentally produced and theoretically described, providing a unique tool to probe calculation techniques with experiment. Bottomonia with total angular momentum J = 1 and orbital angular momentum L = 0 at a variety of radial excitations n – called Υ(nS) – can be produced at electron-positron colliders. The BABAR experiment, located at the interaction point of such a collider (the PEP-II storage ring), has observed 122 million Υ(3S) and 100 million Υ(2S) decays. Some of these involve a transition to the bottomonium state χbJ (nP) (L = 1 and J = (0, 1, 2)), emitting a photon, with subsequent transition to a lower Υ(nS), also emitting a photon. The final Υ(nS) can be identified through a decay to two muons. The dependence of the branching fractions and photon energies in this process on the spin state of the intermediate χbJ (nP) is a key test of phenomenological models. To this end, this dissertation contains a nearly comprehensive study of these transitions with an emphasis on experimentally optimal discrimination between various models. This focus spurs innovative techniques that complement a large array of physics results, both presented in detail herein.

  2. Study of the Rare Decay B0 to pi0 pi0 at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bowerman, Daniel

    2003-08-20

    The BABAR experiment operating at the PEP-II e{sup +}e{sup -} collider is designed to study CP violation effects in the B-meson system. From May 1999 to June 2002 approximately 81 fb{sup -1} of data have been collected at the {Upsilon}(4S) resonance, containing (87.9 {+-} 1.4) Million BB pairs. From this data sample the branching fraction for the decay B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} has been extracted using a multi-dimensional maximum likelihood technique. With an efficiency of 20.4%, we find 36{sub -14-1}{sup +15+1} B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0} events and measure the branching fraction to be {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (2.0{sub -0.8-0.2}{sup +0.9+0.3}) x 10{sup -6} where the first error is statistical and the second systematic. The statistical significance is 3.1{sigma} and we report an upper limit of {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) < 3.6 x 10{sup -6} (90%CL). The results of the fit are confirmed using a simple cut based analysis technique.

  3. Hadronic and rare B decays with the BaBar and Belle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Prudent, Xavier [Technische Univ. Dresden, Dresden (Germany)

    2012-05-07

    We review recent experimental results on Bd and Bs mesons decays by the BaBar and Belle experiments. These include measurements of the color-suppressed decays B¯0 → D(*)0h0,h0 = π0,η,η',ω, observation of the baryonic decay B¯0 → Λc+Λ¯K, measurements of the charmless decays B → ηh,h = π,K, B → Kπ, and observation of CP eigenstates in the Bs decays: Bs0 → J/ψf0(980), Bs0 → J/ψf0(1370) and Bs0 → J/ψη. As a result, the theoretical implications of these results will be considered.ided

  4. Analog floating-point BiCMOS sampling chip and architecture of the BaBar CsI calorimeter front-end electronics system at the SLAC B-Factory

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.M.; Freytag, D.R. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center

    1996-06-01

    The design and implementation of an analog floating-point sampling integrated circuit for the BaBar detector at the SLAC B-Factory is described. The CARE (Custom Auto-Range Encoding) circuit is part of an 18-bit dynamic range sampling system with a 4-MHz waveform digitization rate for the CsI calorimeter. The architecture and methodology of the system are described. The CARE integrated circuit receives dual-range (gain of 1 and 32) 13-bit signals from the 18-bit range preamplifiers mounted directly on the CsI crystals and converts the input at a rate of 4 MHz to an auto-range floating-point format with a 10-bit analog mantissa and 2 digital range bits (for 4 ranges). Additional functions integrated on the chip are averaging and selection circuitry for signals originating from two independent diodes per crystal and range-selection overwrite circuitry. The circuit will be mounted within the detector structure and thus low power dissipation is essential. The circuit has been fabricated in a 1.2 {micro}m BiCMOS process with polysilicon-to-polysilicon capacitors and polysilicon resistors. Measurement results are presented. One complete CARE channel dissipates 25 mW.

  5. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  6. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  7. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  8. Messung computer- und informationsbezogener Kompetenzen von Schülerinnen und Schülern als Schlüsselkompetenz im 21. Jahrhundert

    Directory of Open Access Journals (Sweden)

    Birgit Eickelmann

    2011-12-01

    Full Text Available Mit der ICILS 2013 (International Computer and Information Literacy Study realisiert die IEA (International Association for the Evaluation of Educational Achievement erstmalig eine internationale Vergleichsstudie, die empirisch abgesichert Schülerkompetenzen im Bereich der computer- und informationsbezogenen Kompetenzen (Computer and Information Literacy, kurz: CIL erhebt. Mit dieser Studie werden informations- und computerbezogene Kompetenzen, die im 'deutschen' Sprachgebrauch auch oft unter dem affinen Begriff ICT-Literacy geführt werden, als Large-Scale-Assessments erfasst. Im folgenden Beitrag soll die Relevanz der Messung dieser Schlüsselkompetenz aufgezeigt werden. Alsdann werden das der Studie zugrundeliegende Messkonstrukt und seine definitorischen Bereiche beschrieben. Die hier vorgestellte Definition des CIL-Konstruktes bildet die Grundlage für die datengestützte Entwicklung von Kompetenzstufen, die aus der Hauptstudie von ICILS im Jahr 2013 hervorgehen werden. The IEA (International Association for the Evaluation of Educational Achievement will realize with ICILS 2013 (International Computer and Information Literacy Study for the first time an international comparative study, which will provide evidence about students' computer- and information-related competencies across countries. As a large-scaleassessment, the study examines the outcome of computer and information literacy. This article outlines the challenges and the relevance of the measurement of this core competence. Additionally the theoretical assessment constructs of CIL (computer and information literacy and their definitional scopes are explained in more detail. The presented definition of CIL is the foundation for a data-based development of proficiency levels within the study, which main survey will take place in 2013.

  9. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  10. TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb Upgrade at CERN

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcì a, A.; van Dijk, M.

    2016-05-01

    TORCH is a large-area precision time-of-flight detector, based on Cherenkov light production and propagation in a quartz radiator plate, which is read out at its edges. TORCH is proposed for the LHCb experiment at CERN to provide positive particle identification for kaons, and is currently in the Research-and-Development phase. A brief overview of the micro-channel plate photon sensor development, the custom-made electronics, and an introduction to the current test beam activities is given. Optical readout solutions are presented for the potential use of BaBar DIRC bar boxes as part of the TORCH configuration in LHCb.

  11. Study of no-charmed semi-leptonic decays of B mesons and measurement of the V{sub ub} term of the CKM matrix in the experiment BABAR; Etude des desintegrations semi-leptoniques non charmees des mesons B et mesure de l'element V{sub ub} de la matrice CKM dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, B

    2001-09-01

    The aim of this work is to improve the accuracy of the measurement of the |V{sub ub}| term of the Cabibbo-Kobayashi-Maskawa matrix. |V{sub ub}| has been determined from the branching ratio of the decay: B{sup 0} {yields} {rho}{sup -}l{sup +}{nu} and experimental data from 22 millions BB-bar pairs has been used. We propose: branching ratio = (3.79{+-}0.41{sub -0.64}{sup +0.53}{+-}0.41).10{sup -4} and |V{sub ub}| = (3.83{+-}0.20{sub -0.34}{sup +0.26}{+-}0.60).10{sup -3}. The first part of this work explains how an accurate value of |V{sub ub}| can allow the standard model to be tested. The second part gives a description of the PEP-II collider and of the BABAR detector. The measurement of |V{sub ub}| is based on semi-leptonic decays, so an appropriate identification of leptons is required. This identification is made by the electromagnetic calorimeter and by the instrumented flux return (IFR) for electrons and muons respectively. The third part presents the analysis of exclusive semi-leptonic decays and the extraction of |V{sub ub}|. 5 modes of decay have been selected, the main difficulties rise from the presence of a neutrino that can not be detected and from the decay: b {yields} cl{nu} for which the branching ratio is about 100 times greater than that of decay: b {yields} ul{nu}. The quark c being heavier than the quark u, this implies the existence of an energy range for leptons that is not accessible to charmed decays. (A.C.)

  12. Messung der Impulsverteilung der Antiquarks im Nukleon aus der inklusiven tiefinelastischen Antineutrino Nukleon Reaktion ueber geladene Stroeme

    CERN Document Server

    Klasen, Hans Peter

    1981-01-01

    In this thesis the antiquark momentum distribution in the nucleus as a function of x and Q2 is determined. This determination is based on the measurement of the differential cross-section at high y for inclusive antineutrino nucleon charged current interactions. The portion of antineutrino scattering off quarks is corrected by the also measured neutrino cross-section. For the measurement of the cross-section 150 000 anti v- und 35 000 v-events, which were produced in the CERN wide band beam, in the energy range from 20 GeV to 160 GeV and 27 000 anti v- and 63 000 v-events measured in the narrow band beam in the energy range from 20 GeV to 200 GeV are used. The measurement was performed with the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. The detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. The measured antiquark momentum distribution shows a strong rise for x<0.1 as a function of Q2. It will be shown that this scaling violation cannot be ...

  13. Search for B → (ρ/ω) γ decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Piatenko, Timofei [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2008-07-28

    The authors present the results of the search for the decays B0/± → ρ0/±γ (previously observed) and B0 → ωγ (for which currently only an upper limit exists). Together with B → K*γ decays, B → (ρ/ωγ allow us to measure the ratio of CKM-matrix elements |Vtd/Vts|. The analysis is based on the full BABAR dataset of 424.35 fb-1 corresponding to 465 million B$\\bar{B}$ pairs, and makes heavy use of multivariate classification techniques based on decision trees. They find β(B± → ρ±γ) = (1.20 -0.38+0.42 ± 0.20) x 10-6, β(B0 → ρ0γ) = (0.95-0.21+0.23 ± 0.06) x 10-6, β(B0 → ωγ) = (0.51-0.24+0.27 ± 0.10) x 10-60 → ωγ) < 0.9 x 10-6 (90% C.L.). They also measure the isospin and SU(3)F violating quantities Γ(B+ → ρ+γ)/2Γ(B0 → ρ0γ)-1 = -0.43-0.22+0.25 ± 0.10 and Γ(B0 → ωγ)/Γ(B0 → ρ0γ)-1 = -0.49-0.27+0.30 ± 0.10.

  14. A Study of B→c$\\bar{c}$γK in the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fulsom, Brian Gregory [Univ. of British Columbia, Vancouver, BC (Canada)

    2009-04-01

    The BABAR Collaboration is a high energy physics experiment located at the Stanford Linear Accelerator Center. The primary goal of the experiment is to study charge and parity violation in the B-meson sector, however the copious production of B mesons decaying to other final states allows for a wide-ranging physics program. In particular, one can access the charmonium system via colour-suppressed b → c decays of the type B → c$\\bar{c}$K. This thesis presents a study of B →c$\\bar{c}$γK decays where c$\\bar{c}$ includes J/Ψ and Ψ(2S), and K includes K±, KS0 and K*(892). The particular emphasis is on a search for the radiative decays X(3872) → J/Ψγ and X(3872) → Ψ(2S)γ. The X(3872) state is a recently-discovered resonance of undetermined quark composition, speculatively a conventional charmonium state or exotic four-quark di-meson molecule. This research is also sensitive to the well-known radiative charmonium decays B → χc1,2K, which are used as verification for the analysis technique. This dissertation sets the best B → χc1K branching fraction measurements to date, and sees the first evidence for factorization-suppressed B0 → χc2}K*0 decay at a level of 3.6σ. It also provides evidence for X(3872) → J/Ψγ and X(3872) → Ψ(2S)γ with 3.6σ and 3.3σ significance, respectively. The product of branching fractions β(B± → X(3872)K±) • β(X(3872) → J/Ψγ) = (2.8 ± 0.8(stat.) ± 0.2(syst.)) x 10{sup -6} and β(B{± → X(3872)K±) → β(X(3872) → Ψ(2S)γ) = (9.5 ± 2.7(stat.) ± 0.9(syst.)) x 10-6 are measured. These results improve upon previous X(3872) → J/Ψγ measurements, and represent the first evidence for X(3872) → Ψ(2S)γ.

  15. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  16. Study of B±,0 → J/ψ K+ KK±,0 and search for B0 → J/ψΦ at Babar

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J. P. [Univ. de Savoie, CNRS/IN2P3, Annecy-Le-Vieux (France). et al.

    2015-01-07

    We study the rare B meson decays B±,0 → J/ψK+KK±,0, B±,0 → J/ψΦK±,0, and search for B0 → J/ψΦ, using 469 million BB¯ events collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e+e asymmetric energy collider. We present new measurements of branching fractions and a study of the J/ψΦ mass distribution in search of new charmonium-like states. In addition, we search for the decay B0 → J/ψΦ and find no evidence of a signal.

  17. Transmutation detectors

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, Jan; Kůs, P.; Marek, M.

    2011-01-01

    Roč. 632, č. 1 (2011), s. 109-111 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Transmutation detector * Activation method * Neutron detector * Neutron fluence Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2011

  18. Vapor Detector

    Science.gov (United States)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  19. A Measurement of CP-violation Parameters in B0B0barMixing using Partially Reconstructed D^{*-}l^+ nu_l Events at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-08-18

    CP violation in B{sup 0}{bar B}{sup 0} mixing is characterized by the value of the parameter |q/p| being different from 1, and the Standard Model predicts this difference to be smaller than 10{sup -3}. We present a measurement of this parameter using a partial reconstruction of one of the B mesons in the semileptonic channel D*{sup -}{ell}{sup +}{nu}{sub {ell}}, where only the hard lepton and the soft pion from the D*{sup -} {yields} {bar D}{sup 0}{pi}{sup -} decay are reconstructed. The flavor of the other B is determined by means of lepton tagging. The determination of |q/p| is then performed with a fit to the proper time difference of the two B decays. We use a luminosity of 200.8 fb{sup -1}, collected at the {Upsilon}(4S) resonance by the BABAR detector at the PEP-II asymmetrical-energy e{sup +}e{sup -} collider, in the period 1999-2004. We obtain the preliminary result: |q/p| - 1 = (6.5 {+-} 3.4(stat.) {+-} 2.0(syst.)) {center_dot} 10{sup -3}.

  20. Measurement of the Mass and Width and Study of the Spin of the Xi(1690)0 Resonance from Lambdac+ --> Lambda anti-K0 K+ Decay at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-09-25

    The {Xi}(1690){sup 0} resonance is observed in the {Lambda}{bar K}{sup 0} channel in the decay {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +}, from a data sample corresponding to a total integrated luminosity of {approx} 200 fb{sup -1} recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- collider operating at {approx} 10.58 GeV and {approx} 10.54 GeV center-of-mass energies. A fit to the Dalitz plot intensity distribution corresponding to the coherent superposition of amplitudes describing {Lambda}a{sub 0}(980){sup +} and {Xi}(1690){sup 0} K{sup +} production yields mass and width values of 1684.7 {+-} 1.3(stat.){sub -1.6}{sup +2.2}(syst.) MeV/c{sup 2}, and 8.1{sub -3.5}{sup +3.9}(stat.){sub -0.9}{sup +1.0}(syst.) MeV, respectively, for the {Xi}(1690){sup 0}, while the spin is found to be consistent with value of 1/2 on the basis of studies of the ({Lambda}K{sub S}) angular distribution.

  1. Study of CP Symmetry Violation in the Charmonium-K*(892) Channel By a Complete Time Dependent Angular Analysis (BaBar Experiment)

    Energy Technology Data Exchange (ETDEWEB)

    T' Jampens, Stephane; /Orsay

    2006-09-18

    This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity

  2. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  3. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  4. Messung des hadronischen Wirkungsquerschnitts des Prozesses e+e- -> W+W- mit dem DELPHI-Detektor

    CERN Document Server

    Uwe, Müller

    In this dissertation the first analysis measuring the hadronic cross–section of the W–pair production e +e − → W+W− consistently at all Lep2 energies is presented. Using a feed–forward neural network for the event selection the performance of the analysis was improved significantly compared to the previous Delphi selections. From the data sample collected with the Delphi detector corresponding to a total integrated luminosity of about 670 pb−1 the cross–section is determined for ten different centre–of–mass energies between 161 and 207 GeV. The results from all energies above 180 GeV are combined to obtain the ratio of the measured and the predicted cross–section, RWW→qqqq, using Gentle 2.0, RacoonWW and Yfsww. Especially for the most recent and most precise predictions using the double–pole approximation for a full calculation of O(α) corrections the results agree very well with the expectation, e.g. the ratio for RacoonWW is: RWW→qqqq = 1.005 ± 0.017 (stat) ± 0.014 (syst) ± 0...

  5. Messung der Charmonium-Produktion und Energiekalibration für Elektronen mit dem Atlas-Experiment

    CERN Document Server

    Handel, Carsten

    2011-01-01

    The cross section of Charmonium production was measured using data from pp collisions at s^{1/2}=7TeV taken by the Atlas experiment at the LHC in 2010. To improve the necessary knowledge of the detector performance, a calibration of the energy was performed. Using electrons from decays of the Charmonium, the energy scale of the electromagnetic calorimeters was studied at low energies. After applying the calibration, deviations in the energy measurement were found to be lower than 0.5% by comparing with energies determined in Monte Carlo simulations. With an integrated luminosity of 2.2 pb^{−1}, a first measurement of the inclusive cross section of the process pp->J/psi(e^+e^−)+X at s^{1/2}=7TeV was done. For this, the accessible region of transverse momenta p_{T,ee}>7GeV and of rapidities |y_{ee}|<2.4 was used. Differential cross sections for the transverse momentum p_{T,ee}, and for the rapidity |y_{ee}| were determined. Integration of the differential cross sections yields the value...

  6. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  7. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  8. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  9. Particle detectors

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The lecture series will present an overview of the basic techniques and underlying physical principles of particle detectors, applied to current and future high energy physics experiments. Illustrating examples, mainly from the field of collider experiments, will demonstrate the performance and limitations of the various techniques. After an introduction the following topics will be covered: Tracking (gas, solid state based) - Scintillation and light detection Calorimetry - Particle Identification - Electronics and Data Acquisition - Detector Systems

  10. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  11. Photon detectors

    International Nuclear Information System (INIS)

    Va'vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF 2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  12. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  13. Microwave detector

    Science.gov (United States)

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Measurement of transvers spin effects by means of two-hadron correlations in the COMPASS experiment; Messung transversaler Spineffekte mittels zwei Hadronen Korrelation am COMPASS-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Frank Michael

    2008-06-23

    Helizitaets- Verteilungsfunktion {delta}q(x) und die transversale Quarkspin Verteilungsfunktion {delta}{sub T}q(x). Diese letztgenannte Funktion, genannt ''Transversity'' Funktion, ist chiral ungerade und kann deshalb nur in Kombination mit einer anderen chiral ungeraden Funktion gemessen werden. Eine Zugangsmoeglichkeit zur ''Transversity'' Funktion {delta}{sub T}q(x) ist die semi-inklusive zwei Hadronenproduktion in tief inelastischer Streuung an einem transversal polarisierten Target. Dabei misst man die Faltung der chiral ungeraden zwei Hadronen Interferenz Fragmentationsfunktion (IFF) H{sub 1} {sup angle} (z,M{sub h}{sup 2}) und der chiral ungeraden ''Transversity'' Funktion. Die IFF H{sub 1} {sup angle} (z,M{sub h}{sup 2}) ist der spinabhaengige Teil einer Fragmentationsfunktion, die die Fragmentation eines transversal polarisierten Quarks in zwei unpolarisierte Hadronen beschreibt. Die Produktion der zwei Hadronen erfolgt in einer Interferenz zwischen verschiedenen Wellenzustaenden der Hadronenpaare. Man misst azimuthale Asymmetrien in den erzeugten Hadronenpaaren. Die Messungen, die in dieser Arbeit beschrieben werden, wurden am COMPASS Experiment am CERN in den Jahren 2002-2004 durchgefuehrt, welches ein Feststoff Target Experiment am SPS Beschleuniger ist. Nach einer Einfuehrung werden in Kapitel 2 die zugrundeliegenden theoretischen Konzepte zur Messung der ''Transversity'' Funktion vorgestellt. In Kapitel 3 wird das COMPASS Experiment beschrieben. Schliesslich werden in Kapitel 4 die Auswertemethoden besprochen, die Ergebnisse der azimuthalen Asymmetrien gezeigt und mit theoretischen Vorhersagen verglichen. (orig.)

  15. An internally reflecting Cherenkov detector (DIRC): Properties of the fused silica radiators

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC, a new type of ring-imaging Cherenkov detector that images internally reflected Cherenkov light, is being constructed as the main hadronic particle identification component of the BABAR detector at SLAC. The device makes use of 5 meter long fused silica (colloquially called quartz) bars, which serve both as the Cherenkov radiators and as light pipes for transmitting the light to an array of photo-multiplier tubes. This paper describes a program of research and development aimed at determining whether bars that meet the stringent requirements of the DIRC can be obtained from commercial sources. The results of studies of bulk absorption of fused silica, surface finish, radiation damage and bulk inhomogeneities are discussed

  16. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  17. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  18. Study of charm production through the decay of B mesons in the BABAR experiment; Etude de la production de charme dans les desintegrations des mesons beaux avec l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Couderc, F

    2005-04-15

    The BABAR experiment, located at SLAC (Stanford, California), has been dedicated, since 1999, to the study of B meson decays produced in electron positron collisions with an energy in the center of mass frame equal to the mass of {epsilon}(4S) resonance. In this experiment, the charged particles identification is provided, in particular by the measurement of the energy loss per length unit in the drift chamber. In order to improve the calibration of this quantity, a selection of electrons/positrons from radiative Bhabha events was performed; with the new sample the charge asymmetry in the charged particles reconstruction was reduced. In B meson decays, the inclusive production of charmed particles (D{sup 0}, D{sup 0}-bar, D{sup {+-}}, D{sub s}{sup {+-}}, {lambda}{sub c}{sup {+-}}) is measured with a new analysis method, made possible by the large statistics accumulated by the BABAR experiment. B and B-bar mesons are produced simultaneously from the {epsilon}(4S) resonance. The events are selected by reconstructing completely one B in a hadronic channel. Charmed particles from the other B are then reconstructed with the remaining tracks. This enables the measurement of the total number of charm produced in B{sup +} and in B{sup 0} decays separating the correlated charm production (quark transitions: b {yields} cX) from the anti-correlated production (quark transitions: b {yields} c-bar X). The results obtained on an integrated luminosity of 210 fb{sup -1} are the following: N{sub c}{sup B{sup +}} = 0.970 {+-} 0.042; N{sub c-}bar{sup B{sup +}} 0.262 {+-} 0.034; N{sub c}{sup B{sup 0}} = 0.950 {+-} 0.057; N{sub c-}bar{sup B{sup 0}} 0.285 {+-} 0.048. This new method also allows the measurement of the momentum of the charmed particles in the B rest frame. Access to the different production mechanisms of these particles is thereby provided. (author)

  19. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  20. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  1. Particle detectors

    CERN Document Server

    AUTHOR|(CDS)2068232

    1998-01-01

    The lecture series will present and overview of the basic techniques and underlying physical principles of particle detectors, applied to current and future high energy physics experiments. Illustrating examples, mainly from the field of collider experiments, will demonstrate the performance and limitations of the various techniques. After and introduction we shall concentrate on particle tracking. Wire chambers, drift chambers, micro gaseous tracking devices and solid state trackers will be discussed. It follows and overview of scintillators, photon detection, fiber tracking and nuclear emulsions. One lecture will deal with the various techniques of calorimetry. Finally we shall focus on methods developed for particle identification. These comprise specific energy loss, time of flight Cherenkov and transition radiation detectors.

  2. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  3. Time dependent analysis and amplitude analysis of B0 → Ks0Ks0Ks0 decays with the BaBar experiment

    International Nuclear Information System (INIS)

    Sitt, S.

    2010-09-01

    Two independent analyses of the decay channel B 0 → K s 0 K s 0 K s 0 have been performed on a data sample of 468 millions of BB-bar pairs recorded by the BABAR detector at the PEP-II B factory at SLAC National Laboratory. The first analysis is a phase-space-integrated time-dependent analysis to extract the CP violation parameters S and C from the two sub-modes B 0 → 3K s 0 (π + π - ) and B 0 → 2K s 0 (π + π - )K s 0 (π 0 π 0 ) simultaneously and to compare them to the charmonium measurements. The result is: S = -0.94+0.24-0.21±0.06 and C = -0.17+0.18-0.18±0.04, where the first uncertainty is statistical and the second is systematical. The result is compatible within uncertainties with the Standard Model prediction and the charmonium modes measurements. The second analysis is a time-integrated amplitude (or Dalitz plot) analysis to extract the inclusive branching fraction and the branching fractions of the resonant modes that contribute to the decay. The result of the first amplitude analysis of this decay channel is: B(B 0 → K s 0 K s 0 K s 0 ) equal to (6.18 ± 0.47 ± 0.14 ± 0.06)*10 -6 ; B(B 0 → f 0 (980)K s 0 with f 0 (980) → K s 0 K s 0 ) equal to (2.69+1.25-1.18±0.35±1.87)*10 -6 ; B(B 0 → f 0 (1710)K s 0 with f 0 (1710) → K s 0 K s 0 ) equal to (0.50+0.46-0.23±0.04±0.12)*10 -6 ; B(B 0 → f 2 (2010)K s 0 with f 2 (2010) → K s 0 K s 0 ) equal to (0.54+0.21-0.20±0.03±0.44)*10 -6 ; B(B 0 → Nonresonant with K s 0 K s 0 K s 0 ) equal to (13.31+2.23-2.30±0.55±2.77)*10 -6 ; B(B 0 → χ c0 K s 0 with χ c0 → K s 0 K s 0 ) equal to (0.46+0.25-0.16±0.01±0.19)*10 -6 ; where the first uncertainty is statistical, the second is systematical and the third corresponds to Dalitz plot model uncertainties. No significant contribution of the controversial f X (1500) resonance has been found. (author)

  4. Comparison calculation/experiment on the load case ``shutdown of TH high pressure pumps under consideration of fluid structure interaction``; Vergleich Rechnung/Messung zum Lastfall ``Abschaltung der TH-Hochdruckpumpen unter Beruecksichtigung der Fluid-Struktur-Wechselwirkung``

    Energy Technology Data Exchange (ETDEWEB)

    Erath, W.; Nowotny, B.; Maetz, J. [KED, Rodenbach (Germany)

    1998-11-01

    Measurements of an experiment in a pipe system with pump shutdown and valve closing have been performed in the nuclear power plant KRB II. Comparative calculations of fluid and structure including interaction show an excellent agreement with the measured results. Theory and implementation of the fluid/structure interaction and the results of the comparison are described. It turns out that the consideration of the fluid/structure interaction is mostly a significant increase of the effective structural damping. (orig.) [Deutsch] Es wurden Messungen am nuklearen Nachkuehlsystem des Kernkraftwerks Gundremmingen (KRB II) bei einem Versuche mit Pumpenabschalten und Ventilschliessen durchgefuehrt. Vergleichsrechnungen der Fluid-Strukturdynamik unter echter Beruecksichtigung der Wechselwirkung ergaben eine ausgezeichnete Uebereinstimmung der Rechnung mit den Messungen. Es werden Theorie und Implementierung der Koppelung der Fluid- und Struktur-Berechnungen sowie die Vergleiche von Messung und Rechnung beschrieben. Es ergibt sich, dass die Beruecksichtigung der Wechselwirkung notwendig ist zur genaueren Berechnung von `weichen` Rohrleitungsystemen. Eine wichtige Folge der Wechselwirkung ist meist eine deutliche Erhoehung der effektiven Strukturdaempfung. (orig.)

  5. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  6. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  7. Measurement of CP Violation Parameters in B Quark Decays to Charm Anticharm Down Quarks, Exclusive Decays at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Justin E.

    2003-04-03

    The BABAR experiment at SLAC provides an opportunity for measurement of CP violation in B decays. A measurement of time-dependent CP violating asymmetries using exclusive B meson decays where the b quark decays to c{bar c}d (including B{sup 0} {yields} D*{sup +}D*{sup -} and B{sup 0} {yields} D*{sup {+-}}D{sup {-+}} decays) is presented here. This is the first measurement of CP violation in a mode sensitive to the Unitarity Triangle parameter sin2{beta} outside of decays containing charmonium. It provides a comparison to measurements of sin2{beta} using b {yields} c{bar c}s, and permits an observation into potential new physics sources of CP violation, such as supersymmetry, via differences between these measurements and those of B{sup 0} {yields} J/{psi} K{sub S}{sup 0} as statistics of reconstructed neutral B decays to D{sup (*)+} D{sup (*)-} increase. The measured value of the time-dependent CP violating asymmetries are: S = 0.38 {+-} 0.88(stat) {+-} 0.12(syst) and C = -0.30 {+-} 0.50(stat) {+-} 0.13(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; S = -0.43 {+-} 1.41(stat) {+-} 0.23(syst) and C = 0.53 {+-} 0.74(stat) {+-} 0.15(syst) for B{sup 0} {yields} D*{sup +} D{sup -}; and S = -0.05 {+-} 0.45(stat) {+-} 0.05(syst) and C = 0.12 {+-} 0.30(stat) {+-} 0.05(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; where S corresponds to CP violation in the interference of mixing and decay and C corresponds to CP violation in decay.

  8. Measurement of B -> D Form Factors in the Semileptonic Decay B -> D* l nu at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Mandeep Singh; /SLAC

    2006-01-27

    We present here the results of a measurement of the three semileptonic form factors involved in the decay B{sup 0} {yields} D*{ell}{nu}, where {ell} is one of the two light charged leptons (i.e. an electron or muon--though the final results in this work are determined only for {ell} = electron). This measurement uses the Babar 2000-2002 data set, which is altogether approximately 85 x 10{sup 6} B{bar B}-pairs in 78 fb{sup -1} of integrated luminosity. The D*{sup +} was reconstructed in the channel D*{sup +} {yields} D{sup 0}{pi}{sup +}, and the D{sup 0} in the channel D{sup 0} {yields} K{sup -}{pi}{sup +}. This analysis was based ultimately on {approx} 16,386 reconstructed events with an estimated background contamination of {approx} 15%. The method of the measurement was to perform a unbinned maximum likelihood fit in the four kinematic variables that describe the decay for the three form factor parameters R{sub 1}, R{sub 2}, and {rho}{sup 2}. The results obtained for the form factor ratios are R{sub 1} = 1.328 {+-} 0.055 {+-} 0.025 {+-} 0.025 and R{sub 2} = 0.920 {+-} 0.044 {+-} 0.020 {+-} 0.013 for the ratios and {rho}{sup 2} = 0.769 {+-} 0.039 {+-} 0.019 {+-} 0.032 for the form factor slope. The errors given are statistical, Monte Carlo statistical and systematic respectively.

  9. Study of the Ds+ → K+K-e+νe decay channel with the Babar experiment

    International Nuclear Information System (INIS)

    Serrano, J.

    2008-04-01

    Charm semileptonic decays allow a validation of lattice QCD calculations through the measurement of the hadronic form factors, which characterize the effect of strong interaction in these reactions. The accuracy of such calculations is crucial for the improvement of the test of the standard model in flavour physics. This thesis presents a study of the D s + → K + K - e + ν e channel using 214fb -1 recorded by de Babar experiment. For events with a K + K - mass in the range between 1.01 GeV/c 2 and 1.03 GeV/c 2 , the φ → K + K - is the dominant component. Using the simple pole model to parameterize the q 2 dependence of the form factors -V(q 2 ), A 1 (g 2 ) and A 2 (q 2 )- the following ratios are measured at q 2 = 0: r v = V(0)/A 1 (0) 1.868±0.061±0.079, r 2 = A 2 (0)/A 1 (0) = 0.763±0.072±0.062. The mass pole of the axial-vector form factor is also obtained: m A (2.30 0.18 +0.24 ±0.21) GeV/c 2 . In the same mass range, the semileptonic branching fraction, relative to the D s + → φπ + channel, is measured, and the absolute normalisation of the axial-vector form factor is extracted: A 1 (q 2 = 0) = 0.605 ± 0.012 ± 0.018 ± 0.018. The stated errors refer to the statistical, systematic and errors from external inputs, respectively. An S wave component in the K + K - system, possibly originating from a f 0 , is also studied through its interference with the φ. An S wave component is observed for the first time in this decay channel with a 5σ significance. (author)

  10. A study of the impact of radiation exposure on the uniformity of large CsI(Tl) crystals for the BaBar detector

    International Nuclear Information System (INIS)

    Hryn'ova, Tetiana; Kim, Peter; Kocian, Martin; Perl, Martin; Rogers, Howard; Schindler, Rafe H.; Wisniewski, William J.

    2004-01-01

    We describe an apparatus that allows simultaneous exposure of large CsI(Tl) crystals to ionizing radiation and precise measurement of the longitudinal changes in light yield of the crystals. We present herein the results from this device for exposures up to 10krad

  11. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  12. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  13. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  14. Detector simulation needs for detector designers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  15. Measurement of the total cross section for the photoproduction of omega mesons on the proton; Messung des totalen Wirkungsquerschnitts fuer die Photoproduktion von Omegamesonen am Proton

    Energy Technology Data Exchange (ETDEWEB)

    Hoeffgen, S.K.

    2007-06-15

    The photoproduction of omega mesons on the proton ({gamma}p {yields} {omega}p) directly at the production threshold was investigated during the first phase of the CB-ELSA experiment in Bonn. In experiments directly at the threshold the protons are strongly focussed in forward direction due to kinematic reasons. Therefore the forward detector, a large area time of flight detector, plays a prominent role and there is a detailed description of the reconstruction and measuring capabilities of this spectrometer. Thereafter follows the extraction of the total cross section of the reaction {gamma}p {yields} {omega}p in the decay channel with {omega} {yields} {pi}{sup 0}{pi}{sup +}{pi}{sup -} directly at the production threshold with previously unequaled accuracy. (orig.)

  16. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  17. Time-Dependent Amplitude Analysis of B0→KS0π+π- decays with the BaBar Experiment and constraints on the CKM matrix using the B→K*π and B→ρK modes

    International Nuclear Information System (INIS)

    Perez Perez, L.A.

    2008-12-01

    A time-dependent amplitude analysis of B 0 → K S 0 π + π - decays is performed to extract the CP violation parameters of f 0 (980)K S 0 and ρ 0 (770)K S 0 , and direct CP asymmetries of K * (892) ± π ± . The results are obtained from a data sample of (383 ± 3)*10 6 BB-bar decays, collected with the BaBar detector at the PEP-II asymmetric-energy B factory at SLAC. Two solutions are found, with equivalent goodness-of-fit merits. Including systematic and Dalitz plot model uncertainties, the combined confidence interval for values of β(eff) in B 0 decays to f 0 (980)K S 0 is 18 degrees 0 decays to f 0 (980)K S 0 is excluded at 3.5 σ, including systematics. For B 0 decays to ρ 0 (770)K S 0 , the combined confidence interval is -9 degrees * (892) ± π ± the measured direct CP asymmetry parameter is A(CP) -0.20 ± 0.10 ± 0.01 ± 0.02. The measured phase difference between the decay amplitudes of B 0 → K * (892) + π - and B-bar 0 → K * (892) - π + excludes the [-132 degrees: +25 degrees] interval (at 95% C.L.). Branching fractions and CP asymmetries are measured for all significant intermediate resonant modes. The measurements on ρ 0 (770)K S 0 and K *± (892)π ± are used as inputs to a phenomenological analysis of B → K * π and B → ρK decays based solely on SU(2) isospin symmetry. Adding external information on the CKM matrix, constraints on the hadronic parameter space are set. For B → K * π, the preferred intervals for color-allowed electroweak penguins are marginally compatible with theoretical expectations. The constraints on CKM parameters are dominated by theoretical uncertainties. A prospective study, based on the expected increase in precision from measurements at LHCb, and at future programs such as Super-B or Belle-upgrade, illustrates the physics potential of this approach. (author)

  18. Production of high energy {eta}' in B meson decays from BaBar experiment; Etude de la production de {eta}' de haute impulsion dans les desintegrations du meson B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Hicheur, A

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the {upsilon}(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy {eta}' in B decays has been studied through the two main contributions, B{yields} {eta}' X{sub s} coming from the rare decay b {yields} sg*, and B-bar{sup 0} {yields} {eta}'D{sup 0} coming from the internal tree color suppressed decay b {yields} cud. The improvement of the measurement of the process B {yields} {eta}'X-s and the first. observation of the decay B-bar{sup 0} {yields} {eta}'D{sup 0} have led to the conclusion that the {eta}' production is dominated by the decay b {yields} sg* and enables to constrain its quark content. (author)

  19. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  20. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  1. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  2. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  3. The LDC detector concept

    Indian Academy of Sciences (India)

    ), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force ...

  4. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  5. Thermal kinetic inductance detector

    Science.gov (United States)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  6. Study of the CP violation in the decay channel B0 → ρ0ρ0 with the BaBar experiment

    International Nuclear Information System (INIS)

    Esteve, L.

    2008-09-01

    The measurement of the CP violating parameters in the b → uu-bar d decays allows in principle the determination of sin(2α), where α is one of the angle of the unitarity triangle. However, due to the presence of loop diagrams, the so-called penguin diagrams, the experimental measurement only gives information about an effective quantity of α: α(eff). The measurements in the BB 0 → ρ 0 ρ 0 modes and hence to determine in principle the shift (α - α(eff)) induced by the penguin diagrams. The B 0 → ρ 0 ρ 0 decay was studied with the final BaBar sample containing 465*10 6 γ(4S) → BB-bar events collected at the PEP-II collider. The B 0 → ρ 0 ρ 0 branching ratio Br(B 0 → ρ 0 ρ 0 ) equals (0.92 ± 0.32 ± 0.14)*10 -6 and the longitudinal polarization fraction f L equals (0.75 +0.11-0.14 ± 0.03) were measured. The evidence for the B 0 → ρ 0 ρ 0 signal has a significance of 3.1*σ including systematical uncertainties. The proper-time dependence of the longitudinal component in the decay was studied and the CP-violating coefficients S L 00 equals (0.3 ± 0.7 ± 0.2), C L 00 equals (0.2 ± 0.8 ± 0.2). The implication of these results on the unitarity triangle alpha was studied by performing an isospin analysis. Using the BaBar results for the B 0 → ρ + ρ - and B ± → ρ ± π 0 , the 68% (90%) confidence interval on the shift in alpha induced by the penguin diagrams is |α - α(eff)| < 15.6 deg. ( < 17.6 deg.). (author)

  7. The LDC detector concept

    Indian Academy of Sciences (India)

    2004. Its goal is to design a complete detector concept for the LDC, based on a gaseous central tracking detector, and on granular calorimetry. The concept is heavily based on the concept of particle flow for event reconstruction. LDC started from the TESLA detector, developed for the TESLA TDR [2] and published in 2001.

  8. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  9. The CAPRICE RICH detector

    International Nuclear Information System (INIS)

    Basini, G.; De Pascale, M.P.; Golden, R.L.; Barbiellini, G.; Boezio, M.

    1995-01-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight

  10. The LDC detector concept

    Indian Academy of Sciences (India)

    and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept. Keywords. International linear collider; large detector concept. PACS No. 13.66-a. 1. Introduction. The large detector concept (LDC) detector concept group [1] was formed early in. 2004. Its goal is to design a complete ...

  11. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  12. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  13. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  14. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  15. TORCH — an Innovative High-Precision Time-of-Flight PID Detector for the LHCb Upgrade

    CERN Document Server

    Fohl, Klaus

    2015-01-01

    TORCH is a Cherenkov time-of-flight detector being developed as a particle identification system for the upgraded LHCb experiment. The DIRC-type detector is located at 10m distance from the interaction point with an area of 30m$^2$ and is formed from 10mm thick synthetic amorphous fused silica plates. In this Cherenkov radiator the photons that propagate by total internal reflection to the plate edge are focussed onto an array of position-sensitive micro-channel plate sensors. Combining the photon timings the goal is to achieve a $\\sigma$ = 15 ps timing resolution per particle, yielding 3$\\sigma$ pion-kaon separation up to 10 GeV/c or better. Requirements for the photon detectors are presented together with preliminary prototype results. Preparations for the upcoming test beam are discussed. Optical design studies have been performed for using one of the available bar boxes of the BaBar DIRC detector containing assembled quartz radiator bars in a future test beam experiment.

  16. Messung der Myonpaarproduktion im Prozess e+ e- --> mu+ mu- (gamma) bei Schwerpunktsenergien von 89 GeV bis 183 GeV

    CERN Document Server

    Siedenburg, Thorsten

    2000-01-01

    Presented are the total cross-sections and forward-backward-asymmetries of the reaction at center of mass energies between 89 GeV and 183 GeV at the LEP-accelerator measured with the L3-Detector from 1995 to 1997. These data include measurements from LEP I on the Z-resonance and from LEP II above the W-pairproduction-threshhold. The myonselection acceptance was increased from polar angles above up to Compared to previous measurements, uncertainties are reduced regarding the assumption of lepton-universality and the determination of the Z-mass and width: Fitting the myonpair-data using a parametrisation in effective coupling constants and yields = (91.196Þ0.013) GeV and = (2.497Þ0.021) GeV. Additionally the Z-mass is determined using the S-matrix-parametrisation without restrictions on the -Z interference term. Adding LEP II data to the LEP I results halves the error on the Z-mass. The results presented in this thesis are obtained by using the FB myonchambersystem - installed before 1995 LEP running - to its...

  17. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  18. BATSE spectroscopy detector calibration

    Science.gov (United States)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  19. SDC detector foundation requirements

    International Nuclear Information System (INIS)

    Western, J.L.; Butalla, M.W.

    1992-01-01

    The Solenoidal Detector Collaboration (SDC) Detector weighs approximately 32,000 metric tons, and its ability to perform to design specifications is directly related to its internal alignment. The limits of the misalignment tolerance envelope in combination with the detector weight impose a set of tolerance limits of performance directly upon the foundation structure. The foundation must accommodate different detector loading conditions during installation, operation, maintenance, and future enhancements. The foundation must also respond to the loading conditions within a restrictive set of displacement limitations in order to maintain the detector's critical alignment, thereby guaranteeing its operational integrity. This paper will present the results of this study, which has been issued to the Architect Engineer/Construction Manager as user requirements of design. The total structural system performance of the combination of both the detector and its foundation will be discussed

  20. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  1. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  2. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  3. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  4. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  5. detectors

    International Nuclear Information System (INIS)

    Abolins, M.; Barnett, B.A.; Binnie, D.M.

    1984-01-01

    The 4π Detector Working Group tried to address two major questions: can general 4π detectors be built for the SSC that will be able to study rare processes at center-of-mass energies of 40 TeV and at luminosities of 10 33 cm -2 sec -1 ; what are realistic cost estimates for such detectors? The general conclusions of these studies were that these types of detectors could be built, would be able to do physics under these conditions, and would each cost between 200 and 300 million dollars

  6. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  7. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  8. Development of a radon chamber and measurement of the radon solubility in tissues; Entwicklung einer Radonkammer und Messung der Radonloeslichkeit in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas

    2015-04-22

    Every year thousands of patients with inflammatory diseases of the musculoskeletal system undergo radon therapy, but the molecular mechanism and the risk of this therapy are not understood. To study the effects of radon exposure in vitro and in vivo we constructed a radon exposure chamber in the framework of the GREWIS project. With this device we are able to expose samples under controlled and reproducible conditions including the radon galleries in Austria and Germany. Adjustable parameters are radon activity-concentration, temperature, humidity and exposure time. These parameters are permanently monitored and controlled. During experiments with cell cultures it is also possible to adjust the CO{sub 2}-concentration. In addition, experiments with mice can be performed with this setup. To measure the radon kinetics in different types of tissue we exposed tissue samples like fat or muscle and mice in the radonchamber. Afterwards we measured the -spectra of the short living radon decay products lead-214 and bismuth-214 in the exposed samples with a HPGe-Detector. We recorded the spectra at different time points after exposure and calculated the initial amount of radon at the end of the exposure period in the sample and investigated the diffusion of the radon out of it. We compared the results from different types of tissue but also activated coal. In an activated coal sample the radon is bound to it via Van-der-Waals-force and the decay spectra are governed by the life time of the bound radon (3,8 days). In contrast in the biological samples the primary radon diffuses out of the samples in less than 20 minutes and the spectra follow the kinetics of the decay of the daughter products. These measurements where performed for the first time under therapy conditions like in radon galleries and also with higher radon concentration. In our experiments we could see an enhanced accumulation of radon and its decay products in fatty tissue compared to muscle tissue. Also in

  9. Measurement of the charmonium production and energy calibration for electrons with the ATLAS experiment; Messung der Charmonium-Produktion und Energiekalibration fuer Elektronen mit dem Atlas-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Handel, Carsten

    2011-11-29

    The cross section of Charmonium production was measured using data from pp collisions at {radical}(s)=7 TeV taken by the Atlas experiment at the LHC in 2010. To improve the necessary knowledge of the detector performance, a calibration of the energy was performed. Using electrons from decays of the Charmonium, the energy scale of the electromagnetic calorimeters was studied at low energies. After applying the calibration, deviations in the energy measurement were found to be lower than 0.5% by comparing with energies determined in Monte Carlo simulations.rnrnrnWith an integrated luminosity of 2.2 pb{sup -1}, a first measurement of the inclusive cross section of the process pp{yields}J/{psi}(e{sup +}e{sup -})+X at {radical}(s)=7 TeV was done. For this, the accessible region of transverse momenta p{sub T,ee}>7 GeV and of rapidities vertical stroke y{sub ee} vertical stroke <2.4 was used. Differential cross sections for the transverse momentum p{sub T,ee}, and for the rapidity vertical stroke y{sub ee} vertical stroke were determined. Integration of the differential cross sections yields the values (85.1{+-}1.9{sub stat}{+-}11.2{sub syst}{+-} 2.9{sub Lum}) nb, and (75.4 {+-} 1.6{sub stat} {+-} 11.9{sub syst} {+-} 2.6{sub Lum}) nb for {sigma} (pp{yields}J/{psi}X)BR(J/{psi}{yields}e{sup +}e{sup -}), being compatible within systematics. Comparisons with measurements of the process pp{yields} J/{psi}({mu}{sup +}{mu}{sup -})+X done by Atlas and CMS have shown good agreement. To compare with theory, predictions from different models in next-to-leading order, and partially considering contributions in next-to-next-to-leading order were combined. Comparisons show a good agreement when taking into account contributions in next-to-next-to-leading order.

  10. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  11. Performance of GLD detector

    Indian Academy of Sciences (India)

    In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design. Four detector concepts for the ILC .... However, the world-wide consensus of the performance goal for jet energy resolution is 30%/. √.

  12. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  13. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  14. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  15. The TESLA Detector

    OpenAIRE

    Moenig, Klaus

    2001-01-01

    For the superconducting linear collider TESLA a multi purpose detector has been designed. This detector is optimised for the important physics processes expected at a next generation linear collider up to around 1 TeV and is designed for the specific environment of a superconducting collider.

  16. CHERENKOV RADIATION DETECTOR

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... Most of Radiation detectors based on the Cherenkov Effect are essentially very bulky and expensive for schools and colleges. An inexpensive yet very compact radiation detector is designed, built and tested. It is used to measure the Cherenkov angles for natural radioactivity from sources as. Cs137.

  17. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  18. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  19. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  20. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  1. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  2. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  3. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  4. Nanomechanical resonance detector

    Science.gov (United States)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  5. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  6. Detector R&D

    CERN Document Server

    Behnke, T

    2004-01-01

    The next big project in high energy physics should be a high energy e /sup +/e/sup -/ linear collider, operating at energies up to around 1 TeV. A vigorous R&D program has started to prepare the grounds for a detector at such a machine. The amounts of precision data expected at this machine make a novel approach to the reconstruction of events necessary; the particle flow ansatz. This in turn influences significantly the design of a detector for such an experiment. Apart from work ongoing for the linear collider detector, preparations are under way for an update of the LHC. This requires extremely radiation hard detectors. In this paper the state of the different detector development projects is reviewed. (21 refs).

  7. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  8. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  9. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  10. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  11. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  12. Profile detectors of GANIL

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL, which started in 1977, one of the priorities of the project management was equipping the beam lines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The profile detectors are unavoidable tools in displaying the GANIL beams for adaptation and adjustment of the beam line optics. The installed detector assembly (about 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beams extracted from SISSI, very high intensity beams (VHIB), secondary ion beams emitted by LISE and SPEG spectrometers targets, different lines of SPIRAL project (HE, BE, ME): This detector assembly must meet the following standard requirements: flange diameter (DN 160) with a standard booster for all the sensors; identical analog electronics for all the detectors with networking; unique visualization system. The new micro-channel plate non-interceptive detectors (the beam profile and ion packet length allow an in-line control of the beam quality and accelerator stability

  13. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  14. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  16. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  17. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  18. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  19. Directional radiation detectors

    Science.gov (United States)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  20. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  1. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  2. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  3. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  4. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  5. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  6. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  7. Gas-filled detectors

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter deals with the nature of the interaction of radiation with gas-filled radiation detectors. A description of the theory of operation of the ionization chamber and Geiger-Mueller counter is included

  8. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  9. The CLIC Detector Concept

    CERN Document Server

    AUTHOR|(SzGeCERN)779659

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  10. ATLAS Inner Detector developments

    CERN Document Server

    Barberis, D

    2000-01-01

    The ATLAS Inner Detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a Transition Radiation Tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch ($50 \\times 300~\\mu$m) and low occupancy ($<3 \\times 10^{-4}$ at design luminosity) of the pixel detectors, and of the good tracking capabilities of the SCT and the TRT. The full detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between $b$-jets and jets produced by light quarks.

  11. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  12. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  13. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  14. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  15. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg, E.; Deyoung, T.; Edsjo, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; LOwder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-03-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of {approx} 10{sup 4} m{sup 2}, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with {approx}800 PMTs will be completed in spring 2000.

  17. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  18. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  19. Cryogenic radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    King, S.E. (Naval Research Lab., Washington, DC (United States)); Welsh, D.J. (Physics Dept., Univ. of South Carolina, Columbia, SC (United States)); Fausch, T. (Walther Meissner Inst. ZTTF, Garching (Germany)); Drukier, A.K. (Physics Dept., Univ. of South Carolina, Columbia, SC (United States)); Kroeger, R.A. (Naval Research Lab., Washington, DC (United States)); Inderhees, S.E. (Naval Research Lab., Washington, DC (United States))

    1993-06-01

    Low temperature detectors promise an order of magnitude improvement over semiconducting devices in energy resolution, spatial resolution and radiation hardness. Within this broad field, bolometers and superconducting tunnel junctions are reviewed and potential applications for accelerator based experiments are examined. Our own experiments using Sn, In, Sn(Sb) and In(Bi) alloy based superconducting grain detectors have demonstrated excellent reproducibility and uniformity. (orig.)

  20. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  1. Gamma ray detector modules

    Science.gov (United States)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  2. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  3. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  4. Protecting Detectors in ALICE

    CERN Document Server

    Mateusz Lechman, Mateusz; Chochula, Peter; Di Mauro, Antonio; Jirden, Lennart Stig; Schindler, Heinrich; Rosinsky, Peter; Moreno, Alberto; Kurepin, Alexander; Pinazza, Ombretta; De Cataldo, Giacinto

    2011-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related...

  5. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  6. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  7. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  8. Detectors on the drawing board

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  9. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  10. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  11. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  12. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  13. Heterostructure infrared photovoltaic detectors

    Science.gov (United States)

    Rogalski, Antoni

    2000-08-01

    HgCdTe remains the most important material for infrared (IR) photodetectors despite numerous attempts to replace it with alternative materials such as closely related mercury alloys (HgZnTe, HgMnTe), Schottky barriers on silicon, SiGe heterojunctions, GaAs/AlGaAs multiple quantum wells, InAs/GaInSb strained layer superlattices, high temperature superconductors and especially two types of thermal detectors: pyroelectric detectors and silicon bolometers. It is interesting, however, that none of these competitors can compete in terms of fundamental properties. In addition, HgCdTe exhibits nearly constant lattice parameter which is of extreme importance for new devices based on complex heterostructures. The development of sophisticated controllable vapour phase epitaxial growth methods, such as MBE and MOCVD, has allowed fabrication of almost ideally designed heterojunction photodiodes. In this paper, examples of novel devices based on heterostructures operating in the long wavelength, middle wavelength and short wavelength spectral ranges are presented. Recently, more interest has been focused on p-n junction heterostructures. As infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. HgCdTe heterojunction detectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolour capability in these regions. Recent progress in two-colour HgCdTe detectors is also reviewed.

  14. Measurement of the CKM angle gamma of the unitarity triangle of the CKM matrix in B{sup {+-}} {yields} D{sup *}K{sup {+-}} decays at the BaBar experiment; Mesure de l'angle gamma du triangle d'unitarite de la matrice CKM dans les desintegrations B{sup {+-}} {yields} D{sup *}K{sup {+-}} aupres de l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Latour, E

    2007-10-15

    This thesis applies the Gronau-London-Wyler (GLW) method to the B{sup {+-}} {yields} D{sup *}K{sup {+-}} decays in view of measuring the angle {gamma} of the unitarity triangle of the CKM matrix at the Babar experiment. After a review of CP violation, we describe the different paths used so far for measuring {gamma}, with a special emphasis on the GLW method. Then the analysis is presented. It relies on an optimized selection for maximizing signal sensitivity, and on an extended maximum likelihood fit from which we extract the four GLW observables A{sup *}(CP+), R{sup *}(CP+), A{sup *}(CP-) and R{sup *}(CP-). Results obtained using Run 1 to 5 of Babar, corresponding to 347 fb{sup -1}, i.e. 381*10{sup 6} BB-bar pairs, give A{sup *}(CP+) equals -0.114{+-}0.089{+-}0.007; R{sup *}(CP+) equals 1.313{+-}0.132{+-}0.029; A{sup *}(CP-) equals 0.060{+-}0.099{+-}0.016 and R{sup *}(CP-) equals 1.081{+-}0.119{+-}0.034. Translated into cartesian coordinates x{sub {+-}}{sup *} for comparing with Dalitz analysis, we get x{sub +}{sup *} equals 0,112{+-}0,061{+-}0,012; x{sub -}{sup *} equals 0,004{+-}0,059{+-}0,012. All these results are in agreement with previous measurements from Babar and Belle experiments. Precision is improved by a factor two on CP even observables and a factor three for CP odd observables, in particular due to the use of D{sup *} {yields} D{sup 0}{gamma} decays, and is better on x{sub {+-}}{sup *} than the world average of Babar and Belle Dalitz measurements. The statistics used is too small for providing a precise enough r{sub B}{sup *} with R{sup *}(CP{+-}) that could constrain {gamma}. However the combination of our results with Dalitz measurements will improve this constraint. (author)

  15. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  16. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  17. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  18. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  19. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  20. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  1. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  2. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  3. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  4. Refining Radchem Detectors: Iridium

    Science.gov (United States)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.

    2013-10-01

    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  5. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  6. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  7. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  8. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  9. Detectors for rare events

    International Nuclear Information System (INIS)

    Charpak, G.

    1984-01-01

    This chapter discusses the possibility of combining the advantages of photographic data retrieval with the flexibility of operation of conventional gaseous or liquid detectors operated with electronic data retrieval. Possible applications of the proposed detectors to such problems as nucleon decay, neutrinoelectron interaction, and the search for magnetic monopoles are examined. Topics considered include the photography of ionization patterns, the photography of ionization tracks with the multistep avalanche chambers, and exploiting the stimulated scintillation light. Two processes which give rise to the emission of light when ionizing electrons interact in gases under the influence of an electric field are described

  10. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  11. Intelligent Detector Design

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; Cassell, R.; Johnson, T.; McCormick, J.; /SLAC; Magill, S.; Kuhlmann, S.; /Argonne

    2007-02-13

    At a future e+e- linear collider, precision measurements of jets will be required in order to understand physics at and beyond the electroweak scale. Calorimetry will be used with other detectors in an optimal way to reconstruct particle 4-vectors with unprecedented precision. This Particle Flow Algorithm (PFA) approach is seen as the best way to achieve particle mass resolutions from dijet measurements in the range of {approx} 30%/{radical}E, resulting in innovative methods for choosing the calorimeter technology and optimizing the detector design.

  12. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  13. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  14. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  15. Semiconductor neutron detector

    Science.gov (United States)

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  16. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  17. Status of the KEDR detector

    CERN Document Server

    Anashin, V V; Baibusinov, B O; Balashov, V; Baldin, E M; Barkov, L M; Barladyan, A K; Barnyakov, M Y; Baru, S E; Bedny, I; Beilin, D M; Blinov, A E; Blinov, V E; Bondarev, D V; Bondar, A E; Buzykaev, A R; Cantoni, P; Chilingarov, A G; Dneprovsky, L V; Eidelman, S I; Epifanov, D A; Frabetti, P L; Gaidarev, P B; Groshev, V R; Karpov, S V; Kiselev, V A; Klimenko, S G; Kolachev, G M; Kononov, S A; Kozlov, V N; Kravchenko, E A; Kulikov, V F; Kurdadze, L M; Kuzmin, A S; Kuznecov, S A; Lanni, F; Lelchuk, M Y; Leontiev, L A; Levichev, E B; Malyshev, V M; Manfredi, P F; Maslennikov, A L; Minakov, G D; Nagaslaev, V P; Naumenkov, A I; Nikitin, S A; Nomerotski, A; Onuchin, A P; Oreshkin, S B; Ovechkin, R; Palombo, F; Peleganchuk, S V; Petrosyan, S S; Pivovarov, S V; Poluektov, A O; Pospelov, G E; Protopopov, I Ya; Re, V; Romanov, L V; Root, N I; Ruban, A A; Savinov, G A; Shamov, A G; Shatilov, D; Shubin, M A; Shusharo, A I; Shwartz, B A; Sidorov, V A; Skovpen, Y I; Smakhtin, V P; Snopkov, R G; Sokolov, A V; Soukharev, A M; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Y; Usov, Y V; Vorobyev, A I; Yushkov, A N; Zatcepin, A V; Zhilich, V N

    2002-01-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e sup + e sup - -collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/PSI meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  18. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  19. Determination of the Ds0(2317) width with the PANDA detector

    International Nuclear Information System (INIS)

    Mertens, Marius Christian

    2012-01-01

    The D s0 *(2317) meson which was discovered at BaBar in 2003 has the interesting properties of a surprisingly narrow width and a mass just below the DK threshold. Different theoretical models try to explain the nature of its properties. A precise knowledge of the width is an important criterion to evaluate these models. However, only an upper limit of 3.8 MeV is known so far. A suitable method to determine the width of particles which are significantly narrower than the experimental mass resolution is to measure the production cross section as a function of the center of mass energy. The shape of this excitation function allows to deduce the width. At PANDA, the measurement of the production cross section will be possible in antiproton-proton collisions. The PANDA experiment at the future FAIR facility is designed to combine precisely adjustable beam momenta and high luminosities which make it an excellent tool for this kind of measurement. In the following we will describe the experimental procedure to carry out this measurement with the PANDA detector in order to achieve a resolution in the order of 0.1 MeV for the width of the D s0 *(2317).

  20. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  1. The Borexino Detector

    Science.gov (United States)

    Montanari, David

    2010-04-01

    The Borexino detector is a large volume liquid scintillator detector for low energy neutrino spetroscopy currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. Main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the mono-energetic (862KeV) 7Be electron capture neutrinos, via neutrino-electron scattering in ultra-pure liquid scintillator. We report the description of the detector itself from its construction to the final current configuration. The initial requirements are first presented, then the strategy developed to achieve them: choice of materials and components, purification of the scintillator, cleaning, leak tightness, fluid handling. Every single point is analyzed, particularly the purification plants, that allowed reaching an ultra high pure scintillator and the fluid handling system, a large modular system connecting fluid receiving, purification and fluid delivery processes for every fluid involved. The different phases of the filling follow: from air to water to the final liquid scintillator, mainly focusing on the scintillator filling. The performances of the detector and the results are then presented.

  2. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  3. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  4. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  5. Performance of GLD detector

    Indian Academy of Sciences (India)

    Most of the important physics processes to be studied in the international linear collider (ILC) experiment have multi-jets in the final state. In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design.

  6. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  7. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  8. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  9. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Forward tracking detectors

    Indian Academy of Sciences (India)

    In order to get a forward tracking that fulfils the needs, it has to be implemented in the design of the detectors from the beginning. Past experience shows that this part was often underestimated and upgrades at a later stage could not deliver the required performance because the needed space was already taken by other ...

  11. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  12. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  13. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  14. Research on intellectualized γ detector

    International Nuclear Information System (INIS)

    Duan Zaiyu; Chen Jianhua; Zhang Guixin

    2006-01-01

    This design makes use of the Time-to-Count measuring method, the SCM and the high-voltage power is supplied into the γ detector, and new-style intellectualized γ detector is designed. The intellectualized γ detector is a sort of intellectualized, miniature, integrative γ radial monitor instrument. The designing project, performance index, and structural design of the detector are introduced. The research is applied into project. (authors)

  15. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  16. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  17. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the.

  18. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  19. Review of semiconductor drift detectors

    Science.gov (United States)

    Gatti, Emilio; Rehak, Pavel

    2005-04-01

    A short review of semiconductor drift detectors is given. The emphasis is given to detectors intended for tracking of fast charged particles for experiments in particle physics and high energy heavy-ion physics. The use and performance of this kind of detector in past, present and future experiments is described together with the experience learned during the design, production and data taking phases.

  20. The 4th concept detector

    Indian Academy of Sciences (India)

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, ...

  1. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  2. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  3. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  4. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  6. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  7. Television area detectors

    International Nuclear Information System (INIS)

    Arndt, V.W.

    1977-01-01

    This paper discusses the use of standard television camera tubes as X-ray detectors in X-ray diffraction studies. Standard tubes can be modified to detect X rays by depositing an external X-ray phosphor on the fibre optics face plate either of a highly sensitive television camera tube or of an image intensifier coupled to a camera tube. The author considers various X-ray phosphors and concludes that polycrystalline silver activated ZnS is most suitable for crystallographic applications. In the following sections various types of television camera tubes with adequate light sensitivity for use in an X-ray detection system are described, and also three types of image intensifiers. The digitization of the television output signals and their statistical precision are discussed and the electronic circuitry for the detector system is briefly described. (B.D.)

  8. The Upgraded DØ detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš; Šimák, Vladislav

    2006-01-01

    Roč. 565, - (2006), s. 463-537 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA210; GA MŠk 1P05LA257 Institutional research plan: CEZ:AV0Z10100502 Keywords : Fermilab * DZero * DØ * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  9. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  10. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  11. LEAR Crystal Barrel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Braune, K.; Keh, S.; Montanet, L.; Zoll, J.; Beckmann, R.; Friedrich, J.; Heinsius, H.; Kiel, T.; Lewendel, B.; Pegel, C.; and others

    1988-11-20

    The features of the Crystal Barrel Detector which is in preparation for LEAR at CERN, are discussed. The physics aims include q-barq- and exotics-spectroscopy and a detailed investigation of yet unknown p-barp-anihilation channels. An eventual later use on the PSI-B-Meson-Factory is discussed. The paper finishes with a description of the present status of the project.

  12. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  13. A fossils detector

    International Nuclear Information System (INIS)

    Buffetaut, E.

    1998-01-01

    Because fossil bones are often rich in uraninite they can be detected using a portable gamma-ray detector run over the prospected site. Zones with higher radioactivity are possible accumulations of bones or skeletons. This method invented by R. Jones from the University of Utah (Salt Lake City, USA) has been successfully used in the field and led to the discovery of new dinosaur skeletons. Short paper. (J.S.)

  14. Detector limitations, STAR

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  15. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    1999-08-23

    The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

  16. Semiconductor projectile impact detector

    Science.gov (United States)

    Shriver, E. L. (Inventor)

    1977-01-01

    A semiconductor projectile impact detector is described for use in determining micrometeorite presence, as well as its flux and energy comprising a photovoltaic cell which generates a voltage according to the light and heat emitted by the micrometeorites upon impact. A counter and peak amplitude measuring device were used to indicate the number of particules which strike the surface of the cell as well as the kinetic energy of each of the particles.

  17. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  18. Semiconductor detectors. Recent evolution

    International Nuclear Information System (INIS)

    Siffert, P.

    1977-01-01

    The recent evolution as well as the problems appearing in the use of semiconductor counters in both X and γ-ray as well as heavy ions spectroscopy are reviewed. For the photon counters the discussion is limited to cadmium telluride and mercuric iodide room temperature diodes, whereas for heavy ions, identification by means of thin ΔE/Δx counters and some problems related to the pulse amplitude in E detectors are considered [fr

  19. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  20. Sensor readout detector circuit

    Science.gov (United States)

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  1. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  2. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  3. The MAC detector

    Energy Technology Data Exchange (ETDEWEB)

    Allaby, J.V.; Ash, W.W.; Band, H.R.; Baksay, L.A.; Blume, H.T.; Bosman, M.; Camporesi, T.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Delfino, M.C.; De Sangro, R.; Faissler, W.L.; Fernandez, E.; Ford, W.T.; Gettner, M.W.; Goderre, G.P.; Goldschmidt-Clermont, Y.; Gottschalk, B.; Groom, D.E.; Heltsley, B.K.; Hurst, R.B.; Johnson, J.R.; Kaye, H.S.; Lau, K.H.; Lavine, T.L.; Lee, H.Y.; Leedy, R.E.; Leung, S.P.; Lippi, I.; Loh, E.C.; Lynch, H.L.; Marini, A.; Marsh, J.S.; Maruyama, T.; Messner, R.L.; Meyer, O.A.; Michaloswki, S.J.; Morcos, S.; Moromisato, J.H.; Morse, R.M.; Moss, L.J.; Muller, F.; Nelson, H.N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A.L. Jr.; Rich, K.; Ritson, D.M.; Ronga, F.; Rosenberg, L.J.; Shambroom, W.D.; Sleeman, J.C.; Smith, J.G.; Venuti, J.P.; Verdini, P.G.; Goeler, E. von; Wald, H.B.; Weinstein, R.; Wiser, D.E.; Zdarko, R.W. (Colorado Univ., Boulder (USA). Dept. of Physics; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab.

    1989-09-01

    The MAC detector at PEP recorded data for an integrated luminosity of 335 pb{sup -1} between 1980 and 1986. The design of this low-cost MAgnetic Calorimeter was optimized for electron and muon identification, as well as for the measurement of hadronic energy flow. Muon identification is available over 96% of the solid angle, and MAC was the first detector to make large-scale use of gas-sampling calorimetry. Electromagnetic calorimetry in the central selection employs alternating layers of lead and proportional wire chambers (PWCs), and hadron and the remaining electromagnetic calorimetry is accomplished with iron plate and PWC layers. A relatively small central drift chamber in an axial magnetic field provides pattern recognition and modest momentum determination. An outer blanket of drift tubes completes the muon identification system. During the latter two years of operation an innovative 'soda straw' vertex chamber made more precise lifetime measurements possible. With an evolving trigger system and highly automated data acquisition system, this modest detector has exceeded most of its designers' expectations and has produced a gratifying spectrum of physics results. (orig.).

  4. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  5. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  6. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  7. Study of the CP violation in B{sup +-} {yields} D{sup 0} K{sup *+-} decays with the BaBar experiment; Etude de la violation de CP dans les desintegrations B{sup +-} {yields} D{sup 0} K{sup *+-} sur l'experience BaBar a SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Therin, G

    2005-05-15

    Using a luminosity of 210.7 fb{sup -1} integrated at the {upsilon}(4S) resonance with BaBar experiment, we exclusively reconstruct the B{sup {+-}} to DK{sup *{+-}} decay for constraining the angle {gamma} of the unitarity triangle. Following the method described by Gronau, London et Wyler, the D meson is reconstructed in CP eigenstates: K{sup +}K{sup -}, {pi}{sup +}{pi}{sup -}, et K{sub s}{pi}{sup 0}, K{sub s}{phi}, K{sub s}{omega}. The interference between amplitudes b-bar {yields} c-bar u s-bar and b-bar {yields} u-bar c s-bar, which contribute to the final states, is the origin of the sensitivity on {gamma}. The technical difficulty comes from the suppression of the second amplitude compared to the first one, which we expect a ratio of the order of 0.1. The small ratio of r{sub B} limits the impact on the {gamma} measurement. Physical observables for this method have been measured: A{sub +} = -0,08 {+-} 0,19 (stat.) {+-} 0,08 (syst.); A{sub -} = -0,26 {+-} 0,40 (stat.) {+-} 0,12 (syst.); R{sub +} = 1,96 {+-} 0,40 (stat.) {+-} 0,11 (syst.); and R{sub -} = 0,65 {+-} 0,26 (stat.) {+-} 0,08 (syst.). An update of the branching ratio is also proposed: BR(B{sup -} {yields} D{sup 0}K{sup *-}) = (5,31 {+-} 0,29 (stat.) {+-} 0,37 (syst.))*10{sup -4}. (author)

  8. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  9. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  10. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  11. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  12. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  13. Measurement of the Hadronic Mass Spectrum in B to Xulnu Decaysand Determination of the b-Quark Mass at the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tackmann, Kerstin [Univ. of California, Berkeley, CA (United States)

    2008-06-26

    I present preliminary results of the measurement of the hadronic mass spectrum and its first three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated hadronic mass moments are used for the first determination of the b-quark mass and the nonperturbative parameters μπ2 and ρD3 in this B-meson decay channel. The study is based on 383 x 106 B$\\bar{B}$ decays collected with the BABAR experiment at the PEP-II e+e- storage rings, located at the Stanford Linear Accelerator Center. The first, second central, and third central hadronic mass moment with a cut on the hadronic mass mX2 < 6.4GeV2 and the lepton momentum p* > 1 GeV are measured to be: M1 = (1.96 ± 0.34stat ± 0.53syst) GeV2; U2 = (1.92 ± 0.59stat ± 0.87syst) GeV4; and U3 = (1.79 ± 0.62stat ± 0.78syst) GeV6; with correlation coefficients ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88, respectively. Using Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract: mb = (4.60 ± 0.13stat ± 0.19syst ± 0.10theo GeV); μπ2 = (0.40 ± 0.14stat ± 0.20syst ± 0.04theo) GeV2; ρD3 = (0.10 ± 0.02stat ± 0.02syst ± 0.07theo) GeV3; at μ = 1 GeV, with correlation coefficients ρmbμπ2 = -0.99, ρ μπ2ρD3 = 0.57, and ρmbρD3 = -0.59. The results are in good agreement with earlier determinations in inclusive charmed semileptonic and radiative penguin B-meson decays and have a

  14. 2011 ATLAS Detector Performance - ID and Forward detectors

    CERN Document Server

    Davies‎, E; The ATLAS collaboration; Abdel Khalek, S

    2012-01-01

    This poster describes the performance of 2 parts of ATLAS: - The Inner Detector which consists of 3 subdetectors: the Pixel detector, the SemiConductor Tracker (or SCT) and the Transition Radiation Tracker (or TRT). Here, we report on Pixel detector and SCT performance over 2011. - ALFA detector which will determine the absolute luminosity of the CERN LHC at the ATLAS Interaction Point (IP), and the total proton-proton cross section, by tracking elastically scattered protons at very small angles in the limit of the Coulomb Nuclear interference region.

  15. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  16. Pyroelectric demodulating detector

    Science.gov (United States)

    Brocato, Robert W [Sandia Park, NM

    2008-07-08

    A pyroelectric demodulating detector (also termed a pyroelectric demodulator) is disclosed which utilizes an electrical resistor stacked upon a pyroelectric element to demodulate an rf or microwave electrical input signal which is amplitude-modulated (AM). The pyroelectric demodulator, which can be formed as a hybrid or a monolithic device, has applications for use in AM radio receivers. Demodulation is performed by feeding the AM input signal into the resistor and converting the AM input signal into an AM heat signal which is conducted through the pyroelectric element and used to generate an electrical output signal containing AM information from the AM input signal.

  17. Neutron detector cable monitoring

    International Nuclear Information System (INIS)

    Haller, P.

    1976-01-01

    In a neutron detector connected by a cable with a current amplifier for the signal based on (n,e)-processes, any change in the insulation resistance of the cable is monitored by means of an a-c voltage which is super-imposed on the offset voltage of the amplifier. The resistance-dependent a-c variable at the output of the amplifier, is used to make a limit indicator respond via a connected filter. The invention is of importance particularly for monitoring the internal core instrumentation of pressurized-water reactors

  18. The AMPHORA detector

    International Nuclear Information System (INIS)

    Drain, D.; Billerey, R.; Chambon, B.; Cheynis, B.; Guyon, L.; Pastor, C.; Giorni, A.; Alarja, J.; Barbier, G.; Hilscher, D.; Rossner, H.; Ristori, C.; Bertholet, R.; Crancon, J.; Maurel, M.; Monnand, E.; Nifenecker, H.; Schussler, F.

    1988-01-01

    A 4π-multidetector consisting of 140 CsI(Tl) detectors has been designed and built to be used for detecting and identifying either charged-particles (with a low energy threshold of about 0.4 MeV/nucleon) and neutrons or light heavy-ions ad light charged-particles, in the range of energies available at S.A.R.A. (from 10 to 40 MeV/nucleon). The choice of the scintillator material is discussed and a description of the mechanical and electronic design is given. First experimental results obtained with this device are presented

  19. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  20. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  1. Activation neutron detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1976-01-01

    An activation neutron detector made as a moulded and cured composition of a material capable of being neutron-activated is described. The material is selected from a group consisting of at least two chemical elements, a compound of at least two chemical elements and their mixture, each of the chemical elements and their mixture, each of the chemical elements being capable of interacting with neutrons to form radioactive isotopes having different radiation energies when disintegrating. The material capable of being neutron-activated is distributed throughout the volume of a polycondensation resin inert with respect to neutrons and capable of curing. 17 Claims, No Drawings

  2. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  3. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  4. LCFI vertex detector design studies

    Energy Technology Data Exchange (ETDEWEB)

    Milstene, C.; Sopczak, A.

    2005-12-01

    A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies CCD detectors for quark flavor identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the International Linear Collider (ILC).

  5. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    The detector consists of a central wire made of inconel that is placed along the longitudinal axis of the detector, a tube-shaped emitter electrode of Rh or Co enclosing this wire, and a coaxial outer collector electrode separated from the emitter electrode by an insulation. The collector electrode may consist of inconel, too. The detector is manufactured by means of the cupping process or by working in the die. (DG) [de

  6. The CMS detector before closure

    CERN Document Server

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  7. Burst Populations and Detector Sensitivity

    Science.gov (United States)

    Band, David L.

    2003-01-01

    The F(sub T) (peak bolometric photon flux) vs. E(sub p) (peak energy) plane is a powerful tool to compare the burst populations detected by different detectors. Detector sensitivity curves in this plane demonstrate which burst populations the detectors will detect. For example, future CZT-based detectors will show the largest increase in sensitivity for soft bursts, and will be particularly well- suited to study X-ray rich bursts and X-ray Flashes. Identical bursts at different redshifts describe a track in the F(sub T)-E(sub p) plane.

  8. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  9. The controlled-drift detector

    CERN Document Server

    Castoldi, A; Guazzoni, C; Longoni, A; Rehak, P; Strüder, L

    2000-01-01

    A new position-sensing X-ray detector is presented. The novel device is called Controlled-Drift Detector (CDD). The detector is fully depleted and is operated by switching between integration and drift modes. The relevant details of the detector design are discussed. A complete experimental characterization of the fast readout of the integrated signal charges achievable with static drift fields in the range 100-400 V/cm has been carried out. Preliminary measurements to evaluate the charge-handling capacity are also shown. The CDD can provide unambiguous two-dimensional position measurement, high-resolution X-ray spectroscopy and time resolution below 1 ms.

  10. The controlled-drift detector

    Energy Technology Data Exchange (ETDEWEB)

    Castoldi, A. E-mail: andrea.castoldi@polimi.it; Gatti, E.; Guazzoni, C.; Longoni, A.; Rehak, P.; Strueder, L

    2000-01-11

    A new position-sensing X-ray detector is presented. The novel device is called Controlled-Drift Detector (CDD). The detector is fully depleted and is operated by switching between integration and drift modes. The relevant details of the detector design are discussed. A complete experimental characterization of the fast readout of the integrated signal charges achievable with static drift fields in the range 100-400 V/cm has been carried out. Preliminary measurements to evaluate the charge-handling capacity are also shown. The CDD can provide unambiguous two-dimensional position measurement, high-resolution X-ray spectroscopy and time resolution below 1 ms.

  11. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  12. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  13. Optical electromagnetic radiation detector

    International Nuclear Information System (INIS)

    Miceli, W. J.; Ludman, J. E.

    1985-01-01

    An optical electromagnetic radiation detector having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as it is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  15. MUON DETECTORS: CSC

    CERN Multimedia

    Richard Breedon

    Following the opening of the CMS detector, commissioning of the cathode strip chamber (CSC) system resumed in earnest. Some on-chamber electronics problems could be fixed on the positive endcap when each station became briefly accessible as the steel yokes were peeled off. There was no opportunity to work on the negative endcap chambers during opening; this had to wait instead until the yokes were again separated and the stations accessible during closing. In March, regular detector-operating shifts were resumed every weekday evening during which Local Runs were taken using cosmic rays to monitor and validate repairs and improvements that had taken place during the day. Since April, the CSC system has been collecting cosmic data under shift supervision 24 hours a day on weekdays, and 24/7 operation began in early June. The CSC system arranged shifts for continuous running in the entire first half of 2009. One reward of this effort is that every chamber of the CSC system is alive and recording events. There...

  16. ATLAS Detector Upgrade Prospects

    International Nuclear Information System (INIS)

    Dobre, M

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb −1 expected for LHC running by the end of 2018 to 3000 fb −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV. (paper)

  17. A centrality detector concept

    Energy Technology Data Exchange (ETDEWEB)

    Tarafdar, Sourav; Citron, Zvi; Milov, Alexander, E-mail: alexander.milov@weizmann.ac.il

    2014-12-21

    The nucleus–nucleus impact parameter and collision geometry of a heavy ion collision are typically characterized by assigning a collision “centrality”. In all present heavy ion experiments centrality is measured indirectly, by detecting the number of particles or the energy of the particles produced in the interactions, typically at high rapidity. Centrality parameters are associated to the measured detector response using the Glauber model. This approach suffers from systematic uncertainties related to the assumptions about the particle production mechanism and limitations of the Glauber model. In the collider based experiments there is a unique possibility to measure centrality parameters by registering spectator fragments remaining from the collision. This approach does not require model assumptions and relies on the fact that spectators and participants are related via the total number of nucleons in the colliding species. This paper describes the concept of a centrality detector for heavy ion experiment, which measures the total mass number of all fragments by measuring their deflection in the magnetic field of the collider elements.

  18. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb -1 expected for LHC running by the end of 2018 to 3000 fb -1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  19. Commissioning the SNO+ Detector

    Science.gov (United States)

    Caden, E.; Coulter, I.; SNO+ Collaboration

    2017-09-01

    SNO+ is a multipurpose liquid scintillator neutrino experiment based at SNOLAB in Sudbury, Ontario, Canada. The experiment’s main physics goal is a search for neutrinoless double beta decay in Tellurium-130, but SNO+ will also study low energy solar neutrinos, geo- and reactor-antineutrinos, among other topics. We are reusing much of the hardware from the original SNO experiment, but significant work has taken place to transform the heavy water detector into a liquid scintillator detector. We present upgrades and improvements to the read-out electronics and trigger system to handle the higher data rates expected by a scintillator experiment. We show the successful installation and testing of a hold-down rope net for the acrylic vessel to counter-act the buoyancy of organic liquid scintillator. We also describe the new scintillator process plant and cover gas systems that have been constructed to achieve the purification necessary to meet our physics goals. We are currently commissioning the experiment with ultra-pure water in preparation for filling with scintillator in early 2017 and present the current status of this work.

  20. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  1. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya and M. Dallavalle

    2010-01-01

    The DT system operation since the 2010 LHC start up is remarkably smooth.
 All parts of the system have behaved very satisfactorily in the last two months of operation with LHC pp collisions. Disconnected HV channels remain at the level of 0.1%, and the loss in detector acceptance because of failures in the readout and Trigger electronics is about 0.4%. The DT DCS-LHC handshake mechanism, which was strengthened after the short 2009 LHC run, operates without major problems. A problem arose with the opto-receivers of the trigger links connecting the detector to USC; the receivers would unlock from transmission for specific frequencies of the LHC lock, in particular during the LHC ramp. For relocking the TX and RX a “re-synch” command had to be issued. The source of the problem has been isolated and cured in the Opto-RX boards and now the system is stable. The Theta trigger chain also has been commissioned and put in operation. Several interventions on the system have been made, pro...

  2. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  3. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  4. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2013-01-01

    The DT group is undertaking substantial work both for detector maintenance and for detec-tor upgrade. Maintenance interventions on chambers and minicrates require close collaboration between DT, RPC and HO, and are difficult because they depend on the removal of thermal shields and cables on the front and rear of the chambers in order to gain access. The tasks are particularly critical on the central wheel due to the presence of fixed services. Several interventions on the chambers require extraction of the DT+RPC package: a delicate operation due to the very limited space for handling the big chambers, and the most dangerous part of the DT maintenance campaign. The interventions started in July 2013 and will go on until spring 2014. So far out of the 16 chambers with HV problems, 13 have been already repaired, with a global yield of 217 recovered channels. Most of the observed problems were due to displacement of impurities inside the gaseous volume. For the minicrates and FE, repairs occurred on 22 chambe...

  5. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  6. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  7. Baby-MIND neutrino detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  8. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  9. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  10. Readout of silicon strip detectors

    CERN Document Server

    Dabrowski, W

    2003-01-01

    Various architectural and technological options of readout electronics for silicon strip detectors in vertex and tracking applications are discussed briefly. The ABCD3T ASIC for the readout of silicon strip detectors in the ATLAS semiconductor tracker is presented. The architecture of the chip, some design issues and radiation effects are discussed.

  11. Fast Detector Simulation Using Lelaps

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W

    2004-08-20

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays.

  12. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  13. ACCESS: Detector Control and Performance

    Science.gov (United States)

    Morris, Matthew J.; Kaiser, M.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Mott, D. B.; Wen, Y.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (companion poster, Kaiser et al.). The flight detector and detector spare have been selected and integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been successfully performed. Further improvements to the flight controller housing have been made. A cryogenic ground test system has been built. Dark current and read noise tests have been performed, yielding results consistent with the initial characterization tests of the detector performed by Goddard Space Flight Center’s Detector Characterization Lab (DCL). Detector control software has been developed and implemented for ground testing. Performance and integration of the detector and controller with the flight software will be presented. NASA APRA sounding rocket grant NNX08AI65G supports this work.

  14. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  15. Performance of the DELPHI detector

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falaleev, V P; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Karyukhin, A N; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Perevozchikov, V; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; Belokopytov, Yu; Charpentier, Ph; Gavillet, Ph; Gouz, Yu; Jarlskog, Ch

    1996-01-01

    DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e^+e^- physics, designed to provide high granularity over a 4\\pi solid angle, allowing an effective particle identification. It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

  16. Semiconductor radiation detectors device physics

    CERN Document Server

    Lutz, Gerhard

    1999-01-01

    Describes the field of modern semiconductor detectors used for energy and position measurement radiation. This book includes an introduction to semiconductor physics. It explains the principles of semiconductor radiation detectors, followed by formal quantitative analysis. It also covers electronic signal readout.

  17. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    November 2007 physics pp. 921–926. Scalar top study: Detector optimization. C MILSTÉNE1 and A SOPCZAK2,∗. 1Fermi National Laboratory, Batavia, Il-60510, USA ... A vertex detector concept of the linear collider flavour identification (LCFI) collaboration .... A minimal transverse momentum cut, pt > 5 GeV, is applied.

  18. Interferometric Gravitational Wave Detectors: Challenges

    Indian Academy of Sciences (India)

    2015-09-14

    Sep 14, 2015 ... Interferometric Gravitational Wave Detectors: Challenges. The IndiGO Consortium & The LIGO Scientific ... of spinning objects (Gravity Probe-B). 6) Black holes. 7) Gravitational Waves .... Scheme of the advanced Interferometric GW detector. 300 times. 300 times. 40 times. Adding up all innovations, we ...

  19. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  20. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  1. Radon gas detector

    International Nuclear Information System (INIS)

    Madnick, P.A.; Sherwood, R.W.

    1990-01-01

    This patent describes a radon gas detector. It comprises: a housing having an interior chamber, the interior chamber being completely closed to ambient light, the interior chamber being divided into an environment connecting chamber and a radiation ascertaining chamber; radiation sensitive means mounted between the environment connecting chamber and the radiation ascertaining chamber; air movement means mounted in connection with the environment connecting chamber. The air movement means for moving ambient air through the environment connecting chamber; electronic means for detecting radiation within the air which is passing through the environment connecting chamber. The electronic means also including radiation counting means. The electronic means producing an output based on the type and quantity of radiation in the environment connecting chamber; and display electronics for receiving the output and displaying accordingly a display representative of the amount and type of radiation located within the environment connecting chamber and hence within the ambient air

  2. Space-based detectors

    DEFF Research Database (Denmark)

    Sesana, A.; Weber, W. J.; Killow, C. J.

    2014-01-01

    ) is planned for 2015. This mission and its payload “LISA Technology Package” will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical......The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF...... bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  5. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  6. Direction sensitive neutron detector

    Science.gov (United States)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  7. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  8. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  9. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  10. Detectors for MUSE

    Science.gov (United States)

    Hirschman, Jack; Muon Scattering Experiment (MUSE) Collaboration

    2017-09-01

    Until recently, it was thought that the proton radius was known with an uncertainty of 1%. However, experiments carried-out at the Paul Scherrer Institute (PSI) involving muonic hydrogen yielded a radius 4% smaller with an uncertainty of .1%, a 7.9 σ inconsistency. This problem of properly measuring the radius now requires new and different measurements. The Muon Scattering Experiment (MUSE) will thus be the first to utilize elastic muon scattering with sufficient precision to address the proton radius measurement. MUSE will run in PSI's PiM1 beamline, using a stack of GEM chambers and thin scintillation detectors to identify and track the beam particle species in this mixed e, pi, mu beam. Scattered particles will be measured in two arms with ten layers of Straw Tube Tracking (STT) detectors and a double plastic scintillator wall for timing of and triggering on scattered particles. The STT chambers will employ the anti-Proton Annihilations at Darmstadt (PANDA) design. Each straw consists of a thin wire with high voltage surrounded by an aluminized Mylar tube inflated with a mix of Argon and Carbon Dioxide, the ratio of which is important for optimal operation. The Argon gas, ionized by incoming charged particles, releases electrons which attract to the central wire. The CO2 acts as a quencher, taking-up electrons to prevent an unstable avalanche effect. This project will investigate the effects of altering the gas mixture in the STTs on signal size and timing. This material is based upon work supported by the National Science Foundation under Grant No. OISE-1358175, PHY-1614850, and PHY-1614938. Thank you to the teams at HUJI and PSI, in particular, Dr. G. Ron, Dr. T. Rostomyan, Dr. K. Dieters, and D. Cohen.

  11. Ionization detectors in environmental analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1982-01-01

    Ionization detectors (IDs) use the information contained in the radiation-produced ionization current regarding the chemical composition of gas mixtures. The radionuclide radiation sources, 3 H, 55 Fe, 63 Ni, 85 Kr, 90 Sr, 241 Am, are used to produce carriers. Using recombination effects and carrier multiplication by electrical fields the response of IDs can be improved. There are electron capture detectors, cross-section detectors and noble-gas detectors, mainly used in gas chromatographic devices, and continuously working aerosol ionization detectors. Halocarbons, metal chelates, metal organic and inorganic compounds, pesticides, herbicides, insecticides, but also SO 2 , AsH 3 , ClCN, HCN, HF, NH 3 , CO, CO 2 , H 2 O, can be determined within the pp10 9 range. They are used in automatic systems to control air pollution around industrial plants, in hospitals and factories, but also to prevent high levels of pesticides in agriculture products. (author)

  12. Dense detector for baryon decay

    International Nuclear Information System (INIS)

    Courant, H.; Heller, K.; Marshak, M.L.; Peterson, E.A.; Ruddick, K.; Shupe, M.

    1981-01-01

    Our studies indicate that the dense detector represents a potentially powerful means to search for baryon decay and to study this process, if it occurs. The detector has good angular resolution and particle identification properties for both showering and non-showering events. Its energy resolution is particularly good for muons, but pion, electron and photon energies can also be measured with resolutions of at least 25 percent (standard deviation). The dense detector has strong logistical advantages over other proposed schemes. These advantages imply not only a lower cost but also faster construction and higher reliability. A particular advantage is that the dense detector can be prototyped in order to optimize its characteristics prior to the construction of a large module. Subsequent modules can also be added easily, while the initial detector continues operation

  13. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  14. CPP Detector Design Using MVA

    Science.gov (United States)

    Lawrence, David

    2017-09-01

    The Charged Pion Polarizability(CPP) experiment is approved to run in Hall-D at Jefferson Lab using the GlueX detector. CPP requires that π+π- production events be distinguished from μ+μ- to better than 99% accuracy. This drives the design of a new MWPC-based detector capable of separating the π events from the μ events. A multivariate analysis of simulated data was initially done to study the feasibility of a detector with this level of performance. More recently, the design parameters of the detector have been refined using a similar technique. Details on the initial study and how machine learning has contributed to the detector design will be presented.

  15. Studien für eine initiale Messung der Topquarkmasse mit ATLAS in dem Lepton+Jets $t\\overline{t}$ Zerfallskanal und Alignment der Pixel und SCT Teildetektoren

    CERN Document Server

    Härtel, Roland; Bethke, Siegfried

    2009-01-01

    The main topic of this thesis is a commissioning style top quark mass analysis using the ATLAS experiment at CERN. The analysis focusses on top quark pair decays in the lepton+jets decay channel. Only kinematic selection cuts and no b-tagging information is used for the event selection. This analysis is suitable for the commissioning phase of the ATLAS detector, with not yet final calibration and an incomplete understanding of the detector performance. Different methods for the reconstruction of the hadronic side of the top quark pair decays are studied and the effect of imposing the known W boson mass as constraint on the reconstruction is investigated. The analysis is modified in several ways to estimate the influence of systematic effects. The influence of the jet selection kinematics on the reconstructed top quark mass is studied, as well as the underlying jet algorithm definition and variations of the jet energy scale. The different jet algorithms under consideration are cone type and kT type algorithms ...

  16. Measurement of Branching Fractions and CP-Violating Asymmetries in B0 → K0$\\bar{K}$0 and B+ to $\\bar{K}$0K+ Decays at the BaBar Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Biesiada, Jedrzej [Princeton Univ., NJ (United States)

    2007-09-01

    Over the last few years, the B factories have established the Cabbibo-Kobayashi-Maskawa mechanism of CP violation in the Standard Model through the study of the decays of B mesons. The focus of Belle and BaBar has now expanded to the search for signatures of new physics beyond the Standard Model, particularly through examination of flavor-changing neutral-current transitions, which proceed through diagrams involving virtual loops. These decays are suppressed in the Standard Model, increasing sensitivity to new-physics effects but decreasing branching fractions. Exploiting large and growing datasets, BaBar and Belle have made many measurements in loop decays where a b quark transitions to an s quark, observing hints of possible deviations from Standard Model expectations in CP-violating measurements.

  17. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  18. Pixels detectors and silicon X-rays detectors

    OpenAIRE

    Delpierre, P.

    1994-01-01

    Silicon pixel detectors are beginning to be used in large particle physics experiments. The hybrid technique (detector and electronics on two separate wafers) allows large surfaces to be built. For ATLAS at LHC it is proposed to cover areas of more than 1 m2 with 5000 to 10000 pixels/cm2. Each pixel has a full electronic chain directly connected which means very low input capacitance and no integration of dark current. Furthermore, silicon strip detectors and CCD's have been successfully test...

  19. Space Radiation Detector with Spherical Geometry

    Science.gov (United States)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  20. SoLid Detector Technology

    Science.gov (United States)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.