WorldWideScience

Sample records for b-spline nonrigid registration

  1. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Pluim, J.P.W.

    2007-01-01

    A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure.

  2. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  3. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  4. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    Science.gov (United States)

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  5. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    Science.gov (United States)

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  6. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Science.gov (United States)

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  7. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Directory of Open Access Journals (Sweden)

    Sergey Osechinskiy

    2011-01-01

    Full Text Available Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS, Gaussian elastic body splines (GEBS, or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D warp, a new unconstrained optimization algorithm (NEWUOA, and a correlation-coefficient-based cost function.

  8. Nonrigid registration with tissue-dependent filtering of the deformation field

    International Nuclear Information System (INIS)

    Staring, Marius; Klein, Stefan; Pluim, Josien P W

    2007-01-01

    In present-day medical practice it is often necessary to nonrigidly align image data. Current registration algorithms do not generally take the characteristics of tissue into account. Consequently, rigid tissue, such as bone, can be deformed elastically, growth of tumours may be concealed, and contrast-enhanced structures may be reduced in volume. We propose a method to locally adapt the deformation field at structures that must be kept rigid, using a tissue-dependent filtering technique. This adaptive filtering of the deformation field results in locally linear transformations without scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is applied at stiff tissue locations, less at parts of the image containing nonrigid tissue. The tissue-dependent filter is incorporated in a commonly used registration algorithm, using mutual information as a similarity measure and cubic B-splines to model the deformation field. The new registration algorithm is compared with this popular method. Evaluation of the proposed tissue-dependent filtering is performed on 3D computed tomography (CT) data of the thorax and on 2D digital subtraction angiography (DSA) images. The results show that tissue-dependent filtering of the deformation field leads to improved registration results: tumour volumes and vessel widths are preserved rather than affected

  9. Analytic regularization of uniform cubic B-spline deformation fields.

    Science.gov (United States)

    Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C

    2012-01-01

    Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.

  10. Non-rigid ultrasound image registration using generalized relaxation labeling process

    Science.gov (United States)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  11. On developing B-spline registration algorithms for multi-core processors

    International Nuclear Information System (INIS)

    Shackleford, J A; Kandasamy, N; Sharp, G C

    2010-01-01

    Spline-based deformable registration methods are quite popular within the medical-imaging community due to their flexibility and robustness. However, they require a large amount of computing time to obtain adequate results. This paper makes two contributions towards accelerating B-spline-based registration. First, we propose a grid-alignment scheme and associated data structures that greatly reduce the complexity of the registration algorithm. Based on this grid-alignment scheme, we then develop highly data parallel designs for B-spline registration within the stream-processing model, suitable for implementation on multi-core processors such as graphics processing units (GPUs). Particular attention is focused on an optimal method for performing analytic gradient computations in a data parallel fashion. CPU and GPU versions are validated for execution time and registration quality. Performance results on large images show that our GPU algorithm achieves a speedup of 15 times over the single-threaded CPU implementation whereas our multi-core CPU algorithm achieves a speedup of 8 times over the single-threaded implementation. The CPU and GPU versions achieve near-identical registration quality in terms of RMS differences between the generated vector fields.

  12. Prostate multimodality image registration based on B-splines and quadrature local energy.

    Science.gov (United States)

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  13. Testing non-rigid registration of nuclear medicine data using synthetic derived SPECT images

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    2002-01-01

    Aim: Non-rigid registration is needed to build atlas data to make statistical tests of significance of uptake in nuclear medicine (NM). Non-rigid registration is much more difficult than rigid registration to validate since some kind of matching function must be defined throughout the volume being registered, and no suitable gold standards exist. The aim here has been to assess non-rigid methods of registration and deformation for NM to NM and NM to MRI data. An additional aim has been to derive good synthetic SPECT images from other NM and MRI data to be used after as reference standards. Material and Methods: Phantom and patient test images have been acquired for both NM and MRI, which are then used to generate projections, where the characteristics of the images are modified to change both signal and noise properties. These derived images are different in character but perfectly registered with the original data, and can then be deformed in a known manner. The registration algorithm is then run backwards to re-register the modified deformed data with the original images. A technique has been developed to assess the vector fields of the original deformation to the reverse non-rigid registration field. Results: The main purpose of this paper is to describe a methodology for optimising algorithms, not to develop the algorithms themselves. Two different algorithms based on optic flow and thin plate spline interpolation have been intercompared and in particular the constraints imposed tested. Considerable differences in matching can be observed in different regions for example edge and centre of brain. Conclusions: Quadratic distance between known makers is a bad estimate to use to assess non-rigid registration. A robust statistic has been developed which can be used to optimise non-rigid algorithms based on the use of synthetic SPECT reference datasets. While the task being tested is simpler than the real clinical task, it is the first essential step in the

  14. Validation of nonrigid registration for multi-tracer PET-CT treatment planning in rectal cancer radiotherapy

    Science.gov (United States)

    Slagmolen, Pieter; Roels, Sarah; Loeckx, Dirk; Haustermans, Karin; Maes, Frederik

    2009-02-01

    The goal of radiotherapy is to deliver maximal dose to the tumor and minimal dose to the surrounding tissue. This requires accurate target definition. In sites were the tumor is difficult to see on the CT images, such as for rectal cancer, PET-CT imaging can be used to better define the target. If the information from multiple PETCT images with different tracers needs to be combined, a nonrigid registration is indispensable to compensate for rectal tissue deformations. Such registration is complicated by the presence of different volumes of bowel gas in the images to be registered. In this paper, we evaluate the performance of different nonrigid registration approaches by looking at the overlap of manually delineated rectum contours after registration. Using a B-spline transformation model, the results for two similarity measures, sum of squared differences and mutual information, either calculated over the entire image or on a region of interest are compared. Finally, we also assess the effect of the registration direction. We show that the combination of MI with a region of interest is best able to cope with residual rectal contrast and differences in bowel filling. We also show that for optimal performance the registration direction should be chosen depending on the difference in bowel filling in the images to be registered.

  15. Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach.

    Science.gov (United States)

    Metz, C T; Klein, S; Schaap, M; van Walsum, T; Niessen, W J

    2011-04-01

    A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are taken into account. Optionally, cyclic motion can be imposed, which can be useful for visualization (viewing the segmentation sequentially) or model building purposes. The method is based on a 3D (2D+time) or 4D (3D+time) free-form B-spline deformation model, a similarity metric that minimizes the intensity variances over time and constrained optimization using a stochastic gradient descent method with adaptive step size estimation. The method was quantitatively compared with existing registration techniques on synthetic data and 3D+t computed tomography data of the lungs. This showed subvoxel accuracy while delivering smooth transformations, and high consistency of the registration results. Furthermore, the accuracy of semi-automatic derivation of left ventricular volume curves from 3D+t computed tomography angiography data of the heart was evaluated. On average, the deviation from the curves derived from the manual annotations was approximately 3%. The potential of the method for other imaging modalities was shown on 2D+t ultrasound and 2D+t magnetic resonance images. The software is publicly available as an extension to the registration package elastix. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    Science.gov (United States)

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  18. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  19. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  20. Estimating nonrigid motion from inconsistent intensity with robust shape features

    International Nuclear Information System (INIS)

    Liu, Wenyang; Ruan, Dan

    2013-01-01

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided

  1. Non-rigid registration of breast surfaces using the laplace and diffusion equations

    Directory of Open Access Journals (Sweden)

    Ou Jao J

    2010-02-01

    Full Text Available Abstract A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images, anatomical landmarks, or fiducials, is compared to a gold standard of thin-plate spline (TPS interpolation. Realistic finite element simulations of breast compression and further testing against a tissue-mimicking phantom demonstrate that this method is capable of registering surfaces experiencing 6 - 36 mm compression to within a mean error of 0.5 - 5.7 mm.

  2. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...

  3. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Science.gov (United States)

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  4. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Directory of Open Access Journals (Sweden)

    Yucong Chen

    Full Text Available Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF for the reference craniofacial model. Second, the thin-plate spline transform (TPST is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  5. Constrained non-rigid registration for whole body image registration: method and validation

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  6. Robust non-rigid point set registration using student's-t mixture model.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zhou

    Full Text Available The Student's-t mixture model, which is heavily tailed and more robust than the Gaussian mixture model, has recently received great attention on image processing. In this paper, we propose a robust non-rigid point set registration algorithm using the Student's-t mixture model. Specifically, first, we consider the alignment of two point sets as a probability density estimation problem and treat one point set as Student's-t mixture model centroids. Then, we fit the Student's-t mixture model centroids to the other point set which is treated as data. Finally, we get the closed-form solutions of registration parameters, leading to a computationally efficient registration algorithm. The proposed algorithm is especially effective for addressing the non-rigid point set registration problem when significant amounts of noise and outliers are present. Moreover, less registration parameters have to be set manually for our algorithm compared to the popular coherent points drift (CPD algorithm. We have compared our algorithm with other state-of-the-art registration algorithms on both 2D and 3D data with noise and outliers, where our non-rigid registration algorithm showed accurate results and outperformed the other algorithms.

  7. Efficient nonrigid registration using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan B.; Bab-Hadiashar, Alireza; de Bruijne, Marleen

    2013-01-01

    of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find the important regions for registration and use an appropriate sampling scheme......Non-rigid image registration techniques are widely used in medical imaging applications. Due to high computational complexities of these techniques, finding appropriate registration method to both reduce the computation burden and increase the registration accuracy has become an intense area...... to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments on registration of real lung CT images, with expert annotated landmarks, show...

  8. Optimized imaging using non-rigid registration

    International Nuclear Information System (INIS)

    Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas

    2014-01-01

    The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc

  9. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  10. Non-rigid registration by geometry-constrained diffusion

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads

    1999-01-01

    Assume that only partial knowledge about a non-rigid registration is given so that certain point, curves, or surfaces in one 3D image map to certain points, curves, or surfaces in another 3D image. We are facing the aperture problem because along the curves and surfaces, point correspondences...

  11. A Comparison of FFD-based Nonrigid Registration and AAMs Applied to Myocardial Perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Ersbøll, Bjarne Kjær

    2006-01-01

    -form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi...

  12. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  13. SU-E-J-209: Verification of 3D Surface Registration Between Stereograms and CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, T; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States); Smith, B [MD Anderson Cancer Center, Houston, TX (United States); Salehpour, M [M.D. Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closest point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.

  14. A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy

    International Nuclear Information System (INIS)

    Vasquez Osorio, Eliana M.; Hoogeman, Mischa S.; Bondar, Luiza; Levendag, Peter C.; Heijmen, Ben J. M.

    2009-01-01

    Technical improvements in planning and dose delivery and in verification of patient positioning have substantially widened the therapeutic window for radiation treatment of cancer. However, changes in patient anatomy during the treatment limit the exploitation of these new techniques. To further improve radiation treatments, anatomical changes need to be modeled and accounted for. Nonrigid registration can be used for this purpose. This article describes the design, the implementation, and the validation of a new framework for nonrigid registration for radiotherapy applications. The core of this framework is an improved version of the thin plate spline robust point matching (TPS-RPM) algorithm. The TPS-RPM algorithm estimates a global correspondence and a transformation between the points that represent organs of interest belonging to two image sets. However, the algorithm does not allow for the inclusion of prior knowledge on the correspondence of subset of points, and therefore, it can lead to inconsistent anatomical solutions. In this article TPS-RPM was improved by employing a novel correspondence filter that supports simultaneous registration of multiple structures. The improved method allows for coherent organ registration and for the inclusion of user-defined landmarks, lines, and surfaces inside and outside of structures of interest. A procedure to generate control points from segmented organs is described. The framework parameters r and λ, which control the number of points and the nonrigidness of the transformation, respectively, were optimized for three sites with different degrees of deformation (head and neck, prostate, and cervix) using two cases per site. For the head and neck cases, the salivary glands were manually contoured on CT scans, for the prostate cases the prostate and the vesicles, and for the cervix cases the cervix uterus, the bladder, and the rectum. The transformation error obtained using the best set of parameters was below 1 mm for

  15. Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical prior

    DEFF Research Database (Denmark)

    Kjer, Hans Martin; Fagertun, Jens; Vera, Sergio

    2016-01-01

    Better understanding of the anatomical variability of the human cochlear is important for the design and function of Cochlear Implants. Proper non-rigid alignment of high-resolution cochlear μCT data is a challenge for the typical cubic B-spline registration model. In this paper we study one way ...

  16. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  17. Non-rigid point set registration of curves: registration of the superficial vessel centerlines of the brain

    Science.gov (United States)

    Marreiros, Filipe M. M.; Wang, Chunliang; Rossitti, Sandro; Smedby, Örjan

    2016-03-01

    In this study we present a non-rigid point set registration for 3D curves (composed by 3D set of points). The method was evaluated in the task of registration of 3D superficial vessels of the brain where it was used to match vessel centerline points. It consists of a combination of the Coherent Point Drift (CPD) and the Thin-Plate Spline (TPS) semilandmarks. The CPD is used to perform the initial matching of centerline 3D points, while the semilandmark method iteratively relaxes/slides the points. For the evaluation, a Magnetic Resonance Angiography (MRA) dataset was used. Deformations were applied to the extracted vessels centerlines to simulate brain bulging and sinking, using a TPS deformation where a few control points were manipulated to obtain the desired transformation (T1). Once the correspondences are known, the corresponding points are used to define a new TPS deformation(T2). The errors are measured in the deformed space, by transforming the original points using T1 and T2 and measuring the distance between them. To simulate cases where the deformed vessel data is incomplete, parts of the reference vessels were cut and then deformed. Furthermore, anisotropic normally distributed noise was added. The results show that the error estimates (root mean square error and mean error) are below 1 mm, even in the presence of noise and incomplete data.

  18. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    Science.gov (United States)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  19. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    Herlambang, N.; Matsumiya, K.; Masamune, K.; Dohi, T.; Liao, H.; Tsukihara, H.; Takamoto, S.

    2007-01-01

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  20. Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom

    Science.gov (United States)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid

    2016-01-01

    The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.

  1. Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom

    International Nuclear Information System (INIS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J; Spadinger, Ingrid

    2016-01-01

    The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest. (paper)

  2. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  3. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    Science.gov (United States)

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  4. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  5. SU-E-J-89: Deformable Registration Method Using B-TPS in Radiotherapy.

    Science.gov (United States)

    Xie, Y

    2012-06-01

    A novel deformable registration method for four-dimensional computed tomography (4DCT) images is developed in radiation therapy. The proposed method combines the thin plate spline (TPS) and B-spline together to achieve high accuracy and high efficiency. The method consists of two steps. First, TPS is used as a global registration method to deform large unfit regions in the moving image to match counterpart in the reference image. Then B-spline is used for local registration, the previous deformed moving image is further deformed to match the reference image more accurately. Two clinical CT image sets, including one pair of lung and one pair of liver, are simulated using the proposed algorithm, which results in a tremendous improvement in both run-time and registration quality, compared with the conventional methods solely using either TPS or B-spline. The proposed method can combine the efficiency of TPS and the accuracy of B-spline, performing good adaptively and robust in registration of clinical 4DCT image. © 2012 American Association of Physicists in Medicine.

  6. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    Science.gov (United States)

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  8. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    Science.gov (United States)

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inverse consistent non-rigid image registration based on robust point set matching

    Science.gov (United States)

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number

  10. Nonrigid Registration of Prostate Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2017-01-01

    Full Text Available Motion and deformation are common in prostate diffusion-weighted magnetic resonance imaging (DWI during acquisition. These misalignments lead to errors in estimating an apparent diffusion coefficient (ADC map fitted with DWI. To address this problem, we propose an image registration algorithm to align the prostate DWI and improve ADC map. First, we apply affine transformation to DWI to correct intraslice motions. Then, nonrigid registration based on free-form deformation (FFD is used to compensate for intraimage deformations. To evaluate the influence of the proposed algorithm on ADC values, we perform statistical experiments in three schemes: no processing of the DWI, with the affine transform approach, and with FFD. The experimental results show that our proposed algorithm can correct the misalignment of prostate DWI and decrease the artifacts of ROI in the ADC maps. These ADC maps thus obtain sharper contours of lesions, which are helpful for improving the diagnosis and clinical staging of prostate cancer.

  11. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    Science.gov (United States)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem

  12. Survey of Non-Rigid Registration Tools in Medicine.

    Science.gov (United States)

    Keszei, András P; Berkels, Benjamin; Deserno, Thomas M

    2017-02-01

    We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.

  13. 3D nonrigid medical image registration using a new information theoretic measure

    Science.gov (United States)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  14. 3D nonrigid medical image registration using a new information theoretic measure

    International Nuclear Information System (INIS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-01-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen–Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy. (paper)

  15. Cortical surface registration using spherical thin-plate spline with sulcal lines and mean curvature as features.

    Science.gov (United States)

    Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min

    2012-04-30

    Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications

    NARCIS (Netherlands)

    Staring, M.; Al-Ars, Z.; Berendsen, Floris; Angelini, Elsa D.; Landman, Bennett A.

    2018-01-01

    Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into

  17. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Xingxing Zhu

    2018-05-01

    Full Text Available Nonrigid multimodal image registration remains a challenging task in medical image processing and analysis. The structural representation (SR-based registration methods have attracted much attention recently. However, the existing SR methods cannot provide satisfactory registration accuracy due to the utilization of hand-designed features for structural representation. To address this problem, the structural representation method based on the improved version of the simple deep learning network named PCANet is proposed for medical image registration. In the proposed method, PCANet is firstly trained on numerous medical images to learn convolution kernels for this network. Then, a pair of input medical images to be registered is processed by the learned PCANet. The features extracted by various layers in the PCANet are fused to produce multilevel features. The structural representation images are constructed for two input images based on nonlinear transformation of these multilevel features. The Euclidean distance between structural representation images is calculated and used as the similarity metrics. The objective function defined by the similarity metrics is optimized by L-BFGS method to obtain parameters of the free-form deformation (FFD model. Extensive experiments on simulated and real multimodal image datasets show that compared with the state-of-the-art registration methods, such as modality-independent neighborhood descriptor (MIND, normalized mutual information (NMI, Weber local descriptor (WLD, and the sum of squared differences on entropy images (ESSD, the proposed method provides better registration performance in terms of target registration error (TRE and subjective human vision.

  18. Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2013-06-01

    Full Text Available Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI and sum of squared differences (SSD cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal image registration method by combining Weber local descriptor (WLD based similarity metrics with the normalized mutual information (NMI using the diffeomorphic free-form deformation (FFD model. The first phase aims at recovering the large deformation component using the WLD based non-local SSD (wldNSSD or weighted structural similarity (wldWSSIM. Based on the output of the former phase, the second phase is focused on getting accurate transformation parameters related to the small deformation using the NMI. Extensive experiments on T1, T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or wldWSSIM-NMI method outperforms the registration methods based on the NMI, the conditional mutual information (CMI, the SSD on entropy images (ESSD and the ESSD-NMI in terms of registration accuracy and computation efficiency.

  19. Convex Hull Aided Registration Method (CHARM).

    Science.gov (United States)

    Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian

    2017-09-01

    Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.

  20. Selecting registration schemes in case of interstitial lung disease follow-up in CT

    International Nuclear Information System (INIS)

    Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros; Kazantzi, Alexandra; Kalogeropoulou, Christina; Pratikakis, Ioannis; Costaridou, Lena

    2015-01-01

    Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information), four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the

  1. Selecting registration schemes in case of interstitial lung disease follow-up in CT

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros; Kazantzi, Alexandra [Department of Medical Physics, School of Medicine,University of Patras, Patras 26504 (Greece); Kalogeropoulou, Christina [Department of Radiology, School of Medicine, University of Patras, Patras 26504 (Greece); Pratikakis, Ioannis [Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi 67100 (Greece); Costaridou, Lena, E-mail: costarid@upatras.gr [Department of Medical Physics, School of Medicine, University of Patras, Patras 26504 (Greece)

    2015-08-15

    Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information), four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the

  2. Landmark-based elastic registration using approximating thin-plate splines.

    Science.gov (United States)

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  3. Dealing with difficult deformations: Construction of a knowledge-based deformation atlas

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Darvann, T.A.; Hermann, N.V.

    2010-01-01

    from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery. New or breakthrough work to be presented: The method provides...... was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation...

  4. B-spline Collocation with Domain Decomposition Method

    International Nuclear Information System (INIS)

    Hidayat, M I P; Parman, S; Ariwahjoedi, B

    2013-01-01

    A global B-spline collocation method has been previously developed and successfully implemented by the present authors for solving elliptic partial differential equations in arbitrary complex domains. However, the global B-spline approximation, which is simply reduced to Bezier approximation of any degree p with C 0 continuity, has led to the use of B-spline basis of high order in order to achieve high accuracy. The need for B-spline bases of high order in the global method would be more prominent in domains of large dimension. For the increased collocation points, it may also lead to the ill-conditioning problem. In this study, overlapping domain decomposition of multiplicative Schwarz algorithm is combined with the global method. Our objective is two-fold that improving the accuracy with the combination technique, and also investigating influence of the combination technique to the employed B-spline basis orders with respect to the obtained accuracy. It was shown that the combination method produced higher accuracy with the B-spline basis of much lower order than that needed in implementation of the initial method. Hence, the approximation stability of the B-spline collocation method was also increased.

  5. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  6. Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Denis P Shamonin

    2014-01-01

    Full Text Available Nonrigid image registration is an important, but time-consuming taskin medical image analysis. In typical neuroimaging studies, multipleimage registrations are performed, i.e. for atlas-based segmentationor template construction. Faster image registration routines wouldtherefore be beneficial.In this paper we explore acceleration of the image registrationpackage elastix by a combination of several techniques: iparallelization on the CPU, to speed up the cost function derivativecalculation; ii parallelization on the GPU building on andextending the OpenCL framework from ITKv4, to speed up the Gaussianpyramid computation and the image resampling step; iii exploitationof certain properties of the B-spline transformation model; ivfurther software optimizations.The accelerated registration tool is employed in a study ondiagnostic classification of Alzheimer's disease and cognitivelynormal controls based on T1-weighted MRI. We selected 299participants from the publicly available Alzheimer's DiseaseNeuroimaging Initiative database. Classification is performed with asupport vector machine based on gray matter volumes as a marker foratrophy. We evaluated two types of strategies (voxel-wise andregion-wise that heavily rely on nonrigid image registration.Parallelization and optimization resulted in an acceleration factorof 4-5x on an 8-core machine. Using OpenCL a speedup factor of ~2was realized for computation of the Gaussian pyramids, and 15-60 forthe resampling step, for larger images. The voxel-wise and theregion-wise classification methods had an area under thereceiver operator characteristic curve of 88% and 90%,respectively, both for standard and accelerated registration.We conclude that the image registration package elastix wassubstantially accelerated, with nearly identical results to thenon-optimized version. The new functionality will become availablein the next release of elastix as open source under the BSD license.

  7. Recursive B-spline approximation using the Kalman filter

    Directory of Open Access Journals (Sweden)

    Jens Jauch

    2017-02-01

    Full Text Available This paper proposes a novel recursive B-spline approximation (RBA algorithm which approximates an unbounded number of data points with a B-spline function and achieves lower computational effort compared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to adapt the interval in which the B-spline function can approximate data points during run-time.

  8. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.

    Science.gov (United States)

    Shamonin, Denis P; Bron, Esther E; Lelieveldt, Boudewijn P F; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license.

  9. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    International Nuclear Information System (INIS)

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Wells, William M. III; Tempany, Clare M.; Cormack, Robert A.

    2012-01-01

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed

  10. B-splines and Faddeev equations

    International Nuclear Information System (INIS)

    Huizing, A.J.

    1990-01-01

    Two numerical methods for solving the three-body equations describing relativistic pion deuteron scattering have been investigated. For separable two body interactions these equations form a set of coupled one-dimensional integral equations. They are plagued by singularities which occur in the kernel of the integral equations as well as in the solution. The methods to solve these equations differ in the way they treat the singularities. First the Fuda-Stuivenberg method is discussed. The basic idea of this method is an one time iteration of the set of integral equations to treat the logarithmic singularities. In the second method, the spline method, the unknown solution is approximated by splines. Cubic splines have been used with cubic B-splines as basis. If the solution is approximated by a linear combination of basis functions, an integral equation can be transformed into a set of linear equations for the expansion coefficients. This set of linear equations is solved by standard means. Splines are determined by points called knots. A proper choice of splines to approach the solution stands for a proper choice of the knots. The solution of the three-body scattering equations has a square root behaviour at a certain point. Hence it was investigated how the knots should be chosen to approximate the square root function by cubic B-splines in an optimal way. Before applying this method to solve numerically the three-body equations describing pion-deuteron scattering, an analytically solvable example has been constructed with a singularity structure of both kernel and solution comparable to those of the three-body equations. The accuracy of the numerical solution was determined to a large extent by the accuracy of the approximation of the square root part. The results for a pion laboratory energy of 47.4 MeV agree very well with those from literature. In a complete calculation for 47.7 MeV the spline method turned out to be a factor thousand faster than the Fuda

  11. Image edges detection through B-Spline filters

    International Nuclear Information System (INIS)

    Mastropiero, D.G.

    1997-01-01

    B-Spline signal processing was used to detect the edges of a digital image. This technique is based upon processing the image in the Spline transform domain, instead of doing so in the space domain (classical processing). The transformation to the Spline transform domain means finding out the real coefficients that makes it possible to interpolate the grey levels of the original image, with a B-Spline polynomial. There exist basically two methods of carrying out this interpolation, which produces the existence of two different Spline transforms: an exact interpolation of the grey values (direct Spline transform), and an approximated interpolation (smoothing Spline transform). The latter results in a higher smoothness of the gray distribution function defined by the Spline transform coefficients, and is carried out with the aim of obtaining an edge detection algorithm which higher immunity to noise. Finally the transformed image was processed in order to detect the edges of the original image (the gradient method was used), and the results of the three methods (classical, direct Spline transform and smoothing Spline transform) were compared. The results were that, as expected, the smoothing Spline transform technique produced a detection algorithm more immune to external noise. On the other hand the direct Spline transform technique, emphasizes more the edges, even more than the classical method. As far as the consuming time is concerned, the classical method is clearly the fastest one, and may be applied whenever the presence of noise is not important, and whenever edges with high detail are not required in the final image. (author). 9 refs., 17 figs., 1 tab

  12. Performance evaluation of 2D image registration algorithms with the numeric image registration and comparison platform

    International Nuclear Information System (INIS)

    Gerganov, G.; Kuvandjiev, V.; Dimitrova, I.; Mitev, K.; Kawrakow, I.

    2012-01-01

    The objective of this work is to present the capabilities of the NUMERICS web platform for evaluation of the performance of image registration algorithms. The NUMERICS platform is a web accessible tool which provides access to dedicated numerical algorithms for registration and comparison of medical images (http://numerics.phys.uni-sofia.bg). The platform allows comparison of noisy medical images by means of different types of image comparison algorithms, which are based on statistical tests for outliers. The platform also allows 2D image registration with different techniques like Elastic Thin-Plate Spline registration, registration based on rigid transformations, affine transformations, as well as non-rigid image registration based on Mobius transformations. In this work we demonstrate how the platform can be used as a tool for evaluation of the quality of the image registration process. We demonstrate performance evaluation of a deformable image registration technique based on Mobius transformations. The transformations are applied with appropriate cost functions like: Mutual information, Correlation coefficient, Sum of Squared Differences. The accent is on the results provided by the platform to the user and their interpretation in the context of the performance evaluation of 2D image registration. The NUMERICS image registration and image comparison platform provides detailed statistical information about submitted image registration jobs and can be used to perform quantitative evaluation of the performance of different image registration techniques. (authors)

  13. Color management with a hammer: the B-spline fitter

    Science.gov (United States)

    Bell, Ian E.; Liu, Bonny H. P.

    2003-01-01

    To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.

  14. 3D ultrasound-CT registration of the liver using combined landmark-intensity information

    International Nuclear Information System (INIS)

    Lange, Thomas; Schlag, Peter M.; Papenberg, Nils; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd; Lamecker, Hans

    2009-01-01

    An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. The proposed algorithm offers the possibility to incorporate additional a priori knowledge - in terms of few landmarks - provided by a human expert into a non-rigid registration process. (orig.)

  15. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT

    International Nuclear Information System (INIS)

    Chen Ting; Kim, Sung; Goyal, Sharad; Jabbour, Salma; Zhou Jinghao; Rajagopal, Gunaretnum; Haffty, Bruce; Yue Ning

    2010-01-01

    Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintain the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a

  16. Local Anatomic Changes in Parotid and Submandibular Glands During Radiotherapy for Oropharynx Cancer and Correlation With Dose, Studied in Detail With Nonrigid Registration

    International Nuclear Information System (INIS)

    Vasquez Osorio, Eliana M.; Hoogeman, Mischa S.; Al-Mamgani, Abrahim; Teguh, David N.; Levendag, Peter C.; Heijmen, Ben J.M.

    2008-01-01

    Purpose: To quantify the anatomic changes caused by external beam radiotherapy in head-and-neck cancer patients in full three dimensions and to relate the local anatomic changes to the planned mean dose. Methods and Materials: A nonrigid registration method was adapted for RT image registration. The method was applied in 10 head-and-neck cancer patients, who each underwent a planning and a repeat computed tomography scan. Contoured structures (parotid, submandibular glands, and tumor) were registered in a nonrigid manner. The accuracy of the transformation was determined. The transformation results were used to summarize the anatomic changes on a local scale for the irradiated and spared glands. The volume reduction of the glands was related to the planned mean dose. Results: Transformation was accurate with a mean error of 0.6 ± 0.5 mm. The volume of all glands and the primary tumor decreased. The lateral regions of the irradiated parotid glands moved inward (average, 3 mm), and the medial regions tended to remain in the same position. The irradiated submandibular glands shrank and moved upward. The spared glands showed only a small deformation (∼1 mm in most regions). Overall, the primary tumors shrank. The volume loss of the parotid glands correlated significantly with the planned mean dose (p <0.001). Conclusion: General shrinkage and deformation of irradiated glands was seen. The spared glands showed few changes. These changes were assessed by a nonrigid registration method, which effectively described the local changes occurring in the head-and-neck region after external beam radiotherapy

  17. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    Science.gov (United States)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  18. Interactive deformation registration of endorectal prostate MRI using ITK thin plate splines.

    Science.gov (United States)

    Cheung, M Rex; Krishnan, Karthik

    2009-03-01

    Magnetic resonance imaging with an endorectal coil allows high-resolution imaging of prostate cancer and the surrounding normal organs. These anatomic details can be used to direct radiotherapy. However, organ deformation introduced by the endorectal coil makes it difficult to register magnetic resonance images for treatment planning. In this study, plug-ins for the volume visualization software VolView were implemented on the basis of algorithms from the National Library of Medicine's Insight Segmentation and Registration Toolkit (ITK). Magnetic resonance images of a phantom simulating human pelvic structures were obtained with and without the endorectal coil balloon inflated. The prostate not deformed by the endorectal balloon was registered to the deformed prostate using an ITK thin plate spline (TPS). This plug-in allows the use of crop planes to limit the deformable registration in the region of interest around the prostate. These crop planes restricted the support of the TPS to the area around the prostate, where most of the deformation occurred. The region outside the crop planes was anchored by grid points. The TPS was more accurate in registering the local deformation of the prostate compared with a TPS variant, the elastic body spline. The TPS was also applied to register an in vivo T(2)-weighted endorectal magnetic resonance image. The intraprostatic tumor was accurately registered. This could potentially guide the boosting of intraprostatic targets. The source and target landmarks were placed graphically. This TPS plug-in allows the registration to be undone. The landmarks could be added, removed, and adjusted in real time and in three dimensions between repeated registrations. This interactive TPS plug-in allows a user to obtain a high level of accuracy satisfactory to a specific application efficiently. Because it is open-source software, the imaging community will be able to validate and improve the algorithm.

  19. T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM

    Directory of Open Access Journals (Sweden)

    Zhenhua Han

    2017-10-01

    Full Text Available With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs. To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs.

  20. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting.

    Directory of Open Access Journals (Sweden)

    Van Than Dung

    Full Text Available B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.

  1. Automatic Shape Control of Triangular B-Splines of Arbitrary Topology

    Institute of Scientific and Technical Information of China (English)

    Ying He; Xian-Feng Gu; Hong Qin

    2006-01-01

    Triangular B-splines are powerful and flexible in modeling a broader class of geometric objects defined over arbitrary, non-rectangular domains. Despite their great potential and advantages in theory, practical techniques and computational tools with triangular B-splines are less-developed. This is mainly because users have to handle a large number of irregularly distributed control points over arbitrary triangulation. In this paper, an automatic and efficient method is proposed to generate visually pleasing, high-quality triangular B-splines of arbitrary topology. The experimental results on several real datasets show that triangular B-splines are powerful and effective in both theory and practice.

  2. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    Science.gov (United States)

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  3. Efficient GPU-based texture interpolation using uniform B-splines

    NARCIS (Netherlands)

    Ruijters, D.; Haar Romenij, ter B.M.; Suetens, P.

    2008-01-01

    This article presents uniform B-spline interpolation, completely contained on the graphics processing unit (GPU). This implies that the CPU does not need to compute any lookup tables or B-spline basis functions. The cubic interpolation can be decomposed into several linear interpolations [Sigg and

  4. Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

    Directory of Open Access Journals (Sweden)

    Hyungjun Park

    2015-01-01

    Full Text Available Measured bidirectional reflectance distribution function (BRDF data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

  5. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2018-03-01

    Full Text Available This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects.

  6. Exponential B-splines and the partition of unity property

    DEFF Research Database (Denmark)

    Christensen, Ole; Massopust, Peter

    2012-01-01

    We provide an explicit formula for a large class of exponential B-splines. Also, we characterize the cases where the integer-translates of an exponential B-spline form a partition of unity up to a multiplicative constant. As an application of this result we construct explicitly given pairs of dual...

  7. Spline-based image-to-volume registration for three-dimensional electron microscopy

    International Nuclear Information System (INIS)

    Jonic, S.; Sorzano, C.O.S.; Thevenaz, P.; El-Bez, C.; De Carlo, S.; Unser, M.

    2005-01-01

    This paper presents an algorithm based on a continuous framework for a posteriori angular and translational assignment in three-dimensional electron microscopy (3DEM) of single particles. Our algorithm can be used advantageously to refine the assignment of standard quantized-parameter methods by registering the images to a reference 3D particle model. We achieve the registration by employing a gradient-based iterative minimization of a least-squares measure of dissimilarity between an image and a projection of the volume in the Fourier transform (FT) domain. We compute the FT of the projection using the central-slice theorem (CST). To compute the gradient accurately, we take advantage of a cubic B-spline model of the data in the frequency domain. To improve the robustness of the algorithm, we weight the cost function in the FT domain and apply a 'mixed' strategy for the assignment based on the minimum value of the cost function at registration for several different initializations. We validate our algorithm in a fully controlled simulation environment. We show that the mixed strategy improves the assignment accuracy; on our data, the quality of the angular and translational assignment was better than 2 voxel (i.e., 6.54 A). We also test the performance of our algorithm on real EM data. We conclude that our algorithm outperforms a standard projection-matching refinement in terms of both consistency of 3D reconstructions and speed

  8. Comparison Between Polynomial, Euler Beta-Function and Expo-Rational B-Spline Bases

    Science.gov (United States)

    Kristoffersen, Arnt R.; Dechevsky, Lubomir T.; Laksa˚, Arne; Bang, Børre

    2011-12-01

    Euler Beta-function B-splines (BFBS) are the practically most important instance of generalized expo-rational B-splines (GERBS) which are not true expo-rational B-splines (ERBS). BFBS do not enjoy the full range of the superproperties of ERBS but, while ERBS are special functions computable by a very rapidly converging yet approximate numerical quadrature algorithms, BFBS are explicitly computable piecewise polynomial (for integer multiplicities), similar to classical Schoenberg B-splines. In the present communication we define, compute and visualize for the first time all possible BFBS of degree up to 3 which provide Hermite interpolation in three consecutive knots of multiplicity up to 3, i.e., the function is being interpolated together with its derivatives of order up to 2. We compare the BFBS obtained for different degrees and multiplicities among themselves and versus the classical Schoenberg polynomial B-splines and the true ERBS for the considered knots. The results of the graphical comparison are discussed from analytical point of view. For the numerical computation and visualization of the new B-splines we have used Maple 12.

  9. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  10. A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration

    Energy Technology Data Exchange (ETDEWEB)

    Tatsugami, Fuminari; Higaki, Toru; Nakamura, Yuko; Yamagami, Takuji; Date, Shuji; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Minami-ku, Hiroshima (Japan); Fujioka, Chikako; Kiguchi, Masao [Hiroshima University, Department of Radiology, Minami-ku, Hiroshima (Japan); Kihara, Yasuki [Hiroshima University, Department of Cardiovascular Medicine, Minami-ku, Hiroshima (Japan)

    2015-01-15

    To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration. Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70-80 % of the R-R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R-R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent). On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01). Our method reduces image noise and improves image quality at coronary CTA. (orig.)

  11. Robust feature estimation by non-rigid hierarchical image registration and its application in disparity measurement

    Science.gov (United States)

    Badshah, Amir; Choudhry, Aadil Jaleel; Ullah, Shan

    2017-03-01

    Industries are moving towards automation in order to increase productivity and ensure quality. Variety of electronic and electromagnetic systems are being employed to assist human operator in fast and accurate quality inspection of products. Majority of these systems are equipped with cameras and rely on diverse image processing algorithms. Information is lost in 2D image, therefore acquiring accurate 3D data from 2D images is an open issue. FAST, SURF and SIFT are well-known spatial domain techniques for features extraction and henceforth image registration to find correspondence between images. The efficiency of these methods is measured in terms of the number of perfect matches found. A novel fast and robust technique for stereo-image processing is proposed. It is based on non-rigid registration using modified normalized phase correlation. The proposed method registers two images in hierarchical fashion using quad-tree structure. The registration process works through global to local level resulting in robust matches even in presence of blur and noise. The computed matches can further be utilized to determine disparity and depth for industrial product inspection. The same can be used in driver assistance systems. The preliminary tests on Middlebury dataset produced satisfactory results. The execution time for a 413 x 370 stereo-pair is 500ms approximately on a low cost DSP.

  12. Registration of segmented histological images using thin plate splines and belief propagation

    Science.gov (United States)

    Kybic, Jan

    2014-03-01

    We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to standard methods at a fraction of the computational cost.

  13. Non-rigid contour-to-pixel registration of photographic and quantitative light-induced fluorescence imaging of decalcified teeth

    Science.gov (United States)

    Berkels, Benjamin; Deserno, Thomas; Ehrlich, Eva E.; Fritz, Ulrike B.; Sirazitdinova, Ekaterina; Tatano, Rosalia

    2016-03-01

    Quantitative light-induced fluorescence (QLF) is widely used to assess the damage of a tooth due to decalcification. In digital photographs, decalcification appears as white spot lesions, i.e. white spots on the tooth surface. We propose a novel multimodal registration approach for the matching of digital photographs and QLF images of decalcified teeth. The registration is based on the idea of contour-to-pixel matching. Here, the curve, which represents the shape of the tooth, is extracted from the QLF image using a contour segmentation by binarization and morphological processing. This curve is aligned to the photo with a non-rigid variational registration approach. Thus, the registration problem is formulated as minimization problem with an objective function that consists of a data term and a regularizer for the deformation. To construct the data term, the photo is pointwise classified into tooth and non-tooth regions. Then, the signed distance function of the tooth region allows to measure the mismatch between curve and photo. As regularizer a higher order, linear elastic prior is used. The resulting minimization problem is solved numerically using bilinear Finite Elements for the spatial discretization and the Gauss-Newton algorithm. The evaluation is based on 150 image pairs, where an average of 5 teeth have been captured from 32 subjects. All registrations have been confirmed correctly by a dental expert. The contour-to-pixel methods can directly be used in 3D for surface-to-voxel tasks.

  14. Tomographic reconstruction with B-splines surfaces

    International Nuclear Information System (INIS)

    Oliveira, Eric F.; Dantas, Carlos C.; Melo, Silvio B.; Mota, Icaro V.; Lira, Mailson

    2011-01-01

    Algebraic reconstruction techniques when applied to a limited number of data usually suffer from noise caused by the process of correction or by inconsistencies in the data coming from the stochastic process of radioactive emission and oscillation equipment. The post - processing of the reconstructed image with the application of filters can be done to mitigate the presence of noise. In general these processes also attenuate the discontinuities present in edges that distinguish objects or artifacts, causing excessive blurring in the reconstructed image. This paper proposes a built-in noise reduction at the same time that it ensures adequate smoothness level in the reconstructed surface, representing the unknowns as linear combinations of elements of a piecewise polynomial basis, i.e. a B-splines basis. For that, the algebraic technique ART is modified to accommodate the first, second and third degree bases, ensuring C 0 , C 1 and C 2 smoothness levels, respectively. For comparisons, three methodologies are applied: ART, ART post-processed with regular B-splines filters (ART*) and the proposed method with the built-in B-splines filter (BsART). Simulations with input data produced from common mathematical phantoms were conducted. For the phantoms used the BsART method consistently presented the smallest errors, among the three methods. This study has shown the superiority of the change made to embed the filter in the ART when compared to the post-filtered ART. (author)

  15. Automatic Detection of Wild-type Mouse Cranial Sutures

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Hermann, Nuno V.

    , automatic detection of the cranial sutures becomes important. We have previously built a craniofacial, wild-type mouse atlas from a set of 10 Micro CT scans using a B-spline-based nonrigid registration method by Rueckert et al. Subsequently, all volumes were registered nonrigidly to the atlas. Using......, the observer traced the sutures on each of the mouse volumes as well. The observer outperforms the automatic approach by approximately 0.1 mm. All mice have similar errors while the suture error plots reveal that suture 1 and 2 are cumbersome, both for the observer and the automatic approach. These sutures can...

  16. Comparison of numerical results between related shapes using a non-rigid mapping with statistical quantication of uncertainty

    CSIR Research Space (South Africa)

    Jansen van Rensburg, Gerhardus J

    2011-10-01

    Full Text Available In the present study, numerical results obtained on different but related shapes are compared by using a non-rigid mapping. Non-rigid registration is employed to obtain mesh representations of different human skull geometries with the same mesh...

  17. Extracting a Purely Non-rigid Deformation Field of a Single Structure

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  18. Using manual prostate contours to enhance deformable registration of endorectal MRI.

    Science.gov (United States)

    Cheung, M R; Krishnan, K

    2012-10-01

    Endorectal MRI provides detailed images of the prostate anatomy and is useful for radiation treatment planning. Here we describe a Demons field-initialized B-spline deformable registration of prostate MRI. T2-weighted endorectal MRIs of five patients were used. The prostate and the tumor of each patient were manually contoured. The planning MRIs and their segmentations were simulated by warping the corresponding endorectal MRIs using thin plate spline (TPS). Deformable registration was initialized using the deformation field generated using Demons algorithm to map the deformed prostate MRI to the non-deformed one. The solution was refined with B-Spline registration. Volume overlap similarity was used to assess the accuracy of registration and to suggest a minimum margin to account for the registration errors. Initialization using Demons algorithm took about 15 min on a computer with 2.8 GHz Intel, 1.3 GB RAM. Refinement B-spline registration (200 iterations) took less than 5 min. Using the synthetic images as the ground truth, at zero margin, the average (S.D.) 98 (±0.4)% for prostate coverage was 97 (±1)% for tumor. The average (±S.D.) treatment margin required to cover the entire prostate was 1.5 (±0.2)mm. The average (± S.D.) treatment margin required to cover the tumor was 0.7 (±0.1)mm. We also demonstrated the challenges in registering an in vivo deformed MRI to an in vivo non-deformed MRI. We here present a deformable registration scheme that can overcome large deformation. This platform is expected to be useful for prostate cancer radiation treatment planning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment.

    Science.gov (United States)

    Lucey, Simon; Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F

    2009-11-01

    Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The "simultaneous" algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The "project-out" algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for non-rigid face registration/tracking referred to as a constrained local model (CLM). Our proposed method is able to achieve superior performance to the "simultaneous" AAM algorithm along with real time fitting speeds (35 fps). We improve upon the canonical CLM formulation, to gain this performance, in a number of ways by employing: (i) linear SVMs as patch-experts, (ii) a simplified optimization criteria, and (iii) a composite rather than additive warp update step. Most notably, our simplified optimization criteria for fitting the CLM divides the problem of finding a single complex registration/warp displacement into that of finding N simple warp displacements. From these N simple warp displacements, a single complex warp displacement is estimated using a weighted least-squares constraint. Another major advantage of this simplified optimization lends from its ability to be parallelized, a step which we also theoretically explore in this paper. We refer to our approach for fitting the CLM as the "exhaustive local search" (ELS) algorithm. Experiments were conducted on the CMU Multi-PIE database.

  20. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    Science.gov (United States)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  1. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    Directory of Open Access Journals (Sweden)

    Rexilius Jan

    2005-03-01

    Full Text Available Abstract Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR and 3D ultrasound (US image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies.

  2. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  3. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    Science.gov (United States)

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  4. Spline-procedures

    International Nuclear Information System (INIS)

    Schmidt, R.

    1976-12-01

    This report contains a short introduction to spline functions as well as a complete description of the spline procedures presently available in the HMI-library. These include polynomial splines (using either B-splines or one-sided basis representations) and natural splines, as well as their application to interpolation, quasiinterpolation, L 2 -, and Tchebycheff approximation. Special procedures are included for the case of cubic splines. Complete test examples with input and output are provided for each of the procedures. (orig.) [de

  5. Numerical solution of system of boundary value problems using B-spline with free parameter

    Science.gov (United States)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  6. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    Science.gov (United States)

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  7. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

    Science.gov (United States)

    Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.

    2018-06-01

    We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

  8. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  9. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  10. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    Science.gov (United States)

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers.

  12. B-Spline Approximations of the Gaussian, their Gabor Frame Properties, and Approximately Dual Frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2017-01-01

    We prove that Gabor systems generated by certain scaled B-splines can be considered as perturbations of the Gabor systems generated by the Gaussian, with a deviation within an arbitrary small tolerance whenever the order N of the B-spline is sufficiently large. As a consequence we show that for a...

  13. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI.

    Science.gov (United States)

    Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J

    1998-06-01

    Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.

  14. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  15. Implementation of exterior complex scaling in B-splines to solve atomic and molecular collision problems

    International Nuclear Information System (INIS)

    McCurdy, C William; MartIn, Fernando

    2004-01-01

    B-spline methods are now well established as widely applicable tools for the evaluation of atomic and molecular continuum states. The mathematical technique of exterior complex scaling has been shown, in a variety of other implementations, to be a powerful method with which to solve atomic and molecular scattering problems, because it allows the correct imposition of continuum boundary conditions without their explicit analytic application. In this paper, an implementation of exterior complex scaling in B-splines is described that can bring the well-developed technology of B-splines to bear on new problems, including multiple ionization and breakup problems, in a straightforward way. The approach is demonstrated for examples involving the continuum motion of nuclei in diatomic molecules as well as electronic continua. For problems involving electrons, a method based on Poisson's equation is presented for computing two-electron integrals over B-splines under exterior complex scaling

  16. Counterexamples to the B-spline Conjecture for Gabor Frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Nielsen, Kamilla Haahr

    2016-01-01

    The frame set conjecture for B-splines Bn, n≥2, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infin...

  17. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    Aspinall, J.G.

    1984-01-01

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  18. Spline Interpolation of Image

    OpenAIRE

    I. Kuba; J. Zavacky; J. Mihalik

    1995-01-01

    This paper presents the use of B spline functions in various digital signal processing applications. The theory of one-dimensional B spline interpolation is briefly reviewed, followed by its extending to two dimensions. After presenting of one and two dimensional spline interpolation, the algorithms of image interpolation and resolution increasing were proposed. Finally, experimental results of computer simulations are presented.

  19. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    OpenAIRE

    He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han

    2015-01-01

    Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...

  20. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations

    International Nuclear Information System (INIS)

    Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations

  1. B-spline tight frame based force matching method

    Science.gov (United States)

    Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei

    2018-06-01

    In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.

  2. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation

    International Nuclear Information System (INIS)

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R.; Plishker, William L.; D'Souza, Warren D.

    2007-01-01

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  3. Development of quadrilateral spline thin plate elements using the B-net method

    Science.gov (United States)

    Chen, Juan; Li, Chong-Jun

    2013-08-01

    The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.

  4. TPS-HAMMER: improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.

    Science.gov (United States)

    Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang

    2010-02-01

    We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    Science.gov (United States)

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  6. Evaluation of registration methods on thoracic CT : the EMPIRE10 challenge

    NARCIS (Netherlands)

    Murphy, K.; Ginneken, van B.; Reinhardt, J.M.; Kabus, S.; Ding, K.; Deng, Xiang; Cao, K.; Du, K.; Christensen, G.E.; Garcia, V.; Vercauteren, T.; Ayache, N.; Commowick, O.; Malandain, G.; Glocker, B.; Paragios, N.; Navab, N.; Gorbunova, V.; Sporring, J.; Bruijne, de M.; Han, Xiao; Heinrich, M.P.; Schnabel, J.A.; Jenkinson, M.; Lorenz, C.; Modat, M.; McClelland, J.R.; Ourselin, S.; Muenzing, S.E.A.; Viergever, M.A.; Nigris, De D.; Collins, D.L.; Arbel, T.; Peroni, M.; Li, R.; Sharp, G.; Schmidt-Richberg, A.; Ehrhardt, J.; Werner, R.; Smeets, D.; Loeckx, D.; Song, G.; Tustison, N.; Avants, B.; Gee, J.C.; Staring, M.; Klein, S.; Stoel, B.C.; Urschler, M.; Werlberger, M.; Vandemeulebroucke, J.; Rit, S.; Sarrut, D.; Pluim, J.P.W.

    2011-01-01

    EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This

  7. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  8. Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =

    Science.gov (United States)

    Sabri, Vahid

    Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of

  9. Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

    International Nuclear Information System (INIS)

    Coselmon, Martha M.; Balter, James M.; McShan, Daniel L.; Kessler, Marc L.

    2004-01-01

    The advent of dynamic radiotherapy modeling and treatment techniques requires an infrastructure to weigh the merits of various interventions (breath holding, gating, tracking). The creation of treatment planning models that account for motion and deformation can allow the relative worth of such techniques to be evaluated. In order to develop a treatment planning model of a moving and deforming organ such as the lung, registration tools that account for deformation are required. We tested the accuracy of a mutual information based image registration tool using thin-plate splines driven by the selection of control points and iterative alignment according to a simplex algorithm. Eleven patients each had sequential CT scans at breath-held normal inhale and exhale states. The exhale right lung was segmented from CT and served as the reference model. For each patient, thirty control points were used to align the inhale CT right lung to the exhale CT right lung. Alignment accuracy (the standard deviation of the difference in the actual and predicted inhale position) was determined from locations of vascular and bronchial bifurcations, and found to be 1.7, 3.1, and 3.6 mm about the RL, AP, and IS directions. The alignment accuracy was significantly different from the amount of measured movement during breathing only in the AP and IS directions. The accuracy of alignment including thin-plate splines was more accurate than using affine transformations and the same iteration and scoring methodology. This technique shows promise for the future development of dynamic models of the lung for use in four-dimensional (4-D) treatment planning

  10. Choosing the Optimal Number of B-spline Control Points (Part 1: Methodology and Approximation of Curves)

    Science.gov (United States)

    Harmening, Corinna; Neuner, Hans

    2016-09-01

    Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.

  11. Comparative Performance of Complex-Valued B-Spline and Polynomial Models Applied to Iterative Frequency-Domain Decision Feedback Equalization of Hammerstein Channels.

    Science.gov (United States)

    Chen, Sheng; Hong, Xia; Khalaf, Emad F; Alsaadi, Fuad E; Harris, Chris J

    2017-12-01

    Complex-valued (CV) B-spline neural network approach offers a highly effective means for identifying and inverting practical Hammerstein systems. Compared with its conventional CV polynomial-based counterpart, a CV B-spline neural network has superior performance in identifying and inverting CV Hammerstein systems, while imposing a similar complexity. This paper reviews the optimality of the CV B-spline neural network approach. Advantages of B-spline neural network approach as compared with the polynomial based modeling approach are extensively discussed, and the effectiveness of the CV neural network-based approach is demonstrated in a real-world application. More specifically, we evaluate the comparative performance of the CV B-spline and polynomial-based approaches for the nonlinear iterative frequency-domain decision feedback equalization (NIFDDFE) of single-carrier Hammerstein channels. Our results confirm the superior performance of the CV B-spline-based NIFDDFE over its CV polynomial-based counterpart.

  12. A Variational Approach to Video Registration with Subspace Constraints.

    Science.gov (United States)

    Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes

    2013-01-01

    This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

  13. Data assimilation using Bayesian filters and B-spline geological models

    KAUST Repository

    Duan, Lian

    2011-04-01

    This paper proposes a new approach to problems of data assimilation, also known as history matching, of oilfield production data by adjustment of the location and sharpness of patterns of geological facies. Traditionally, this problem has been addressed using gradient based approaches with a level set parameterization of the geology. Gradient-based methods are robust, but computationally demanding with real-world reservoir problems and insufficient for reservoir management uncertainty assessment. Recently, the ensemble filter approach has been used to tackle this problem because of its high efficiency from the standpoint of implementation, computational cost, and performance. Incorporation of level set parameterization in this approach could further deal with the lack of differentiability with respect to facies type, but its practical implementation is based on some assumptions that are not easily satisfied in real problems. In this work, we propose to describe the geometry of the permeability field using B-spline curves. This transforms history matching of the discrete facies type to the estimation of continuous B-spline control points. As filtering scheme, we use the ensemble square-root filter (EnSRF). The efficacy of the EnSRF with the B-spline parameterization is investigated through three numerical experiments, in which the reservoir contains a curved channel, a disconnected channel or a 2-dimensional closed feature. It is found that the application of the proposed method to the problem of adjusting facies edges to match production data is relatively straightforward and provides statistical estimates of the distribution of geological facies and of the state of the reservoir.

  14. Data assimilation using Bayesian filters and B-spline geological models

    International Nuclear Information System (INIS)

    Duan Lian; Farmer, Chris; Hoteit, Ibrahim; Luo Xiaodong; Moroz, Irene

    2011-01-01

    This paper proposes a new approach to problems of data assimilation, also known as history matching, of oilfield production data by adjustment of the location and sharpness of patterns of geological facies. Traditionally, this problem has been addressed using gradient based approaches with a level set parameterization of the geology. Gradient-based methods are robust, but computationally demanding with real-world reservoir problems and insufficient for reservoir management uncertainty assessment. Recently, the ensemble filter approach has been used to tackle this problem because of its high efficiency from the standpoint of implementation, computational cost, and performance. Incorporation of level set parameterization in this approach could further deal with the lack of differentiability with respect to facies type, but its practical implementation is based on some assumptions that are not easily satisfied in real problems. In this work, we propose to describe the geometry of the permeability field using B-spline curves. This transforms history matching of the discrete facies type to the estimation of continuous B-spline control points. As filtering scheme, we use the ensemble square-root filter (EnSRF). The efficacy of the EnSRF with the B-spline parameterization is investigated through three numerical experiments, in which the reservoir contains a curved channel, a disconnected channel or a 2-dimensional closed feature. It is found that the application of the proposed method to the problem of adjusting facies edges to match production data is relatively straightforward and provides statistical estimates of the distribution of geological facies and of the state of the reservoir.

  15. Joint deformable liver registration and bias field correction for MR-guided HDR brachytherapy.

    Science.gov (United States)

    Rak, Marko; König, Tim; Tönnies, Klaus D; Walke, Mathias; Ricke, Jens; Wybranski, Christian

    2017-12-01

    In interstitial high-dose rate brachytherapy, liver cancer is treated by internal radiation, requiring percutaneous placement of applicators within or close to the tumor. To maximize utility, the optimal applicator configuration is pre-planned on magnetic resonance images. The pre-planned configuration is then implemented via a magnetic resonance-guided intervention. Mapping the pre-planning information onto interventional data would reduce the radiologist's cognitive load during the intervention and could possibly minimize discrepancies between optimally pre-planned and actually placed applicators. We propose a fast and robust two-step registration framework suitable for interventional settings: first, we utilize a multi-resolution rigid registration to correct for differences in patient positioning (rotation and translation). Second, we employ a novel iterative approach alternating between bias field correction and Markov random field deformable registration in a multi-resolution framework to compensate for non-rigid movements of the liver, the tumors and the organs at risk. In contrast to existing pre-correction methods, our multi-resolution scheme can recover bias field artifacts of different extents at marginal computational costs. We compared our approach to deformable registration via B-splines, demons and the SyN method on 22 registration tasks from eleven patients. Results showed that our approach is more accurate than the contenders for liver as well as for tumor tissues. We yield average liver volume overlaps of 94.0 ± 2.7% and average surface-to-surface distances of 2.02 ± 0.87 mm and 3.55 ± 2.19 mm for liver and tumor tissue, respectively. The reported distances are close to (or even below) the slice spacing (2.5 - 3.0 mm) of our data. Our approach is also the fastest, taking 35.8 ± 12.8 s per task. The presented approach is sufficiently accurate to map information available from brachytherapy pre-planning onto interventional data. It

  16. Value of Nonrigid Registration of Pre-Procedure MR with Post-Procedure CT After Radiofrequency Ablation for Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juil; Lee, Jeong Min, E-mail: jmlshy2000@gmail.com, E-mail: jmsh@snu.ac.kr; Lee, Dong Ho; Joo, Ijin; Yoon, Jeong Hee [Seoul National University Hospital, Department of Radiology (Korea, Republic of); Park, Jin Young [Dongnam Institute of Radiological and Medical Sciences, Department of Radiology (Korea, Republic of); Klotz, Ernst [Siemens Healthineers, Computed Tomography (Germany)

    2017-06-15

    PurposeTo evaluate the value of pre-radiofrequency ablation (RFA) MR and post-RFA CT registration for the assessment of the therapeutic response of hepatocellular carcinoma (HCC).Materials and MethodsA total of 178 patients with single HCC who received RFA as an initial treatment and had available pre-RFA MR and post-RFA CT images were included in this retrospective study. Two independent readers (one experienced radiologist, one inexperienced radiologist) scored the ablative margin (AM) of treated tumors on a four-point scale (1, residual tumor; 2, incomplete AM; 3, borderline AM; 4, sufficient AM), in two separate sessions: (1) visual comparison between pre-and post-RFA images; (2) with addition of nonrigid registration for pre- and post-RFA images. Local tumor progression (LTP) rates between low-risk (response score, 3–4) and high-risk groups (1–2) were analyzed using the Kaplan–Meier method at each interpretation session.ResultsThe patients’ reassignments after using the registered images were statistically significant for inexperienced reader (p < 0.001). In the inexperienced reader, LTP rates of low- and high-risk groups were significantly different with addition of registered images (session 2) (p < 0.001), but not significantly different in session 1 (p = 0.101). However, in the experienced reader, LTP rates of low- and high-risk groups were significantly different in both interpretation sessions (p < 0.001). Using the registered images, the cumulative incidence of LTP at 2 years was 3.0–6.6%, for the low-risk group, and 18.6–27.8% for the high-risk group.ConclusionRegistration between pre-RFA MR and post-RFA CT images may allow better assessment of the therapeutic response of HCC after RFA, especially for inexperienced radiologists, helping in the risk stratification for LTP.

  17. Distortion Correction in Fetal EPI Using Non-Rigid Registration With a Laplacian Constraint.

    Science.gov (United States)

    Kuklisova-Murgasova, Maria; Lockwood Estrin, Georgia; Nunes, Rita G; Malik, Shaihan J; Rutherford, Mary A; Rueckert, Daniel; Hajnal, Joseph V

    2018-01-01

    Geometric distortion induced by the main B0 field disrupts the consistency of fetal echo planar imaging (EPI) data, on which diffusion and functional magnetic resonance imaging is based. In this paper, we present a novel data-driven method for simultaneous motion and distortion correction of fetal EPI. A motion-corrected and reconstructed T2 weighted single shot fast spin echo (ssFSE) volume is used as a model of undistorted fetal brain anatomy. Our algorithm interleaves two registration steps: estimation of fetal motion parameters by aligning EPI slices to the model; and deformable registration of EPI slices to slices simulated from the undistorted model to estimate the distortion field. The deformable registration is regularized by a physically inspired Laplacian constraint, to model distortion induced by a source-free background B0 field. Our experiments show that distortion correction significantly improves consistency of reconstructed EPI volumes with ssFSE volumes. In addition, the estimated distortion fields are consistent with fields calculated from acquired field maps, and the Laplacian constraint is essential for estimation of plausible distortion fields. The EPI volumes reconstructed from different scans of the same subject were more consistent when the proposed method was used in comparison with EPI volumes reconstructed from data distortion corrected using a separately acquired B0 field map.

  18. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    Shamonin, D.P.; Bron, E.E.; Lelieveldt, B.P.F.; Smits, M.; Klein, S.; Staring, M.

    2014-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial.

  19. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    D.P. Shamonin (Denis); E.E. Bron (Esther); B.P.F. Lelieveldt (Boudewijn); M. Smits (Marion); S. Klein (Stefan); M. Staring (Marius)

    2014-01-01

    textabstractNonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be

  20. Curvelet-domain multiple matching method combined with cubic B-spline function

    Science.gov (United States)

    Wang, Tong; Wang, Deli; Tian, Mi; Hu, Bin; Liu, Chengming

    2018-05-01

    Since the large amount of surface-related multiple existed in the marine data would influence the results of data processing and interpretation seriously, many researchers had attempted to develop effective methods to remove them. The most successful surface-related multiple elimination method was proposed based on data-driven theory. However, the elimination effect was unsatisfactory due to the existence of amplitude and phase errors. Although the subsequent curvelet-domain multiple-primary separation method achieved better results, poor computational efficiency prevented its application. In this paper, we adopt the cubic B-spline function to improve the traditional curvelet multiple matching method. First, select a little number of unknowns as the basis points of the matching coefficient; second, apply the cubic B-spline function on these basis points to reconstruct the matching array; third, build constraint solving equation based on the relationships of predicted multiple, matching coefficients, and actual data; finally, use the BFGS algorithm to iterate and realize the fast-solving sparse constraint of multiple matching algorithm. Moreover, the soft-threshold method is used to make the method perform better. With the cubic B-spline function, the differences between predicted multiple and original data diminish, which results in less processing time to obtain optimal solutions and fewer iterative loops in the solving procedure based on the L1 norm constraint. The applications to synthetic and field-derived data both validate the practicability and validity of the method.

  1. Isogeometric analysis using T-splines

    KAUST Repository

    Bazilevs, Yuri

    2010-01-01

    We explore T-splines, a generalization of NURBS enabling local refinement, as a basis for isogeometric analysis. We review T-splines as a surface design methodology and then develop it for engineering analysis applications. We test T-splines on some elementary two-dimensional and three-dimensional fluid and structural analysis problems and attain good results in all cases. We summarize the current status of T-splines, their limitations, and future possibilities. © 2009 Elsevier B.V.

  2. Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma

    International Nuclear Information System (INIS)

    Somer, Edward J; Benatar, Nigel A; O'Doherty, Michael J; Smith, Mike A; Marsden, Paul K

    2007-01-01

    We have investigated improvements to PET-MR image registration offered by PET-CT scanning. Ten subjects with suspected soft-tissue sarcomas were scanned with an in-line PET-CT and a clinical MR scanner. PET to CT, CT to MR and PET to MR image registrations were performed using a rigid-body external marker technique and rigid and non-rigid voxel-similarity algorithms. PET-MR registration was also performed using transformations derived from the registration of CT to MR. The external marker technique gave fiducial registration errors of 2.1 mm, 5.1 mm and 5.3 mm for PET-CT, PET-MR and CT-MR registration. Target registration errors were 3.9 mm, 9.0 mm and 9.3 mm, respectively. Voxel-based algorithms were evaluated by measuring the distance between corresponding fiducials after registration. Registration errors of 6.4 mm, 14.5 mm and 9.5 mm, respectively, for PET-CT, PET-MR and CT-MR were observed for rigid-body registration while non-rigid registration gave errors of 6.8 mm, 16.3 mm and 7.6 mm for the same modality combinations. The application of rigid and non-rigid CT to MR transformations to accompanying PET data gives significantly reduced PET-MR errors of 10.0 mm and 8.5 mm, respectively. Visual comparison by two independent observers confirmed the improvement over direct PET-MR registration. We conclude that PET-MR registration can be more accurately and reliably achieved using the hybrid technique described than through direct rigid-body registration of PET to MR

  3. Vibration Analysis of Rectangular Plates with One or More Guided Edges via Bicubic B-Spline Method

    Directory of Open Access Journals (Sweden)

    W.J. Si

    2005-01-01

    Full Text Available A simple and accurate method is proposed for the vibration analysis of rectangular plates with one or more guided edges, in which bicubic B-spline interpolation in combination with a new type of basis cubic B-spline functions is used to approximate the plate deflection. This type of basis cubic B-spline functions can satisfy simply supported, clamped, free, and guided edge conditions with easy numerical manipulation. The frequency characteristic equation is formulated based on classical thin plate theory by performing Hamilton's principle. The present solutions are verified with the analytical ones. Fast convergence, high accuracy and computational efficiency have been demonstrated from the comparisons. Frequency parameters for 13 cases of rectangular plates with at least one guided edge, which are possible by approximate or numerical methods only, are presented. These results are new in literature.

  4. LOCALLY REFINED SPLINES REPRESENTATION FOR GEOSPATIAL BIG DATA

    Directory of Open Access Journals (Sweden)

    T. Dokken

    2015-08-01

    Full Text Available When viewed from distance, large parts of the topography of landmasses and the bathymetry of the sea and ocean floor can be regarded as a smooth background with local features. Consequently a digital elevation model combining a compact smooth representation of the background with locally added features has the potential of providing a compact and accurate representation for topography and bathymetry. The recent introduction of Locally Refined B-Splines (LR B-splines allows the granularity of spline representations to be locally adapted to the complexity of the smooth shape approximated. This allows few degrees of freedom to be used in areas with little variation, while adding extra degrees of freedom in areas in need of more modelling flexibility. In the EU fp7 Integrating Project IQmulus we exploit LR B-splines for approximating large point clouds representing bathymetry of the smooth sea and ocean floor. A drastic reduction is demonstrated in the bulk of the data representation compared to the size of input point clouds. The representation is very well suited for exploiting the power of GPUs for visualization as the spline format is transferred to the GPU and the triangulation needed for the visualization is generated on the GPU according to the viewing parameters. The LR B-splines are interoperable with other elevation model representations such as LIDAR data, raster representations and triangulated irregular networks as these can be used as input to the LR B-spline approximation algorithms. Output to these formats can be generated from the LR B-spline applications according to the resolution criteria required. The spline models are well suited for change detection as new sensor data can efficiently be compared to the compact LR B-spline representation.

  5. Correction for non-rigid movement artefacts in calcium imaging using local-global optical flow and PCA-based templates

    DEFF Research Database (Denmark)

    Brazhe, A.; Fordsmann, J.; Lauritzen, M.

    2017-01-01

    correction of calcium timelapse imaging data is accurate, can represent non-rigid image distortions, robust to noisy data and allows for fast registration of large videos. The implementation is open-source and is programmed in Python, which provides for easy access and merging into downstream image...

  6. TU-AB-202-07: A Novel Method for Registration of Mid-Treatment PET/CT Images Under Conditions of Tumor Regression for Patients with Locally Advanced Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Hoda [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Department of Physics, Oakland University, Rochester, MI (United States); Zhang, Hong; Jin, Jian-Yyue; Kong, Feng-Ming [Department of Radiation Oncology, GRU Cancer Center, Augusta GA (United States); Chetty, Indrin J [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Zhong, Hualiang

    2016-06-15

    Purpose: In PET-guided adaptive radiotherapy (RT), changes in the metabolic activity at individual voxels cannot be derived until the duringtreatment CT images are appropriately registered to pre-treatment CT images. However, deformable image registration (DIR) usually does not preserve tumor volume. This may induce errors when comparing to the target. The aim of this study was to develop a DIR-integrated mechanical modeling technique to track radiation-induced metabolic changes on PET images. Methods: Three patients with non-small cell lung cancer (NSCLC) were treated with adaptive radiotherapy under RTOG 1106. Two PET/CT image sets were acquired 2 weeks before RT and 18 fractions after the start of treatment. DIR was performed to register the during-RT CT to the pre-RT CT using a B-spline algorithm and the resultant displacements in the region of tumor were remodeled using a hybrid finite element method (FEM). Gross tumor volume (GTV) was delineated on the during-RT PET/CT image sets and deformed using the 3D deformation vector fields generated by the CT-based registrations. Metabolic tumor volume (MTV) was calculated using the pre- and during–RT image set. The quality of the PET mapping was evaluated based on the constancy of the mapped MTV and landmark comparison. Results: The B-spline-based registrations changed MTVs by 7.3%, 4.6% and −5.9% for the 3 patients and the correspondent changes for the hybrid FEM method −2.9%, 1% and 6.3%, respectively. Landmark comparisons were used to evaluate the Rigid, B-Spline, and hybrid FEM registrations with the mean errors of 10.1 ± 1.6 mm, 4.4 ± 0.4 mm, and 3.6 ± 0.4 mm for three patients. The hybrid FEM method outperforms the B-Spline-only registration for patients with tumor regression Conclusion: The hybrid FEM modeling technique improves the B-Spline registrations in tumor regions. This technique may help compare metabolic activities between two PET/CT images with regressing tumors. The author gratefully

  7. Automatic generation of boundary conditions using demons nonrigid image registration for use in 3-D modality-independent elastography.

    Science.gov (United States)

    Pheiffer, Thomas S; Ou, Jao J; Ong, Rowena E; Miga, Michael I

    2011-09-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  8. Automated analysis of small animal PET studies through deformable registration to an atlas

    NARCIS (Netherlands)

    Gutierrez, Daniel F.; Zaidi, Habib

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of

  9. B-Spline Active Contour with Handling of Topology Changes for Fast Video Segmentation

    Directory of Open Access Journals (Sweden)

    Frederic Precioso

    2002-06-01

    Full Text Available This paper deals with video segmentation for MPEG-4 and MPEG-7 applications. Region-based active contour is a powerful technique for segmentation. However most of these methods are implemented using level sets. Although level-set methods provide accurate segmentation, they suffer from large computational cost. We propose to use a regular B-spline parametric method to provide a fast and accurate segmentation. Our B-spline interpolation is based on a fixed number of points 2j depending on the level of the desired details. Through this spatial multiresolution approach, the computational cost of the segmentation is reduced. We introduce a length penalty. This results in improving both smoothness and accuracy. Then we show some experiments on real-video sequences.

  10. SU-E-J-109: Evaluation of Deformable Accumulated Parotid Doses Using Different Registration Algorithms in Adaptive Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084 China (China); Chinese PLA General Hospital, Beijing, 100853 China (China); Liu, B [Image processing center, Beihang University, Beijing, 100191 China (China)

    2015-06-15

    Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated doses of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of

  11. RANCANG BANGUN PROGRAM PENGEDITAN KURVA B-SPLINE MULTIRESOLUSI BERBASIS WAVELETS

    Directory of Open Access Journals (Sweden)

    Nanik Suciati

    2002-07-01

    Full Text Available Penelitian ini menyusun representasi multiresolusi untuk kurva B-spline kubik yang menginterpolasi titik-titik ujung dengan basis wavelets. Representasi multiresolusi ini digunakan untuk mendukung beberapa tipe pengeditan kurva, yaitu penghalusan kurva dengan tingkat resolusi kontinyu untuk menghilangkan detail-detail kurva yang tidak diinginkan, pengeditan bentuk keseluruhan kurva dengan tetap mempertahankan detaildetailnya, perubahan detail-detail kurva tanpa mempengaruhi bentuk keseluruhannya, dan pengeditan satubagian tertentu dari kurva melalui manipulasi secara langsung terhadap titik-titik kontrolnya. Untuk menguji kemampuan representasi multiresolusi dalam mendukung empat tipe manipulasi kurva tersebut, disusun program pengeditan kurva dengan menggunakan bahasa pemrograman Visual C++ pada komputer Pentium 133 MHz, memori 16 Mbyte, sistem operasi Windows 95, lingkungan pengembangan Microsoft DevelopmentStudio 97 dan pustaka Microsoft Foundation Class. Dari hasil uji coba program diketahui bahwa representasi multiresolusi memberikan dukungan yang sangat baik terhadap tipe-tipe pengeditan seperti yang disebutkan di atas. Representasi multiresolusi tidak membutuhkan memori penyimpan ekstra selain dari yang digunakan untuk menyimpan titik kontrol. Dari hasil uji coba program menggunakan ratusan titik kontrol, algoritma berjalan cukup cepat dan memadai berkaitan dengan tuntutan komunikasi interaktif antara user dan program.Kata kunci: B-Spline, Wavelet, Multiresolusi

  12. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  13. Elastic models application for thorax image registration

    International Nuclear Information System (INIS)

    Correa Prado, Lorena S; Diaz, E Andres Valdez; Romo, Raul

    2007-01-01

    This work consist of the implementation and evaluation of elastic alignment algorithms of biomedical images, which were taken at thorax level and simulated with the 4D NCAT digital phantom. Radial Basis Functions spatial transformations (RBF), a kind of spline, which allows carrying out not only global rigid deformations but also local elastic ones were applied, using a point-matching method. The applied functions were: Thin Plate Spline (TPS), Multiquadric (MQ) Gaussian and B-Spline, which were evaluated and compared by means of calculating the Target Registration Error and similarity measures between the registered images (the squared sum of intensity differences (SSD) and correlation coefficient (CC)). In order to value the user incurred error in the point-matching and segmentation tasks, two algorithms were also designed that calculate the Fiduciary Localization Error. TPS and MQ were demonstrated to have better performance than the others. It was proved RBF represent an adequate model for approximating the thorax deformable behaviour. Validation algorithms showed the user error was not significant

  14. Investigation of confined hydrogen atom in spherical cavity, using B-splines basis set

    Directory of Open Access Journals (Sweden)

    M Barezi

    2011-03-01

    Full Text Available Studying confined quantum systems (CQS is very important in nano technology. One of the basic CQS is a hydrogen atom confined in spherical cavity. In this article, eigenenergies and eigenfunctions of hydrogen atom in spherical cavity are calculated, using linear variational method. B-splines are used as basis functions, which can easily construct the trial wave functions with appropriate boundary conditions. The main characteristics of B-spline are its high localization and its flexibility. Besides, these functions have numerical stability and are able to spend high volume of calculation with good accuracy. The energy levels as function of cavity radius are analyzed. To check the validity and efficiency of the proposed method, extensive convergence test of eigenenergies in different cavity sizes has been carried out.

  15. Approximation and geomatric modeling with simplex B-splines associates with irregular triangular

    NARCIS (Netherlands)

    Auerbach, S.; Gmelig Meyling, R.H.J.; Neamtu, M.; Neamtu, M.; Schaeben, H.

    1991-01-01

    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the

  16. A graph-based method for fitting planar B-spline curves with intersections

    Directory of Open Access Journals (Sweden)

    Pengbo Bo

    2016-01-01

    Full Text Available The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.

  17. Hybrid B-Spline Collocation Method for Solving the Generalized Burgers-Fisher and Burgers-Huxley Equations

    Directory of Open Access Journals (Sweden)

    Imtiaz Wasim

    2018-01-01

    Full Text Available In this study, we introduce a new numerical technique for solving nonlinear generalized Burgers-Fisher and Burgers-Huxley equations using hybrid B-spline collocation method. This technique is based on usual finite difference scheme and Crank-Nicolson method which are used to discretize the time derivative and spatial derivatives, respectively. Furthermore, hybrid B-spline function is utilized as interpolating functions in spatial dimension. The scheme is verified unconditionally stable using the Von Neumann (Fourier method. Several test problems are considered to check the accuracy of the proposed scheme. The numerical results are in good agreement with known exact solutions and the existing schemes in literature.

  18. A novel knot selection method for the error-bounded B-spline curve fitting of sampling points in the measuring process

    International Nuclear Information System (INIS)

    Liang, Fusheng; Zhao, Ji; Ji, Shijun; Zhang, Bing; Fan, Cheng

    2017-01-01

    The B-spline curve has been widely used in the reconstruction of measurement data. The error-bounded sampling points reconstruction can be achieved by the knot addition method (KAM) based B-spline curve fitting. In KAM, the selection pattern of initial knot vector has been associated with the ultimate necessary number of knots. This paper provides a novel initial knots selection method to condense the knot vector required for the error-bounded B-spline curve fitting. The initial knots are determined by the distribution of features which include the chord length (arc length) and bending degree (curvature) contained in the discrete sampling points. Firstly, the sampling points are fitted into an approximate B-spline curve Gs with intensively uniform knot vector to substitute the description of the feature of the sampling points. The feature integral of Gs is built as a monotone increasing function in an analytic form. Then, the initial knots are selected according to the constant increment of the feature integral. After that, an iterative knot insertion (IKI) process starting from the initial knots is introduced to improve the fitting precision, and the ultimate knot vector for the error-bounded B-spline curve fitting is achieved. Lastly, two simulations and the measurement experiment are provided, and the results indicate that the proposed knot selection method can reduce the number of ultimate knots available. (paper)

  19. Spline approximation, Part 1: Basic methodology

    Science.gov (United States)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  20. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  1. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    Directory of Open Access Journals (Sweden)

    Shanshan He

    2015-10-01

    Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

  2. The influence of non-rigid anatomy and patient positioning on endoscopy-CT image registration in the head and neck.

    Science.gov (United States)

    Ingram, W Scott; Yang, Jinzhong; Wendt, Richard; Beadle, Beth M; Rao, Arvind; Wang, Xin A; Court, Laurence E

    2017-08-01

    To assess the influence of non-rigid anatomy and differences in patient positioning between CT acquisition and endoscopic examination on endoscopy-CT image registration in the head and neck. Radiotherapy planning CTs and 31-35 daily treatment-room CTs were acquired for nineteen patients. Diagnostic CTs were acquired for thirteen of the patients. The surfaces of the airways were segmented on all scans and triangular meshes were created to render virtual endoscopic images with a calibrated pinhole model of an endoscope. The virtual images were used to take projective measurements throughout the meshes, with reference measurements defined as those taken on the planning CTs and test measurements defined as those taken on the daily or diagnostic CTs. The influence of non-rigid anatomy was quantified by 3D distance errors between reference and test measurements on the daily CTs, and the influence of patient positioning was quantified by 3D distance errors between reference and test measurements on the diagnostic CTs. The daily CT measurements were also used to investigate the influences of camera-to-surface distance, surface angle, and the interval of time between scans. Average errors in the daily CTs were 0.36 ± 0.61 cm in the nasal cavity, 0.58 ± 0.83 cm in the naso- and oropharynx, and 0.47 ± 0.73 cm in the hypopharynx and larynx. Average errors in the diagnostic CTs in those regions were 0.52 ± 0.69 cm, 0.65 ± 0.84 cm, and 0.69 ± 0.90 cm, respectively. All CTs had errors heavily skewed towards 0, albeit with large outliers. Large camera-to-surface distances were found to increase the errors, but the angle at which the camera viewed the surface had no effect. The errors in the Day 1 and Day 15 CTs were found to be significantly smaller than those in the Day 30 CTs (P projective measurement errors. In general, these errors are largest when the camera is in the superior pharynx, where it sees large distances and a lot of muscle motion. The

  3. Non-rigid molecular group theory and its applications

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-06-01

    The use of generalized wreath product groups as representations of symmetry groups of nonrigid molecules is considered. Generating function techniques are outlined for nuclear spin statistics and character tables of the symmetry groups of nonrigid molecules. Several applications of nonrigid molecular group theory to NMR spectroscopy, rovibronic splitting and nuclear spin statistics of nonrigid molecules, molecular beam deflection and electric resonance experiments of weakly bound Van der Waal complexes, isomerization processes, configuration interaction calculations and the symmetry of crystals with structural distortions are described. 81 references

  4. Optimization and parallelization of B-spline based orbital evaluations in QMC on multi/many-core shared memory processors

    OpenAIRE

    Mathuriya, Amrita; Luo, Ye; Benali, Anouar; Shulenburger, Luke; Kim, Jeongnim

    2016-01-01

    B-spline based orbital representations are widely used in Quantum Monte Carlo (QMC) simulations of solids, historically taking as much as 50% of the total run time. Random accesses to a large four-dimensional array make it challenging to efficiently utilize caches and wide vector units of modern CPUs. We present node-level optimizations of B-spline evaluations on multi/many-core shared memory processors. To increase SIMD efficiency and bandwidth utilization, we first apply data layout transfo...

  5. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    Science.gov (United States)

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-01

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.

  6. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  7. Multivariate Hermite interpolation on scattered point sets using tensor-product expo-rational B-splines

    Science.gov (United States)

    Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter

    2011-12-01

    At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS

  8. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  9. Fingerprint Matching by Thin-plate Spline Modelling of Elastic Deformations

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  10. Non-stationary hydrologic frequency analysis using B-spline quantile regression

    Science.gov (United States)

    Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

    2017-11-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

  11. Free-Form Deformation Approach for Registration of Visible and Infrared Facial Images in Fever Screening

    Directory of Open Access Journals (Sweden)

    Yedukondala Narendra Dwith Chenna

    2018-01-01

    Full Text Available Fever screening based on infrared (IR thermographs (IRTs is an approach that has been implemented during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome. A recently published international standard indicates that regions medially adjacent to the inner canthi provide accurate estimates of core body temperature and are preferred sites for fever screening. Therefore, rapid, automated identification of the canthi regions within facial IR images may greatly facilitate rapid fever screening of asymptomatic travelers. However, it is more difficult to accurately identify the canthi regions from IR images than from visible images that are rich with exploitable features. In this study, we developed and evaluated techniques for multi-modality image registration (MMIR of simultaneously captured visible and IR facial images for fever screening. We used free form deformation (FFD models based on edge maps to improve registration accuracy after an affine transformation. Two widely used FFD models in medical image registration based on the Demons and cubic B-spline algorithms were qualitatively compared. The results showed that the Demons algorithm outperformed the cubic B-spline algorithm, likely due to overfitting of outliers by the latter method. The quantitative measure of registration accuracy, obtained through selected control point correspondence, was within 2.8 ± 1.2 mm, which enables accurate and automatic localization of canthi regions in the IR images for temperature measurement.

  12. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem

    KAUST Repository

    Cortes, Adriano Mauricio; Dalcin, Lisandro; Sarmiento, Adel; Collier, N.; Calo, Victor M.

    2016-01-01

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf−supinf−sup stable and pointwise divergence

  13. Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method

    International Nuclear Information System (INIS)

    Mittal, R.C.; Rohila, Rajni

    2016-01-01

    In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.

  14. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela; Welz, Stefan; Siegel, Christine; Zips, Daniel; Schwenzer, Nina; Holger Schmidt, Holger

    2013-01-01

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible

  15. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    Science.gov (United States)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  16. Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients

    Science.gov (United States)

    Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang

    2018-03-01

    Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0  ±  1.3, 1.0  ±  1.2, 0.8  ±  1.3, 1.1  ±  1.5 for the B-Spline, B-Spline  +  FEM, Demons and Demons  +  FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.

  17. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we recorded the position of markers placed on the chest of the volunteers for the body motion studies, which could be used as external motion measurement. Using these phantoms and external motion data, investigators will be able to test their motion correction approaches for realistic motion obtained from different individuals. The non-uniform rational B-spline data and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license. (paper)

  18. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we recorded the position of markers placed on the chest of the volunteers for the body motion studies, which could be used as external motion measurement. Using these phantoms and external motion data, investigators will be able to test their motion correction approaches for realistic motion obtained from different individuals. The non-uniform rational B-spline data and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license.

  19. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    Science.gov (United States)

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  20. A meshless scheme for partial differential equations based on multiquadric trigonometric B-spline quasi-interpolation

    International Nuclear Information System (INIS)

    Gao Wen-Wu; Wang Zhi-Gang

    2014-01-01

    Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This scheme takes into account the periodicity of the analytic solution by using derivatives of a periodic quasi-interpolant (multiquadric trigonometric B-spline quasi-interpolant) to approximate the spatial derivatives of the equations. Thus, it overcomes the difficulties of the previous schemes based on quasi-interpolation (requiring some additional boundary conditions and yielding unwanted high-order discontinuous points at the boundaries in the spatial domain). Moreover, the scheme also overcomes the difficulty of the meshless collocation methods (i.e., yielding a notorious ill-conditioned linear system of equations for large collocation points). The numerical examples that are presented at the end of the paper show that the scheme provides excellent approximations to the analytic solutions. (general)

  1. Numerical Solution of the Blasius Viscous Flow Problem by Quartic B-Spline Method

    Directory of Open Access Journals (Sweden)

    Hossein Aminikhah

    2016-01-01

    Full Text Available A numerical method is proposed to study the laminar boundary layer about a flat plate in a uniform stream of fluid. The presented method is based on the quartic B-spline approximations with minimizing the error L2-norm. Theoretical considerations are discussed. The computed results are compared with some numerical results to show the efficiency of the proposed approach.

  2. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  3. Reproducción espectral de valores triestímulo mediante descripciones B-Spline: evaluación del error en el color

    OpenAIRE

    Pizarro Bondia, Carlos; Arasa Marti, Jose; de Lasarte, Marta; Pujol Ramo, Jaume; Arjona Carbonell, Mª Montserrat; Vilaseca Ricart, Meritxell

    2008-01-01

    La principal motivación de este trabajo es la búsqueda de una única expresión matemática que permita reproducir distribuciones espectrales de forma general. Para ello se consideran polinomios B-Spline rotacionales de segundo orden como expresión matemática base para dicha reproducción. El objetivo fundamental de este trabajo es, por tanto, la determinación de los coeficientes de los polinomios B-Spline que permitan reproducir distribuciones espectrales, así como la evaluación de la exactit...

  4. PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces

    KAUST Repository

    Sarmiento, Adel; Cô rtes, A.M.A.; Garcia, D.A.; Dalcin, Lisandro; Collier, N.; Calo, V.M.

    2016-01-01

    We describe a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, an open-source library we have built and developed over the last decade, PetIGA-MF is a general

  5. SPLINE, Spline Interpolation Function

    International Nuclear Information System (INIS)

    Allouard, Y.

    1977-01-01

    1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10

  6. A spectral/B-spline method for the Navier-Stokes equations in unbounded domains

    International Nuclear Information System (INIS)

    Dufresne, L.; Dumas, G.

    2003-01-01

    The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the θ and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r→∞. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the local character of the B-splines allows for a great flexibility in node positioning while keeping narrow bandwidth matrices. Numerical tests show that the present method compares advantageously with other similar methodologies using purely global expansions

  7. Regional Densification of a Global VTEC Model Based on B-Spline Representations

    Science.gov (United States)

    Erdogan, Eren; Schmidt, Michael; Dettmering, Denise; Goss, Andreas; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Mrotzek, Niclas

    2017-04-01

    The project OPTIMAP is a joint initiative of the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal of the project is the development of an operational tool for ionospheric mapping and prediction (OPTIMAP). Two key features of the project are the combination of different satellite observation techniques (GNSS, satellite altimetry, radio occultations and DORIS) and the regional densification as a remedy against problems encountered with the inhomogeneous data distribution. Since the data from space-geoscientific mission which can be used for modeling ionospheric parameters, such as the Vertical Total Electron Content (VTEC) or the electron density, are distributed rather unevenly over the globe at different altitudes, appropriate modeling approaches have to be developed to handle this inhomogeneity. Our approach is based on a two-level strategy. To be more specific, in the first level we compute a global VTEC model with a moderate regional and spectral resolution which will be complemented in the second level by a regional model in a densification area. The latter is a region characterized by a dense data distribution to obtain a high spatial and spectral resolution VTEC product. Additionally, the global representation means a background model for the regional one to avoid edge effects at the boundaries of the densification area. The presented approach based on a global and a regional model part, i.e. the consideration of a regional densification is called the Two-Level VTEC Model (TLVM). The global VTEC model part is based on a series expansion in terms of polynomial B-Splines in latitude direction and trigonometric B-Splines in longitude direction. The additional regional model part is set up by a series expansion in terms of polynomial B-splines for

  8. Finite nucleus Dirac mean field theory and random phase approximation using finite B splines

    International Nuclear Information System (INIS)

    McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)

    1989-01-01

    We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results

  9. Interpolating cubic splines

    CERN Document Server

    Knott, Gary D

    2000-01-01

    A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi­ cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi­ nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline func...

  10. Accuracy and Utility of Deformable Image Registration in 68Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Hofman, Michael S.; Hicks, Rodney J.; Callahan, Jason; Kron, Tomas; MacManus, Michael P.; Ball, David L.; Jackson, Price; Siva, Shankar

    2015-01-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: 68 Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration. Conclusions

  11. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  12. Evaluation of registration methods on thoracic CT

    DEFF Research Database (Denmark)

    Murphy, K.; van Ginneken, B.; Reinhardt, J.

    2011-01-01

    method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing......EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra-patient thoracic CT image pairs. Evaluation of non-rigid registration techniques is a non trivial task....... This article details the organisation of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed....

  13. Spline and spline wavelet methods with applications to signal and image processing

    CERN Document Server

    Averbuch, Amir Z; Zheludev, Valery A

    This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images upsampling. In addition to the design of a diverse library of splines, SW, SWP a...

  14. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas, E-mail: nick.hardcastle@gmail.com [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Hofman, Michael S. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Hicks, Rodney J. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Department of Medicine, University of Melbourne, Melbourne (Australia); Callahan, Jason [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Medical Imaging and Radiation Sciences, Monash University, Clayton (Australia); The Sir Peter MacCallum Department of Oncology, Melbourne University, Victoria (Australia); MacManus, Michael P.; Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne (Australia); Jackson, Price [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia)

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  15. Spherical Demons: Fast Surface Registration

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  16. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  17. Complex wavenumber Fourier analysis of the B-spline based finite element method

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Plešek, Jiří; Okrouhlík, Miloslav

    2014-01-01

    Roč. 51, č. 2 (2014), s. 348-359 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315; GA ČR GPP101/10/P376; GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : elastic wave propagation * dispersion errors * B-spline * finite element method * isogeometric analysis Subject RIV: JR - Other Machinery Impact factor: 1.513, year: 2014 http://www.sciencedirect.com/science/article/pii/S0165212513001479

  18. The influence of the image registration method on the adaptive radiotherapy. A proof of the principle in a selected case of prostate IMRT.

    Science.gov (United States)

    Berenguer, Roberto; de la Vara, Victoria; Lopez-Honrubia, Veronica; Nuñez, Ana Teresa; Rivera, Miguel; Villas, Maria Victoria; Sabater, Sebastia

    2018-01-01

    To analyse the influence of the image registration method on the adaptive radiotherapy of an IMRT prostate treatment, and to compare the dose accumulation according to 3 different image registration methods with the planned dose. The IMRT prostate patient was CT imaged 3 times throughout his treatment. The prostate, PTV, rectum and bladder were segmented on each CT. A Rigid, a deformable (DIR) B-spline and a DIR with landmarks registration algorithms were employed. The difference between the accumulated doses and planned doses were evaluated by the gamma index. The Dice coefficient and Hausdorff distance was used to evaluate the overlap between volumes, to quantify the quality of the registration. When comparing adaptive vs no adaptive RT, the gamma index calculation showed large differences depending on the image registration method (as much as 87.6% in the case of DIR B-spline). The quality of the registration was evaluated using an index such as the Dice coefficient. This showed that the best result was obtained with DIR with landmarks compared with the rest and it was always above 0.77, reported as a recommended minimum value for prostate studies in a multi-centre review. Apart from showing the importance of the application of an adaptive RT protocol in a particular treatment, this work shows that the election of the registration method is decisive in the result of the adaptive radiotherapy and dose accumulation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance

    Science.gov (United States)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario

    2018-01-01

    Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.

  20. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    Science.gov (United States)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates

  1. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem

    KAUST Repository

    Cortes, Adriano Mauricio

    2016-10-01

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf−supinf−sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show how the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.

  2. Integration by cell algorithm for Slater integrals in a spline basis

    International Nuclear Information System (INIS)

    Qiu, Y.; Fischer, C.F.

    1999-01-01

    An algorithm for evaluating Slater integrals in a B-spline basis is introduced. Based on the piecewise property of the B-splines, the algorithm divides the two-dimensional (r 1 , r 2 ) region into a number of rectangular cells according to the chosen grid and implements the two-dimensional integration over each individual cell using Gaussian quadrature. Over the off-diagonal cells, the integrands are separable so that each two-dimensional cell-integral is reduced to a product of two one-dimensional integrals. Furthermore, the scaling invariance of the B-splines in the logarithmic region of the chosen grid is fully exploited such that only some of the cell integrations need to be implemented. The values of given Slater integrals are obtained by assembling the cell integrals. This algorithm significantly improves the efficiency and accuracy of the traditional method that relies on the solution of differential equations and renders the B-spline method more effective when applied to multi-electron atomic systems

  3. Least square fitting of low resolution gamma ray spectra with cubic B-spline basis functions

    International Nuclear Information System (INIS)

    Zhu Menghua; Liu Lianggang; Qi Dongxu; You Zhong; Xu Aoao

    2009-01-01

    In this paper, the least square fitting method with the cubic B-spline basis functions is derived to reduce the influence of statistical fluctuations in the gamma ray spectra. The derived procedure is simple and automatic. The results show that this method is better than the convolution method with a sufficient reduction of statistical fluctuation. (authors)

  4. Vision based tunnel inspection using non-rigid registration

    Science.gov (United States)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  5. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  6. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.

    2011-01-01

    Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...

  7. Adaptive estimation of multivariate functions using conditionally Gaussian tensor-product spline priors

    NARCIS (Netherlands)

    Jonge, de R.; Zanten, van J.H.

    2012-01-01

    We investigate posterior contraction rates for priors on multivariate functions that are constructed using tensor-product B-spline expansions. We prove that using a hierarchical prior with an appropriate prior distribution on the partition size and Gaussian prior weights on the B-spline

  8. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism

    Directory of Open Access Journals (Sweden)

    Verónica S. Martínez

    2015-12-01

    Full Text Available Metabolic flux analysis (MFA is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity. Keywords: Dynamic, Metabolism, Flux analysis, CHO cells, Temperature shift, B-spline curve fitting

  9. ESTIMATION OF GENETIC PARAMETERS IN TROPICARNE CATTLE WITH RANDOM REGRESSION MODELS USING B-SPLINES

    Directory of Open Access Journals (Sweden)

    Joel Domínguez Viveros

    2015-04-01

    Full Text Available The objectives were to estimate variance components, and direct (h2 and maternal (m2 heritability in the growth of Tropicarne cattle based on a random regression model using B-Splines for random effects modeling. Information from 12 890 monthly weightings of 1787 calves, from birth to 24 months old, was analyzed. The pedigree included 2504 animals. The random effects model included genetic and permanent environmental (direct and maternal of cubic order, and residuals. The fixed effects included contemporaneous groups (year – season of weighed, sex and the covariate age of the cow (linear and quadratic. The B-Splines were defined in four knots through the growth period analyzed. Analyses were performed with the software Wombat. The variances (phenotypic and residual presented a similar behavior; of 7 to 12 months of age had a negative trend; from birth to 6 months and 13 to 18 months had positive trend; after 19 months were maintained constant. The m2 were low and near to zero, with an average of 0.06 in an interval of 0.04 to 0.11; the h2 also were close to zero, with an average of 0.10 in an interval of 0.03 to 0.23.

  10. Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images.

    Science.gov (United States)

    Tatano, Rosalia; Berkels, Benjamin; Deserno, Thomas M

    2017-10-01

    Region of interest (RoI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from computed axial tomography scanners as pixel or voxel data. Previously, we presented a 2-D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster framework to register RoIs in multimodal images; (ii) a 3-D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2-D using ground truth (GT) provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem, where the objective consists of a data term, which involves the signed distance function of the RoI from the reference image and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The RoI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit and Elastix.

  11. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  12. PEMODELAN B-SPLINE DAN MARS PADA NILAI UJIAN MASUK TERHADAP IPK MAHASISWA JURUSAN DISAIN KOMUNIKASI VISUAL UK. PETRA SURABAYA

    Directory of Open Access Journals (Sweden)

    I Nyoman Budiantara

    2006-01-01

    Full Text Available Regression analysis is constructed for capturing the influences of independent variables to dependent ones. It can be done by looking at the relationship between those variables. This task of approximating the mean function can be done essentially in two ways. The quiet often use parametric approach is to assume that the mean curve has some prespecified functional forms. Alternatively, nonparametric approach, .i.e., without reference to a specific form, is used when there is no information of the regression function form (Haerdle, 1990. Therefore nonparametric approach has more flexibilities than the parametric one. The aim of this research is to find the best fit model that captures relationship between admission test score to the GPA. This particular data was taken from the Department of Design Communication and Visual, Petra Christian University, Surabaya for year 1999. Those two approaches were used here. In the parametric approach, we use simple linear, quadric cubic regression, and in the nonparametric ones, we use B-Spline and Multivariate Adaptive Regression Splines (MARS. Overall, the best model was chosen based on the maximum determinant coefficient. However, for MARS, the best model was chosen based on the GCV, minimum MSE, maximum determinant coefficient. Abstract in Bahasa Indonesia : Analisa regresi digunakan untuk melihat pengaruh variabel independen terhadap variabel dependent dengan terlebih dulu melihat pola hubungan variabel tersebut. Hal ini dapat dilakukan dengan melalui dua pendekatan. Pendekatan yang paling umum dan seringkali digunakan adalah pendekatan parametrik. Pendekatan parametrik mengasumsikan bentuk model sudah ditentukan. Apabila tidak ada informasi apapun tentang bentuk dari fungsi regresi, maka pendekatan yang digunakan adalah pendekatan nonparametrik. (Haerdle, 1990. Karena pendekatan tidak tergantung pada asumsi bentuk kurva tertentu, sehingga memberikan fleksibelitas yang lebih besar. Tujuan penelitian ini

  13. An Adaptive B-Spline Method for Low-order Image Reconstruction Problems - Final Report - 09/24/1997 - 09/24/2000

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Miller, Eric L.; Rappaport, Carey; Silevich, Michael

    2000-04-11

    A common problem in signal processing is to estimate the structure of an object from noisy measurements linearly related to the desired image. These problems are broadly known as inverse problems. A key feature which complicates the solution to such problems is their ill-posedness. That is, small perturbations in the data arising e.g. from noise can and do lead to severe, non-physical artifacts in the recovered image. The process of stabilizing these problems is known as regularization of which Tikhonov regularization is one of the most common. While this approach leads to a simple linear least squares problem to solve for generating the reconstruction, it has the unfortunate side effect of producing smooth images thereby obscuring important features such as edges. Therefore, over the past decade there has been much work in the development of edge-preserving regularizers. This technique leads to image estimates in which the important features are retained, but computationally the y require the solution of a nonlinear least squares problem, a daunting task in many practical multi-dimensional applications. In this thesis we explore low-order models for reducing the complexity of the re-construction process. Specifically, B-Splines are used to approximate the object. If a ''proper'' collection B-Splines are chosen that the object can be efficiently represented using a few basis functions, the dimensionality of the underlying problem will be significantly decreased. Consequently, an optimum distribution of splines needs to be determined. Here, an adaptive refining and pruning algorithm is developed to solve the problem. The refining part is based on curvature information, in which the intuition is that a relatively dense set of fine scale basis elements should cluster near regions of high curvature while a spares collection of basis vectors are required to adequately represent the object over spatially smooth areas. The pruning part is a greedy

  14. Validation of TMJ osteoarthritis synthetic defect database via non-rigid registration

    Science.gov (United States)

    Paniagua, Beatriz; Pera, Juliette; Budin, Francois; Gomes, Liliane; Styner, Martin; Lucia, Cevidanes; Nguyen, Tung

    2015-03-01

    Temporomandibular joint (TMJ) disorders are a group of conditions that cause pain and dysfunction in the jaw joint and the muscles controlling jaw movement. However, diagnosis and treatment of these conditions remain controversial. To date, there is no single sign, symptom, or test that can clearly diagnose early stages of osteoarthritis (OA). Instead, the diagnosis is based on a consideration of several factors, including radiological evaluation. The current radiological diagnosis scores of TMJ pathology are subject to misdiagnosis. We believe these scores are limited by the acquisition procedures, such as oblique cuts of the CT and head positioning errors, and can lead to incorrect diagnoses of flattening of the head of the condyle, formation of osteophytes, or condylar pitting. This study consists of creating and validating a methodological framework to simulate defects in CBCT scans of known location and size, in order to create synthetic TMJ OA database. User-generated defects were created using a non-rigid deformation protocol in CBCT. All segmentation evaluation, surface distances and linear distances from the user-generated to the simulated defects showed our methodological framework to be very precise and within a voxel (0.5 mm) of magnitude. A TMJ OA synthetic database will be created next, and evaluated by expert radiologists, and this will serve to evaluate how sensitive the current radiological diagnosis tools are.

  15. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    Science.gov (United States)

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  16. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    Directory of Open Access Journals (Sweden)

    Amir Pasha Mahmoudzadeh

    2013-01-01

    Full Text Available Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order and to compare the effect of cost functions (least squares (LS, normalized mutual information (NMI, normalized cross correlation (NCC, and correlation ratio (CR for optimized automatic image registration (OAIR on 3D spoiled gradient recalled (SPGR magnetic resonance images (MRI of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  17. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Robinson, A; Kiess, A; Quon, H; Wong, J; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Plishker, W [IGI Technologies Inc., College Park, MD (United States); Shekhar, R [IGI Technologies Inc., College Park, MD (United States); Children’s National Medical Center, Washington, D.C. (United States)

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCT intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction

  18. Nonlinear Analysis for the Crack Control of SMA Smart Concrete Beam Based on a Bidirectional B-Spline QR Method

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available A bidirectional B-spline QR method (BB-sQRM for the study on the crack control of the reinforced concrete (RC beam embedded with shape memory alloy (SMA wires is presented. In the proposed method, the discretization is performed with a set of spline nodes in two directions of the plane model, and structural displacement fields are constructed by the linear combination of the products of cubic B-spline interpolation functions. To derive the elastoplastic stiffness equation of the RC beam, an explicit form is utilized to express the elastoplastic constitutive law of concrete materials. The proposed model is compared with the ANSYS model in several numerical examples. The results not only show that the solutions given by the BB-sQRM are very close to those given by the finite element method (FEM but also prove the high efficiency and low computational cost of the BB-sQRM. Meanwhile, the five parameters, such as depth-span ratio, thickness of concrete cover, reinforcement ratio, prestrain, and eccentricity of SMA wires, are investigated to learn their effects on the crack control. The results show that depth-span ratio of RC beams and prestrain and eccentricity of SMA wires have a significant influence on the control performance of beam cracks.

  19. Fuzzy B-spline optimization for urban slum three-dimensional reconstruction using ENVISAT satellite data

    International Nuclear Information System (INIS)

    Marghany, Maged

    2014-01-01

    A critical challenges in urban aeras is slums. In fact, they are considered a source of crime and disease due to poor-quality housing, unsanitary conditions, poor infrastructures and occupancy security. The poor in the dense urban slums are the most vulnerable to infection due to (i) inadequate and restricted access to safety, drinking water and sufficient quantities of water for personal hygiene; (ii) the lack of removal and treatment of excreta; and (iii) the lack of removal of solid waste. This study aims to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed countries such as Egypt. The main objective of this work is to utilize some 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that the fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate between them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slum. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that the fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data

  20. Fuzzy B-spline optimization for urban slum three-dimensional reconstruction using ENVISAT satellite data

    Science.gov (United States)

    Marghany, Maged

    2014-06-01

    A critical challenges in urban aeras is slums. In fact, they are considered a source of crime and disease due to poor-quality housing, unsanitary conditions, poor infrastructures and occupancy security. The poor in the dense urban slums are the most vulnerable to infection due to (i) inadequate and restricted access to safety, drinking water and sufficient quantities of water for personal hygiene; (ii) the lack of removal and treatment of excreta; and (iii) the lack of removal of solid waste. This study aims to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed countries such as Egypt. The main objective of this work is to utilize some 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that the fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate between them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slum. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that the fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  1. The modeling of quadratic B-splines surfaces for the tomographic reconstruction in the FCC- type-riser

    International Nuclear Information System (INIS)

    Vasconcelos, Geovane Vitor; Dantas, Carlos Costa; Melo, Silvio de Barros; Pires, Renan Ferraz

    2009-01-01

    The 3D tomography reconstruction has been a profitable alternative in the analysis of the FCC-type- riser (Fluid Catalytic Cracking), for appropriately keeping track of the sectional catalyst concentration distribution in the process of oil refining. The method of tomography reconstruction proposed by M. Azzi and colleagues (1991) uses a relatively small amount of trajectories (from 3 to 5) and projections (from 5 to 7) of gamma rays, a desirable feature in the industrial process tomography. Compared to more popular methods, such as the FBP (Filtered Back Projection), which demands a much higher amount of gamma rays projections, the method by Azzi et al. is more appropriate for the industrial process, where the physical limitations and the cost of the process require more economical arrangements. The use of few projections and trajectories facilitates the diagnosis in the flow dynamical process. This article proposes an improvement in the basis functions introduced by Azzi et al., through the use of quadratic B-splines functions. The use of B-splines functions makes possible a smoother surface reconstruction of the density distribution, since the functions are continuous and smooth. This work describes how the modeling can be done. (author)

  2. Designing interactively with elastic splines

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie

    2018-01-01

    We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....

  3. Investigation of electron and hydrogenic-donor states confined in a permeable spherical box using B-splines

    Directory of Open Access Journals (Sweden)

    T Nikbakht

    2012-12-01

    Full Text Available   Effects of quantum size and potential shape on the spectra of an electron and a hydrogenic-donor at the center of a permeable spherical cavity have been calculated, using linear variational method. B-splines have been used as basis functions. By extensive convergence tests and comparing with other results given in the literature, the validity and efficiency of the method were confirmed.

  4. Micropolar Fluids Using B-spline Divergence Conforming Spaces

    KAUST Repository

    Sarmiento, Adel

    2014-06-06

    We discretized the two-dimensional linear momentum, microrotation, energy and mass conservation equations from micropolar fluids theory, with the finite element method, creating divergence conforming spaces based on B-spline basis functions to obtain pointwise divergence free solutions [8]. Weak boundary conditions were imposed using Nitsche\\'s method for tangential conditions, while normal conditions were imposed strongly. Once the exact mass conservation was provided by the divergence free formulation, we focused on evaluating the differences between micropolar fluids and conventional fluids, to show the advantages of using the micropolar fluid model to capture the features of complex fluids. A square and an arc heat driven cavities were solved as test cases. A variation of the parameters of the model, along with the variation of Rayleigh number were performed for a better understanding of the system. The divergence free formulation was used to guarantee an accurate solution of the flow. This formulation was implemented using the framework PetIGA as a basis, using its parallel stuctures to achieve high scalability. The results of the square heat driven cavity test case are in good agreement with those reported earlier.

  5. Curve fitting and modeling with splines using statistical variable selection techniques

    Science.gov (United States)

    Smith, P. L.

    1982-01-01

    The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.

  6. Diffusion Maps for Multimodal Registration

    Directory of Open Access Journals (Sweden)

    Gemma Piella

    2014-06-01

    Full Text Available Multimodal image registration is a difficult task, due to the significant intensity variations between the images. A common approach is to use sophisticated similarity measures, such as mutual information, that are robust to those intensity variations. However, these similarity measures are computationally expensive and, moreover, often fail to capture the geometry and the associated dynamics linked with the images. Another approach is the transformation of the images into a common space where modalities can be directly compared. Within this approach, we propose to register multimodal images by using diffusion maps to describe the geometric and spectral properties of the data. Through diffusion maps, the multimodal data is transformed into a new set of canonical coordinates that reflect its geometry uniformly across modalities, so that meaningful correspondences can be established between them. Images in this new representation can then be registered using a simple Euclidean distance as a similarity measure. Registration accuracy was evaluated on both real and simulated brain images with known ground-truth for both rigid and non-rigid registration. Results showed that the proposed approach achieved higher accuracy than the conventional approach using mutual information.

  7. Interindividual registration and dose mapping for voxelwise population analysis of rectal toxicity in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine; Haigron, Pascal [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Lafond, Caroline; Crevoisier, Renaud de [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Département de Radiothérapie, Center Eugène Marquis, Rennes F-35000 (France)

    2016-06-15

    Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of the tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.

  8. Improving fluid registration through white matter segmentation in a twin study design

    Science.gov (United States)

    Chou, Yi-Yu; Lepore, Natasha; Brun, Caroline; Barysheva, Marina; McMahon, Katie; de Zubicaray, Greig I.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

  9. An evaluation of canonical forms for non-rigid 3D shape retrieval

    OpenAIRE

    Pickup, David; Liu, Juncheng; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R.; Cheng, Zhiquan; Lian, Zhouhui; Nie, Sipin; Jin, Longcun; Shamai, Gil; Sahillioğlu, Yusuf; Kavan, Ladislav

    2018-01-01

    Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the\\ud possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.\\ud We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a\\ud greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different\\ud retrieval frameworks. A tota...

  10. MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template.

    Science.gov (United States)

    Fletcher, E; Carmichael, O; Decarli, C

    2012-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.

  11. MRI Non-Uniformity Correction Through Interleaved Bias Estimation and B-Spline Deformation with a Template*

    Science.gov (United States)

    Fletcher, E.; Carmichael, O.; DeCarli, C.

    2013-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843

  12. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    Science.gov (United States)

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  13. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  14. 17 CFR 240.15b1-1 - Application for registration of brokers or dealers.

    Science.gov (United States)

    2010-04-01

    ... of brokers or dealers. 240.15b1-1 Section 240.15b1-1 Commodity and Securities Exchanges SECURITIES... Rules and Regulations Under the Securities Exchange Act of 1934 Registration of Brokers and Dealers § 240.15b1-1 Application for registration of brokers or dealers. (a) An application for registration of...

  15. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  16. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    International Nuclear Information System (INIS)

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T

    2014-01-01

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquired under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior

  17. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří

    2017-01-01

    Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835

  18. 17 CFR 240.15b6-1 - Withdrawal from registration.

    Science.gov (United States)

    2010-04-01

    ... Registration Depository (operated by the Financial Industry Regulatory Authority, Inc.) in accordance with...) to update any inaccurate information. (b) A notice of withdrawal from registration filed by a broker... public interest or for the protection of investors, or within such shorter period of time as the...

  19. APLIKASI SPLINE ESTIMATOR TERBOBOT

    Directory of Open Access Journals (Sweden)

    I Nyoman Budiantara

    2001-01-01

    Full Text Available We considered the nonparametric regression model : Zj = X(tj + ej, j = 1,2,…,n, where X(tj is the regression curve. The random error ej are independently distributed normal with a zero mean and a variance s2/bj, bj > 0. The estimation of X obtained by minimizing a Weighted Least Square. The solution of this optimation is a Weighted Spline Polynomial. Further, we give an application of weigted spline estimator in nonparametric regression. Abstract in Bahasa Indonesia : Diberikan model regresi nonparametrik : Zj = X(tj + ej, j = 1,2,…,n, dengan X (tj kurva regresi dan ej sesatan random yang diasumsikan berdistribusi normal dengan mean nol dan variansi s2/bj, bj > 0. Estimasi kurva regresi X yang meminimumkan suatu Penalized Least Square Terbobot, merupakan estimator Polinomial Spline Natural Terbobot. Selanjutnya diberikan suatu aplikasi estimator spline terbobot dalam regresi nonparametrik. Kata kunci: Spline terbobot, Regresi nonparametrik, Penalized Least Square.

  20. 2-Dimensional B-Spline Algorithms with Applications to Ray Tracing in Media of Spatially-Varying Refractive Index

    Science.gov (United States)

    2007-08-01

    In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods

  1. Stabilized Discretization in Spline Element Method for Solution of Two-Dimensional Navier-Stokes Problems

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2014-01-01

    Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.

  2. Improving Intensity-Based Lung CT Registration Accuracy Utilizing Vascular Information

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.

  3. Hilbertian kernels and spline functions

    CERN Document Server

    Atteia, M

    1992-01-01

    In this monograph, which is an extensive study of Hilbertian approximation, the emphasis is placed on spline functions theory. The origin of the book was an effort to show that spline theory parallels Hilbertian Kernel theory, not only for splines derived from minimization of a quadratic functional but more generally for splines considered as piecewise functions type. Being as far as possible self-contained, the book may be used as a reference, with information about developments in linear approximation, convex optimization, mechanics and partial differential equations.

  4. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  5. Smoothing data series by means of cubic splines: quality of approximation and introduction of a repeating spline approach

    Science.gov (United States)

    Wüst, Sabine; Wendt, Verena; Linz, Ricarda; Bittner, Michael

    2017-09-01

    Cubic splines with equidistant spline sampling points are a common method in atmospheric science, used for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. What is defined as background or superimposed fluctuation depends on the specific research question. The latter also determines whether the spline or the residuals - the subtraction of the spline from the original time series - are further analysed.Based on test data sets, we show that the quality of approximation of the background state does not increase continuously with an increasing number of spline sampling points and/or decreasing distance between two spline sampling points. Splines can generate considerable artificial oscillations in the background and the residuals.We introduce a repeating spline approach which is able to significantly reduce this phenomenon. We apply it not only to the test data but also to TIMED-SABER temperature data and choose the distance between two spline sampling points in a way that is sensitive for a large spectrum of gravity waves.

  6. Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis

    International Nuclear Information System (INIS)

    Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.

    2016-01-01

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  7. PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces

    KAUST Repository

    Sarmiento, Adel

    2016-10-01

    We describe a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, an open-source library we have built and developed over the last decade, PetIGA-MF is a general multi-field discretization tool. To test the capabilities of our implementation, we solve different viscous flow problems such as Darcy, Stokes, Brinkman, and Navier-Stokes equations. Several convergence benchmarks based on manufactured solutions are presented assuring optimal convergence rates of the approximations, showing the accuracy and robustness of our solver.

  8. Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems.

    Science.gov (United States)

    Bhadra, Anindya; Carroll, Raymond J

    2016-07-01

    In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.

  9. Tensor-based morphometry with stationary velocity field diffeomorphic registration: application to ADNI.

    Science.gov (United States)

    Bossa, Matias; Zacur, Ernesto; Olmos, Salvador

    2010-07-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.

    Science.gov (United States)

    Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F

    2016-08-01

    Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Automatic and accurate reconstruction of distal humerus contours through B-Spline fitting based on control polygon deformation.

    Science.gov (United States)

    Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A

    2014-12-01

    The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.

  12. Interpolation of natural cubic spline

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  13. Time-dependent B-spline R-matrix approach to double ionization of atoms by XUV laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Zatsarinny, Oleg; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Noble, Clifford J [Computational Science and Engineering Department, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Schneider, Barry I, E-mail: xiaoxu.guan@drake.ed, E-mail: klaus.bartschat@drake.ed, E-mail: bschneid@nsf.go [Physics Division, National Science Foundation, Arlington, Virgina 22230 (United States)

    2009-11-01

    We present an ab initio and non-perturbative time-dependent approach to the problem of double ionization of a general atom driven by intense XUV laser pulses. After using a highly flexible B-spline R-matrix method to generate field-free Hamiltonian and electric dipole matrices, the initial state is propagated in time using an efficient Arnoldi-Lanczos scheme. Example results for momentum and energy distributions of the two outgoing electrons in two-color pump-probe processes of He are presented.

  14. Value of a probabilistic atlas in medical image segmentation regarding non-rigid registration of abdominal CT scans

    Science.gov (United States)

    Park, Hyunjin; Meyer, Charles R.

    2012-10-01

    A probabilistic atlas provides important information to help segmentation and registration applications in medical image analysis. We construct a probabilistic atlas by picking a target geometry and mapping other training scans onto that target and then summing the results into one probabilistic atlas. By choosing an atlas space close to the desired target, we construct an atlas that represents the population well. Image registration used to map one image geometry onto another is a primary task in atlas building. One of the main parameters of registration is the choice of degrees of freedom (DOFs) of the geometric transform. Herein, we measure the effect of the registration's DOFs on the segmentation performance of the resulting probabilistic atlas. Twenty-three normal abdominal CT scans were used, and four organs (liver, spinal cord, left and right kidneys) were segmented for each scan. A well-known manifold learning method, ISOMAP, was used to find the best target space to build an atlas. In summary, segmentation performance was high for high DOF registrations regardless of the chosen target space, while segmentation performance was lowered for low DOF registrations if a target space was far from the best target space. At the 0.05 level of statistical significance, there were no significant differences at high DOF registrations while there were significant differences at low DOF registrations when choosing different targets.

  15. SU-E-J-119: Head-And-Neck Digital Phantoms for Geometric and Dosimetric Uncertainty Evaluation of CT-CBCT Deformable Image Registration

    International Nuclear Information System (INIS)

    Shen, Z; Koyfman, S; Xia, P; Bzdusek, K

    2015-01-01

    Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied to CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia

  16. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

    Directory of Open Access Journals (Sweden)

    S. Battal Gazi Karakoç

    2016-02-01

    Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.  

  17. Geometric and computer-aided spline hob modeling

    Science.gov (United States)

    Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.

    2018-03-01

    The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.

  18. The estimation of time-varying risks in asset pricing modelling using B-Spline method

    Science.gov (United States)

    Nurjannah; Solimun; Rinaldo, Adji

    2017-12-01

    Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.

  19. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  20. Longitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: Preliminary results

    International Nuclear Information System (INIS)

    Atuegwu, Nkiruka C.; Williams, Jason M.; Li, Xia; Arlinghaus, Lori R.; Abramson, Richard G.; Chakravarthy, A. Bapsi; Abramson, Vandana G.; Yankeelov, Thomas E.

    2014-01-01

    Purpose: The authors propose a method whereby serially acquired DCE-MRI, DW-MRI, and FDG-PET breast data sets can be spatially and temporally coregistered to enable the comparison of changes in parameter maps at the voxel level. Methods: First, the authors aligned the PET and MR images at each time point rigidly and nonrigidly. To register the MR images longitudinally, the authors extended a nonrigid registration algorithm by including a tumor volume-preserving constraint in the cost function. After the PET images were aligned to the MR images at each time point, the authors then used the transformation obtained from the longitudinal registration of the MRI volumes to register the PET images longitudinally. The authors tested this approach on ten breast cancer patients by calculating a modified Dice similarity of tumor size between the PET and MR images as well as the bending energy and changes in the tumor volume after the application of the registration algorithm. Results: The median of the modified Dice in the registered PET and DCE-MRI data was 0.92. For the longitudinal registration, the median tumor volume change was −0.03% for the constrained algorithm, compared to −32.16% for the unconstrained registration algorithms (p = 8 × 10 −6 ). The medians of the bending energy were 0.0092 and 0.0001 for the unconstrained and constrained algorithms, respectively (p = 2.84 × 10 −7 ). Conclusions: The results indicate that the proposed method can accurately spatially align DCE-MRI, DW-MRI, and FDG-PET breast images acquired at different time points during therapy while preventing the tumor from being substantially distorted or compressed

  1. SU-E-J-94: Geometric and Dosimetric Evaluation of Deformation Image Registration Algorithms Using Virtual Phantoms Generated From Patients with Lung Cancer

    International Nuclear Information System (INIS)

    Shen, Z; Greskovich, J; Xia, P; Bzdusek, K

    2015-01-01

    Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia

  2. Straight-sided Spline Optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2011-01-01

    and the subject of improving the design. The present paper concentrates on the optimization of splines and the predictions of stress concentrations, which are determined by finite element analysis (FEA). Using design modifications, that do not change the spline load carrying capacity, it is shown that large...

  3. P-Splines Using Derivative Information

    KAUST Repository

    Calderon, Christopher P.

    2010-01-01

    Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in "semiparametrically" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.

  4. Comparing registration methods for mapping brain change using tensor-based morphometry.

    Science.gov (United States)

    Yanovsky, Igor; Leow, Alex D; Lee, Suh; Osher, Stanley J; Thompson, Paul M

    2009-10-01

    Measures of brain changes can be computed from sequential MRI scans, providing valuable information on disease progression for neuroscientific studies and clinical trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration models to detect changes in TBM, and their stability when no real changes are present. Specifically, we investigate an asymmetric version of a recently proposed Unbiased registration method, using mutual information as the matching criterion. We compare matching functionals (sum of squared differences and mutual information), as well as large-deformation registration schemes (viscous fluid and inverse-consistent linear elastic registration methods versus Symmetric and Asymmetric Unbiased registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration results when matching images corrupted with artificial noise. We demonstrated that the unbiased methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were also less likely to detect changes in the absence of any real physiological change. Moreover, they measured biological deformations more accurately by penalizing bias in the corresponding statistical maps.

  5. Final report on Production Test No. 105-245-P -- Effectiveness of cadmium coated splines

    Energy Technology Data Exchange (ETDEWEB)

    Carson, A.B.

    1949-05-19

    This report discussed cadmium coated splines which have been developed to supplement the regular control rod systems under emergency shutdown conditions from higher power levels. The objective of this test was to determine the effectiveness of one such spline placed in a tube in the central zone of a pile, and of two splines in the same tube. In addition, the process control group of the P Division asked that probable spline requirements for safe operation at various power levels be estimated, and the details included in this report. The results of the test indicated a reactivity value of 10.5 {plus_minus} 1.0 ih for a single spline, and 19.0 ih {plus_minus} 1.0 ihfor two splines in tube 1674-B under the loading conditions of 4-27-49, the date of the test. The temperature rise of the cooling water for this tube under these conditions was found to be 37.2{degrees}C for 275 MW operation.

  6. Co-registration of the BNCT treatment planning images for clinical practice

    International Nuclear Information System (INIS)

    Salli, Eero; Seppaelae, Tiina; Kankaanranta, Leena; Asikainen, Sami; Savolainen, Sauli; Koivunoro, Hanna

    2006-01-01

    We have co-registered MRI, CT and FBPA-PET images for BNCT in clinical practice. Co-registration improves the spatial accuracy of the treatment planning by enabling use of information from all the co-registered modalities. The multimodal co-registration has been implemented as a service product provided by the Imaging Center of Helsinki University Central Hospital to other departments. To increase the accuracy of co-registration and patient positioning in the head area BNCT, a patient-specific fixation mask suitable for PET, MRI and CT was developed. The goal of the fixation mask is to normalize the orientation of the patient's head and neck. Co-registration is performed at the image processing unit by using a rigid body model, mutual-information based algorithms and partly in-house developed software tools. The accuracy of co-registration is verified by comparing the locations of the external skin markers and anatomical landmarks in different modalities. After co-registration, the images are transformed and covered into a format required by the BNCT dose-planning software and set to the dose-planning unit of the hospital. So far co-registration has been done for 22 patients. The co-registration protocol has proved to be reliable and efficient. Some registration errors are seen on some patients in the neck area because the rigid-body model used in co-registration is not fully valid for the brain-neck entity. The registration accuracy in this area could likely be improved by implementing a co-registration procedure utilizing a partly non-rigid body model. (author)

  7. SU-E-J-266: A Pitfall of a Deformable Image Registration in Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Y [The National Center for Global Health and Medicine, Shinjuku, Tokyo (Japan); Tachibana, H [The National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Moriya, S [Komazawa University, Setagaya, Tokyo (Japan); Sawant, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-01

    Purpose: For four-dimensional (4D) planning and adaptive radiotherapy, deformable image registration (DIR) is needed and the accuracy is essential. We evaluated the accuracy of one free-downloadable DIR software library package (NiftyReg) and one commercial DIR software (MIM) in lung SBRT cancer patients. Methods: A rigid and non-rigid registrations were implemented to our in-house software. The non-rigid registration algorithm of the NiftyReg and MIM was based on the free-form deformation. The accuracy of the two software was evaluated when contoured structures to peak-inhale and peak-exhale 4DCT image data sets were measured using the dice similarity coefficient (DSC). The evaluation was performed in 20 lung SBRT patients. Results: In our visual evaluation, the eighteen cases show good agreement between the deformed structures for the peak-inhale phase and the peak-exhale phase structures (more than 0.8 DSC value). In the evaluation of the DSC in-house software, averaged DSC values of GTV and lung, heart, spinal cord, stomach and body were 0.862 and 0.979, 0.932, 0.974, 0.860, 0.998, respectively. As the Resultof the registration using the MIM program in the two cases which had less than 0.7 DSC value when analyzed using the in-house software, the DSC value were improved to 0.8. The CT images in a case with low DSC value shows the tumor was surrounded by the structure with the similar CT values, which were the chest wall or the diaphragm. Conclusion: Not only a free-downloadable DIR software but also a commercial software may provide unexpected results and there is a possibility that the results would make us misjudge the treatment planning. Therefore, we recommend that a commissioning test of any DIR software should be performed before clinical use and we should understand the characteristics of the software.

  8. SU-E-J-266: A Pitfall of a Deformable Image Registration in Lung Cancer

    International Nuclear Information System (INIS)

    Sugawara, Y; Tachibana, H; Moriya, S; Sawant, A

    2014-01-01

    Purpose: For four-dimensional (4D) planning and adaptive radiotherapy, deformable image registration (DIR) is needed and the accuracy is essential. We evaluated the accuracy of one free-downloadable DIR software library package (NiftyReg) and one commercial DIR software (MIM) in lung SBRT cancer patients. Methods: A rigid and non-rigid registrations were implemented to our in-house software. The non-rigid registration algorithm of the NiftyReg and MIM was based on the free-form deformation. The accuracy of the two software was evaluated when contoured structures to peak-inhale and peak-exhale 4DCT image data sets were measured using the dice similarity coefficient (DSC). The evaluation was performed in 20 lung SBRT patients. Results: In our visual evaluation, the eighteen cases show good agreement between the deformed structures for the peak-inhale phase and the peak-exhale phase structures (more than 0.8 DSC value). In the evaluation of the DSC in-house software, averaged DSC values of GTV and lung, heart, spinal cord, stomach and body were 0.862 and 0.979, 0.932, 0.974, 0.860, 0.998, respectively. As the Resultof the registration using the MIM program in the two cases which had less than 0.7 DSC value when analyzed using the in-house software, the DSC value were improved to 0.8. The CT images in a case with low DSC value shows the tumor was surrounded by the structure with the similar CT values, which were the chest wall or the diaphragm. Conclusion: Not only a free-downloadable DIR software but also a commercial software may provide unexpected results and there is a possibility that the results would make us misjudge the treatment planning. Therefore, we recommend that a commissioning test of any DIR software should be performed before clinical use and we should understand the characteristics of the software

  9. 78 FR 23958 - Manufacturer of Controlled Substances; Notice of Registration; S & B Pharma Inc.

    Science.gov (United States)

    2013-04-23

    ...; Notice of Registration; S & B Pharma Inc. By Notice dated May 31, 2012, and published in the Federal Register on June 8, 2012, 77 FR 34073, S & B Pharma Inc., 405 South Motor Avenue, Azusa, California 91702... 21 U.S.C. 823(a), and determined that the registration of S & B Pharma Inc., to manufacture the...

  10. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy

    International Nuclear Information System (INIS)

    McClelland, Jamie R.; Blackall, Jane M.; Tarte, Segolene; Chandler, Adam C.; Hughes, Simon; Ahmad, Shahreen; Landau, David B.; Hawkes, David J.

    2006-01-01

    Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A ''slab'' of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to

  11. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....

  12. Evaluation of whole-body MR to CT deformable image registration.

    Science.gov (United States)

    Akbarzadeh, A; Gutierrez, D; Baskin, A; Ay, M R; Ahmadian, A; Riahi Alam, N; Lövblad, K O; Zaidi, H

    2013-07-08

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based on B-spline transformation was performed using optimized parameters of the elastix package based on the Insight Toolkit (ITK) framework. Twenty-eight (17 male and 11 female) clinical studies were used in this work. The registration was evaluated using anatomical landmarks and segmented organs. In addition to 16 anatomical landmarks, three key organs (brain, lungs, and kidneys) and the entire body volume were segmented for evaluation. Several parameters--such as the Euclidean distance between anatomical landmarks, target overlap, Dice and Jaccard coefficients, false positives and false negatives, volume similarity, distance error, and Hausdorff distance--were calculated to quantify the quality of the registration algorithm. Dice coefficients for the majority of patients (> 75%) were in the 0.8-1 range for the whole body, brain, and lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent volume agreement requirement, while the majority of patients satisfy good agreement criteria (> 0.6). For all patients, the distance error was in 0-10 mm range for all segmented organs. In summary, we optimized and evaluated the accuracy of an MR to CT deformable registration algorithm. The registered images constitute a useful 3D whole-body MR-CT atlas suitable for the development and evaluation of novel MR-guided attenuation correction procedures on hybrid PET-MR systems.

  13. Surface-based prostate registration with biomechanical regularization

    Science.gov (United States)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  14. Patient-specific model of a scoliotic torso for surgical planning

    Science.gov (United States)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  15. MHD stability analysis using higher order spline functions

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji

    1999-04-01

    The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)

  16. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  17. Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines

    KAUST Repository

    Barton, Michael

    2015-10-24

    We introduce a new concept for generating optimal quadrature rules for splines. To generate an optimal quadrature rule in a given (target) spline space, we build an associated source space with known optimal quadrature and transfer the rule from the source space to the target one, while preserving the number of quadrature points and therefore optimality. The quadrature nodes and weights are, considered as a higher-dimensional point, a zero of a particular system of polynomial equations. As the space is continuously deformed by changing the source knot vector, the quadrature rule gets updated using polynomial homotopy continuation. For example, starting with C1C1 cubic splines with uniform knot sequences, we demonstrate the methodology by deriving the optimal rules for uniform C2C2 cubic spline spaces where the rule was only conjectured to date. We validate our algorithm by showing that the resulting quadrature rule is independent of the path chosen between the target and the source knot vectors as well as the source rule chosen.

  18. Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines

    KAUST Repository

    Barton, Michael; Calo, Victor M.

    2015-01-01

    We introduce a new concept for generating optimal quadrature rules for splines. To generate an optimal quadrature rule in a given (target) spline space, we build an associated source space with known optimal quadrature and transfer the rule from the source space to the target one, while preserving the number of quadrature points and therefore optimality. The quadrature nodes and weights are, considered as a higher-dimensional point, a zero of a particular system of polynomial equations. As the space is continuously deformed by changing the source knot vector, the quadrature rule gets updated using polynomial homotopy continuation. For example, starting with C1C1 cubic splines with uniform knot sequences, we demonstrate the methodology by deriving the optimal rules for uniform C2C2 cubic spline spaces where the rule was only conjectured to date. We validate our algorithm by showing that the resulting quadrature rule is independent of the path chosen between the target and the source knot vectors as well as the source rule chosen.

  19. Schwarz and multilevel methods for quadratic spline collocation

    Energy Technology Data Exchange (ETDEWEB)

    Christara, C.C. [Univ. of Toronto, Ontario (Canada); Smith, B. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31

    Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.

  20. Recent researches in airship construction III : a new type of nonrigid airship

    Science.gov (United States)

    Naatz, H

    1924-01-01

    The author describes experiments in designing nonrigid airships. A nonrigid airship of 32,000 cubic meters, the PL 27 withstood all stresses with 20 kg/m(exp 2) hull pressure during its life of two years. The moment of resistance is known, as also the stresses in the envelope for the given hull pressure. The mean internal pressure necessary to give the airship the requisite rigidity and to prevent buckling was also investigated.

  1. Automatic lung lobe segmentation of COPD patients using iterative B-spline fitting

    Science.gov (United States)

    Shamonin, D. P.; Staring, M.; Bakker, M. E.; Xiao, C.; Stolk, J.; Reiber, J. H. C.; Stoel, B. C.

    2012-02-01

    We present an automatic lung lobe segmentation algorithm for COPD patients. The method enhances fissures, removes unlikely fissure candidates, after which a B-spline is fitted iteratively through the remaining candidate objects. The iterative fitting approach circumvents the need to classify each object as being part of the fissure or being noise, and allows the fissure to be detected in multiple disconnected parts. This property is beneficial for good performance in patient data, containing incomplete and disease-affected fissures. The proposed algorithm is tested on 22 COPD patients, resulting in accurate lobe-based densitometry, and a median overlap of the fissure (defined 3 voxels wide) with an expert ground truth of 0.65, 0.54 and 0.44 for the three main fissures. This compares to complete lobe overlaps of 0.99, 0.98, 0.98, 0.97 and 0.87 for the five main lobes, showing promise for lobe segmentation on data of patients with moderate to severe COPD.

  2. Applications of the spline filter for areal filtration

    International Nuclear Information System (INIS)

    Tong, Mingsi; Zhang, Hao; Ott, Daniel; Chu, Wei; Song, John

    2015-01-01

    This paper proposes a general use isotropic areal spline filter. This new areal spline filter can achieve isotropy by approximating the transmission characteristic of the Gaussian filter. It can also eliminate the effect of void areas using a weighting factor, and resolve end-effect issues by applying new boundary conditions, which replace the first order finite difference in the traditional spline formulation. These improvements make the spline filter widely applicable to 3D surfaces and extend the applications of the spline filter in areal filtration. (technical note)

  3. Construction of local integro quintic splines

    Directory of Open Access Journals (Sweden)

    T. Zhanlav

    2016-06-01

    Full Text Available In this paper, we show that the integro quintic splines can locally be constructed without solving any systems of equations. The new construction does not require any additional end conditions. By virtue of these advantages the proposed algorithm is easy to implement and effective. At the same time, the local integro quintic splines possess as good approximation properties as the integro quintic splines. In this paper, we have proved that our local integro quintic spline has superconvergence properties at the knots for the first and third derivatives. The orders of convergence at the knots are six (not five for the first derivative and four (not three for the third derivative.

  4. 32 CFR Appendix B to Part 77 - DD Form 2581, Operation Transition Employer Registration

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2581, Operation Transition Employer Registration B Appendix B to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2581, Operation Transition Employer Registration ER10AU94.042 ER10AU94.043 ...

  5. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration.

    Science.gov (United States)

    Akino, Yuichi; Yoshioka, Yasuo; Fukuda, Shoichi; Maruoka, Shintaroh; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Isohashi, Fumiaki; Ogawa, Kazuhiko

    2013-11-01

    The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R(2)=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R(2)=0.61±0.16). We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Estimation of Rectal Dose Using Daily Megavoltage Cone-Beam Computed Tomography and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Fukuda, Shoichi [Department of Radiation Oncology, Osaka General Medical Center, Osaka (Japan); Maruoka, Shintaroh [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Takahashi, Yutaka [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota (United States); Yagi, Masashi [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Mizuno, Hirokazu [Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Isohashi, Fumiaki [Oncology Center, Osaka University Hospital, Suita, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

    2013-11-01

    Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.61±0.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.

  7. Data approximation using a blending type spline construction

    International Nuclear Information System (INIS)

    Dalmo, Rune; Bratlie, Jostein

    2014-01-01

    Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C k -smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which are necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences

  8. 4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

    Science.gov (United States)

    Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.

    2018-05-01

    4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved  >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated

  9. 76 FR 51415 - Ideal Pharmacy Care, Inc., D/B/A Esplanade Pharmacy; Revocation of Registration

    Science.gov (United States)

    2011-08-18

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Ideal Pharmacy Care, Inc., D/B/A Esplanade Pharmacy; Revocation of Registration On November 12, 2010, I, the then Deputy Administrator of the Drug... Pharmacy Care, Inc., d/b/a Esplanade Pharmacy (Registrant), of New Orleans, Louisiana. The Show Cause Order...

  10. Image registration with auto-mapped control volumes

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2006-01-01

    inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of ∼2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations

  11. Spline smoothing of histograms by linear programming

    Science.gov (United States)

    Bennett, J. O.

    1972-01-01

    An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

  12. FC LSEI WNNLS, Least-Square Fitting Algorithms Using B Splines

    International Nuclear Information System (INIS)

    Hanson, R.J.; Haskell, K.H.

    1989-01-01

    1 - Description of problem or function: FC allows a user to fit dis- crete data, in a weighted least-squares sense, using piece-wise polynomial functions represented by B-Splines on a given set of knots. In addition to the least-squares fitting of the data, equality, inequality, and periodic constraints at a discrete, user-specified set of points can be imposed on the fitted curve or its derivatives. The subprograms LSEI and WNNLS solve the linearly-constrained least-squares problem. LSEI solves the class of problem with general inequality constraints, and, if requested, obtains a covariance matrix of the solution parameters. WNNLS solves the class of problem with non-negativity constraints. It is anticipated that most users will find LSEI suitable for their needs; however, users with inequalities that are single bounds on variables may wish to use WNNLS. 2 - Method of solution: The discrete data are fit by a linear combination of piece-wise polynomial curves which leads to a linear least-squares system of algebraic equations. Additional information is expressed as a discrete set of linear inequality and equality constraints on the fitted curve which leads to a linearly-constrained least-squares system of algebraic equations. The solution of this system is the main computational problem solved

  13. Redefining the target early during treatment. Can we visualize regional differences within the target volume using sequential diffusion weighted MRI?

    International Nuclear Information System (INIS)

    Lambrecht, Maarten; Van Herck, Hans; De Keyzer, Frederik; Vandecaveye, Vincent; Slagmolen, Pieter; Suetens, Paul; Hermans, Robert; Nuyts, Sandra

    2014-01-01

    Purpose: In head and neck cancer, diffusion weighted MRI (DWI) can predict response early during treatment. Treatment-induced changes and DWI-specific artifacts hinder an accurate registration between apparent diffusion coefficient (ADC) maps. The aim of the study was to develop a registration tool which calculates and visualizes regional changes in ADC. Methods: Twenty patients with stage IV HNC treated with primary radiotherapy received an MRI including DWI before and early during treatment. Markers were manually placed at anatomical landmarks on the different modalities at both time points. A registration method, consisting of a fully automatic rigid and nonrigid registration and two semi-automatic thin-plate spline (TPS) warps was developed and applied to the image sets. After each registration step the mean registration errors were calculated and ΔADC was compared between good and poor responders. Results: Adding the TPS warps significantly reduced the registration error (in mm, 6.3 ± 6.2 vs 3.2 ± 3.3 mm, p < 0.001). After the marker based registration the median ΔADC in poor responders was significantly lower than in good responders (7% vs. 21%; p < 0.001). Conclusions: This registration method allowed for a significant reduction of the mean registration error. Furthermore the voxel-wise calculation of the ΔADC early during radiotherapy allowed for a visualization of the regional differences of ΔADC within the tumor

  14. An innovation on high-grade CNC machines tools for B-spline curve method of high-speed interpolation arithmetic

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    A novel on high-grade CNC machines tools for B Spline curve method of High-speed interpolation arithmetic is introduced. In the high-grade CNC machines tools CNC system existed the type value points is more trouble, the control precision is not strong and so on, In order to solve this problem. Through specific examples in matlab7.0 simulation result showed that that the interpolation error significantly reduced, the control precision is improved markedly, and satisfy the real-time interpolation of high speed, high accuracy requirements.

  15. An efficient approach to numerical study of the coupled-BBM system with B-spline collocation method

    Directory of Open Access Journals (Sweden)

    khalid ali

    2016-11-01

    Full Text Available In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with appropriate initial and boundary conditions by using collocation method with cubic trigonometric B-spline on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is easy to apply. We make linearization for the nonlinear term.

  16. Improving mouse controlling and movement for people with Parkinson's disease and involuntary tremor using adaptive path smoothing technique via B-spline.

    Science.gov (United States)

    Hashem, Seyed Yashar Bani; Zin, Nor Azan Mat; Yatim, Noor Faezah Mohd; Ibrahim, Norlinah Mohamed

    2014-01-01

    Many input devices are available for interacting with computers, but the computer mouse is still the most popular device for interaction. People who suffer from involuntary tremor have difficulty using the mouse in the normal way. The target participants of this research were individuals who suffer from Parkinson's disease. Tremor in limbs makes accurate mouse movements impossible or difficult without any assistive technologies to help. This study explores a new assistive technique-adaptive path smoothing via B-spline (APSS)-to enhance mouse controlling based on user's tremor level and type. APSS uses Mean filtering and B-spline to provide a smoothed mouse trajectory. Seven participants who have unwanted tremor evaluated APSS. Results show that APSS is very promising and greatly increases their control of the computer mouse. Result of user acceptance test also shows that user perceived APSS as easy to use. They also believe it to be a useful tool and intend to use it once it is available. Future studies could explore the possibility of integrating APSS with one assistive pointing technique, such as the Bubble cursor or the Sticky target technique, to provide an all in one solution for motor disabled users.

  17. Spatial and temporal interpolation of satellite-based aerosol optical depth measurements over North America using B-splines

    Science.gov (United States)

    Pfister, Nicolas; O'Neill, Norman T.; Aube, Martin; Nguyen, Minh-Nghia; Bechamp-Laganiere, Xavier; Besnier, Albert; Corriveau, Louis; Gasse, Geremie; Levert, Etienne; Plante, Danick

    2005-08-01

    Satellite-based measurements of aerosol optical depth (AOD) over land are obtained from an inversion procedure applied to dense dark vegetation pixels of remotely sensed images. The limited number of pixels over which the inversion procedure can be applied leaves many areas with little or no AOD data. Moreover, satellite coverage by sensors such as MODIS yields only daily images of a given region with four sequential overpasses required to straddle mid-latitude North America. Ground based AOD data from AERONET sun photometers are available on a more continuous basis but only at approximately fifty locations throughout North America. The object of this work is to produce a complete and coherent mapping of AOD over North America with a spatial resolution of 0.1 degree and a frequency of three hours by interpolating MODIS satellite-based data together with available AERONET ground based measurements. Before being interpolated, the MODIS AOD data extracted from different passes are synchronized to the mapping time using analyzed wind fields from the Global Multiscale Model (Meteorological Service of Canada). This approach amounts to a trajectory type of simplified atmospheric dynamics correction method. The spatial interpolation is performed using a weighted least squares method applied to bicubic B-spline functions defined on a rectangular grid. The least squares method enables one to weight the data accordingly to the measurement errors while the B-splines properties of local support and C2 continuity offer a good approximation of AOD behaviour viewed as a function of time and space.

  18. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  19. Multidimensional splines for modeling FET nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Barby, J A

    1986-01-01

    Circuit simulators like SPICE and timing simulators like MOTIS are used extensively for critical path verification of integrated circuits. MOSFET model evaluation dominates the run time of these simulators. Changes in technology results in costly updates, since modifications require reprogramming of the functions and their derivatives. The computational cost of MOSFET models can be reduced by using multidimensional polynomial splines. Since simulators based on the Newton Raphson algorithm require the function and first derivative, quadratic splines are sufficient for this purpose. The cost of updating the MOSFET model due to technology changes is greatly reduced since splines are derived from a set of points. Crucial for convergence speed of simulators is the fact that MOSFET characteristic equations are monotonic. This must be maintained by any simulation model. The splines the author designed do maintain monotonicity.

  20. Towards adaptive radiotherapy for head and neck patients: validation of an in-house deformable registration algorithm

    Science.gov (United States)

    Veiga, C.; McClelland, J.; Moinuddin, S.; Ricketts, K.; Modat, M.; Ourselin, S.; D'Souza, D.; Royle, G.

    2014-03-01

    The purpose of this work is to validate an in-house deformable image registration (DIR) algorithm for adaptive radiotherapy for head and neck patients. We aim to use the registrations to estimate the "dose of the day" and assess the need to replan. NiftyReg is an open-source implementation of the B-splines deformable registration algorithm, developed in our institution. We registered a planning CT to a CBCT acquired midway through treatment for 5 HN patients that required replanning. We investigated 16 different parameter settings that previously showed promising results. To assess the registrations, structures delineated in the CT were warped and compared with contours manually drawn by the same clinical expert on the CBCT. This structure set contained vertebral bodies and soft tissue. Dice similarity coefficient (DSC), overlap index (OI), centroid position and distance between structures' surfaces were calculated for every registration, and a set of parameters that produces good results for all datasets was found. We achieve a median value of 0.845 in DSC, 0.889 in OI, error smaller than 2 mm in centroid position and over 90% of the warped surface pixels are distanced less than 2 mm of the manually drawn ones. By using appropriate DIR parameters, we are able to register the planning geometry (pCT) to the daily geometry (CBCT).

  1. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang

    2014-03-01

    Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. Copyright © 2013 Wiley Periodicals, Inc.

  2. Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

    Science.gov (United States)

    Sensakovic, William F.; Maxim, Peter; Diehn, Maximilian; Loo, Billy W.; Xing, Lei

    2018-01-01

    Purpose: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. Materials: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. Results: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P 5 Gy (2.25 vs 3.31; P 5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). Conclusion: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. PMID:29343206

  3. A spectral/B-spline method for the Navier-Stokes equations in unbounded domains

    CERN Document Server

    Dufresne, L

    2003-01-01

    The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the theta and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r-> infinity. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the lo...

  4. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune

    2013-01-01

    description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  5. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  6. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    International Nuclear Information System (INIS)

    Zhen, X; Chen, H; Zhou, L; Yan, H; Jiang, S; Jia, X; Gu, X; Mell, L; Yashar, C; Cervino, L

    2014-01-01

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the random walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no

  7. On parameterized deformations and unsupervised learning

    DEFF Research Database (Denmark)

    Hansen, Michael Sass

    matrix. Spline approximations of functions and in particular image registration warp fields are discussed. It is shown how spline bases may be learned from the optimization process, i.e. image registration optimization, and how this may contribute with a reasonable prior, or regularization in the method...... on an unrestricted linear parameter space, where all derivatives are defined, is introduced. Furthermore, it is shown that L2-norm the parameter space introduces a reasonable metric in the actual space of modelled diffeomorphisms. A new parametrization of 3D deformation fields, using potentials and Helmholtz...... of the multivariate B-splines, the warp field is automatically refined in areas where it results in the minimization of the registration cost function....

  8. A time-dependent B-spline R-matrix approach to double ionization of atoms by XUV laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Zatsarinny, O; Noble, C J; Bartschat, K [Department of Physics and Astronomy, Drake University, Des Moines, IA 50311 (United States); Schneider, B I [Physics Division, National Science Foundation, Arlington, Virgina 22230 (United States)], E-mail: xiaoxu.guan@drake.edu, E-mail: oleg.zatsarinny@drake.edu, E-mail: cjn@maxnet.co.nz, E-mail: klaus.bartschat@drake.edu, E-mail: bschneid@nsf.gov

    2009-07-14

    We present an ab initio and non-perturbative time-dependent approach to the problem of double ionization of a general atom driven by intense XUV laser pulses. After using a highly flexible B-spline R-matrix method to generate field-free Hamiltonian and electric dipole matrices, the initial state is propagated in time using an efficient Arnoldi-Lanczos scheme. Test calculations for double ionization of He by a single laser pulse yield good agreement with benchmark results obtained with other methods. The method is then applied to two-colour pump-probe processes, for which momentum and energy distributions of the two outgoing electrons are presented.

  9. SU-C-18A-04: 3D Markerless Registration of Lung Based On Coherent Point Drift: Application in Image Guided Radiotherapy

    International Nuclear Information System (INIS)

    Nasehi Tehrani, J; Wang, J; Guo, X; Yang, Y

    2014-01-01

    Purpose: This study evaluated a new probabilistic non-rigid registration method called coherent point drift for real time 3D markerless registration of the lung motion during radiotherapy. Method: 4DCT image datasets Dir-lab (www.dir-lab.com) have been used for creating 3D boundary element model of the lungs. For the first step, the 3D surface of the lungs in respiration phases T0 and T50 were segmented and divided into a finite number of linear triangular elements. Each triangle is a two dimensional object which has three vertices (each vertex has three degree of freedom). One of the main features of the lungs motion is velocity coherence so the vertices that creating the mesh of the lungs should also have features and degree of freedom of lung structure. This means that the vertices close to each other tend to move coherently. In the next step, we implemented a probabilistic non-rigid registration method called coherent point drift to calculate nonlinear displacement of vertices between different expiratory phases. Results: The method has been applied to images of 10-patients in Dir-lab dataset. The normal distribution of vertices to the origin for each expiratory stage were calculated. The results shows that the maximum error of registration between different expiratory phases is less than 0.4 mm (0.38 SI, 0.33 mm AP, 0.29 mm RL direction). This method is a reliable method for calculating the vector of displacement, and the degrees of freedom (DOFs) of lung structure in radiotherapy. Conclusions: We evaluated a new 3D registration method for distribution set of vertices inside lungs mesh. In this technique, lungs motion considering velocity coherence are inserted as a penalty in regularization function. The results indicate that high registration accuracy is achievable with CPD. This method is helpful for calculating of displacement vector and analyzing possible physiological and anatomical changes during treatment

  10. Optimization of straight-sided spline design

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2011-01-01

    and the subject of improving the design. The present paper concentrates on the optimization of splines and the predictions of stress concentrations, which are determined by finite element analysis (FEA). Using different design modifications, that do not change the spline load carrying capacity, it is shown...

  11. The four-dimensional non-uniform rational B-splines-based cardiac-torso phantom and its application in medical imaging research

    International Nuclear Information System (INIS)

    Li Chongguo; Wu Dake; Lang Jinyi

    2008-01-01

    Simulation skill is playing an increasingly important role in medical imaging research. four-dimensional non-uniform rational B-splines-based cardiac-torso (4D NCAT) phantom is new tool for meoical imaging res catch and when combined with accurate models for the imaging process a wealth of realistic imaging data from subjects of various anatomies. Can be provided 4D NCAT phantoms have bend widely used in medical research such as SPECT, PET, CT and so on. 4D NCAT phantoms have also been used in inverse planning system of intensity modulated radiation therapy. (authors)

  12. Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns

    NARCIS (Netherlands)

    Dekker, H.

    2009-01-01

    The well-known phenomenon of ripples on roads has its modern counterpart in ripple patterns on railroads and polygonization of wheels on state-of-the-art lightrail streetcars. Here we study an idealized mechanical suspension model for the vibrational frequency response of a buggy with a nonrigid

  13. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    International Nuclear Information System (INIS)

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-01-01

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  14. A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age

    Directory of Open Access Journals (Sweden)

    Marko Wilke

    2018-02-01

    Full Text Available This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender as well as technical (field strength, data quality predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. Keywords: MRI template creation, Multivariate adaptive regression splines, DARTEL, Structural MRI

  15. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    Science.gov (United States)

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deformable 4DCT lung registration with vessel bifurcations

    International Nuclear Information System (INIS)

    Hilsmann, A.; Vik, T.; Kaus, M.; Franks, K.; Bissonette, J.P.; Purdie, T.; Beziak, A.; Aach, T.

    2007-01-01

    In radiotherapy planning of lung cancer, breathing motion causes uncertainty in the determination of the target volume. Image registration makes it possible to get information about the deformation of the lung and the tumor movement in the respiratory cycle from a few images. A dedicated, automatic, landmark-based technique was developed that finds corresponding vessel bifurcations. Hereby, we developed criteria to characterize pronounced bifurcations for which correspondence finding was more stable and accurate. The bifurcations were extracted from automatically segmented vessel trees in maximum inhale and maximum exhale CT thorax data sets. To find corresponding bifurcations in both data sets we used the shape context approach of Belongie et al. Finally, a volumetric lung deformation was obtained using thin-plate spline interpolation and affine registration. The method is evaluated on 10 4D-CT data sets of patients with lung cancer. (orig.)

  17. A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline

    International Nuclear Information System (INIS)

    Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong

    2015-01-01

    The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method. (paper)

  18. 17 CFR 270.8b-16 - Amendments to registration statement.

    Science.gov (United States)

    2010-04-01

    ... company's investment objectives or policies (described in Item 8.2 of Form N-2) that have not been... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-16 Amendments to registration statement. (a) Every registered management investment company which is required to file a semi-annual report...

  19. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping

    2015-06-24

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  20. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping; Huang, Jianhua Z.; Zhang, Nan

    2015-01-01

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  1. Mammogram CAD, hybrid registration and iconic analysis

    Science.gov (United States)

    Boucher, A.; Cloppet, F.; Vincent, N.

    2013-03-01

    This paper aims to develop a computer aided diagnosis (CAD) based on a two-step methodology to register and analyze pairs of temporal mammograms. The concept of "medical file", including all the previous medical information on a patient, enables joint analysis of different acquisitions taken at different times, and the detection of significant modifications. The developed registration method aims to superimpose at best the different anatomical structures of the breast. The registration is designed in order to get rid of deformation undergone by the acquisition process while preserving those due to breast changes indicative of malignancy. In order to reach this goal, a referent image is computed from control points based on anatomical features that are extracted automatically. Then the second image of the couple is realigned on the referent image, using a coarse-to-fine approach according to expert knowledge that allows both rigid and non-rigid transforms. The joint analysis detects the evolution between two images representing the same scene. In order to achieve this, it is important to know the registration error limits in order to adapt the observation scale. The approach used in this paper is based on an image sparse representation. Decomposed in regular patterns, the images are analyzed under a new angle. The evolution detection problem has many practical applications, especially in medical images. The CAD is evaluated using recall and precision of differences in mammograms.

  2. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  3. Limit Stress Spline Models for GRP Composites | Ihueze | Nigerian ...

    African Journals Online (AJOL)

    Spline functions were established on the assumption of three intervals and fitting of quadratic and cubic splines to critical stress-strain responses data. Quadratic ... of data points. Spline model is therefore recommended as it evaluates the function at subintervals, eliminating the error associated with wide range interpolation.

  4. Understanding geological processes: Visualization of rigid and non-rigid transformations

    Science.gov (United States)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid

  5. Automated analysis of small animal PET studies through deformable registration to an atlas

    International Nuclear Information System (INIS)

    Gutierrez, Daniel F.; Zaidi, Habib

    2012-01-01

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  6. Experiment and numerical simulation on the characteristics of fluid–structure interactions of non-rigid airships

    Directory of Open Access Journals (Sweden)

    Xiaocui Wu

    2015-11-01

    Full Text Available Fluid–structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid–structure interaction is noticeable and should be considered for non-rigid airships. Flow-induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximately 60% compared with that of the rigid model under a high angle of attack.

  7. Positivity Preserving Interpolation Using Rational Bicubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2015-01-01

    Full Text Available This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root Mean Square Error (RMSE, our partially blended rational bicubic spline is on a par with the established methods.

  8. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    International Nuclear Information System (INIS)

    Zhen, Xin; Chen, Haibin; Zhou, Linghong; Yan, Hao; Jiang, Steve; Jia, Xun; Gu, Xuejun; Mell, Loren K; Yashar, Catheryn M; Cervino, Laura

    2015-01-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. (paper)

  9. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    Science.gov (United States)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  10. Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

    Directory of Open Access Journals (Sweden)

    Qingsong Zhu

    2012-01-01

    Full Text Available A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT applications.

  11. An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results.

    Science.gov (United States)

    Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E

    2012-11-16

    By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0

  12. Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Sommer, Stefan Horst; Sørensen, Lauge

    by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only...... approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed...... that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p

  13. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    International Nuclear Information System (INIS)

    Brock, K; Mutic, S

    2014-01-01

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  14. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model.

    Science.gov (United States)

    Sorokin, Dmitry V; Peterlik, Igor; Tektonidis, Marco; Rohr, Karl; Matula, Pavel

    2018-01-01

    The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.

  15. Alternative face models for 3D face registration

    Science.gov (United States)

    Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale

    2007-01-01

    3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.

  16. 16 CFR 1130.8 - Requirements for Web site registration or alternative e-mail registration.

    Science.gov (United States)

    2010-01-01

    ... registration. (a) Link to registration page. The manufacturer's Web site, or other Web site established for the... web page that goes directly to “Product Registration.” (b) Purpose statement. The registration page... registration page. The Web site registration page shall request only the consumer's name, address, telephone...

  17. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun

    2016-02-07

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the 'thin plate splines-robust point matching' (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  18. Smoothing two-dimensional Malaysian mortality data using P-splines indexed by age and year

    Science.gov (United States)

    Kamaruddin, Halim Shukri; Ismail, Noriszura

    2014-06-01

    Nonparametric regression implements data to derive the best coefficient of a model from a large class of flexible functions. Eilers and Marx (1996) introduced P-splines as a method of smoothing in generalized linear models, GLMs, in which the ordinary B-splines with a difference roughness penalty on coefficients is being used in a single dimensional mortality data. Modeling and forecasting mortality rate is a problem of fundamental importance in insurance company calculation in which accuracy of models and forecasts are the main concern of the industry. The original idea of P-splines is extended to two dimensional mortality data. The data indexed by age of death and year of death, in which the large set of data will be supplied by Department of Statistics Malaysia. The extension of this idea constructs the best fitted surface and provides sensible prediction of the underlying mortality rate in Malaysia mortality case.

  19. Target Registration Error minimization involving deformable organs using elastic body splines and Particle Swarm Optimization approach.

    Science.gov (United States)

    Spinczyk, Dominik; Fabian, Sylwester

    2017-12-01

    In minimally invasive surgery one of the main challenges is the precise location of the target during the intervention. The aim of the study is to present usability of elastic body splines (EBS) to minimize TRE error. The method to find the desired EBS parameters values is presented with usage of Particle Swarm optimization approach. This ability of TRE minimization has been achieved for the respiratory phases corresponding to minimum FRE for abdominal (especially liver) surgery. The proposed methodology was verified during experiments conducted on 21 patients diagnosed with liver tumors. This method has been developed to perform operations in real-time on a standard workstation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    Science.gov (United States)

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with 50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  1. Automated registration of diagnostic to prediagnostic x-ray mammograms: Evaluation and comparison to radiologists' accuracy

    International Nuclear Information System (INIS)

    Pinto Pereira, Snehal M.; Hipwell, John H.; McCormack, Valerie A.; Tanner, Christine; Moss, Sue M.; Wilkinson, Louise S.; Khoo, Lisanne A. L.; Pagliari, Catriona; Skippage, Pippa L.; Kliger, Carole J.; Hawkes, David J.; Santos Silva, Isabel M. dos

    2010-01-01

    Purpose: To compare and evaluate intensity-based registration methods for computation of serial x-ray mammogram correspondence. Methods: X-ray mammograms were simulated from MRIs of 20 women using finite element methods for modeling breast compressions and employing a MRI/x-ray appearance change model. The parameter configurations of three registration methods, affine, fluid, and free-form deformation (FFD), were optimized for registering x-ray mammograms on these simulated images. Five mammography film readers independently identified landmarks (tumor, nipple, and usually two other normal features) on pairs of diagnostic and corresponding prediagnostic digitized images from 52 breast cancer cases. Landmarks were independently reidentified by each reader. Target registration errors were calculated to compare the three registration methods using the reader landmarks as a gold standard. Data were analyzed using multilevel methods. Results: Between-reader variability varied with landmark (p<0.01) and screen (p=0.03), with between-reader mean distance (mm) in point location on the diagnostic/prediagnostic images of 2.50 (95% CI 1.95, 3.15)/2.84 (2.24, 3.55) for nipples and 4.26 (3.43, 5.24)/4.76 (3.85, 5.84) for tumors. Registration accuracy was sensitive to the type of landmark and the amount of breast density. For dense breasts (≥40%), the affine and fluid methods outperformed FFD. For breasts with lower density, the affine registration surpassed both fluid and FFD. Mean accuracy (mm) of the affine registration varied between 3.16 (95% CI 2.56, 3.90) for nipple points in breasts with density 20%-39% and 5.73 (4.80, 6.84) for tumor points in breasts with density <20%. Conclusions: Affine registration accuracy was comparable to that between independent film readers. More advanced two-dimensional nonrigid registration algorithms were incapable of increasing the accuracy of image alignment when compared to affine registration.

  2. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Science.gov (United States)

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  3. Higher order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1978-01-01

    The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)

  4. Higher-order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1977-12-01

    Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length

  5. Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.

    Science.gov (United States)

    Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco

    2015-04-20

    Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

  6. USING SPLINE FUNCTIONS FOR THE SUBSTANTIATION OF TAX POLICIES BY LOCAL AUTHORITIES

    Directory of Open Access Journals (Sweden)

    Otgon Cristian

    2011-07-01

    Full Text Available The paper aims to approach innovative financial instruments for the management of public resources. In the category of these innovative tools have been included polynomial spline functions used for budgetary sizing in the substantiating of fiscal and budgetary policies. In order to use polynomial spline functions there have been made a number of steps consisted in the establishment of nodes, the calculation of specific coefficients corresponding to the spline functions, development and determination of errors of approximation. Also in this paper was done extrapolation of series of property tax data using polynomial spline functions of order I. For spline impelementation were taken two series of data, one reffering to property tax as a resultative variable and the second one reffering to building tax, resulting a correlation indicator R=0,95. Moreover the calculation of spline functions are easy to solve and due to small errors of approximation have a great power of predictibility, much better than using ordinary least squares method. In order to realise the research there have been used as methods of research several steps, namely observation, series of data construction and processing the data with spline functions. The data construction is a daily series gathered from the budget account, reffering to building tax and property tax. The added value of this paper is given by the possibility of avoiding deficits by using spline functions as innovative instruments in the publlic finance, the original contribution is made by the average of splines resulted from the series of data. The research results lead to conclusion that the polynomial spline functions are recommended to form the elaboration of fiscal and budgetary policies, due to relatively small errors obtained in the extrapolation of economic processes and phenomena. Future research directions are taking in consideration to study the polynomial spline functions of second-order, third

  7. Thin-plate spline quadrature of geodetic integrals

    Science.gov (United States)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  8. Deconvolution using thin-plate splines

    International Nuclear Information System (INIS)

    Toussaint, Udo v.; Gori, Silvio

    2007-01-01

    The ubiquitous problem of estimating 2-dimensional profile information from a set of line integrated measurements is tackled with Bayesian probability theory by exploiting prior information about local smoothness. For this purpose thin-plate-splines (the 2-D minimal curvature analogue of cubic-splines in 1-D) are employed. The optimal number of support points required for inversion of 2-D tomographic problems is determined using model comparison. Properties of this approach are discussed and the question of suitable priors is addressed. Finally, we illustrated the properties of this approach with 2-D inversion results using data from line-integrated measurements from fusion experiments

  9. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  10. Nonlinear mechanics of non-rigid origami: an efficient computational approach

    Science.gov (United States)

    Liu, K.; Paulino, G. H.

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  11. SU-E-J-42: Customized Deformable Image Registration Using Open-Source Software SlicerRT

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, J Cifuentes; Chin, L; Pignol, J [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Kirby, N; Pouliot, J [UC San Francisco, San Francisco, CA (United States); Lasso, A; Pinter, C; Fichtinger, G [Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: SlicerRT is a flexible platform that allows the user to incorporate the necessary images registration and processing tools to improve clinical workflow. This work validates the accuracy and the versatility of the deformable image registration algorithm of the free open-source software SlicerRT using a deformable physical pelvic phantom versus available commercial image fusion algorithms. Methods: Optical camera images of nonradiopaque markers implanted in an anatomical pelvic phantom were used to measure the ground-truth deformation and evaluate the theoretical deformations for several DIR algorithms. To perform the registration, full and empty bladder computed tomography (CT) images of the phantom were obtained and used as fixed and moving images, respectively. The DIR module, found in SlicerRT, used a B-spline deformable image registration with multiple optimization parameters that allowed customization of the registration including a regularization term that controlled the amount of local voxel displacement. The virtual deformation field at the center of the phantom was obtained and compared to the experimental ground-truth values. The parameters of SlicerRT were then varied to improve spatial accuracy. To quantify image similarity, the mean absolute difference (MAD) parameter using Hounsfield units was calculated. In addition, the Dice coefficient of the contoured rectum was evaluated to validate the strength of the algorithm to transfer anatomical contours. Results: Overall, SlicerRT achieved one of the lowest MAD values across the algorithm spectrum, but slightly smaller mean spatial errors in comparison to MIM software (MIM). On the other hand, SlicerRT created higher mean spatial errors than Velocity Medical Solutions (VEL), although obtaining an improvement on the DICE to 0.91. The large spatial errors were attributed to the poor contrast in the prostate bladder interface of the phantom. Conclusion: Based phantom validation, SlicerRT is capable of

  12. Integration of breathing in radiotherapy: contribution of the image deformable registration

    International Nuclear Information System (INIS)

    Boldea, Vlad

    2006-01-01

    As taking organ movements and deformations into account in radiotherapy for the treatment of lung cancer is a challenge as it allows the delivered dose to be increased while better sparing surrounding sane tissues, this research thesis addresses non-rigid (or deformable) registration iconic methods applied to thorax X ray computed tomography (X-ray CT) 3D acquisitions. The objective is to extract the information regarding lung and tumour movement and deformation. The author thus reports the development of deformable registration framework with several methods of regularisation of vector fields. Three main studies have been performed and are reported. In the first one, deformable registration allowed the breathe blockage reproducibility to be controlled. Experiments performed on ten patients showed that this blockage is efficient (displacement less than 5 mm), except for three of them with functional anomalies. In a second study, 4D X-ray CT acquisitions (3D X-ray CT images acquired at different moments of the normal breathing cycle) have been analysed to extract and follow thorax movements and deformations in order to take them into account in free breathing and to perform 4D dynamic dosimetric studies. A first 4D X-ray CT image model has been developed from 3D X-ray CT images acquired in breathe blockage at the end of expiration and at the end on inhalation [fr

  13. Automated registration of diagnostic to prediagnostic x-ray mammograms: Evaluation and comparison to radiologists' accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Pinto Pereira, Snehal M.; Hipwell, John H.; McCormack, Valerie A.; Tanner, Christine; Moss, Sue M.; Wilkinson, Louise S.; Khoo, Lisanne A. L.; Pagliari, Catriona; Skippage, Pippa L.; Kliger, Carole J.; Hawkes, David J.; Santos Silva, Isabel M. dos [Cancer Research UK Epidemiology and Genetics Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom); Centre for Medical Image Computing, University College London, London WC1E 6BT (United Kingdom); Lifestyle and Cancer Group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69008 (France); Centre for Medical Image Computing, University College London, London WC1E 6BT (United Kingdom); Cancer Screening Evaluation Unit, Institute of Cancer Research, Surrey SM2 5NG (United Kingdom); St. George' s Healthcare NHS Trust and South West London Breast Screening Service, London SW17 0QT (United Kingdom); Centre for Medical Image Computing, University College London, London WC1E 6BT (United Kingdom); Cancer Research UK Epidemiology and Genetics Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom)

    2010-09-15

    Purpose: To compare and evaluate intensity-based registration methods for computation of serial x-ray mammogram correspondence. Methods: X-ray mammograms were simulated from MRIs of 20 women using finite element methods for modeling breast compressions and employing a MRI/x-ray appearance change model. The parameter configurations of three registration methods, affine, fluid, and free-form deformation (FFD), were optimized for registering x-ray mammograms on these simulated images. Five mammography film readers independently identified landmarks (tumor, nipple, and usually two other normal features) on pairs of diagnostic and corresponding prediagnostic digitized images from 52 breast cancer cases. Landmarks were independently reidentified by each reader. Target registration errors were calculated to compare the three registration methods using the reader landmarks as a gold standard. Data were analyzed using multilevel methods. Results: Between-reader variability varied with landmark (p<0.01) and screen (p=0.03), with between-reader mean distance (mm) in point location on the diagnostic/prediagnostic images of 2.50 (95% CI 1.95, 3.15)/2.84 (2.24, 3.55) for nipples and 4.26 (3.43, 5.24)/4.76 (3.85, 5.84) for tumors. Registration accuracy was sensitive to the type of landmark and the amount of breast density. For dense breasts ({>=}40%), the affine and fluid methods outperformed FFD. For breasts with lower density, the affine registration surpassed both fluid and FFD. Mean accuracy (mm) of the affine registration varied between 3.16 (95% CI 2.56, 3.90) for nipple points in breasts with density 20%-39% and 5.73 (4.80, 6.84) for tumor points in breasts with density <20%. Conclusions: Affine registration accuracy was comparable to that between independent film readers. More advanced two-dimensional nonrigid registration algorithms were incapable of increasing the accuracy of image alignment when compared to affine registration.

  14. Detrending of non-stationary noise data by spline techniques

    International Nuclear Information System (INIS)

    Behringer, K.

    1989-11-01

    An off-line method for detrending non-stationary noise data has been investigated. It uses a least squares spline approximation of the noise data with equally spaced breakpoints. Subtraction of the spline approximation from the noise signal at each data point gives a residual noise signal. The method acts as a high-pass filter with very sharp frequency cutoff. The cutoff frequency is determined by the breakpoint distance. The steepness of the cutoff is controlled by the spline order. (author) 12 figs., 1 tab., 5 refs

  15. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    Science.gov (United States)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  16. Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

    Directory of Open Access Journals (Sweden)

    Jingyu Sun

    2014-07-01

    Full Text Available To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components’ accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components’ accuracy by comparing each component’s point cloud data scanned by laser scanners and the ship’s design data formatted in CAD cannot be processed efficiently when (1 extract components from point cloud data include irregular obstacles endogenously, or when (2 registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles’ shadows. The ICP (Iterative Closest Point algorithm conducts a registration of the two sets of data after the proper registration’s direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.

  17. Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis

    Science.gov (United States)

    Liu, Chanjuan; van Netten, Jaap J.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi

    2015-02-01

    Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8%±1.1% sensitivity and 98.4%±0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with B-splines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.

  18. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  19. About some properties of bivariate splines with shape parameters

    Science.gov (United States)

    Caliò, F.; Marchetti, E.

    2017-07-01

    The paper presents and proves geometrical properties of a particular bivariate function spline, built and algorithmically implemented in previous papers. The properties typical of this family of splines impact the field of computer graphics in particular that of the reverse engineering.

  20. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements

    KAUST Repository

    Duddu, Ravindra

    2011-10-05

    We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.

  1. SU-E-J-114: A Practical Hybrid Method for Improving the Quality of CT-CBCT Deformable Image Registration for Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Kumarasiri, A; Chetvertkov, M; Gordon, J; Chetty, I; Siddiqui, F; Kim, J [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: Accurate deformable image registration (DIR) between CT and CBCT in H&N is challenging. In this study, we propose a practical hybrid method that uses not only the pixel intensities but also organ physical properties, structure volume of interest (VOI), and interactive local registrations. Methods: Five oropharyngeal cancer patients were selected retrospectively. For each patient, the planning CT was registered to the last fraction CBCT, where the anatomy difference was largest. A three step registration strategy was tested; Step1) DIR using pixel intensity only, Step2) DIR with additional use of structure VOI and rigidity penalty, and Step3) interactive local correction. For Step1, a public-domain open-source DIR algorithm was used (cubic B-spline, mutual information, steepest gradient optimization, and 4-level multi-resolution). For Step2, rigidity penalty was applied on bony anatomies and brain, and a structure VOI was used to handle the body truncation such as the shoulder cut-off on CBCT. Finally, in Step3, the registrations were reviewed on our in-house developed software and the erroneous areas were corrected via a local registration using level-set motion algorithm. Results: After Step1, there were considerable amount of registration errors in soft tissues and unrealistic stretching in the posterior to the neck and near the shoulder due to body truncation. The brain was also found deformed to a measurable extent near the superior border of CBCT. Such errors could be effectively removed by using a structure VOI and rigidity penalty. The rest of the local soft tissue error could be corrected using the interactive software tool. The estimated interactive correction time was approximately 5 minutes. Conclusion: The DIR using only the image pixel intensity was vulnerable to noise and body truncation. A corrective action was inevitable to achieve good quality of registrations. We found the proposed three-step hybrid method efficient and practical for CT

  2. Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System

    Directory of Open Access Journals (Sweden)

    Guang Zhao

    2008-01-01

    Full Text Available Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD. Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems.

  3. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  4. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.

    Science.gov (United States)

    Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O

    2018-05-01

    Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  6. Evaluation of registration strategies for multi-modality images of rat brain slices

    International Nuclear Information System (INIS)

    Palm, Christoph; Vieten, Andrea; Salber, Dagmar; Pietrzyk, Uwe

    2009-01-01

    In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.

  7. Topology optimization based on spline-based meshfree method using topological derivatives

    International Nuclear Information System (INIS)

    Hur, Junyoung; Youn, Sung-Kie; Kang, Pilseong

    2017-01-01

    Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.

  8. Topology optimization based on spline-based meshfree method using topological derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Junyoung; Youn, Sung-Kie [KAIST, Daejeon (Korea, Republic of); Kang, Pilseong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-05-15

    Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.

  9. Correlation studies for B-spline modeled F2 Chapman parameters obtained from FORMOSAT-3/COSMIC data

    Directory of Open Access Journals (Sweden)

    M. Limberger

    2014-12-01

    Full Text Available The determination of ionospheric key quantities such as the maximum electron density of the F2 layer NmF2, the corresponding F2 peak height hmF2 and the F2 scale height HF2 are of high relevance in 4-D ionosphere modeling to provide information on the vertical structure of the electron density (Ne. The Ne distribution with respect to height can, for instance, be modeled by the commonly accepted F2 Chapman layer. An adequate and observation driven description of the vertical Ne variation can be obtained from electron density profiles (EDPs derived by ionospheric radio occultation measurements between GPS and low Earth orbiter (LEO satellites. For these purposes, the six FORMOSAT-3/COSMIC (F3/C satellites provide an excellent opportunity to collect EDPs that cover most of the ionospheric region, in particular the F2 layer. For the contents of this paper, F3/C EDPs have been exploited to determine NmF2, hmF2 and HF2 within a regional modeling approach. As mathematical base functions, endpoint-interpolating polynomial B-splines are considered to model the key parameters with respect to longitude, latitude and time. The description of deterministic processes and the verification of this modeling approach have been published previously in Limberger et al. (2013, whereas this paper should be considered as an extension dealing with related correlation studies, a topic to which less attention has been paid in the literature. Relations between the B-spline series coefficients regarding specific key parameters as well as dependencies between the three F2 Chapman key parameters are in the main focus. Dependencies are interpreted from the post-derived correlation matrices as a result of (1 a simulated scenario without data gaps by taking dense, homogenously distributed profiles into account and (2 two real data scenarios on 1 July 2008 and 1 July 2012 including sparsely, inhomogeneously distributed F3/C EDPs. Moderate correlations between hmF2 and HF2 as

  10. A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age.

    Science.gov (United States)

    Wilke, Marko

    2018-02-01

    This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.

  11. Non-rigid connector: The wand to allay the stresses on abutment

    OpenAIRE

    Banerjee, Saurav; Khongshei, Arlingstone; Gupta, Tapas; Banerjee, Ardhendu

    2011-01-01

    The use of rigid connectors in 5-unit fixed dental prosthesis with a pier abutment can result in failure of weaker retainer in the long run as the pier abutment acts as a fulcrum. Non-rigid connector placed on the distal aspect of pier seems to reduce potentially excess stress concentration on the pier abutment.

  12. On the nature of data collection for soft-tissue image-to-physical organ registration: a noise characterization study

    Science.gov (United States)

    Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2017-03-01

    In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.

  13. SPLPKG WFCMPR WFAPPX, Wilson-Fowler Spline Generator for Computer Aided Design And Manufacturing (CAD/CAM) Systems

    International Nuclear Information System (INIS)

    Fletcher, S.K.

    2002-01-01

    1 - Description of program or function: The three programs SPLPKG, WFCMPR, and WFAPPX provide the capability for interactively generating, comparing and approximating Wilson-Fowler Splines. The Wilson-Fowler spline is widely used in Computer Aided Design and Manufacturing (CAD/CAM) systems. It is favored for many applications because it produces a smooth, low curvature fit to planar data points. Program SPLPKG generates a Wilson-Fowler spline passing through given nodes (with given end conditions) and also generates a piecewise linear approximation to that spline within a user-defined tolerance. The program may be used to generate a 'desired' spline against which to compare other Splines generated by CAD/CAM systems. It may also be used to generate an acceptable approximation to a desired spline in the event that an acceptable spline cannot be generated by the receiving CAD/CAM system. SPLPKG writes an IGES file of points evaluated on the spline and/or a file containing the spline description. Program WFCMPR computes the maximum difference between two Wilson-Fowler Splines and may be used to verify the spline recomputed by a receiving system. It compares two Wilson-Fowler Splines with common nodes and reports the maximum distance between curves (measured perpendicular to segments) and the maximum difference of their tangents (or normals), both computed along the entire length of the Splines. Program WFAPPX computes the maximum difference between a Wilson- Fowler spline and a piecewise linear curve. It may be used to accept or reject a proposed approximation to a desired Wilson-Fowler spline, even if the origin of the approximation is unknown. The maximum deviation between these two curves, and the parameter value on the spline where it occurs are reported. 2 - Restrictions on the complexity of the problem - Maxima of: 1600 evaluation points (SPLPKG), 1000 evaluation points (WFAPPX), 1000 linear curve breakpoints (WFAPPX), 100 spline Nodes

  14. Multilevel summation with B-spline interpolation for pairwise interactions in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Hardy, David J.; Schulten, Klaus; Wolff, Matthew A.; Skeel, Robert D.; Xia, Jianlin

    2016-01-01

    The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle–mesh Ewald method falls short.

  15. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    Science.gov (United States)

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  16. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  17. A new class of interpolatory $L$-splines with adjoint end conditions

    OpenAIRE

    Bejancu, Aurelian; Al-Sahli, Reyouf S.

    2014-01-01

    A thin plate spline surface for interpolation of smooth transfinite data prescribed along concentric circles was recently proposed by Bejancu, using Kounchev's polyspline method. The construction of the new `Beppo Levi polyspline' surface reduces, via separation of variables, to that of a countable family of univariate $L$-splines, indexed by the frequency integer $k$. This paper establishes the existence, uniqueness and variational properties of the `Beppo Levi $L$-spline' schemes correspond...

  18. A MRI-CT prostate registration using sparse representation technique

    Science.gov (United States)

    Yang, Xiaofeng; Jani, Ashesh B.; Rossi, Peter J.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    Purpose: To develop a new MRI-CT prostate registration using patch-based deformation prediction framework to improve MRI-guided prostate radiotherapy by incorporating multiparametric MRI into planning CT images. Methods: The main contribution is to estimate the deformation between prostate MRI and CT images in a patch-wise fashion by using the sparse representation technique. We assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. Specifically, there are two stages in our proposed framework, i.e., the training stage and the application stage. In the training stage, each prostate MR images are carefully registered to the corresponding CT images and all training MR and CT images are carefully registered to a selected CT template. Thus, we obtain the dense deformation field for each training MR and CT image. In the application stage, for registering a new subject MR image with the same subject CT image, we first select a small number of key points at the distinctive regions of this subject CT image. Then, for each key point in the subject CT image, we extract the image patch, centered at the underlying key point. Then, we adaptively construct the coupled dictionary for the underlying point where each atom in the dictionary consists of image patches and the respective deformations obtained from training pair-wise MRI-CT images. Next, the subject image patch can be sparsely represented by a linear combination of training image patches in the dictionary, where we apply the same sparse coefficients to the respective deformations in the dictionary to predict the deformation for the subject MR image patch. After we repeat the same procedure for each subject CT key point, we use B-splines to interpolate a dense deformation field, which is used as the initialization to allow the registration algorithm estimating the remaining small segment of deformations from MRI to CT image. Results: Our MRI-CT registration

  19. Flip-avoiding interpolating surface registration for skull reconstruction.

    Science.gov (United States)

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Comparative Analysis for Robust Penalized Spline Smoothing Methods

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models are perceived to be the most promising methods for coping with this issue, due to their flexibilities in capturing the nonlinear trends in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly comparative analysis of two popular robust smoothing techniques, the M-type estimator and S-estimation for penalized regression splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared with the nonrobust penalized LS spline regression method. Furthermore, the M-estimator exerts stable performance only for the observations with moderate perturbation error, whereas the S-estimator behaves fairly well even for heavily contaminated observations, but consuming more execution time. These findings can be served as guidance to the selection of appropriate approach for smoothing the noisy data.

  1. Bayesian Analysis for Penalized Spline Regression Using WinBUGS

    Directory of Open Access Journals (Sweden)

    Ciprian M. Crainiceanu

    2005-09-01

    Full Text Available Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

  2. P-Splines Using Derivative Information

    KAUST Repository

    Calderon, Christopher P.; Martinez, Josue G.; Carroll, Raymond J.; Sorensen, Danny C.

    2010-01-01

    in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between

  3. Series-NonUniform Rational B-Spline (S-NURBS) model: a geometrical interpolation framework for chaotic data.

    Science.gov (United States)

    Shao, Chenxi; Liu, Qingqing; Wang, Tingting; Yin, Peifeng; Wang, Binghong

    2013-09-01

    Time series is widely exploited to study the innate character of the complex chaotic system. Existing chaotic models are weak in modeling accuracy because of adopting either error minimization strategy or an acceptable error to end the modeling process. Instead, interpolation can be very useful for solving differential equations with a small modeling error, but it is also very difficult to deal with arbitrary-dimensional series. In this paper, geometric theory is considered to reduce the modeling error, and a high-precision framework called Series-NonUniform Rational B-Spline (S-NURBS) model is developed to deal with arbitrary-dimensional series. The capability of the interpolation framework is proved in the validation part. Besides, we verify its reliability by interpolating Musa dataset. The main improvement of the proposed framework is that we are able to reduce the interpolation error by properly adjusting weights series step by step if more information is given. Meanwhile, these experiments also demonstrate that studying the physical system from a geometric perspective is feasible.

  4. Numerical solutions of magnetohydrodynamic stability of axisymmetric toroidal plasmas using cubic B-spline finite element method

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1988-12-01

    A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, θ, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical β/sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab

  5. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy

    International Nuclear Information System (INIS)

    Chen, Haibin; Liao, Yuliang; Zhen, Xin; Zhou, Linghong; Zhong, Zichun; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Gu, Xuejun

    2016-01-01

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the ‘thin plate splines-robust point matching’ (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  6. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  7. Statistical analysis of sediment toxicity by additive monotone regression splines

    NARCIS (Netherlands)

    Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.

    2002-01-01

    Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this

  8. 17 CFR 274.13 - Form N-8B-3, registration statement of unincorporated management investment companies currently...

    Science.gov (United States)

    2010-04-01

    ... statement of unincorporated management investment companies currently issuing periodic payment plan...-8B-3, registration statement of unincorporated management investment companies currently issuing..., pursuant to section 8(b) of the Investment Company Act of 1940, by unincorporated management investment...

  9. Splines and their reciprocal-bases in volume-integral equations

    International Nuclear Information System (INIS)

    Sabbagh, H.A.

    1993-01-01

    The authors briefly outline the use of higher-order splines and their reciprocal-bases in discretizing the volume-integral equations of electromagnetics. The discretization is carried out by means of the method of moments, in which the expansion functions are the higher-order splines, and the testing functions are the corresponding reciprocal-basis functions. These functions satisfy an orthogonality condition with respect to the spline expansion functions. Thus, the method is not Galerkin, but the structure of the resulting equations is quite regular, nevertheless. The theory is applied to the volume-integral equations for the unknown current density, or unknown electric field, within a scattering body, and to the equations for eddy-current nondestructive evaluation. Numerical techniques for computing the matrix elements are also given

  10. Point based interactive image segmentation using multiquadrics splines

    Science.gov (United States)

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  11. SU-F-BRF-09: A Non-Rigid Point Matching Method for Accurate Bladder Dose Summation in Cervical Cancer HDR Brachytherapy

    International Nuclear Information System (INIS)

    Chen, H; Zhen, X; Zhou, L; Zhong, Z; Pompos, A; Yan, H; Jiang, S; Gu, X

    2014-01-01

    Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported

  12. Fast compact algorithms and software for spline smoothing

    CERN Document Server

    Weinert, Howard L

    2012-01-01

    Fast Compact Algorithms and Software for Spline Smoothing investigates algorithmic alternatives for computing cubic smoothing splines when the amount of smoothing is determined automatically by minimizing the generalized cross-validation score. These algorithms are based on Cholesky factorization, QR factorization, or the fast Fourier transform. All algorithms are implemented in MATLAB and are compared based on speed, memory use, and accuracy. An overall best algorithm is identified, which allows very large data sets to be processed quickly on a personal computer.

  13. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  14. Evaluation of whole‐body MR to CT deformable image registration

    Science.gov (United States)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M.R.; Ahmadian, A.; Alam, N. Riahi; Lövblad, KO

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole‐body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based on B‐spline transformation was performed using optimized parameters of the elastix package based on the Insight Toolkit (ITK) framework. Twenty‐eight (17 male and 11 female) clinical studies were used in this work. The registration was evaluated using anatomical landmarks and segmented organs. In addition to 16 anatomical landmarks, three key organs (brain, lungs, and kidneys) and the entire body volume were segmented for evaluation. Several parameters — such as the Euclidean distance between anatomical landmarks, target overlap, Dice and Jaccard coefficients, false positives and false negatives, volume similarity, distance error, and Hausdorff distance — were calculated to quantify the quality of the registration algorithm. Dice coefficients for the majority of patients (>75%) were in the 0.8–1 range for the whole body, brain, and lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent volume agreement requirement, while the majority of patients satisfy good agreement criteria (>0.6). For all patients, the distance error was in 0–10 mm range for all segmented organs. In summary, we optimized and evaluated the accuracy of an MR to CT deformable registration algorithm. The registered images constitute a useful 3D whole‐body MR‐CT atlas suitable for the development and evaluation of novel MR‐guided attenuation correction procedures on hybrid PET‐MR systems. PACS number: 07.05.Pj PMID:23835382

  15. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms

    Science.gov (United States)

    Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Xu, Lei; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Means-Powell, Julie; Gore, John C.; Yankeelov, Thomas E.

    2010-01-01

    Purpose: The authors present a method to validate coregistration of breast magnetic resonance images obtained at multiple time points during the course of treatment. In performing sequential registration of breast images, the effects of patient repositioning, as well as possible changes in tumor shape and volume, must be considered. The authors accomplish this by extending the adaptive bases algorithm (ABA) to include a tumor-volume preserving constraint in the cost function. In this study, the authors evaluate this approach using a novel validation method that simulates not only the bulk deformation associated with breast MR images obtained at different time points, but also the reduction in tumor volume typically observed as a response to neoadjuvant chemotherapy. Methods: For each of the six patients, high-resolution 3D contrast enhanced T1-weighted images were obtained before treatment, after one cycle of chemotherapy and at the conclusion of chemotherapy. To evaluate the effects of decreasing tumor size during the course of therapy, simulations were run in which the tumor in the original images was contracted by 25%, 50%, 75%, and 95%, respectively. The contracted area was then filled using texture from local healthy appearing tissue. Next, to simulate the post-treatment data, the simulated (i.e., contracted tumor) images were coregistered to the experimentally measured post-treatment images using a surface registration. By comparing the deformations generated by the constrained and unconstrained version of ABA, the authors assessed the accuracy of the registration algorithms. The authors also applied the two algorithms on experimental data to study the tumor volume changes, the value of the constraint, and the smoothness of transformations. Results: For the six patient data sets, the average voxel shift error (mean±standard deviation) for the ABA with constraint was 0.45±0.37, 0.97±0.83, 1.43±0.96, and 1.80±1.17 mm for the 25%, 50%, 75%, and 95

  16. A fourth order spline collocation approach for a business cycle model

    Science.gov (United States)

    Sayfy, A.; Khoury, S.; Ibdah, H.

    2013-10-01

    A collocation approach, based on a fourth order cubic B-splines is presented for the numerical solution of a Kaleckian business cycle model formulated by a nonlinear delay differential equation. The equation is approximated and the nonlinearity is handled by employing an iterative scheme arising from Newton's method. It is shown that the model exhibits a conditionally dynamical stable cycle. The fourth-order rate of convergence of the scheme is verified numerically for different special cases.

  17. Anatomical accuracy of lesion localization. Retrospective interactive rigid image registration between 18F-FDG-PET and X-ray CT

    International Nuclear Information System (INIS)

    Noemayr, A.; Roemer, W.; Kuwert, T.; Hothorn, T.; Pfahlberg, A.; Hornegger, J.; Bautz, W.

    2005-01-01

    The aim of this study was to evaluate the anatomical accuracy and reproducibility of retrospective interactive rigid image registration (RIR) between routinely archived X-ray computer tomography (CT) and positron emission tomography performed with 18 F-deoxyglucose (FDG-PET) in oncological patients. Methods: two observers registered PET and CT data obtained in 37 patients using a commercially available image fusion tool. RIR was performed separately for the thorax and the abdomen using physiological FDG uptake in several organs as a reference. One observer performed the procedure twice (01a and 01b), another person once (02). For 94 malignant lesions, clearly visible in CT and PET, the signed and absolute distances between their representation on PET and CT were measured in X-, Y-, and Z-direction with reference to a coordinate system centered in the CT representation of each lesion (X-, Y-, Z-distances). Results: the mean differences of the signed and absolute distances between 01a, 01b, and 02 did not exceed 3 mm in any dimension. The absolute X-, Y-, and Z-distances ranged between 0.57 ± 0.58 cm for 01a (X-direction) and 1.12 ± 1.28 cm for 02 (Z-direction). When averaging the absolute distances measured by 01a, 01b, and 02, the percentage of lesions misregistered by less than 1.5 cm was 91% for the X-, 88% for the Y-, and 77% for the Z-direction. The larger error of fusion determined for the remaining lesions was caused by non-rigid body transformations due to differences in breathing, arm position, or bowel movements between the two examinations. Mixed effects analysis of the signed and absolute X-, Y-, and Z-distances disclosed a significantly greater misalignment in the thorax than in the abdomen as well as axially than transaxially. Conclusion: the anatomical inaccuracy of RIR can be expected to be <1.5 cm for the majority of neoplastic foci. errors of alignment are bigger in the thorax and in Z-direction, due to non-rigid body transformations caused, e

  18. The Norwegian Healthier Goats program--modeling lactation curves using a multilevel cubic spline regression model.

    Science.gov (United States)

    Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S

    2014-07-01

    In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014

  19. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system

    KAUST Repository

    Cô rtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, L.; Calo, Victor M.

    2015-01-01

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.

  20. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system

    KAUST Repository

    Côrtes, A.M.A.

    2015-02-20

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.

  1. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm

    International Nuclear Information System (INIS)

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-01-01

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence. (paper)

  2. Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome

    Science.gov (United States)

    Abdelmoula, Walid M.; Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Tolner, Else; van den Maagdenberg, Arn M. J. M.; Lelieveldt, B. P. F.; McDonnell, Liam; Dijkstra, Jouke

    2014-03-01

    Imaging Mass Spectrometry (IMS) is an emerging molecular imaging technology that provides spatially resolved information on biomolecular structures; each image pixel effectively represents a molecular mass spectrum. By combining the histological images and IMS-images, neuroanatomical structures can be distinguished based on their biomolecular features as opposed to morphological features. The combination of IMS data with spatially resolved gene expression maps of the mouse brain, as provided by the Allen Mouse Brain atlas, would enable comparative studies of spatial metabolic and gene expression patterns in life-sciences research and biomarker discovery. As such, it would be highly desirable to spatially register IMS slices to the Allen Brain Atlas (ABA). In this paper, we propose a multi-step automatic registration pipeline to register ABA histology to IMS- images. Key novelty of the method is the selection of the best reference section from the ABA, based on pre-processed histology sections. First, we extracted a hippocampus-specific geometrical feature from the given experimental histological section to initially localize it among the ABA sections. Then, feature-based linear registration is applied to the initially localized section and its two neighbors in the ABA to select the most similar reference section. A non-rigid registration yields a one-to-one mapping of the experimental IMS slice to the ABA. The pipeline was applied on 6 coronal sections from two mouse brains, showing high anatomical correspondence, demonstrating the feasibility of complementing biomolecule distributions from individual mice with the genome-wide ABA transcriptome.

  3. Numerical solutions of magnetohydrodynamic stability of axisymmetric toroidal plasmas using cubic B-spline finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.

    1988-12-01

    A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, theta, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical ..beta../sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab.

  4. Space cutter compensation method for five-axis nonuniform rational basis spline machining

    Directory of Open Access Journals (Sweden)

    Yanyu Ding

    2015-07-01

    Full Text Available In view of the good machining performance of traditional three-axis nonuniform rational basis spline interpolation and the space cutter compensation issue in multi-axis machining, this article presents a triple nonuniform rational basis spline five-axis interpolation method, which uses three nonuniform rational basis spline curves to describe cutter center location, cutter axis vector, and cutter contact point trajectory, respectively. The relative position of the cutter and workpiece is calculated under the workpiece coordinate system, and the cutter machining trajectory can be described precisely and smoothly using this method. The three nonuniform rational basis spline curves are transformed into a 12-dimentional Bézier curve to carry out discretization during the discrete process. With the cutter contact point trajectory as the precision control condition, the discretization is fast. As for different cutters and corners, the complete description method of space cutter compensation vector is presented in this article. Finally, the five-axis nonuniform rational basis spline machining method is further verified in a two-turntable five-axis machine.

  5. Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Errichello, Robert [GEARTECH, Houston, TX (United States); Halse, Chris [Romax Technology, Nottingham (United Kingdom)

    2013-12-01

    Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.

  6. Assessing breathing motion by shape matching of lung and diaphragm surfaces

    Science.gov (United States)

    Urschler, Martin; Bischof, Horst

    2005-04-01

    Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.

  7. A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration

    Science.gov (United States)

    Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.

    2015-03-01

    In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.

  8. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2017-06-01

    Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The

  9. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Kern, C D; Long, P E

    1979-01-01

    Two methods that can be used to solve complex, three-dimensional, advection-diffusion transport equations are investigated. A quasi-Lagrangian cubic spline method and a chapeau function method are compared in advecting a passive scalar. The methods are simple to use, computationally fast, and reasonably accurate. Little numerical dissipation is manifested by the schemes. In simple advection tests with equal mesh spacing, the chapeau function method maintains slightly more accurate peak values than the cubic spline method. In tests with unequal mesh spacing, the cubic spline method has less noise, but slightly more damping than the standard chapeau method has. Both cubic splines and chapeau functions can be used to solve the three-dimensional problem of gaseous emissions dispersion without excessive programing complexity or storage requirements. (10 diagrams, 39 references, 2 tables)

  10. Spline Trajectory Algorithm Development: Bezier Curve Control Point Generation for UAVs

    Science.gov (United States)

    Howell, Lauren R.; Allen, B. Danette

    2016-01-01

    A greater need for sophisticated autonomous piloting systems has risen in direct correlation with the ubiquity of Unmanned Aerial Vehicle (UAV) technology. Whether surveying unknown or unexplored areas of the world, collecting scientific data from regions in which humans are typically incapable of entering, locating lost or wanted persons, or delivering emergency supplies, an unmanned vehicle moving in close proximity to people and other vehicles, should fly smoothly and predictably. The mathematical application of spline interpolation can play an important role in autopilots' on-board trajectory planning. Spline interpolation allows for the connection of Three-Dimensional Euclidean Space coordinates through a continuous set of smooth curves. This paper explores the motivation, application, and methodology used to compute the spline control points, which shape the curves in such a way that the autopilot trajectory is able to meet vehicle-dynamics limitations. The spline algorithms developed used to generate these curves supply autopilots with the information necessary to compute vehicle paths through a set of coordinate waypoints.

  11. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

    Directory of Open Access Journals (Sweden)

    Ravi Kanth A.S.V.

    2016-01-01

    Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

  12. Experimental dem Extraction from Aster Stereo Pairs and 3d Registration Based on Icesat Laser Altimetry Data in Upstream Area of Lambert Glacier, Antarctica

    Science.gov (United States)

    Hai, G.; Xie, H.; Chen, J.; Chen, L.; Li, R.; Tong, X.

    2017-09-01

    DEM Extraction from ASTER stereo pairs and three-dimensional registration by reference to ICESat laser altimetry data are carried out in upstream area of Lambert Glacier, East Antarctica. Since the study area is located in inland of East Antarctica where few textures exist, registration between DEM and ICESat data is performed. Firstly, the ASTER DEM generation is based on rational function model (RFM) and the procedure includes: a) rational polynomial coefficient (RPC) computation from ASTER metadata, b) L1A image product de-noise and destriping, c) local histogram equalization and matching, d) artificial collection of tie points and bundle adjustment, and e) coarse-to-fine hierarchical matching of five levels and grid matching. The matching results are filtered semi-automatically. Hereafter, DEM is interpolated using spline method with ground points converted from matching points. Secondly, the generated ASTER DEM is registered to ICESat data in three-dimensional space after Least-squares rigid transformation using singular value decomposition (SVD). The process is stated as: a) correspondence selection of terrain feature points from ICESat and DEM profiles, b) rigid transformation of generated ASTER DEM using selected feature correspondences based on least squares technique. The registration shows a good result that the elevation difference between DEM and ICESat data is low with a mean value less than 2 meters and the standard deviation around 7 meters. This DEM is generated and specially registered in Antarctic typical region without obvious ground rock control points and serves as true terrain input for further radar altimetry simulation.

  13. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  14. Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM

    Science.gov (United States)

    Kutten, Kwame S.; Vogelstein, Joshua T.; Charon, Nicolas; Ye, Li; Deisseroth, Karl; Miller, Michael I.

    2016-04-01

    The CLARITY method renders brains optically transparent to enable high-resolution imaging in the structurally intact brain. Anatomically annotating CLARITY brains is necessary for discovering which regions contain signals of interest. Manually annotating whole-brain, terabyte CLARITY images is difficult, time-consuming, subjective, and error-prone. Automatically registering CLARITY images to a pre-annotated brain atlas offers a solution, but is difficult for several reasons. Removal of the brain from the skull and subsequent storage and processing cause variable non-rigid deformations, thus compounding inter-subject anatomical variability. Additionally, the signal in CLARITY images arises from various biochemical contrast agents which only sparsely label brain structures. This sparse labeling challenges the most commonly used registration algorithms that need to match image histogram statistics to the more densely labeled histological brain atlases. The standard method is a multiscale Mutual Information B-spline algorithm that dynamically generates an average template as an intermediate registration target. We determined that this method performs poorly when registering CLARITY brains to the Allen Institute's Mouse Reference Atlas (ARA), because the image histogram statistics are poorly matched. Therefore, we developed a method (Mask-LDDMM) for registering CLARITY images, that automatically finds the brain boundary and learns the optimal deformation between the brain and atlas masks. Using Mask-LDDMM without an average template provided better results than the standard approach when registering CLARITY brains to the ARA. The LDDMM pipelines developed here provide a fast automated way to anatomically annotate CLARITY images; our code is available as open source software at http://NeuroData.io.

  15. 40 CFR 68.160 - Registration.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.160 Registration. (a) The owner or operator shall... substances handled in covered processes. (b) The registration shall include the following data: (1...

  16. SU-E-J-95: Towards Optimum Boundary Conditions for Biomechanical Model Based Deformable Registration Using Intensity Based Image Matching for Prostate Correlative Pathology.

    Science.gov (United States)

    Samavati, N; McGrath, D M; Lee, J; van der Kwast, T; Jewett, M; Mã Nard, C; Pluim, J P W; Brock, K K

    2012-06-01

    Deformable registration of histology to MRI is an essential tool to validate in vivo prostate cancer imaging. However, direct registration of histology to in vivo MR is prone to error due to geometric differences between the tissue sections and the in vivo imaging planes. To increase the accuracy of registration, an ex vivo high resolution MRI is acquired to compensate for the direct registration difficulties. A novel intensity-based deformable registration algorithm based on local variation in image intensities is proposed to register the histology to ex vivo MRI of prostatectomy specimens. Four sets of ex vivo MR and whole mount pathology images from four patients were used to investigate and validate the technique. In addition, 9 synthetically deformed ex vivo MR images were used. The standard deviation in local windows within the images was calculated to generate intermediate images based on both MR and histology. The intermediate images were registered using the Drop package (Munich, Germany). To further increase the accuracy, a final refinement of the registration was performed using Drop with a finer B-spline rid. The registration parameters were tuned to achieve a visually acceptable registration. Magnitude of Differences (MOD) and Angular Error (AE) were used to validate the synthetic data, and the Target Registration Error (TRE) of manually indicated landmarks was used for the clinical data. MOD of 0.6mm and AE of 8.3 degrees showed the efficacy of using intermediate images, compared to 0.8mm and 10.0 degrees achieved with Drop without the intermediate images. The average mean±std TRE among the four patients was 1.0±0.6 mm using the proposed method compared to 1.6±1.1 mm using Elastix (Utrecht, The Netherlands). An intensity-based deformable registration algorithm which uses intermediate images was evaluated on prostatectomy specimens and synthetically deformed clinical data, indicating improvement in overall accuracy and robustness. OICR, Terry Fox

  17. 17 CFR 274.11b - Form N-3, registration statement of separate accounts organized as management investment companies.

    Science.gov (United States)

    2010-04-01

    ... statement of separate accounts organized as management investment companies. 274.11b Section 274.11b... accounts organized as management investment companies. Form N-3 shall be used as the registration statement... offer variable annuity contracts to register as management investment companies. This form shall also be...

  18. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter

    Science.gov (United States)

    Erdogan, Eren; Schmidt, Michael; Seitz, Florian; Durmaz, Murat

    2017-02-01

    Although the number of terrestrial global navigation satellite system (GNSS) receivers supported by the International GNSS Service (IGS) is rapidly growing, the worldwide rather inhomogeneously distributed observation sites do not allow the generation of high-resolution global ionosphere products. Conversely, with the regionally enormous increase in highly precise GNSS data, the demands on (near) real-time ionosphere products, necessary in many applications such as navigation, are growing very fast. Consequently, many analysis centers accepted the responsibility of generating such products. In this regard, the primary objective of our work is to develop a near real-time processing framework for the estimation of the vertical total electron content (VTEC) of the ionosphere using proper models that are capable of a global representation adapted to the real data distribution. The global VTEC representation developed in this work is based on a series expansion in terms of compactly supported B-spline functions, which allow for an appropriate handling of the heterogeneous data distribution, including data gaps. The corresponding series coefficients and additional parameters such as differential code biases of the GNSS satellites and receivers constitute the set of unknown parameters. The Kalman filter (KF), as a popular recursive estimator, allows processing of the data immediately after acquisition and paves the way of sequential (near) real-time estimation of the unknown parameters. To exploit the advantages of the chosen data representation and the estimation procedure, the B-spline model is incorporated into the KF under the consideration of necessary constraints. Based on a preprocessing strategy, the developed approach utilizes hourly batches of GPS and GLONASS observations provided by the IGS data centers with a latency of 1 h in its current realization. Two methods for validation of the results are performed, namely the self consistency analysis and a comparison

  19. On convexity and Schoenberg's variation diminishing splines

    International Nuclear Information System (INIS)

    Feng, Yuyu; Kozak, J.

    1992-11-01

    In the paper we characterize a convex function by the monotonicity of a particular variation diminishing spline sequence. The result extends the property known for the Bernstein polynomial sequence. (author). 4 refs

  20. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang; Bai, Fangzhou [Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Yin, Peifeng [Department of Computer Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16801 (United States); Wang, Binghong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  1. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    Science.gov (United States)

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  2. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  3. Registration of cortical surfaces using sulcal landmarks for group analysis of MEG data☆

    Science.gov (United States)

    Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.

    2010-01-01

    We present a method to register individual cortical surfaces to a surface-based brain atlas or canonical template using labeled sulcal curves as landmark constraints. To map one cortex smoothly onto another, we minimize a thin-plate spline energy defined on the surface by solving the associated partial differential equations (PDEs). By using covariant derivatives in solving these PDEs, we compute the bending energy with respect to the intrinsic geometry of the 3D surface rather than evaluating it in the flattened metric of the 2D parameter space. This covariant approach greatly reduces the confounding effects of the surface parameterization on the resulting registration. PMID:20824115

  4. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    Science.gov (United States)

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  5. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    employ thin-plate splines (TPS) to interpolate a dense initial deformation field by considering all key points as the control points. Thus, the conventional image registration problem becomes much easier in the sense that we only need to compute the remaining small deformation for completing the registration of the subject to the template. Experimental results on both simulated and real data show that the registration performance can be significantly improved after integrating our patch-based deformation prediction framework into the existing registration algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Scripted Bodies and Spline Driven Animation

    DEFF Research Database (Denmark)

    Erleben, Kenny; Henriksen, Knud

    2002-01-01

    In this paper we will take a close look at the details and technicalities in applying spline driven animation to scripted bodies in the context of dynamic simulation. The main contributions presented in this paper are methods for computing velocities and accelerations in the time domain...

  7. Multimodal image registration of the scoliotic torso for surgical planning

    International Nuclear Information System (INIS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-01-01

    This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso

  8. 17 CFR 240.15b1-3 - Registration of successor to registered broker or dealer.

    Science.gov (United States)

    2010-04-01

    ... continues the business of a registered predecessor broker or dealer, and the succession is based solely on a... and continues the business of a broker or dealer registered pursuant to section 15(b) of the Act, the... successor, within 30 days after such succession, files an application for registration on Form BD, and the...

  9. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study

    International Nuclear Information System (INIS)

    Ou, J J; Ong, R E; Yankeelov, T E; Miga, M I

    2008-01-01

    This paper reports on the development and preliminary testing of a three-dimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal similarity between images acquired under different states of static loading. A series of simulation experiments with clinical image sets of human breasts were performed to test the ability of the method to identify and characterize a radiographically occult stiff lesion. Because boundary conditions are a critical input to the algorithm, a comparison of three methods for semi-automated surface point correspondence was conducted in the context of systematic and randomized noise processes. The results illustrate that 3D MIE was able to successfully reconstruct elasticity images using data obtained from both magnetic resonance and x-ray computed tomography systems. The lesion was localized correctly in all cases and its relative elasticity found to be reasonably close to the true values (3.5% with the use of spatial priors and 11.6% without). In addition, the inaccuracies of surface registration performed with thin-plate spline interpolation did not exceed empiric thresholds of unacceptable boundary condition error

  10. Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets

    International Nuclear Information System (INIS)

    Lakestani, M; Razzaghi, M; Dehghan, M

    2006-01-01

    This paper presents a numerical method for solving the controlled Duffing oscillator. The method can be extended to nonlinear calculus of variations and optimal control problems. The method is based upon compactly supported linear semi-orthogonal B-spline wavelets. The differential and integral expressions which arise in the system dynamics, the performance index and the boundary conditions are converted into some algebraic equations which can be solved for the unknown coefficients. Illustrative examples are included to demonstrate the validity and applicability of the technique

  11. 37 CFR 1.293 - Statutory invention registration.

    Science.gov (United States)

    2010-07-01

    ... the date of publication of the statutory invention registration; (2) The required fee for filing a request for publication of a statutory invention registration as provided for in § 1.17 (n) or (o); (3) A... application. (b) Any request for publication of a statutory invention registration must include the following...

  12. Scan-based volume animation driven by locally adaptive articulated registrations.

    Science.gov (United States)

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE

  13. Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Qiuliang; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States)

    2014-04-15

    Purpose: To improve the efficiency of atlas-based segmentation without compromising accuracy, and to demonstrate the validity of the proposed method on MRI-based prostate segmentation application. Methods: Accurate and efficient automatic structure segmentation is an important task in medical image processing. Atlas-based methods, as the state-of-the-art, provide good segmentation at the cost of a large number of computationally intensive nonrigid registrations, for anatomical sites/structures that are subject to deformation. In this study, the authors propose to utilize a combination of global, regional, and local metrics to improve the accuracy yet significantly reduce the number of required nonrigid registrations. The authors first perform an affine registration to minimize the global mean squared error (gMSE) to coarsely align each atlas image to the target. Subsequently, atarget-specific regional MSE (rMSE), demonstrated to be a good surrogate for dice similarity coefficient (DSC), is used to select a relevant subset from the training atlas. Only within this subset are nonrigid registrations performed between the training images and the target image, to minimize a weighted combination of gMSE and rMSE. Finally, structure labels are propagated from the selected training samples to the target via the estimated deformation fields, and label fusion is performed based on a weighted combination of rMSE and local MSE (lMSE) discrepancy, with proper total-variation-based spatial regularization. Results: The proposed method was applied to a public database of 30 prostate MR images with expert-segmented structures. The authors’ method, utilizing only eight nonrigid registrations, achieved a performance with a median/mean DSC of over 0.87/0.86, outperforming the state-of-the-art full-fledged atlas-based segmentation approach of which the median/mean DSC was 0.84/0.82 when applying to their data set. Conclusions: The proposed method requires a fixed number of nonrigid

  14. Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China.

    Science.gov (United States)

    Ye, Zirong; Xu, Li; Zhou, Zi; Wu, Yafei; Fang, Ya

    2018-01-02

    Most previous research on the disparities of hypertension risk has neither simultaneously explored the spatio-temporal disparities nor considered the spatial information contained in the samples, thus the estimated results may be unreliable. Our study was based on the China Health and Nutrition Survey (CHNS), including residents over 12 years old in seven provinces from 1991 to 2011. Bayesian B-spline was used in the extended shared component model (SCM) for fitting temporal-related variation to explore spatio-temporal distribution in the odds ratio (OR) of hypertension, reveal gender variation, and explore latent risk factors. Our results revealed that the prevalence of hypertension increased from 14.09% in 1991 to 32.37% in 2011, with men experiencing a more obvious change than women. From a spatial perspective, a standardized prevalence ratio (SPR) remaining at a high level was found in Henan and Shandong for both men and women. Meanwhile, before 1997, the temporal distribution of hypertension risk for both men and women remained low. After that, notably since 2004, the OR of hypertension in each province increased to a relatively high level, especially in Northern China. Notably, the OR of hypertension in Shandong and Jiangsu, which was over 1.2, continuously stood out after 2004 for males, while that in Shandong and Guangxi was relatively high for females. The findings suggested that obvious spatial-temporal patterns for hypertension exist in the regions under research and this pattern was quite different between men and women.

  15. Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities

    Directory of Open Access Journals (Sweden)

    Rakowski Waldemar

    2015-12-01

    Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.

  16. Effects of deformable registration algorithms on the creation of statistical maps for preoperative targeting in deep brain stimulation procedures

    Science.gov (United States)

    Liu, Yuan; D'Haese, Pierre-Francois; Dawant, Benoit M.

    2014-03-01

    Deep brain stimulation, which is used to treat various neurological disorders, involves implanting a permanent electrode into precise targets deep in the brain. Accurate pre-operative localization of the targets on pre-operative MRI sequence is challenging as these are typically located in homogenous regions with poor contrast. Population-based statistical atlases can assist with this process. Such atlases are created by acquiring the location of efficacious regions from numerous subjects and projecting them onto a common reference image volume using some normalization method. In previous work, we presented results concluding that non-rigid registration provided the best result for such normalization. However, this process could be biased by the choice of the reference image and/or registration approach. In this paper, we have qualitatively and quantitatively compared the performance of six recognized deformable registration methods at normalizing such data in poor contrasted regions onto three different reference volumes using a unique set of data from 100 patients. We study various metrics designed to measure the centroid, spread, and shape of the normalized data. This study leads to a total of 1800 deformable registrations and results show that statistical atlases constructed using different deformable registration methods share comparable centroids and spreads with marginal differences in their shape. Among the six methods being studied, Diffeomorphic Demons produces the largest spreads and centroids that are the furthest apart from the others in general. Among the three atlases, one atlas consistently outperforms the other two with smaller spreads for each algorithm. However, none of the differences in the spreads were found to be statistically significant, across different algorithms or across different atlases.

  17. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    Energy Technology Data Exchange (ETDEWEB)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

  18. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    International Nuclear Information System (INIS)

    Khalvati, Farzad; Tizhoosh, Hamid R.; Salmanpour, Aryan; Rahnamayan, Shahryar; Rodrigues, George

    2013-01-01

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability

  19. An automated A-value measurement tool for accurate cochlear duct length estimation.

    Science.gov (United States)

    Iyaniwura, John E; Elfarnawany, Mai; Ladak, Hanif M; Agrawal, Sumit K

    2018-01-22

    There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit

  20. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  1. Splines and variational methods

    CERN Document Server

    Prenter, P M

    2008-01-01

    One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text's first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimension

  2. A quantitative evaluation of pleural effusion on computed tomography scans using B-spline and local clustering level set.

    Science.gov (United States)

    Song, Lei; Gao, Jungang; Wang, Sheng; Hu, Huasi; Guo, Youmin

    2017-01-01

    Estimation of the pleural effusion's volume is an important clinical issue. The existing methods cannot assess it accurately when there is large volume of liquid in the pleural cavity and/or the patient has some other disease (e.g. pneumonia). In order to help solve this issue, the objective of this study is to develop and test a novel algorithm using B-spline and local clustering level set method jointly, namely BLL. The BLL algorithm was applied to a dataset involving 27 pleural effusions detected on chest CT examination of 18 adult patients with the presence of free pleural effusion. Study results showed that average volumes of pleural effusion computed using the BLL algorithm and assessed manually by the physicians were 586 ml±339 ml and 604±352 ml, respectively. For the same patient, the volume of the pleural effusion, segmented semi-automatically, was 101.8% ±4.6% of that was segmented manually. Dice similarity was found to be 0.917±0.031. The study demonstrated feasibility of applying the new BLL algorithm to accurately measure the volume of pleural effusion.

  3. Interactive, multi-modality image registrations for combined MRI/MRSI-planned HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Galen Reed

    2011-03-01

    Full Text Available Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically during the planning and dose delivery of focal high dose-rate (HDR brachytherapy of the prostate. Material and methods: Three imaging modalities – Magnetic Resonance Imaging (MRI, Magnetic Resonance Spectroscopic Imaging (MRSI, and Computed Tomography (CT – were used at different steps during the process. MRSI is used for identification of dominant intraprosatic lesions (DIL. A series of rigid and nonrigid transformations were applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutual information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients were treated using this protocol. Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information calculated between the morphed images and images acquired without the endorectal probe showed a significant (p = 0.0071 increase to that calculated between the unmorphed images and images acquired without the endorectal probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire procedure adds less than thirty minutes to the treatment planning. Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy of prostate cancer.

  4. Surface-to-surface registration using level sets

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Erbou, Søren G.; Vester-Christensen, Martin

    2007-01-01

    This paper presents a general approach for surface-to-surface registration (S2SR) with the Euclidean metric using signed distance maps. In addition, the method is symmetric such that the registration of a shape A to a shape B is identical to the registration of the shape B to the shape A. The S2SR...... problem can be approximated by the image registration (IR) problem of the signed distance maps (SDMs) of the surfaces confined to some narrow band. By shrinking the narrow bands around the zero level sets the solution to the IR problem converges towards the S2SR problem. It is our hypothesis...... that this approach is more robust and less prone to fall into local minima than ordinary surface-to-surface registration. The IR problem is solved using the inverse compositional algorithm. In this paper, a set of 40 pelvic bones of Duroc pigs are registered to each other w.r.t. the Euclidean transformation...

  5. Modeling terminal ballistics using blending-type spline surfaces

    Science.gov (United States)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  6. Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design

    International Nuclear Information System (INIS)

    Welander, A.S.; Deranian, R.D.; Humphreys, D.A.; Leuer, J.A.; Walker, M.L.

    2005-01-01

    Tokamak control design relies on an accurate linear model of the plasma response, which can often dominate the local field variations in regions under active feedback control. For example, when fluxes at selected points on the plasma boundary are regulated in DIII-D, the plasma response to a change in a coil current gives rise to a flux change which can be larger than and opposite to the flux change caused by the coil alone.In the past, rigid plasma models have been used for linear stability and shape control design. In a rigid model, the plasma current profile is considered fixed and moves rigidly in response to control coils to maintain radial and vertical force balance. In a nonrigid model, however, changes in the plasma shape and current profile are taken into account. Such models are expected to be important for future advanced tokamak control design. The present work describes development of a nonrigid plasma response model for high-accuracy multivariable control design and provides comparisons of model predictions against DIII-D experimental data. The linear perturbed plasma response model is calculated rapidly from an existing equilibrium solution

  7. An enhanced block matching algorithm for fast elastic registration in adaptive radiotherapy

    International Nuclear Information System (INIS)

    Malsch, U; Thieke, C; Huber, P E; Bendl, R

    2006-01-01

    Image registration has many medical applications in diagnosis, therapy planning and therapy. Especially for time-adaptive radiotherapy, an efficient and accurate elastic registration of images acquired for treatment planning, and at the time of the actual treatment, is highly desirable. Therefore, we developed a fully automatic and fast block matching algorithm which identifies a set of anatomical landmarks in a 3D CT dataset and relocates them in another CT dataset by maximization of local correlation coefficients in the frequency domain. To transform the complete dataset, a smooth interpolation between the landmarks is calculated by modified thin-plate splines with local impact. The concept of the algorithm allows separate processing of image discontinuities like temporally changing air cavities in the intestinal track or rectum. The result is a fully transformed 3D planning dataset (planning CT as well as delineations of tumour and organs at risk) to a verification CT, allowing evaluation and, if necessary, changes of the treatment plan based on the current patient anatomy without time-consuming manual re-contouring. Typically the total calculation time is less than 5 min, which allows the use of the registration tool between acquiring the verification images and delivering the dose fraction for online corrections. We present verifications of the algorithm for five different patient datasets with different tumour locations (prostate, paraspinal and head-and-neck) by comparing the results with manually selected landmarks, visual assessment and consistency testing. It turns out that the mean error of the registration is better than the voxel resolution (2 x 2 x 3 mm 3 ). In conclusion, we present an algorithm for fully automatic elastic image registration that is precise and fast enough for online corrections in an adaptive fractionated radiation treatment course

  8. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    Science.gov (United States)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  9. Image-based dose planning of intracavitary brachytherapy: registration of serial-imaging studies using deformable anatomic templates

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Carlson, Blake; Chao, K.S. Clifford; Yin Pen; Grigsby, Perry W.; Nguyen, Kim; Dempsey, James F; Lerma, Fritz A.; Bae, Kyongtae T.; Vannier, Michael W.; Williamson, Jeffrey F.

    2001-01-01

    Purpose: To demonstrate that high-dimensional voxel-to-voxel transformations, derived from continuum mechanics models of the underlying pelvic tissues, can be used to register computed tomography (CT) serial examinations into a single anatomic frame of reference for cumulative dose calculations. Methods and Materials: Three patients with locally advanced cervix cancer were treated with CT-compatible intracavitary (ICT) applicators. Each patient underwent five volumetric CT examinations: before initiating treatment, and immediately before and after the first and second ICT insertions, respectively. Each serial examination was rigidly registered to the patient's first ICT examination by aligning the bony anatomy. Detailed nonrigid alignment for organs (or targets) of interest was subsequently achieved by deforming the CT exams as a viscous-fluid, described by the Navier-Stokes equation, until the coincidence with the corresponding targets on CT image was maximized. In cases where ICT insertion induced very large and topologically complex rearrangements of pelvic organs, e.g., extreme uterine canal reorientation following tandem insertion, a viscous-fluid-landmark transformation was used to produce an initial registration. Results: For all three patients, reasonable registrations for organs (or targets) of interest were achieved. Fluid-landmark initialization was required in 4 of the 11 registrations. Relative to the best rigid bony landmark alignment, the viscous-fluid registration resulted in average soft-tissue displacements from 2.8 to 28.1 mm, and improved organ coincidence from the range of 5.2% to 72.2% to the range of 90.6% to 100%. Compared to the viscous-fluid transformation, global registration of bony anatomy mismatched 5% or more of the contoured organ volumes by 15-25 mm. Conclusion: Pelvic soft-tissue structures undergo large deformations and displacements during the external-beam and multiple-ICT course of radiation therapy for locally advanced cervix

  10. On the accurate fast evaluation of finite Fourier integrals using cubic splines

    International Nuclear Information System (INIS)

    Morishima, N.

    1993-01-01

    Finite Fourier integrals based on a cubic-splines fit to equidistant data are shown to be evaluated fast and accurately. Good performance, especially on computational speed, is achieved by the optimization of the spline fit and the internal use of the fast Fourier transform (FFT) algorithm for complex data. The present procedure provides high accuracy with much shorter CPU time than a trapezoidal FFT. (author)

  11. Registration of Space Objects

    Science.gov (United States)

    Schmidt-Tedd, Bernhard

    2017-07-01

    Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information

  12. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    International Nuclear Information System (INIS)

    Solves-Llorens, J. A.; Rupérez, M. J.; Monserrat, C.; Feliu, E.; García, M.; Lloret, M.

    2014-01-01

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  13. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Solves-Llorens, J. A.; Rupérez, M. J., E-mail: mjruperez@labhuman.i3bh.es; Monserrat, C. [LabHuman, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Feliu, E.; García, M. [Hospital Clínica Benidorm, Avda. Alfonso Puchades, 8, 03501 Benidorm (Alicante) (Spain); Lloret, M. [Hospital Universitari y Politècnic La Fe, Bulevar Sur, 46026 Valencia (Spain)

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  14. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    Science.gov (United States)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1

  15. Multimodal image registration of the scoliotic torso for surgical planning

    Science.gov (United States)

    2013-01-01

    Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431

  16. A batch Algorithm for Implicit Non-Rigid Shape and Motion Recovery

    DEFF Research Database (Denmark)

    Bartoli, Adrien; Olsen, Søren Ingvor

    2005-01-01

    The recovery of 3D shape and camera motion for non-rigid scenes from single-camera video footage is a very important problem in computer vision. The low-rank shape model consists in regarding the deformations as linear combinations of basis shapes. Most algorithms for reconstructing the parameters...... of this model along with camera motion are based on three main steps. Given point tracks and the rank, or equivalently the number of basis shapes, they factorize a measurement matrix containing all point tracks, from which the camera motion and basis shapes are extracted and refined in a bundle adjustment...

  17. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub

  18. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub

  19. Tensor-based morphometry with mappings parameterized by stationary velocity fields in Alzheimer's disease neuroimaging initiative.

    Science.gov (United States)

    Bossa, Matías Nicolás; Zacur, Ernesto; Olmos, Salvador

    2009-01-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations between a customized template and observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerrequisite. Further statistical analysis of the spatial transformations is used to highlight some useful information, such as local statistical differences among populations. With the new advent of recent and powerful non-rigid registration algorithms based on the large deformation paradigm, TBM is being increasingly used. In this work we evaluate the statistical power of TBM using stationary velocity field diffeomorphic registration in a large population of subjects from Alzheimer's Disease Neuroimaging Initiative project. The proposed methodology provided atrophy maps with very detailed anatomical resolution and with a high significance compared with results published recently on the same data set.

  20. Fast and robust multi-atlas segmentation of brain magnetic resonance images

    DEFF Research Database (Denmark)

    Lötjönen, Jyrki Mp; Wolz, Robin; Koikkalainen, Juha R

    2010-01-01

    We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead of stand......We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead...... of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity...

  1. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

    Science.gov (United States)

    Islamiyati, A.; Fatmawati; Chamidah, N.

    2018-03-01

    The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

  2. A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis

    International Nuclear Information System (INIS)

    D’Amore, L; Campagna, R; Murli, A; Galletti, A; Marcellino, L

    2012-01-01

    The scientific and application-oriented interest in the Laplace transform and its inversion is testified by more than 1000 publications in the last century. Most of the inversion algorithms available in the literature assume that the Laplace transform function is available everywhere. Unfortunately, such an assumption is not fulfilled in the applications of the Laplace transform. Very often, one only has a finite set of data and one wants to recover an estimate of the inverse Laplace function from that. We propose a fitting model of data. More precisely, given a finite set of measurements on the real axis, arising from an unknown Laplace transform function, we construct a dth degree generalized polynomial smoothing spline, where d = 2m − 1, such that internally to the data interval it is a dth degree polynomial complete smoothing spline minimizing a regularization functional, and outside the data interval, it mimics the Laplace transform asymptotic behavior, i.e. it is a rational or an exponential function (the end behavior model), and at the boundaries of the data set it joins with regularity up to order m − 1, with the end behavior model. We analyze in detail the generalized polynomial smoothing spline of degree d = 3. This choice was motivated by the (ill)conditioning of the numerical computation which strongly depends on the degree of the complete spline. We prove existence and uniqueness of this spline. We derive the approximation error and give a priori and computable bounds of it on the whole real axis. In such a way, the generalized polynomial smoothing spline may be used in any real inversion algorithm to compute an approximation of the inverse Laplace function. Experimental results concerning Laplace transform approximation, numerical inversion of the generalized polynomial smoothing spline and comparisons with the exponential smoothing spline conclude the work. (paper)

  3. Splines and polynomial tools for flatness-based constrained motion planning

    Science.gov (United States)

    Suryawan, Fajar; De Doná, José; Seron, María

    2012-08-01

    This article addresses the problem of trajectory planning for flat systems with constraints. Flat systems have the useful property that the input and the state can be completely characterised by the so-called flat output. We propose a spline parametrisation for the flat output, the performance output, the states and the inputs. Using this parametrisation the problem of constrained trajectory planning can be cast into a simple quadratic programming problem. An important result is that the B-spline parametrisation used gives exact results for constrained linear continuous-time system. The result is exact in the sense that the constrained signal can be made arbitrarily close to the boundary without having intersampling issues (as one would have in sampled-data systems). Simulation examples are presented, involving the generation of rest-to-rest trajectories. In addition, an experimental result of the method is also presented, where two methods to generate trajectories for a magnetic-levitation (maglev) system in the presence of constraints are compared and each method's performance is discussed. The first method uses the nonlinear model of the plant, which turns out to belong to the class of flat systems. The second method uses a linearised version of the plant model around an operating point. In every case, a continuous-time description is used. The experimental results on a real maglev system reported here show that, in most scenarios, the nonlinear and linearised models produce almost similar, indistinguishable trajectories.

  4. Application of the instanton method for analyzing tunneling splitting spectra of nonrigid molecular systems : II. Excited states

    NARCIS (Netherlands)

    Iroshnikov, GS; Sukhanov, LP

    For nonrigid molecules with two equivalent minima on their potential energy surface, expressions are obtained in terms of the instanton method for the calculation of the magnitude of the tunneling splitting of vibrational levels with the number n greater than or equal to 0 both in the harmonic

  5. Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping

    Science.gov (United States)

    Leberl, F.

    1975-01-01

    Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.

  6. A method for dynamic subtraction MR imaging of the liver

    Directory of Open Access Journals (Sweden)

    Setti Ernesto

    2006-06-01

    Full Text Available Abstract Background Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. Methods Nineteen consecutive patients (median age 45 years; range 37–67 were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a rigid 3D translation using maximization of normalized mutual information (NMI, and (b fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. Results The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p t-test after non-rigid realignment. The overall average NMI increase was 31%. Conclusion This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions.

  7. From symplectic integrator to Poincare map: Spline expansion of a map generator in Cartesian coordinates

    International Nuclear Information System (INIS)

    Warnock, R.L.; Ellison, J.A.; Univ. of New Mexico, Albuquerque, NM

    1997-08-01

    Data from orbits of a symplectic integrator can be interpolated so as to construct an approximation to the generating function of a Poincare map. The time required to compute an orbit of the symplectic map induced by the generator can be much less than the time to follow the same orbit by symplectic integration. The construction has been carried out previously for full-turn maps of large particle accelerators, and a big saving in time (for instance a factor of 60) has been demonstrated. A shortcoming of the work to date arose from the use of canonical polar coordinates, which precluded map construction in small regions of phase space near coordinate singularities. This paper shows that Cartesian coordinates can also be used, thus avoiding singularities. The generator is represented in a basis of tensor product B-splines. Under weak conditions the spline expansion converges uniformly as the mesh is refined, approaching the exact generator of the Poincare map as defined by the symplectic integrator, in some parallelepiped of phase space centered at the origin

  8. Bone marrow edema pattern identification in patients with lytic bone lesions using digital subtraction angiography-like bone subtraction on large-area detector computed tomography.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Hossu, Gabriela; Lecocq, Sophie; Razeto, Marco; Louis, Matthias; Blum, Alain

    2014-03-01

    The objective of this study was to evaluate the performance of digital subtraction angiography (DSA)-like bone subtraction with 2 different registration methods for the identification of bone marrow edema pattern (BMEP) in patients with lytic bone lesions, using magnetic resonance imaging as the criterion standard. Fifty-five patients with a lytic bone lesion were included in this prospective study with approval from the ethics committee. All patients underwent magnetic resonance imaging and low-dose computed tomographic (CT) perfusion after signing an informed consent. Two CT volumes were used for bone subtraction, which was performed with 2 different algorithms (rigid and nonrigid). Enhancement at the nonlytic bone marrow was considered as a sign of BMEP. Two readers evaluated the images blindly. The presence of BMEP on bone-subtracted CT images was evaluated subjectively and quantitatively. Image quality was assessed. Magnetic resonance imaging was used as the criterion standard. Using a rigid registration method, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of CT with DSA-like bone subtraction BMEP was 77%, 100%, 100%, 68%, and 85%, respectively. The interobserver agreement was good (κ, 0.782). Image quality was better using a nonrigid registration. With this algorithm, artifacts interfered with image interpretation in only 5% of cases. However, there was a noticeable drop in sensitivity and negative predictive value when a nonrigid algorithm was used: 56% and 52%, respectively. The interobserver agreement was average with a nonrigid subtraction algorithm. Computed tomography with DSA-like bone subtraction is sensitive and highly specific for the identification of BMEP associated with lytic bone lesions. Rigid registering should be preferred, but nonrigid algorithms can be used as a second option when artifacts interfere with image interpretation.

  9. Thin-plate spline analysis of mandibular growth.

    Science.gov (United States)

    Franchi, L; Baccetti, T; McNamara, J A

    2001-04-01

    The analysis of mandibular growth changes around the pubertal spurt in humans has several important implications for the diagnosis and orthopedic correction of skeletal disharmonies. The purpose of this study was to evaluate mandibular shape and size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion by means of an appropriate morphometric technique (thin-plate spline analysis). Ten mandibular landmarks were identified on lateral cephalograms of 29 subjects at 6 different developmental phases. The 6 phases corresponded to 6 different maturational stages in cervical vertebrae during accelerative and decelerative phases of the pubertal growth curve of the mandible. Differences in shape between average mandibular configurations at the 6 developmental stages were visualized by means of thin-plate spline analysis and subjected to permutation test. Centroid size was used as the measure of the geometric size of each mandibular specimen. Differences in size at the 6 developmental phases were tested statistically. The results of graphical analysis indicated a statistically significant change in mandibular shape only for the growth interval from stage 3 to stage 4 in cervical vertebral maturation. Significant increases in centroid size were found at all developmental phases, with evidence of a prepubertal minimum and of a pubertal maximum. The existence of a pubertal peak in human mandibular growth, therefore, is confirmed by thin-plate spline analysis. Significant morphological changes in the mandible during the growth interval from stage 3 to stage 4 in cervical vertebral maturation may be described as an upward-forward direction of condylar growth determining an overall "shrinkage" of the mandibular configuration along the measurement of total mandibular length. This biological mechanism is particularly efficient in compensating for major increments in mandibular size at the adolescent spurt.

  10. An investigation of temporal regularization techniques for dynamic PET reconstructions using temporal splines

    International Nuclear Information System (INIS)

    Verhaeghe, Jeroen; D'Asseler, Yves; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2007-01-01

    The use of a temporal B-spline basis for the reconstruction of dynamic positron emission tomography data was investigated. Maximum likelihood (ML) reconstructions using an expectation maximization framework and maximum A-posteriori (MAP) reconstructions using the generalized expectation maximization framework were evaluated. Different parameters of the B-spline basis of such as order, number of basis functions and knot placing were investigated in a reconstruction task using simulated dynamic list-mode data. We found that a higher order basis reduced both the bias and variance. Using a higher number of basis functions in the modeling of the time activity curves (TACs) allowed the algorithm to model faster changes of the TACs, however, the TACs became noisier. We have compared ML, Gaussian postsmoothed ML and MAP reconstructions. The noise level in the ML reconstructions was controlled by varying the number of basis functions. The MAP algorithm penalized the integrated squared curvature of the reconstructed TAC. The postsmoothed ML was always outperformed in terms of bias and variance properties by the MAP and ML reconstructions. A simple adaptive knot placing strategy was also developed and evaluated. It is based on an arc length redistribution scheme during the reconstruction. The free knot reconstruction allowed a more accurate reconstruction while reducing the noise level especially for fast changing TACs such as blood input functions. Limiting the number of temporal basis functions combined with the adaptive knot placing strategy is in this case advantageous for regularization purposes when compared to the other regularization techniques

  11. Automated registration of multispectral MR vessel wall images of the carotid artery

    Energy Technology Data Exchange (ETDEWEB)

    Klooster, R. van ' t; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der, E-mail: rvdgeest@lumc.nl [Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Klein, S. [Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 GE (Netherlands); Kwee, R. M.; Kooi, M. E. [Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht 6202 AZ (Netherlands)

    2013-12-15

    moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.

  12. Automated registration of multispectral MR vessel wall images of the carotid artery

    International Nuclear Information System (INIS)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-01-01

    moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images

  13. A Novel Approach of Cardiac Segmentation In CT Image Based On Spline Interpolation

    International Nuclear Information System (INIS)

    Gao Yuan; Ma Pengcheng

    2011-01-01

    Organ segmentation in CT images is the basis of organ model reconstruction, thus precisely detecting and extracting the organ boundary are keys for reconstruction. In CT image the cardiac are often adjacent to the surrounding tissues and gray gradient between them is too slight, which cause the difficulty of applying classical segmentation method. We proposed a novel algorithm for cardiac segmentation in CT images in this paper, which combines the gray gradient methods and the B-spline interpolation. This algorithm can perfectly detect the boundaries of cardiac, at the same time it could well keep the timeliness because of the automatic processing.

  14. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.

    Science.gov (United States)

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-02-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. Copyright © 2011. Published by Elsevier GmbH.

  15. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph [Medical University of Vienna (Austria). Center of Medical Physics and Biomedical Engineering] [and others

    2012-07-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference X-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 x 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. (orig.)

  16. Spline methods for conversation equations

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1991-01-01

    The consider the numerical solution of physical theories, in particular hydrodynamics, which can be formulated as systems of conservation laws. To this end we briefly describe the Basis Spline and collocation methods, paying particular attention to representation theory, which provides discrete analogues of the continuum conservation and dispersion relations, and hence a rigorous understanding of errors and instabilities. On this foundation we propose an algorithm for hydrodynamic problems in which most linear and nonlinear instabilities are brought under control. Numerical examples are presented from one-dimensional relativistic hydrodynamics. 9 refs., 10 figs

  17. PySpline: A Modern, Cross-Platform Program for the Processing of Raw Averaged XAS Edge and EXAFS Data

    International Nuclear Information System (INIS)

    Tenderholt, Adam; Hedman, Britt; Hodgson, Keith O.

    2007-01-01

    PySpline is a modern computer program for processing raw averaged XAS and EXAFS data using an intuitive approach which allows the user to see the immediate effect of various processing parameters on the resulting k- and R-space data. The Python scripting language and Qt and Qwt widget libraries were chosen to meet the design requirement that it be cross-platform (i.e. versions for Windows, Mac OS X, and Linux). PySpline supports polynomial pre- and post-edge background subtraction, splining of the EXAFS region with a multi-segment polynomial spline, and Fast Fourier Transform (FFT) of the resulting k3-weighted EXAFS data

  18. Research of vibration resistance of non-rigid shafts turning with various technological set-ups

    Directory of Open Access Journals (Sweden)

    Vasilevykh Sergey L.

    2017-01-01

    Full Text Available The article considers the definition of the stability range of a dynamic system for turning non-rigid shafts with different technological set-ups: standard and developed ones; they are improved as a result of this research. The topicality of the study is due to the fact that processing such parts is associated with significant difficulties caused by deformation of the workpiece under the cutting force as well as occurrence of vibration of the part during processing, they are so intense and in practice they force to significantly reduce the cutting regime, recur to multiple-pass operation, lead to premature deterioration of the cutter, as a result, reduce the productivity of machining shafts on metal-cutting machines. In this connection, the purpose of the present research is to determine the boundaries of the stability regions with intensive turning of non-rigid shafts. In the article the basic theoretical principles of construction of a mathematical system focused on the process of non-free cutting of a dynamic machine are justified. By means of the developed mathematical model interrelations are established and legitimacies of influence of various technological set-ups on stability of the dynamic system of the machine-tool-device-tool-blank are revealed. The conducted researches allow to more objectively represent difficult processes that occur in a closed dynamic system of a machine.

  19. C2-rational cubic spline involving tension parameters

    Indian Academy of Sciences (India)

    preferred which preserves some of the characteristics of the function to be interpolated. In order to tackle such ... Shape preserving properties of the rational (cubic/quadratic) spline interpolant have been studied ... tension parameters which is used to interpolate the given monotonic data is described in. [6]. Shape preserving ...

  20. Spline function fit for multi-sets of correlative data

    International Nuclear Information System (INIS)

    Liu Tingjin; Zhou Hongmo

    1992-01-01

    The Spline fit method for multi-sets of correlative data is developed. The properties of correlative data fit are investigated. The data of 23 Na(n, 2n) cross section are fitted in the cases with and without correlation

  1. A fractional spline collocation-Galerkin method for the time-fractional diffusion equation

    Directory of Open Access Journals (Sweden)

    Pezza L.

    2018-03-01

    Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.

  2. Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Dong [KyungPook National Univ., Taegu (Korea, Republic of)

    1996-12-31

    In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).

  3. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  4. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Science.gov (United States)

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  5. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  6. The basis spline method and associated techniques

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1989-01-01

    We outline the Basis Spline and Collocation methods for the solution of Partial Differential Equations. Particular attention is paid to the theory of errors, and the handling of non-self-adjoint problems which are generated by the collocation method. We discuss applications to Poisson's equation, the Dirac equation, and the calculation of bound and continuum states of atomic and nuclear systems. 12 refs., 6 figs

  7. Differential constraints for bounded recursive identification with multivariate splines

    NARCIS (Netherlands)

    De Visser, C.C.; Chu, Q.P.; Mulder, J.A.

    2011-01-01

    The ability to perform online model identification for nonlinear systems with unknown dynamics is essential to any adaptive model-based control system. In this paper, a new differential equality constrained recursive least squares estimator for multivariate simplex splines is presented that is able

  8. A Bayesian-optimized spline representation of the electrocardiogram

    International Nuclear Information System (INIS)

    Guilak, F G; McNames, J

    2013-01-01

    We introduce an implementation of a novel spline framework for parametrically representing electrocardiogram (ECG) waveforms. This implementation enables a flexible means to study ECG structure in large databases. Our algorithm allows researchers to identify key points in the waveform and optimally locate them in long-term recordings with minimal manual effort, thereby permitting analysis of trends in the points themselves or in metrics derived from their locations. In the work described here we estimate the location of a number of commonly-used characteristic points of the ECG signal, defined as the onsets, peaks, and offsets of the P, QRS, T, and R′ waves. The algorithm applies Bayesian optimization to a linear spline representation of the ECG waveform. The location of the knots—which are the endpoints of the piecewise linear segments used in the spline representation of the signal—serve as the estimate of the waveform’s characteristic points. We obtained prior information of knot times, amplitudes, and curvature from a large manually-annotated training dataset and used the priors to optimize a Bayesian figure of merit based on estimated knot locations. In cases where morphologies vary or are subject to noise, the algorithm relies more heavily on the estimated priors for its estimate of knot locations. We compared optimized knot locations from our algorithm to two sets of manual annotations on a prospective test data set comprising 200 beats from 20 subjects not in the training set. Mean errors of characteristic point locations were less than four milliseconds, and standard deviations of errors compared favorably against reference values. This framework can easily be adapted to include additional points of interest in the ECG signal or for other biomedical detection problems on quasi-periodic signals. (paper)

  9. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    International Nuclear Information System (INIS)

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-01-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures

  10. 27 CFR 53.140 - Registration.

    Science.gov (United States)

    2010-04-01

    ... of selling or purchasing articles tax free as provided in this section. In the case of a nonprofit....141. (e) Cross references. (1) For exceptions to the requirement for registration, see section 4222(b...

  11. Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images.

    Science.gov (United States)

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2012-01-01

    the thin-plate spline based deformable registration, commonly used in mouse atlas registration. The results revealed that the statistical atlas has the advantage of improving the estimation of low-contrast organs.

  12. Deformable Image Registration of Liver With Consideration of Lung Sliding Motion

    International Nuclear Information System (INIS)

    Xie, Yaoqin; Chao, Ming; Xiong, Guanglei

    2011-01-01

    Purpose: A feature based deformable registration model with sliding transformation was developed in the upper abdominal region for liver cancer. Methods: A two-step thin-plate spline (bi-TPS) algorithm was implemented to deformably register the liver organ. The first TPS registration was performed to exclusively quantify the sliding displacement component. A manual segmentation of the thoracic and abdominal cavity was performed as a priori knowledge. Tissue feature points were automatically identified inside the segmented contour on the images. The scale invariant feature transform method was utilized to match feature points that served as landmarks for the subsequent TPS registration to derive the sliding displacement vector field. To a good approximation, only motion along superior/inferior (SI) direction of voxels on each slice was averaged to obtain the sliding displacement for each slice. A second TPS transformation, as the last step, was carried out to obtain the local deformation field. Manual identification of bifurcation on liver, together with the manual segmentation of liver organ, was employed as a ''ground truth'' for assessing the algorithm's performance. Results: The proposed two-step TPS was assessed with six liver patients. The average error of liver bifurcation between manual identification and calculation for these patients was less than 1.8 mm. The residual errors between manual contour and propagated contour of liver organ using the algorithm fell in the range between 2.1 and 2.8 mm. An index of Dice similarity coefficient (DSC) between manual contour and calculated contour for liver tumor was 93.6% compared with 71.2% from the conventional TPS calculation. Conclusions: A high accuracy (∼2 mm) of the two-step feature based TPS registration algorithm was achievable for registering the liver organ. The discontinuous motion in the upper abdominal region was properly taken into consideration. Clinical implementation of the algorithm will find

  13. Multivariate Epi-splines and Evolving Function Identification Problems

    Science.gov (United States)

    2015-04-15

    such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction

  14. Splines under tension for gridding three-dimensional data

    International Nuclear Information System (INIS)

    Brand, H.R.; Frazer, J.W.

    1982-01-01

    By use of the splines-under-tension concept, a simple algorithm has been developed for the three-dimensional representation of nonuniformly spaced data. The representations provide useful information to the experimentalist when he is attempting to understand the results obtained in a self-adaptive experiment. The shortcomings of the algorithm are discussed as well as the advantages

  15. Effects of early activator treatment in patients with class II malocclusion evaluated by thin-plate spline analysis.

    Science.gov (United States)

    Lux, C J; Rübel, J; Starke, J; Conradt, C; Stellzig, P A; Komposch, P G

    2001-04-01

    The aim of the present longitudinal cephalometric study was to evaluate the dentofacial shape changes induced by activator treatment between 9.5 and 11.5 years in male Class II patients. For a rigorous morphometric analysis, a thin-plate spline analysis was performed to assess and visualize dental and skeletal craniofacial changes. Twenty male patients with a skeletal Class II malrelationship and increased overjet who had been treated at the University of Heidelberg with a modified Andresen-Häupl-type activator were compared with a control group of 15 untreated male subjects of the Belfast Growth Study. The shape changes for each group were visualized on thin-plate splines with one spline comprising all 13 landmarks to show all the craniofacial shape changes, including skeletal and dento-alveolar reactions, and a second spline based on 7 landmarks to visualize only the skeletal changes. In the activator group, the grid deformation of the total spline pointed to a strong activator-induced reduction of the overjet that was caused both by a tipping of the incisors and by a moderation of sagittal discrepancies, particularly a slight advancement of the mandible. In contrast with this, in the control group, only slight localized shape changes could be detected. Both in the 7- and 13-landmark configurations, the shape changes between the groups differed significantly at P thin-plate spline analysis turned out to be a useful morphometric supplement to conventional cephalometrics because the complex patterns of shape change could be suggestively visualized.

  16. SPLINE-FUNCTIONS IN THE TASK OF THE FLOW AIRFOIL PROFILE

    Directory of Open Access Journals (Sweden)

    Mikhail Lopatjuk

    2013-12-01

    Full Text Available The method and the algorithm of solving the problem of streamlining are presented. Neumann boundary problem is reduced to the solution of integral equations with given boundary conditions using the cubic spline-functions

  17. Quintic hyperbolic nonpolynomial spline and finite difference method for nonlinear second order differential equations and its application

    Directory of Open Access Journals (Sweden)

    Navnit Jha

    2014-04-01

    Full Text Available An efficient numerical method based on quintic nonpolynomial spline basis and high order finite difference approximations has been presented. The scheme deals with the space containing hyperbolic and polynomial functions as spline basis. With the help of spline functions we derive consistency conditions and high order discretizations of the differential equation with the significant first order derivative. The error analysis of the new method is discussed briefly. The new method is analyzed for its efficiency using the physical problems. The order and accuracy of the proposed method have been analyzed in terms of maximum errors and root mean square errors.

  18. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.

    2010-08-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  19. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.; Carroll, R.J.; Wand, M.P.

    2010-01-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  20. Application of multivariate splines to discrete mathematics

    OpenAIRE

    Xu, Zhiqiang

    2005-01-01

    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...