Sample records for b-responsive myb134 gene

  1. A type-B response regulator drives the expression of the hydroxymethylbutenyl diphosphate synthase gene in periwinkle. (United States)

    Ginis, Olivia; Oudin, Audrey; Guirimand, Grégory; Chebbi, Mouadh; Courdavault, Vincent; Glévarec, Gaëlle; Papon, Nicolas; Crèche, Joel; Courtois, Martine


    In plant cytokinin (CK) signaling, type-B response regulators (RRs) act as major players in orchestrating the transcriptome changes in response to CK. However, their direct targets are poorly known. The identification of putative type-ARR1 motifs located within the promoter of the CK-responsive hydroxyl methyl butenyl diphosphate synthase (HDS) gene from the methyl erythritol phosphate (MEP) pathway prompted us to investigate the ability of a previously isolated periwinkle type-B RR (CrRR5) that presents high homologies with ARR1 to interact with the promoter. Electrophoretic mobility shift assays (EMSAs) demonstrated that the CrRR5 DNA-binding domain binds specifically type-ARR1 motifs within the HDS promoter. We also established through yellow fluorescent protein (YFP) imaging the targeting of CrRR5 into cell nucleus in accordance with its putative function of transcription factor. In transient assays performed on periwinkle cells cultivated with CK, overexpression of the full-length CrRR5 or a truncated CrRR5 engineering a constitutive active form (35S:ΔDDK) did not affect the HDS promoter activity that reached a threshold. By contrast, in absence of CK, overexpression of CrRR5ΔDDK enhanced promoter activity up to the threshold level observed in cells grown with CK. Our results strongly suggest that CrRR5 directly transactivates the HDS promoter. CrRR5 is the first identified transcription factor mediating the CK signaling that targets a gene from the MEP pathway involved in isoprenoid metabolism. Moreover, CrRR5 could play a role in a regulatory mechanism controlling CK homeostasis in periwinkle cells.

  2. Escape from transcriptional shutoff during poliovirus infection: NF-κB-responsive genes IκBa and A20. (United States)

    Doukas, Tammy; Sarnow, Peter


    It has been known for a long time that infection of cultured cells with poliovirus results in the overall inhibition of transcription of most host genes. We examined whether selected host genes can escape transcriptional inhibition by thiouridine marking newly synthesized host mRNAs during viral infection. Using cDNA microarrays hybridized to cDNAs made from thiolated mRNAs, a small set of host transcripts was identified and their expression verified by quantitative PCR and Northern and Western blot analyses. These transcripts were synthesized from genes that displayed enrichment for NF-κB binding sites in their promoter regions, suggesting that some NF-κB-regulated promoters can escape the virus-induced inhibition of transcription. In particular, two negative regulators of NF-κB, IκBa and A20, were upregulated during viral infection. Depletion of A20 enhanced viral RNA abundance and viral yield, arguing that cells respond to virus infection by counteracting NF-κB-induced proviral effects.

  3. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element. (United States)

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito


    We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-κB) response element. The 3T3-L1 cells named 3T3-L1-NF-κB-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β induced GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-κB activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-κB-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  4. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)


    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  5. Molecular cloning of cecropin B responsive endonucleases in Yersinia ruckeri (United States)

    We have previously demonstrated that Yersinia ruckeri resists cecropin B in an inducible manner. In this study, we sought to identify the molecular changes responsible for the inducible cecropin B resistance of Y. ruckeri. Differences in gene expression associated with the inducible resistance were ...

  6. Identification of Nuclear Factor-κB Responsive Element within the Neuronal Nitric Oxide Synthase Exon 1f-specific Promoter

    Institute of Scientific and Technical Information of China (English)

    Yinghui LI; Guangyu LI; Chunyi LI; Yanyan ZHAO


    Transcriptional regulation of the neuronal nitric oxide synthase gene (nNOS) is particularly complex as 12 distinct transcripts derived from different first exons are expressed in a tissue- and cellspecific manner. The exon 1f mRNA is relatively highly expressed in nervous system and relies upon exon 1f-specific promoter activity. Using conventional and real-time reverse transcription-polymerase chain reaction,we found exon 1f mRNA was the major transcript of the nNOS gene in human neuroblastoma SK-N-SH cells. We analyzed a 1090 bp fragment of 1f promoter by TRANSFAC-TESS and Match softwares and luciferase assay, and found an important positive transcriptional regulation region that contained a putative nuclear factor (NF)-κB binding site. Subsequently, using electrophoresis mobility shift and chromatin immunoprecipitation assays, we identified this site to be the NF-κB responsive element, a crucial positive regulator in the activation of the nNOS 1f promoter. Taken together, our study identified an NF-κB responsive element within nNOS 1f promoter and showed that it plays an important role in the transactivation of nNOS 1f mRNA, the major transcript of nNOS in SK-N-SH cells.

  7. Gene (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  8. Genes and Gene Therapy (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  9. Cellular Interferon Gamma and Granzyme B Responses to Cytomegalovirus-pp65 and Influenza N1 Are Positively Associated in Elderly. (United States)

    Theeten, Heidi; Mathei, Catharina; Peeters, Kelly; Ogunjimi, Benson; Goossens, Herman; Ieven, Margareta; Van Damme, Pierre; Cools, Nathalie


    Morbidity and mortality in the elderly are associated with viral infections, including influenza and cytomegalovirus (CMV). With increasing age, cellular immunity gains importance in protection to influenza, but latent CMV is highly prevalent and associated with immune dysfunction. An insight into the association between immunity against influenza and CMV adds to the understanding of healthy aging. Here we first aimed to measure influenza-specific cellular immunity using granzyme B (GrzB) and interferon-gamma (IFN-γ)-ELISpot. Next, influenza-specific cellular immunity was associated with humoral and cellular CMV-specific immunity in healthy 65+ elderly. Vaccine trial participants gave additional blood samples 3 weeks after receiving a H1N1 containing vaccine. CMV serology was determined and peripheral blood mononuclear cells were stimulated with influenza N1 or CMV pp65-derived peptide pools for 7 days and rechallenged to assess antigen-specific GgrzB and IFN-γ responses using ELISpot assays. Results were compared using chi-square and correlation analysis. Eighty-three individuals (60% men, 65% CMV IgG+, age range 65-78y) participated. We found significant positive associations between IFN-γ and GrzB responses to both influenza and CMV, but also between a positive CMV serostatus and an influenza N1-specific activation marker response (p = 0.013). CMV pp65 responses were detected in CMV IgG+ individuals, but remarkably also in CMV IgG- individuals (27%). In this study, following influenza vaccination, elderly with cellular immunity against CMV were more likely to have cellular immunity against influenza vaccine N1 antigen. These findings stress the need to continue exploring the possible role of CMV in immunosenescence.

  10. Immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Honjo, T. (Kyoto Univ. (Japan)); Alt, F.W. (Columbia Univ., Dobbs Ferry, NY (USA). Hudson Labs.); Rabbitts, T.H. (Medical Research Council, Cambridge (UK))


    This book reports on the structure, function, and expression of the genes encoding antibodies in normal and neoplastic cells. Topics covered are: B Cells; Organization and rearrangement of immunoglobin genes; Immunoglobin genes in disease; Immunoglobin gene expression; and Immunoglobin-related genes.

  11. Gene therapy

    Institute of Scientific and Technical Information of China (English)


    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  12. Trichoderma genes (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA


    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  13. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    Directory of Open Access Journals (Sweden)

    Rodriguez Mario H


    Full Text Available Abstract Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species.

  14. Endothelial Genes (United States)


    8217Department of Surgery, Division of Oncology , and 2Department of BRCA-l and BRCA-2 (breast cancer susceptibility genes), Pathology, University of...Suppression subtractive hybridization re- Cancer: principles and practice of oncology . Philadelphia: Lippincott- vealed an RNA sequence (GenBank accession...Lippman ME. Cancer of the breast: molecular biology angiogenesis in sarcomas and carcinomas. Clin Cancer Res 1999;5: of breast cancer. In: DeVita VT

  15. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu


    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  16. Gene doping: gene delivery for olympic victory



    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted...

  17. GeneEd -- A Genetics Educational Resource (United States)

    ... Javascript on. Feature: Genetics 101 GeneEd — A Genetics Educational Resource Past Issues / Summer 2013 Table of Contents Science ... The Hereditary Material of Life / GeneEd — A Genetics Educational Resource / Using The Genetics Home Reference Website / Understanding the ...

  18. Principles of gene therapy


    Mammen Biju; Ramakrishnan T; Sudhakar Uma; Vijayalakshmi


    Genes are specific sequences of bases that encode instructions to make proteins. When genes are altered so that encoded proteins are unable to carry out their normal functions, genetic disorders can result. Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. This article reviews the fundamentals in gene therapy and its various modes of administration with an insight into the role of gene therapy in Periodontics an...

  19. Organization of immunoglobulin genes. (United States)

    Tonegawa, S; Brack, C; Hozumi, N; Pirrotta, V


    The nucleotide-sequence determination of a cloned, embryonic Vlambda gene directly demonstrated that V genes are separate from a corresponding C gene in embryonic cells. Analysis by restriction enzymes of total cellular DNA from various sources strongly suggested that the two separate immunoglobulin genes become continuous during differentiation of B lymphocytes. There seems to be a strict correlation between the joining event and activation of the joined genes. Cloning of more immunoglobulin genes from embryo and plasma cells will not only provide direct demonstration of such a gene-joining event but also help in the elucidation of a possible relationship of the event to gene activation mechanisms.

  20. Gene doping: gene delivery for olympic victory. (United States)

    Gould, David


    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place.

  1. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.


    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...

  2. Lateral gene transfer, rearrangement, reconciliation

    NARCIS (Netherlands)

    Patterson, M.D.; Szollosi, G.; Daubin, V.; Tannier, E.


    Background. Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer,

  3. Gene doping in sports. (United States)

    Unal, Mehmet; Ozer Unal, Durisehvar


    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement.

  4. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  5. Human Gene Therapy: Genes without Frontiers? (United States)

    Simon, Eric J.


    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  6. Hormone-controlled UV-B responses in plants. (United States)

    Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip


    Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.

  7. Cochlear Gene Therapy



    The purpose of this review is to highlight recent advances in cochlear gene therapy over the past several years. Cochlear gene therapy has undergone tremendous advances over the past decade. Beginning with some groundbreaking work in 2005 documenting hair cell regeneration using virallymediated delivery of the mouse atonal 1 gene, gene therapy is now being explored as a possible treatment for a variety of causes of hearing loss.

  8. Reading and Generalist Genes (United States)

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert


    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  9. Journey from Jumping Genes to Gene Therapy. (United States)

    Whartenby, Katharine A


    Gene therapy for cancer is a still evolving approach that resulted from a long history of studies into genetic modification of organisms. The fascination with manipulating gene products has spanned hundreds if not thousands of years, beginning with observations of the hereditary nature of traits in plants and culminating to date in the alteration of genetic makeup in humans via modern technology. From early discoveries noting the potential for natural mobility of genetic material to the culmination of clinical trials in a variety of disease, gene transfer has had an eventful and sometimes tumultuous course. Within the present review is a brief history of the biology of gene transfer, how it came to be applied to genetic diseases, and its early applications to cancer therapies. Some of the different types of methods used to modify cells, the theories behind the approaches, and some of the limitations encountered along the way are reviewed.

  10. Regulated Gene Therapy. (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia


    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  11. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu


    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  12. Gene therapy in periodontics. (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini


    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  13. Gene conversion in human rearranged immunoglobulin genes. (United States)

    Darlow, John M; Stott, David I


    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  14. Cyanobacterial signature genes. (United States)

    Martin, Kirt A; Siefert, Janet L; Yerrapragada, Sailaja; Lu, Yue; McNeill, Thomas Z; Moreno, Pedro A; Weinstock, George M; Widger, William R; Fox, George E


    A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest.

  15. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. (United States)

    Sacchetti, P; Mitchell, T R; Granneman, J G; Bannon, M J


    The importance of the nuclear receptor nurr1 for the appropriate development of mesencephalic dopamine-synthesizing neurons has been clearly demonstrated through the targeted disruption of the nurr1 gene. The persistence of nurr1 expression in adult tissue suggests a possible role for this transcription factor in the maintenance, as well as development, of the dopaminergic phenotype. To address this issue, we analyzed the effects of nurr1 on the transcriptional expression of the human dopamine transporter gene (hDAT), one of the most specific phenotypic markers for dopaminergic neurons. Nurr1 enhanced the transcriptional activity of hDAT gene constructs transiently transfected into a newly described cell line (SN4741) that expresses a dopaminergic phenotype, whereas other members of the NGFI-B subfamily of nuclear receptors had lesser or no effects. Nurr1 activation of hDAT was not dependent upon heterodimerization with the retinoid X receptor. Unexpectedly, functional analysis of a series of gene constructs revealed that a region of the hDAT 5'-flanking sequence devoid of NGFI-B response element (NBRE)-like sites mediated nurr1 activation. Additional experiments using a nurr1 mutant construct suggest that nurr1 activates hDAT transcription via a novel NBRE-independent mechanism.

  16. Primetime for Learning Genes (United States)

    Keifer, Joyce


    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be “poised” for rapid response to activate or repress gene expression depending on environmental stimuli. PMID:28208656

  17. Primetime for Learning Genes. (United States)

    Keifer, Joyce


    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  18. History of gene therapy. (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo


    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  19. Delivery Systems in Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Hu; Anas El-Aneed; Cui Guohui


    1 Gene therapy Gene therapy includes the treatment of both genetically based and infectious diseases by introducing genetic materials which have therapeutic effects[1~3]. In its simplest terms, a wild type gene (which is non-functional in the cell leading to disease development) is introduced into the somatic cell lacking this gene to restore the normal gene function in this cell. Many gene therapy strategies, however, utilize genes to destroy specific cells.

  20. Gene promoters dictate histone occupancy within genes. (United States)

    Perales, Roberto; Erickson, Benjamin; Zhang, Lian; Kim, Hyunmin; Valiquett, Elan; Bentley, David


    Spt6 is a transcriptional elongation factor and histone chaperone that reassembles transcribed chromatin. Genome-wide H3 mapping showed that Spt6 preferentially maintains nucleosomes within the first 500 bases of genes and helps define nucleosome-depleted regions in 5' and 3' flanking sequences. In Spt6-depleted cells, H3 loss at 5' ends correlates with reduced pol II density suggesting enhanced transcription elongation. Consistent with its 'Suppressor of Ty' (Spt) phenotype, Spt6 inactivation caused localized H3 eviction over 1-2 nucleosomes at 5' ends of Ty elements. H3 displacement differed between genes driven by promoters with 'open'/DPN and 'closed'/OPN chromatin conformations with similar pol II densities. More eviction occurred on genes with 'closed' promoters, associated with 'noisy' transcription. Moreover, swapping of 'open' and 'closed' promoters showed that they can specify distinct downstream patterns of histone eviction/deposition. These observations suggest a novel function for promoters in dictating histone dynamics within genes possibly through effects on transcriptional bursting or elongation rate.

  1. XLMR genes: update 2000.

    NARCIS (Netherlands)

    Chiurazzi, P.; Hamel, B.C.J.; Neri, G.


    This is the sixth edition of the catalogue of XLMR genes, ie X-linked genes whose malfunctioning causes mental retardation. The cloning era is not yet concluded, actually much remains to be done to account for the 202 XLMR conditions listed in this update. Many of these may eventually prove to be du

  2. Smart Genes, Stupid Science. (United States)

    Randerson, Sherman; Mahadeva, Madhu N.


    Because many people still believe that specific, identifiable genes dictate the level of human intelligence and that the number/quality of these genes can be evaluated, presents evidence from human genetics (related to nervous system development) to counter this view. Also disputes erroneous assumptions made in "heritability studies" of human…

  3. Glaucoma Genes and Mechanisms. (United States)

    Wiggs, Janey L


    Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.

  4. Gene therapy for hemophilia. (United States)

    Chuah, M K; Evens, H; VandenDriessche, T


    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.

  5. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari


    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  6. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E


    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...... to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how...

  7. Gene Therapy of Cancerous Diseases


    Valenčáková, A.; Dziaková, A.; Hatalová, E.


    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  8. Gene Expression Omnibus (GEO) (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  9. "Bad genes" & criminal responsibility. (United States)

    González-Tapia, María Isabel; Obsuth, Ingrid


    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts.

  10. Evidence for homosexuality gene

    Energy Technology Data Exchange (ETDEWEB)

    Pool, R.


    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  11. Gene-gene, gene-environment, gene-nutrient interactionsand single nucleotide polymorphisms of inflammatorycytokines

    Institute of Scientific and Technical Information of China (English)


    Inflammation plays a significant role in the etiologyof type 2 diabetes mellitus (T2DM). The rise in thepro-inflammatory cytokines is the essential step inglucotoxicity and lipotoxicity induced mitochondrialinjury, oxidative stress and beta cell apoptosis inT2DM. Among the recognized markers are interleukin(IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha(TNF-α), C-reactive protein, resistin, adiponectin, tissueplasminogen activator, fibrinogen and heptoglobins.Diabetes mellitus has firm genetic and very strongenvironmental influence; exhibiting a polygenic modeof inheritance. Many single nucleotide polymorphisms(SNPs) in various genes including those of pro and antiinflammatorycytokines have been reported as a riskfor T2DM. Not all the SNPs have been confirmed byunifying results in different studies and wide variationshave been reported in various ethnic groups. Theinter-ethnic variations can be explained by the factthat gene expression may be regulated by gene-gene,gene-environment and gene-nutrient interactions. Thisreview highlights the impact of these interactions ondetermining the role of single nucleotide polymorphismof IL-6, TNF-α, resistin and adiponectin in pathogenesisof T2DM.

  12. Identification of four soybean reference genes for gene expression normalization (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  13. The Mycoplasma hominis vaa gene displays a mosaic gene structure

    DEFF Research Database (Denmark)

    Boesen, Thomas; Emmersen, Jeppe M. G.; Jensen, Lise T.;


    Mycoplasma hominis contains a variable adherence-associated (vaa) gene. To classify variants of the vaa genes, we examined 42 M. hominis isolated by PCR, DNA sequencing and immunoblotting. This uncovered the existence of five gene categories. Comparison of the gene types revealed a modular compos...

  14. Early changes in gene expression induced by acute UV exposure in leaves of Psychotria brachyceras, a bioactive alkaloid accumulating plant. (United States)

    do Nascimento, Naíla Cannes; Menguer, Paloma Koprovski; Sperotto, Raul Antonio; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano


    UV-B radiation can damage biomolecules, such as DNA, RNA, and proteins, halting essential cellular processes; this damage is partly due to ROS generation. Plant secondary metabolites may protect against UV-B. Psychotria brachyceras Müll. Arg. (Rubiaceae), a subtropical shrub, produces brachycerine, a monoterpene indole alkaloid mainly accumulated in leaf tissues, which displays antioxidant and antimutagenic activities. Exposure of P. brachyceras cuttings to UV-B radiation significantly increases leaf brachycerine concentration. It has been suggested that this alkaloid might contribute to protection against UV-B damage both through its quenching activity on ROS and as UV shield. To identify differentially expressed genes of P. brachyceras in response to UV-B and investigate a possible influence of this stimulus on putative brachycerine-related genes, suppressive subtractive hybridization was applied. Complementary DNA from UV-B-treated leaves for 24 h was used as tester, and cDNA from untreated leaves, as driver. After BLASTX alignments, 134 sequences matched plant genes. Using quantitative RT-PCR, selected genes potentially related to brachycerine showed significant increases in transcription after UV-B exposure: tryptophan decarboxylase, ACC oxidase, UDP-glucose glucosyltransferase, lipase, and serine/threonine kinase. Results suggest a possible involvement of brachycerine in acute UV-B responses and show that alkaloid accumulation seems at least partly regulated at transcriptional level.

  15. Hox genes and study of Hox genes in crustacean

    Institute of Scientific and Technical Information of China (English)

    HOU Lin; CHEN Zhijuan; XU Mingyu; LIN Shengguo; WANG Lu


    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla.The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  16. Entrez Gene: gene-centered information at NCBI


    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana


    Entrez Gene () is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases wit...

  17. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

    Directory of Open Access Journals (Sweden)

    Vasu Punj

    Full Text Available Infection with Kaposi's sarcoma associated herpesvirus (KSHV has been linked to the development of primary effusion lymphoma (PEL, a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.

  18. Introns in higher plant genes

    Institute of Scientific and Technical Information of China (English)


    The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.

  19. Gene therapy for brain tumors. (United States)

    Bansal, K; Engelhard, H H


    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  20. Gene therapy prospects--intranasal delivery of therapeutic genes. (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej


    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  1. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish


    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  2. A review on microcephaly genes

    Directory of Open Access Journals (Sweden)

    Irshad S.


    Full Text Available This review aims to summarize the recent findings regarding microcephaly genes. We have discussed the molecular genetics studies of microcephaly genes including a comprehensive appraisal of the seven mapped loci (MCPH1–MCPH7, their corresponding genes and protein products of the genes, their likely role in normal brain development and the details of the mutations reported in these genes.

  3. Gene therapy for skin diseases. (United States)

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab


    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically.

  4. Gene Therapy for Skin Diseases



    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene thera...

  5. Gene decay in archaea

    Directory of Open Access Journals (Sweden)

    M. W. J. van Passel


    Full Text Available The gene-dense chromosomes of archaea and bacteria were long thought to be devoid of pseudogenes, but with the massive increase in available genome sequences, whole genome comparisons between closely related species have identified mutations that have rendered numerous genes inactive. Comparative analyses of sequenced archaeal genomes revealed numerous pseudogenes, which can constitute up to 8.6% of the annotated coding sequences in some genomes. The largest proportion of pseudogenes is created by gene truncations, followed by frameshift mutations. Within archaeal genomes, large numbers of pseudogenes contain more than one inactivating mutation, suggesting that pseudogenes are deleted from the genome more slowly in archaea than in bacteria. Although archaea seem to retain pseudogenes longer than do bacteria, most archaeal genomes have unique repertoires of pseudogenes.

  6. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue


    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  7. Gene Therapy and Children (For Parents) (United States)

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy and ... by a "bad" gene. continue Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  8. The gene tree delusion. (United States)

    Springer, Mark S; Gatesy, John


    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  9. Searching for speciation genes

    DEFF Research Database (Denmark)

    Holt, Benjamin George; Côté, Isabelle M; Emerson, Brent C


    Closely related species that show clear phenotypic divergence, but without obvious geographic barriers, can provide opportunities to study how diversification can occur when opportunities for allopatric speciation are limited. We examined genetic divergence in the coral reef fish genus Hypoplectr...... evidence for genes that may be associated with colour morphotype in the genus Hypoplectrus....

  10. Genes2FANs: connecting genes through functional association networks

    Directory of Open Access Journals (Sweden)

    Dannenfelser Ruth


    Full Text Available Abstract Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs, researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our

  11. Industrial scale gene synthesis. (United States)

    Notka, Frank; Liss, Michael; Wagner, Ralf


    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery.

  12. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V;


    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  13. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents. (United States)

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation.

  14. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian


    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  15. Entrez Gene: gene-centered information at NCBI. (United States)

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana


    Entrez Gene ( is National Center for Biotechnology Information (NCBI)'s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis. The content represents the integration of curation and automated processing from NCBI's Reference Sequence project (RefSeq), collaborating model organism databases, consortia such as Gene Ontology and other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, genomic location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities) and for bulk transfer by FTP.

  16. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter


    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  17. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis. (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana


    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  18. Dominance from the perspective of gene-gene and gene-chemical interactions. (United States)

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon


    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe.

  19. Gene-gene interaction between tuberculosis candidate genes in a South African population. (United States)

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G


    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB.

  20. Gene doping in modern sport.

    Directory of Open Access Journals (Sweden)



    Full Text Available Background: The subject of this paper is gene doping, which should be understood as "he non-therapeutic use of cells, genes, genetic elements, or of the modulation of gene expression, having the capacity to improve athletic performance". The authors of this work, based on the review of literature and previous research, make an attempt at wider characterization of gene doping and the discussion of related potential threats.Methods: This is a comprehensive survey of literature on the latest applications of molecular biology in medicine. The analysis involves a dozen scientific databases examined in order to find genes used in gene therapy and potentially useful in gene doping. Results: The obtained results enable better recognition of gene doping and indicate genes used in medicine that could be used in gene doping. This paper describes potential effects of their use and associated risk, and predicts the possible developments of gene doping in the future. Conclusion: Gene doping is undoubtedly a part of modern sport. Although WADA included gene doping on the list of banned methods as early as 2004, as previously stated above, it has not managed to develop efficient methods of detection.

  1. [Gene pool and gene geography of the USSR population]. (United States)

    Rychkov, Iu G; Balanovskaia, E V


    Gene pool and gene geography are discussed from the point of view of their conceptual history beginning from the original concept of A.S. Serebrovskiĭ (1928). Difference between the present-day gene geography and gene geography of gene pool is accentuated: the former only represents a portion of the latter. Historical and territorial integrity of the USSR population gene pool, in conjunction with its huge diversity, is the main problem being analysed by various means of computerized genetic cartography. Coupled with the gene frequency mapping, following methods were also used: mapping of average heterozygosity, of interpopulation differentiation, of principal component scores and mapping of geographical trend for each mapped genetic parameter. The work is based on 100 allelic genes and haplotypes from 30 independent loci studied on the average in 225 local populations. Statistical analysis of gene geographical maps is based on 3975 nodes of regular cartographic net for the USSR territory. The wind rose of systematic changes in the USSR gene pool has three main geographic orientations: W-E, SW-NE and S-N. At the same time, there are only two main systematic forces of gene pool evolution: the force of social history with predominant W-E orientation and the force of natural history with predominant S-N orientation of their actions. The heterozygosity level of gene pool declines strictly in accordance with the resultant in the SW-NE direction.

  2. Immunotherapy and gene therapy. (United States)

    Simpson, Elizabeth


    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  3. SOX genes: architects of development. (United States)

    Prior, H M; Walter, M A


    Development in higher organisms involves complex genetic regulation at the molecular level. The emerging picture of development control includes several families of master regulatory genes which can affect the expression of down-stream target genes in developmental cascade pathways. One new family of such development regulators is the SOX gene family. The SOX genes are named for a shared motif called the SRY box a region homologous to the DNA-binding domain of SRY, the mammalian sex determining gene. Like SRY, SOX genes play important roles in chordate development. At least a dozen human SOX genes have been identified and partially characterized (Tables 1 and 2). Mutations in SOX9 have recently been linked to campomelic dysplasia and autosomal sex reversal, and other SOX genes may also be associated with human disease.

  4. Alphaviruses in Gene Therapy

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom


    Full Text Available Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV, Sindbis virus (SIN and Venezuelan Equine Encephalitis (VEE virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.

  5. Brains, genes, and primates. (United States)

    Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng


    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward.

  6. Gene Disease Diagnostic System

    Institute of Scientific and Technical Information of China (English)

    黄国亮; 张腾飞; 程京; 周玉祥; 刘诚迅; 金国藩; 邬敏贤; 严瑛白; 杨蓉


    Binary optics, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer, has been widely applied in recent years. A novel optical scanning system for gene disease diagnostics described in this paper has four kinds of optical devices, including beam splitters, an array lens, an array filter and detection arrays. A software was developed to design the binary optics system using an iterative method. Two beam splitters were designed and fabricated, which can divide a beam into a 9×9 array or into a 13×13 array. The beam splitters have good diffraction efficiencies (>70%) and an even energy distribution. The gene disease diagnostic system is a portable biochip and binary optics technology. The binary optical devices in the non-confocal scanning system can raise the fluorescence detection sensitivity of the micro-array hybrid biochip.

  7. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong


    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  8. Gene therapy for gastric diseases.


    Fumoto, Shintaro; Nishi, Junya; Nakamura, Junzo; Nishida, Koyo


    Gene therapy for gastric cancer and gastric ulcer is a rationalized strategy since various genes correlate with these diseases. Since gene expressions in non-target tissues/cells cause side effects, a selective gene delivery system targeted to the stomach and/or cancer must be developed. The route of vector transfer (direct injection, systemic, intraperitoneal, gastric serosal surface and oral administration) is an important issue which can determine efficacy and safety. Strategies for cancer...

  9. Gene Porter Bridwell (United States)


    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  10. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Su

    Full Text Available BACKGROUND: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 single-nucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1, the gene coding interleukin-4 receptor alpha chain (IL4Ra and the gene coding insulin induced gene 2 (INSIG2 on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83% with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2, signal transducer and activator of transcription 6 (STAT6. We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest that GSTP1, INSIG2 and IL4Ra may influence the lifetime asthma susceptibility through gene-gene interactions in schoolchildren. Home dampness combined with each one of the genes STAT6, IL13 and ADRB2 could raise the asthma risk.

  11. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung


    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  12. Genealogy and gene trees. (United States)

    Rasmuson, Marianne


    Heredity can be followed in persons or in genes. Persons can be identified only a few generations back, but simplified models indicate that universal ancestors to all now living persons have occurred in the past. Genetic variability can be characterized as variants of DNA sequences. Data are available only from living persons, but from the pattern of variation gene trees can be inferred by means of coalescence models. The merging of lines backwards in time leads to a MRCA (most recent common ancestor). The time and place of living for this inferred person can give insights in human evolutionary history. Demographic processes are incorporated in the model, but since culture and customs are known to influence demography the models used ought to be tested against available genealogy. The Icelandic data base offers a possibility to do so and points to some discrepancies. Mitochondrial DNA and Y chromosome patterns give a rather consistent view of human evolutionary history during the latest 100 000 years but the earlier epochs of human evolution demand gene trees with longer branches. The results of such studies reveal as yet unsolved problems about the sources of our genome.

  13. Compositional gradients in Gramineae genes

    DEFF Research Database (Denmark)

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin


    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  14. Ascidian gene-expression profiles


    Jeffery, William R.


    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  15. Decationized polyplexes for gene delivery

    NARCIS (Netherlands)

    Novo, L.; Mastrobattista, E.; Nostrum, van C.F.; Lammers, T.G.G.M.; Hennink, W.E.


    Gene therapy has received much attention in the field of drug delivery. Synthetic, nonviral gene delivery systems have gained increasing attention as vectors for gene therapy mainly due to a favorable immunogenicity profile and ease of manufacturing as compared to viral vectors. The great majority o

  16. Independent Gene Discovery and Testing (United States)

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry


    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  17. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto


    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  18. Gene electrotransfer in clinical trials

    DEFF Research Database (Denmark)

    Gehl, Julie


    Electroporation is increasingly being used for delivery of chemotherapy to tumors. Likewise, gene delivery by electroporation is rapidly gaining momentum for both vaccination purposes and for delivery of genes coding for other therapeutic molecules, such as chronic diseases or cancer. This chapte...... describes how gene therapy may be performed using electric pulses to enhance uptake and expression.......Electroporation is increasingly being used for delivery of chemotherapy to tumors. Likewise, gene delivery by electroporation is rapidly gaining momentum for both vaccination purposes and for delivery of genes coding for other therapeutic molecules, such as chronic diseases or cancer. This chapter...

  19. Gene finding in novel genomes

    Directory of Open Access Journals (Sweden)

    Korf Ian


    Full Text Available Abstract Background Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. Results I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. Conclusion Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.

  20. Alzheimer's Genes: Are You at Risk? (United States)

    Alzheimer's genes: Are you at risk? Several genes have been associated with Alzheimer's disease, but more research is needed. By Mayo ... Certain genes make you more likely to develop Alzheimer's disease. Genes control the function of every cell ...

  1. Genes and Disease: Prader-Willi Syndrome (United States)

    ... MD): National Center for Biotechnology Information (US); 1998-. Genes and Disease [Internet]. Show details National Center for ... 45K) PDF version of this title (3.8M) Gene sequence Genome view see gene locations Entrez Gene ...


    DEFF Research Database (Denmark)


    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  3. Genes, Children and Pediatricians

    Directory of Open Access Journals (Sweden)

    Joana Correia


    Full Text Available A male newborn, presenting hipotonia and posterior parietal bossing, developed, in the first 12 hours of life, refusal to feed and hypoglycaemia. A cranial ultrasound, skull X-ray and CT scan revealed an occipital and parietal fracture with an underlying haematoma and extensive extracranial soft-tissue swelling. He was submitted to surgical drainage. After 24 hours: new intracerebral bleeding. At the age of two-months he presented abnormal skin and sparse kinky hair. Serum copper and caeruloplasmin levels were below the normal range. Molecular diagnosis of Menkes disease was made by the identification of a new mutation in ATP7A gene.

  4. Chromatin analysis of occluded genes (United States)

    Lee, Jae Hyun; Gaetz, Jedidiah; Bugarija, Branimir; Fernandes, Croydon J.; Snyder, Gregory E.; Bush, Eliot C.; Lahn, Bruce T.


    We recently described two opposing states of transcriptional competency. One is termed ‘competent’ whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed ‘occluded’ whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes. PMID:19380460


    Institute of Scientific and Technical Information of China (English)

    QIU Zhe-fu; HAN De-min; ZHANG Luo; ZHANG Wei


    Tumor suppressor gene plays an important role in maintaining the homeostasis between cell loss and growth. Fragile in maintaining the homeostasis between cell loss and growth. Fragile histidine triad (FHIT) gene found recently was studied in a deep going way; it becomes the focus as a result of its roleof ep going way; it becomes the focus as a result of its roleof anti-tumor in human various type of tissue. Due to the high efficiency of FHIT gene benefiting the anti-tumor, it is proposed gh efficiency of FHIT gene benefiting the anti-tumor, it is proposed as a candidate of tumor suppressor gene though there are several opposite opinions.several opposite opinions. We stress the summary of some properties of FHIT gene on proapoptosis according to the published data which showed gene on proapoptosis according to the published data which showed the stronger proapoptotic function of FHIT gene; the apoptosis induced by FHIT depends on the expression level and status of ene; the apoptosis induced by FHIT depends on the expression level and status of FHIT; and FHIT gene can alternate the cell cycling properties and reduce the tumorigenic potential; the apoptotic process e can alternate the cell cycling properties and reduce the tumorigenic potential; the apoptotic process induced by FHIT has no relation to p53 gene. In a ward, in consideration of its multiple functions against malignancies, FHIT in consideration of its multiple functions against malignancies, FHIT gene deserves attention and exploration as a selective target for searching the mechanism of tumorigenesis and clinical et for searching the mechanism of tumorigenesis and clinical therapeutic applications in further.le histidine triad (FHIT) gene; Apoptosis; Tumorigenesis; Tumor suppressor gene deserves attention and exploration as a selective target for searching the mechanism of tumorigenesis and clinical therapeutic applications in further.

  6. Identification of genes and gene products necessary for bacterial bioluminescence.



    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by compl...





    Somatic cell mutation is able to create genetic variance in a cell population and can induce cancer and tumor when gene mutations took place at repressor gene in controlling cell cycles such as p53 gene. Whereas germline cell mutation can cause genetic disease such as sickle cell anemia, breast cancer, thalassemia, parkinson’s as well as defect of biochemical pathway that influence drug-receptor interaction, which has negative effect and lead to hospitalized of patient. Most of reports mentio...

  8. Alcoholism: genes and mechanisms. (United States)

    Oroszi, Gabor; Goldman, David


    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  9. Tetraspanin genes in plants. (United States)

    Wang, Feng; Vandepoele, Klaas; Van Lijsebettens, Mieke


    Tetraspanins represent a four-transmembrane protein superfamily with a conserved structure and amino acid residues that are present in mammals, insects, fungi and plants. Tetraspanins interact with each other or with other membrane proteins to form tetraspanin-enriched microdomains that play important roles in development, pathogenesis and immune responses via facilitating cell-cell adhesion and fusion, ligand binding and intracellular trafficking. Here, we emphasize evolutionary aspects within the plant kingdom based on genomic sequence information. A phylogenetic tree based on 155 tetraspanin genes of 11 plant species revealed ancient and fast evolving clades. Tetraspanins were only present in multicellular plants, were often duplicated in the plant genomes and predicted by the electronic Fluorescent Pictograph for gene expression analysis to be either functionally redundant or divergent. Tetraspanins contain a large extracellular loop with conserved cysteines that provide the binding sites for the interactions. The Arabidopsis thaliana TETRASPANIN1/TORNADO2/EKEKO has a function in leaf and root patterning and TETRASPANIN3 was identified in the plasmodesmatal proteome, suggesting a role in cell-cell communication during plant development.

  10. Gene: a gene-centered information resource at NCBI. (United States)

    Brown, Garth R; Hem, Vichet; Katz, Kenneth S; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D; Maglott, Donna R; Murphy, Terence D


    The National Center for Biotechnology Information's (NCBI) Gene database ( integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP.

  11. Regulation of gene expression by Goodwin's loop with many genes (United States)

    Sielewiesiuk, Jan; Łopaciuk, Agata


    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  12. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;


    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  13. Gene targeting with retroviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Bernstein, A. (Toronto Univ., ON (Canada))


    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  14. PDMAEMA based gene delivery materials

    Directory of Open Access Journals (Sweden)

    Seema Agarwal


    Full Text Available Gene transfection is the transfer of genetic material like DNA into cells. Cationic polymers which form nanocomplexes with DNA, so-called non-viral gene vectors, are a highly promising platform for efficient gene transfection. Despite intensive research efforts and some of the on-going clinical trials on gene transfection, none of the existing cationic polymer systems are generally acceptable for human gene therapy. Since the process of gene transfection is complex and puts different challenges and demands on the delivery system, there is a strong requirement for the design and development of a multifunctional system in a simple way. This review will discuss recent efforts in design, synthesis, and performance of poly(2-dimethylaminoethyl methacrylate (PDMAEMA nanocomplexes with DNA.

  15. Gene set analysis for GWAS

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette


    Abstract We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic...... parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example....

  16. Testing for gene-gene interaction with AMMI models. (United States)

    Barhdadi, Amina; Dubé, Marie-Pierre


    Studies have shown that many common diseases are influenced by multiple genes and their interactions. There is currently a strong interest in testing for association between combinations of these genes and disease, in particular because genes that affect the risk of disease only in the presence of another genetic variant may not be detected in marginal analysis. In this paper we propose the use of additive main effect and multiplicative interaction (AMMI) models to detect and to quantify gene-gene interaction effects for a quantitative trait. The objective of the present research is to demonstrate the practical advantages of these models to describe complex interaction between two unlinked loci. Although gene-gene interactions have often been defined as a deviance from additive genetic effects, the residual term has generally not been appropriately treated. The AMMI models allow for the analysis of a two way factorial data structure and combine the analysis of variance of the two main genotype effects with a principal component analysis of the residual multiplicative interaction. The AMMI models for gene-gene interaction presented here allow for the testing of non additivity between the two loci, and also describe how their interaction structure fits the existing non-additivity. Moreover, these models can be used to identify the specific two genotypes combinations that contribute to the significant gene-gene interaction. We describe the use of the biplot to display the structure of the interaction and evaluate the performance of the AMMI and the special cases of the AMMI previously described by Tukey and Mandel with simulated data sets. Our simulated study showed that the AMMI model is as powerful as general linear models when the interaction is not modeled in the presence of marginal effects. However, in the presence of pure epitasis, i.e. in the absence of marginal effects, the AMMI method was not found to be superior to other tested regression methods.

  17. Introduction: Cancer Gene Networks. (United States)

    Clarke, Robert


    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  18. Gene-environment interaction. (United States)

    Manuck, Stephen B; McCaffery, Jeanne M


    With the advent of increasingly accessible technologies for typing genetic variation, studies of gene-environment (G×E) interactions have proliferated in psychological research. Among the aims of such studies are testing developmental hypotheses and models of the etiology of behavioral disorders, defining boundaries of genetic and environmental influences, and identifying individuals most susceptible to risk exposures or most amenable to preventive and therapeutic interventions. This research also coincides with the emergence of unanticipated difficulties in detecting genetic variants of direct association with behavioral traits and disorders, which may be obscured if genetic effects are expressed only in predisposing environments. In this essay we consider these and other rationales for positing G×E interactions, review conceptual models meant to inform G×E interpretations from a psychological perspective, discuss points of common critique to which G×E research is vulnerable, and address the role of the environment in G×E interactions.

  19. Angiogenin gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    Hongli Wang; Dongsheng Fan; Yingshuang Zhang


    Angiogenin is associated with the pathogenesis of diabetic peripheral neuropathy. Here, we se-quenced the coding region of the angiogenin gene in genomic DNA from 207 patients with type 2 diabetes mel itus (129 diabetic peripheral neuropathy patients and 78 diabetic non-neuropathy pa-tients) and 268 healthy controls. Al subjects were from the Han population of northern China. No mutations were found. We then compared the genotype and allele frequencies of the angiogenin synonymous single nucleotide polymorphism rs11701 between the diabetic peripheral neuropathy patients and controls, and between the diabetic neuropathy and non-neuropathy patients, using a case-control design. We detected no statistical y significant genetic associations. Angiogenin may not be associated with genetic susceptibility to diabetic peripheral neuropathy in the Han population of northern China.

  20. Genes, evolution and intelligence. (United States)

    Bouchard, Thomas J


    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  1. Gene-gene Interaction Analyses for Atrial Fibrillation

    NARCIS (Netherlands)

    Lin, Honghuang; Mueller-Nurasyid, Martina; Smith, Albert V; Arking, Dan E; Barnard, John; Bartz, Traci M; Lunetta, Kathryn L; Lohman, Kurt; Kleber, Marcus E; Lubitz, Steven A; Geelhoed, Bastiaan; Trompet, Stella; Niemeijer, Maartje N; Kacprowski, Tim; Chasman, Daniel I; Klarin, Derek; Sinner, Moritz F; Waldenberger, Melanie; Meitinger, Thomas; Harris, Tamara B; Launer, Lenore J; Soliman, Elsayed Z; Chen, Lin Y; Smith, Jonathan D; Van Wagoner, David R; Rotter, Jerome I; Psaty, Bruce M; Xie, Zhijun; Hendricks, Audrey E; Ding, Jingzhong; Delgado, Graciela E; Verweij, Niek; van der Harst, Pim; Macfarlane, Peter W; Ford, Ian; Hofman, Albert; Uitterlinden, André; Heeringa, Jan; Franco, Oscar H; Kors, Jan A; Weiss, Stefan; Völzke, Henry; Rose, Lynda M; Natarajan, Pradeep; Kathiresan, Sekar; Kääb, Stefan; Gudnason, Vilmundur; Alonso, Alvaro; Chung, Mina K; Heckbert, Susan R; Benjamin, Emelia J; Liu, Yongmei; März, Winfried; Rienstra, Michiel; Jukema, J Wouter; Stricker, Bruno H; Dörr, Marcus; Albert, Christine M; Ellinor, Patrick T


    Atrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility. We performed

  2. Gene-gene Interaction Analyses for Atrial Fibrillation

    NARCIS (Netherlands)

    H. Lin (Honghuang); M. Mueller-Nurasyid; A.V. Smith (Albert Vernon); D.E. Arking (Dan); J. Barnard (John); T.M. Bartz (Traci M.); K.L. Lunetta (Kathryn); K. Lohman (Kurt); M.E. Kleber (Marcus); S.A. Lubitz (Steven); Geelhoed, B. (Bastiaan); S. Trompet (Stella); M.N. Niemeijer (Maartje); T. Kacprowski (Tim); D.I. Chasman (Daniel); Klarin, D. (Derek); M.F. Sinner (Moritz); M. Waldenberger (Melanie); T. Meitinger (Thomas); T.B. Harris (Tamara); Launer, L.J. (Lenore J.); E.Z. Soliman (Elsayed Z.); L. Chen (Lin); J.D. Smith (Jonathan); D.R. van Wagoner (David); Rotter, J.I. (Jerome I.); B.M. Psaty (Bruce); Xie, Z. (Zhijun); A.E. Hendricks (Audrey E.); Ding, J. (Jingzhong); G.E. Delgado (Graciela E.); N. Verweij (Niek); P. van der Harst (Pim); P.W. MacFarlane (Peter); I. Ford (Ian); A. Hofman (Albert); A.G. Uitterlinden (André); J. Heeringa (Jan); O.H. Franco (Oscar); J.A. Kors (Jan); Weiss, S. (Stefan); H. Völzke (Henry); L.M. Rose (Lynda); Natarajan, P. (Pradeep); S. Kathiresan (Sekar); S. Kääb (Stefan); V. Gudnason (Vilmundur); A. Alonso (Alvaro); M.K. Chung (Mina); S.R. Heckbert (Susan); E.J. Benjamin (Emelia); Y. Liu (Yongmei); W. März (Winfried); S.A. Rienstra; J.W. Jukema (Jan Wouter); B.H.Ch. Stricker (Bruno); M. Dörr (Marcus); C.M. Albert (Christine); P.T. Ellinor (Patrick)


    textabstractAtrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility.

  3. Are TMEM genes potential candidate genes for panic disorder?

    DEFF Research Database (Denmark)

    NO, Gregersen; Buttenschøn, Henriette Nørmølle; Hedemand, Anne;


    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12...

  4. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    Directory of Open Access Journals (Sweden)

    Tsatsoulis Costas


    Full Text Available Abstract Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. Results We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80 of the classification rules produced. Conclusions We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  5. Involvement of Nurr-1/Nur77 in corticotropin-releasing factor/urocortin1-induced tyrosinase-related protein 1 gene transcription in human melanoma HMV-II cells. (United States)

    Watanuki, Yutaka; Takayasu, Shinobu; Kageyama, Kazunori; Iwasaki, Yasumasa; Sakihara, Satoru; Terui, Ken; Nigawara, Takeshi; Suda, Toshihiro


    Recent molecular and biochemical analyses have revealed the presence of corticotropin-releasing factor (CRF) and urocortin (Ucn), together with their corresponding receptors in mammalian skin. The melanosomal enzyme tyrosinase-related protein 1 (TRP1) is involved in modulation of pigment production in response to stressors. Although CRF and Ucn are thought to have potent effects on the skin system, their possible roles and regulation have yet to be fully determined. This study aimed to explore the effects of CRF and Ucn on TRP1 gene expression using human melanoma HMV-II cells. The mRNA of CRF, Ucn1, Ucn2, and CRF receptor type 1 (CRF1 receptor) was detected in HMV-II cells. CRF and Ucn1 stimulated TRP1 gene transcription via the CRF1 receptor, and increased both Nurr-1 and Nur77 mRNA expression levels. Both CRF- and Ucn1-induced Nurr-1/Nur77 acted via a NGFI-B response element on the TRP1 promoter. The combination of Nurr-1/Nur77 and microphthalmia-associated transcription factor, a melanocyte-specific transcription factor gene induced by α-melanocyte-stimulating hormone, had additive effects on activation of TRP1 gene transcription. The findings suggest that in human melanoma HMV-II cells both CRF and Ucn1 regulate TRP1 gene expression via Nurr-1/Nur77 production, independent of pro-opiomelanocortin or α-melanocyte-stimulating hormone stimulation.

  6. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. (United States)

    Kanai, Tamotsu; Akerboom, Jasper; Takedomi, Shogo; van de Werken, Harmen J G; Blombach, Fabian; van der Oost, John; Murakami, Taira; Atomi, Haruyuki; Imanaka, Tadayuki


    We identified a novel regulator, Thermococcales glycolytic regulator (Tgr), functioning as both an activator and a repressor of transcription in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tgr (TK1769) displays similarity (28% identical) to Pyrococcus furiosus TrmB (PF1743), a transcriptional repressor regulating the trehalose/maltose ATP-binding cassette transporter genes, but is more closely related (67%) to a TrmB paralog in P. furiosus (PF0124). Growth of a tgr disruption strain (Deltatgr) displayed a significant decrease in growth rate under gluconeogenic conditions compared with the wild-type strain, whereas comparable growth rates were observed under glycolytic conditions. A whole genome microarray analysis revealed that transcript levels of almost all genes related to glycolysis and maltodextrin metabolism were at relatively high levels in the Deltatgr mutant even under gluconeogenic conditions. The Deltatgr mutant also displayed defects in the transcriptional activation of gluconeogenic genes under these conditions, indicating that Tgr functions as both an activator and a repressor. Genes regulated by Tgr contain a previously identified sequence motif, the Thermococcales glycolytic motif (TGM). The TGM was positioned upstream of the Transcription factor B-responsive element (BRE)/TATA sequence in gluconeogenic promoters and downstream of it in glycolytic promoters. Electrophoretic mobility shift assay indicated that recombinant Tgr protein specifically binds to promoter regions containing a TGM. Tgr was released from the DNA when maltotriose was added, suggesting that this sugar is most likely the physiological effector. Our results strongly suggest that Tgr is a global transcriptional regulator that simultaneously controls, in response to sugar availability, both glycolytic and gluconeogenic metabolism in T. kodakaraensis via its direct binding to the TGM.

  7. On meme--gene coevolution. (United States)

    Bull, L; Holland, O; Blackmore, S


    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  8. The flow of gene expression. (United States)

    Misteli, Tom


    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  9. Candidate genes for behavioural ecology

    NARCIS (Netherlands)

    Fitzpatrick, M.J.; Ben-Sahar, Y.; Smid, H.M.; Vet, L.E.M.; Robinson, G.E.; Sokolowski, M.B.


    In spite of millions of years of evolutionary divergence, the conservation of gene function is common across distant lineages. As such, genes that are known to influence behaviour in one organism are likely to influence similar behaviours in other organisms. Recent studies of the evolution of behavi

  10. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail


    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  11. Candidate gene prioritization with Endeavour. (United States)

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves


    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at

  12. Susceptibility Genes in Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ban


    Full Text Available The autoimmune thyroid diseases (AITD are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD and Hashimoto's thyroiditis (HT and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4 and thyroid specific genes (e.g. TSHR, Tg. Most likely, these loci interact and their interactions may influence disease phenotype and severity.

  13. Determining Semantically Related Significant Genes. (United States)

    Taha, Kamal


    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  14. Nonviral Vectors for Gene Delivery (United States)

    Baoum, Abdulgader Ahmed


    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  15. Gene targeting in malaria parasites. (United States)

    Ménard, R; Janse, C


    Gene targeting, which permits alteration of a chosen gene in a predetermined way by homologous recombination, is an emerging technology in malaria research. Soon after the development of techniques for stable transformation of red blood cell stages of Plasmodium falciparum and Plasmodium berghei, genes of interest were disrupted in the two species. The main limitations of gene targeting in malaria parasites result from the intracellular growth and slow replication of these parasites. On the other hand, the technology is facilitated by the very high rate of homologous recombination following transformation with targeting constructs (approximately 100%). Here, we describe (i) the vector design and the type of mutation that may be generated in a target locus, (ii) the selection and screening strategies that can be used to identify clones with the desired modification, and (iii) the protocol that was used for disrupting the circumsporozoite protein (CS) and thrombospondin-related anonymous protein (TRAP) genes of P. berghei.

  16. Delivery systems for gene therapy

    Directory of Open Access Journals (Sweden)

    Shrikant Mali


    Full Text Available The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  17. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins. (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J


    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  18. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd


    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  19. Therapeutic genes for anti-HIV/AIDS gene therapy. (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca


    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  20. Progress of gene targeting in mouse

    Institute of Scientific and Technical Information of China (English)


    Gene targeting is a powerful approach of study- ing the genefunction in vivo. Specific genetic modifications, including simple gene disruption, point mutations, large chromosomal deletions and rearrangements, targeted incor- poration of foreign genes, could be introduced into the mouse genome by gene targeting. Recent studies make it possible to do the gene targeting with temporal and spatial control.

  1. Human Lacrimal Gland Gene Expression (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian


    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  2. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions. (United States)

    Pasipoularides, Ares


    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area.

  3. Viral vectors for gene transfer: current status of gene therapeutics. (United States)

    Heilbronn, Regine; Weger, Stefan


    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  4. [Pathogenicity and pneumococcal capsular genes]. (United States)

    García, E; García, P; López, R


    Pneumococci remain to be one of the most prominent human pathogens. Increasing efforts are being dedicated to the development of improved vaccines with wider specificity. Since a clear understanding of the genetics of capsular types in Streptococcus pneumoniae is missing, our efforts are oriented to characterize, at the molecular level, the genes involved in capsular polysaccharide biosynthesis. We have cloned and sequenced a chromosomal DNA fragment of a clinical isolate of type 3 pneumococcus and showed that it contains a type 3 specific gene as well as genes common to other serotypes.

  5. Panspermia and horizontal gene transfer (United States)

    Klyce, Brig


    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  6. Gene Therapy for Diseases and Genetic Disorders (United States)

    ... Therapy - Nucleic Acids Molecular Therapy - Oncolytics Home ASGCT Gene Therapy for Diseases Gene Therapy has made important medical ... Among the most notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA- ...

  7. Integrating Gene Ontology and Blast to predict gene functions

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-gang; MO Zhi-hong


    A GoBlast system was built to predict gene function by integrating Blast search and Gene Ontology (GO) annotations together. The operation system was based on Debian Linux 3.1, with Apache as the web server and Mysql database as the data storage system. FASTA files with GO annotations were taken as the sequence source for blast alignment, which were formatted by wu-formatdb program. The GoBlast system includes three Bioperl modules in Perl: a data input module, a data process module and a data output module. A GoBlast query starts with an amino acid or nucleotide sequence. It ends with an output in an html page, presenting high scoring gene products which are of a high homology to the queried sequence and listing associated GO terms beside respective gene poducts. A simple click on a GO term leads to the detailed explanation of the specific gene function. This avails gene function prediction by Blast. GoBlast can be a very useful tool for functional genome research and is available for free at

  8. Gene function prediction based on the Gene Ontology hierarchical structure. (United States)

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao


    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  9. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin;


    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  10. The evolution of resistance gene in plants

    Institute of Scientific and Technical Information of China (English)

    BEN Haiyan; LIU Xuemin; LI Lijun; LIU Li


    Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene evolution. Some sites like Leucine-Rich Repeat (LRR) are of specific interest since homologous recombination can happen. Crossing over, transposon insertion and excision and mutation can produce new specificity. Three models explaining R gene evolution were discussed. More information needed for dissection of R gene evolution though some step can be inferred from genetic and sequence analysis.

  11. Gene therapy in ocular diseases

    Directory of Open Access Journals (Sweden)

    Singh Vijay


    Full Text Available Gene therapy is a novel form of drug delivery that enlists the synthetic machinery of the patient′s cells to produce a therapeutic agent. Genes may be delivered into cells in vitro or in vivo utilising viral or non-viral vectors. Recent technical advances have led to the demonstration of the molecular basis of various ocular diseases. Ocular disorders with the greatest potential for benefit of gene therapy include hereditary diseases such as retinitis pigmentosa, tumours such as retinoblastoma or melanoma, and acquired proliferative and neovascular retinal disorders. Gene transfer into ocular tissues has been demonstrated with growing functional success and may develop into a new therapeutic tool for clinical ophthalmology in future.

  12. Gene Variants Reduce Opioid Risks (United States)

    ... Opioids Prescription Drugs & Cold Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/Nicotine ... variant of the gene for the μ-opioid receptor (OPRM1) with a decreased risk for addiction to ...

  13. Genes That Influence Blood Pressure (United States)

    ... Influence Blood Pressure Gene Linked to Optimism and Self-Esteem Designing New Diabetes Drugs Connect with Us Subscribe to get NIH Research Matters by email RSS Feed Facebook Email us Mailing Address: NIH Research Matters Bldg. ...

  14. Genes de defensa en plantas


    Carbonero Zalduegui, Pilar; García Olmedo, Francisco


    Se revisan los avances realizados en la caracterización de los genes que codifican para ciertas familias de proteínas vegetales que son tóxicas o inhibitorias frente a insectos, hongos y bacterias. La caracterización incluye el estudio in vitro de las propiedades de las proteínas purificadas y la experimentación in vivo con plantas transgénicas que expresan los genes correspondientes.

  15. Rice's Salt Tolerance Gene Cloned

    Institute of Scientific and Technical Information of China (English)


    @@ In cooperation with US colleagues, CAS researchers have made significant progress in their studies into functional genes for key agronomic traits by cloning SKC1, a salt-tolerant functional gene of rice and making clear its biological functions and mechanisms. This pioneering work,which was reported in the Oct. issue of Nature Genetics (37:1141-1146), is believed to hold promise to increase the output of the crop plant in this country.

  16. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben


    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  17. The Insect SNMP Gene Family (United States)


    B 1 ( b o v ) Clade 3 - SNMPs Clade 2 Clade 1 CD36 Insect (Holometabola) CD36 Gene family Holometabola Phylogeny (11 Orders) Tribolium castaneum...melanogaster genes (see Nichols and Vogt, 2008). Bootstrap support (1000 replicates) is indicated for the major clades. B. Phylogeny of holometabolous...A. aegypti eggs were graciously provided by Mark Brown (University of Georgia, Department of Entomology) and raised on a larval diet (pond fish food

  18. Cationic Bolaamphiphiles for Gene Delivery (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad


    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  19. Gene Polymorphisms in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Marja L. Laine


    Full Text Available We aimed to conduct a review of the literature for gene polymorphisms associated with chronic periodontitis (CP susceptibility. A comprehensive search of the literature in English was performed using the keywords: periodontitis, periodontal disease, combined with the words genes, mutation, or polymorphism. Candidate gene polymorphism studies with a case-control design and reported genotype frequencies in CP patients were searched and reviewed. There is growing evidence that polymorphisms in the IL1, IL6, IL10, vitamin D receptor, and CD14 genes may be associated with CP in certain populations. However, carriage rates of the rare (-allele of any polymorphism varied considerably among studies and most of the studies appeared under-powered and did not correct for other risk factors. Larger cohorts, well-defined phenotypes, control for other risk factors, and analysis of multiple genes and polymorphisms within the same pathway are needed to get a more comprehensive insight into the contribution of gene polymorphisms in CP.

  20. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder


    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  1. Immunoglobulin genes of the turtles. (United States)

    Magadán-Mompó, Susana; Sánchez-Espinel, Christian; Gambón-Deza, Francisco


    The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

  2. Origin and evolution of new genes

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YANG Shuang; PENG Lixin; CHEN Hong; WANG Wen


    Organisms have variable genome sizes andcontain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than half a century ago, it is not until the 1990s when the first young genejingwei was found that empirical investigation of the molecular mechanisms of origination of new genes became possible. In the recent years,several young genes were identified and the studies on these genes have greatly enriched the knowledge of this field. Yet more details in a general picture of new genes origination are to be clarified. We have developed a systematic approach to searching for young genes at the genomic level, in the hope to summarize a general pattern of the origination and evolution of new genes, such as the rate of new gene appearance, impact of new genes on their host genomes, etc.

  3. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-κB target genes in human breast cancer (United States)

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico


    NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior. PMID:24344116

  4. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells

    NARCIS (Netherlands)

    Chan, M.F.; van Amerongen, R.; Nijjar, T.; Cuppen, E.; Jones, P.A.; Laird, P.W.


    Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by c

  5. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cormac T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland); Ryan, Silke, E-mail: [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland)


    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  6. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar


    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  7. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh


    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  8. Newer gene editing technologies toward HIV gene therapy. (United States)

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata


    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  9. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;


    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  10. Imaging reporter gene for monitoring gene therapy; Imagerie par gene rapporteur: un atout pour la therapie genique

    Energy Technology Data Exchange (ETDEWEB)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L. [Centre Hospitalier Universitaire Avicenne, Service Central de Medecine Nucleaire et Biophysique, UPRES 2360, 93 - Bobigny (France); Tamgac, G. [Univetsite d' Uludag, Service de Medecine Nucleaire, Bursa (Turkey)


    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  11. Analysis of Duplicate Genes in Soybean

    Institute of Scientific and Technical Information of China (English)

    C.M. Cai; K.J. Van; M.Y. Kim; S.H. Lee


    @@ Gene duplication is a major determinant of the size and gene complement of eukaryotic genomes (Lockton and Gaut, 2005). There are a number of different ways in which duplicate genes can arise (Sankoff, 2001), but the most spectacular method of gene duplication may be whole genome duplication via polyploidization.

  12. Gene Therapy Applications in Gastroenterology and Hepatology

    Directory of Open Access Journals (Sweden)

    Catherine H Wu


    Full Text Available Advantages and disadvantages of viral vectors and nonviral vectors for gene delivery to digestive organs are reviewed. Advances in systems for the introduction of new gene expression are described, including self-deleting retroviral transfer vectors, chimeric viruses and chimeric oligonucleotides. Systems for inhibition of gene expression are discussed, including antisense oligonucleotides, ribozymes and dominant-negative genes.

  13. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric;


    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  14. Using GenePattern for Gene Expression Analysis (United States)

    Kuehn, Heidi; Liberzon, Arthur; Reich, Michael; Mesirov, Jill P.


    The abundance of genomic data now available in biomedical research has stimulated the development of sophisticated statistical methods for interpreting the data, and of special visualization tools for displaying the results in a concise and meaningful manner. However, biologists often find these methods and tools difficult to understand and use correctly. GenePattern is a freely available software package that addresses this issue by providing more than 100 analysis and visualization tools for genomic research in a comprehensive user-friendly environment for users at all levels of computational experience and sophistication. This unit demonstrates how to prepare and analyze microarray data in GenePattern. PMID:18551415

  15. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    DEFF Research Database (Denmark)

    Hedley, Paula L; Haundrup, Ole; Andersen, Paal S


    The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere...... as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic...

  16. An encyclopedia of mouse genes. (United States)

    Marra, M; Hillier, L; Kucaba, T; Allen, M; Barstead, R; Beck, C; Blistain, A; Bonaldo, M; Bowers, Y; Bowles, L; Cardenas, M; Chamberlain, A; Chappell, J; Clifton, S; Favello, A; Geisel, S; Gibbons, M; Harvey, N; Hill, F; Jackson, Y; Kohn, S; Lennon, G; Mardis, E; Martin, J; Mila, L; McCann, R; Morales, R; Pape, D; Person, B; Prange, C; Ritter, E; Soares, M; Schurk, R; Shin, T; Steptoe, M; Swaller, T; Theising, B; Underwood, K; Wylie, T; Yount, T; Wilson, R; Waterston, R


    The laboratory mouse is the premier model system for studies of mammalian development due to the powerful classical genetic analysis possible (see also the Jackson Laboratory web site, and the ever-expanding collection of molecular tools. To enhance the utility of the mouse system, we initiated a program to generate a large database of expressed sequence tags (ESTs) that can provide rapid access to genes. Of particular significance was the possibility that cDNA libraries could be prepared from very early stages of development, a situation unrealized in human EST projects. We report here the development of a comprehensive database of ESTs for the mouse. The project, initiated in March 1996, has focused on 5' end sequences from directionally cloned, oligo-dT primed cDNA libraries. As of 23 October 1998, 352,040 sequences had been generated, annotated and deposited in dbEST, where they comprised 93% of the total ESTs available for mouse. EST data are versatile and have been applied to gene identification, comparative sequence analysis, comparative gene mapping and candidate disease gene identification, genome sequence annotation, microarray development and the development of gene-based map resources.

  17. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin


    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  18. Gene replacement in Penicillium roqueforti. (United States)

    Goarin, Anne; Silar, Philippe; Malagnac, Fabienne


    Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.

  19. Gene Ontology Consortium: going forward. (United States)


    The Gene Ontology (GO; is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology.

  20. Clock Genes in Glia Cells (United States)

    Chi-Castañeda, Donají


    Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications. PMID:27666286

  1. Molecular Studies on Preproinsulin Gene

    Directory of Open Access Journals (Sweden)

    Sabir Sarah


    Full Text Available Insulin plays an important role in maintaining the blood glucose level of the body. The β-cells of pancreas produce insulin in the form of precursor that is preproinsulin. The gene of preproinsulin provides an interesting system for addressing question related to molecular evolution. Recombinant DNA technology has made it possible to isolate and sequence the chromosomal genes coding for unique protein products. Although preproinsulin of various organism has been isolated and cloned, but there is no report from buffalo (Bubalus bubalis that is our major livestock. The genomic DNA of buffalo was isolated using Laura-Lee-Boodram method. The part of preproinsulin gene (596bp and 520bp using BPPI-UPS and bpiful_F as forward and BC1-C as reverse primer was amplified. Cloning of amplified fragments of gene were performed in pCR 2.1 vector. Positive clones were screened on the basis of blue white selection. The band obtained on 596bp and 520bp after colony PCR confirmed the successful cloning of preproinsulin gene in pCR 2.1 vector.

  2. Advancement and prospects of tumor gene therapy

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Qing-Tao Wang; He Liu; Zhen-Zhu Zhang; Wen-Lin Huang


    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucieotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  3. Genes Contributing to the Development of Alcoholism


    Edenberg, Howard J.


    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case–control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that...

  4. Activities of Human Gene Nomenclature Committee

    Energy Technology Data Exchange (ETDEWEB)



    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  5. The plant ADH gene family. (United States)

    Strommer, Judith


    The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.

  6. Novel genes in LDL metabolism

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Tybjærg-Hansen, Anne


    of these findings still require independent replications and/or functional studies to confirm the exact role in LDL metabolism and the clinical implications for human health. SUMMARY: GWAS, exome sequencing studies, and recently 'exome chip' studies have suggested several novel genes with effects on LDL cholesterol....... Novel genes in LDL metabolism will improve our understanding of mechanisms in LDL metabolism, and may lead to the identification of new drug targets to reduce LDL cholesterol levels.......PURPOSE OF REVIEW: To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS: The genetic loci for ATP-binding cassette...

  7. Gene Therapy for Bone Engineering

    Directory of Open Access Journals (Sweden)

    Elizabeth eRosado Balmayor


    Full Text Available Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures needs to be taken by physicians. It is important to combine cells, scaffolds and growth factors and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.

  8. Electroporation-mediated gene delivery. (United States)

    Young, Jennifer L; Dean, David A


    Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.

  9. Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast

    NARCIS (Netherlands)

    Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Nowick, Katja


    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualizatio

  10. Genomics of local adaptation with gene flow. (United States)

    Tigano, Anna; Friesen, Vicki L


    Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.

  11. A gene-based information gain method for detecting gene-gene interactions in case-control studies. (United States)

    Li, Jin; Huang, Dongli; Guo, Maozu; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Zhang, Ruijie; Jiang, Yongshuai; Lv, Hongchao; Wang, Limei


    Currently, most methods for detecting gene-gene interactions (GGIs) in genome-wide association studies are divided into SNP-based methods and gene-based methods. Generally, the gene-based methods can be more powerful than SNP-based methods. Some gene-based entropy methods can only capture the linear relationship between genes. We therefore proposed a nonparametric gene-based information gain method (GBIGM) that can capture both linear relationship and nonlinear correlation between genes. Through simulation with different odds ratio, sample size and prevalence rate, GBIGM was shown to be valid and more powerful than classic KCCU method and SNP-based entropy method. In the analysis of data from 17 genes on rheumatoid arthritis, GBIGM was more effective than the other two methods as it obtains fewer significant results, which was important for biological verification. Therefore, GBIGM is a suitable and powerful tool for detecting GGIs in case-control studies.

  12. From gene to disease; hypophosphataemic rickets and the PHEX gene

    NARCIS (Netherlands)

    Jansen, M; van Dael, C.M.L.; Verrijn Stuart, A.A.; van der Hout, A.H.; Rump, P.


    X-linked hypophosphataemic rickets is associated with mutations in the PHEX gene on the short arm of the X chromosome, encoding a membrane-bound endoprotease which is predominantly expressed in osteoblasts. Defective PHEX function leaves phosphaturic peptides such as FGF23 uncleaved, enabling these

  13. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Directory of Open Access Journals (Sweden)

    Moolman-Smook Johanna C


    Full Text Available Abstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM, a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmia

  14. FunGeneClusterS

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Brandl, Julian; Andersen, Mikael Rørdam


    and industrial biotechnology applications. We have previously published a method for accurate prediction of clusters from genome and transcriptome data, which could also suggest cross-chemistry, however, this method was limited both in the number of parameters which could be adjusted as well as in user......Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology...

  15. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko


    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  16. Zipf's Law in Gene Expression (United States)

    Furusawa, Chikara; Kaneko, Kunihiko


    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  17. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S


    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  18. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;


    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  19. Clock genes, chronotypes and diseases

    Directory of Open Access Journals (Sweden)

    Bogdan I. Voinescu


    Full Text Available Many common diseases in humans (such as cancer, heart disease, diabetes mellitus orpsychiatric disorders, such as depression seem to be linked to disruptions of circadian cycles and toclock genes variation. It is unlikely that such diseases to be caused by a genetic variation within a singlegene. They must be influenced by complex interactions among multiple genes, as well as environmentaland lifestyle factors. Therefore, it is important to understand how the resulting perturbations in ourcircadian biology could affect our physiological processes and susceptibility to disease. Associationsbetween the polymorphisms of the main components of the circadian molecular clock, circadian type(also known as diurnal preference or chronotype and diseases are presented.

  20. Homeobox genes and melatonin synthesis

    DEFF Research Database (Denmark)

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg


    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based indu......Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a c......AMP response element-based circadian melatonin production....

  1. Gene therapy on demand: site specific regulation of gene therapy. (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef


    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  2. State-of-the-art human gene therapy: part I. Gene delivery technologies. (United States)

    Wang, Dan; Gao, Guangping


    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  3. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  4. Evidence based selection of housekeeping genes.

    Directory of Open Access Journals (Sweden)

    Hendrik J M de Jonge

    Full Text Available For accurate and reliable gene expression analysis, normalization of gene expression data against housekeeping genes (reference or internal control genes is required. It is known that commonly used housekeeping genes (e.g. ACTB, GAPDH, HPRT1, and B2M vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel candidate housekeeping genes (e.g. RPS13, RPL27, RPS20 and OAZ1 with enhanced stability among a multitude of different cell types and varying experimental conditions. None of the commonly used housekeeping genes were present in the top 50 of the most stable expressed genes. In addition, using 2,543 diverse mouse gene array samples we were able to confirm the enhanced stability of the candidate novel housekeeping genes in another mammalian species. Therefore, the identified novel candidate housekeeping genes seem to be the most appropriate choice for normalizing gene expression data.

  5. Gene therapy and respiratory neuroplasticity. (United States)

    Mantilla, Carlos B


    Breathing is a life-sustaining behavior that in mammals is accomplished by activation of dedicated muscles responsible for inspiratory and expiratory forces acting on the lung and chest wall. Motor control is exerted by specialized pools of motoneurons in the medulla and spinal cord innervated by projections from multiple centers primarily in the brainstem that act in concert to generate both the rhythm and pattern of ventilation. Perturbations that prevent the accomplishment of the full range of motor behaviors by respiratory muscles commonly result in significant morbidity and increased mortality. Recent developments in gene therapy and novel targeting strategies have contributed to deeper understanding of the organization of respiratory motor systems. Gene therapy has received widespread attention and substantial progress has been made in recent years with the advent of improved tools for vector design. Genes can be delivered via a variety of plasmids, synthetic or viral vectors and cell therapies. In recent years, adeno-associated viruses (AAV) have become one of the most commonly used vector systems, primarily because of the extensive characterization conducted to date and the versatility in targeting strategies. Recent studies highlight the power of using AAV to selectively and effectively transduce respiratory motoneurons and muscle fibers with promising therapeutic effects. This brief review summarizes current evidence for the use of gene therapy in respiratory disorders with a primary focus on interventions that address motor control and neuroplasticity, including regeneration, in the respiratory system.

  6. Gene Testing for Hereditary Ataxia (United States)

    ... should be reviewed. • Psychological assessment/Counseling – prior to testing, psychological evaluation is recommended to ensure the person being tested is as prepared as possible to receive the test results, and to ... Before gene testing is ordered, the coordinating physician may choose to ...

  7. [From gene to disease: cystinosis

    NARCIS (Netherlands)

    Levtchenko, E.N.; Wilmer, M.J.G.; Graaf-Hess, A.C. de; Heuvel, L.P.W.J. van den; Blom, H.J.; Monnens, L.A.H.


    Cystinosis is an autosomal recessive disorder caused by an impaired transport of cystine out of lysosomes. The most severe infantile form of cystinosis starts with Fanconi syndrome at the age of 3-6 months. Untreated patients develop renal failure before the age of 10. The cystinosis gene (CTNS) map

  8. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas


    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  9. Codon Adaptation of Plastid Genes (United States)

    Suzuki, Haruo; Morton, Brian R.


    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  10. Codon Adaptation of Plastid Genes.

    Directory of Open Access Journals (Sweden)

    Haruo Suzuki

    Full Text Available Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes.

  11. Patching genes to fight disease

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, D.


    The National Institutes of Health has approved the first gene therapy experiments, one of which will try to cure cancer by bolstering the immune system. The applications of such therapy are limited, but the potential aid to people with genetic diseases is great.

  12. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette


    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  13. Ethics of Gene Therapy Debated. (United States)

    Borman, Stu


    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  14. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo


    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  15. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    Directory of Open Access Journals (Sweden)

    Paton Ian R


    Full Text Available Abstract Background Toll-like receptors (TLRs perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs. Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates.

  16. Gene transfer therapy in vascular diseases. (United States)

    McKay, M J; Gaballa, M A


    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  17. Empirical study of supervised gene screening

    Directory of Open Access Journals (Sweden)

    Ma Shuangge


    Full Text Available Abstract Background Microarray studies provide a way of linking variations of phenotypes with their genetic causations. Constructing predictive models using high dimensional microarray measurements usually consists of three steps: (1 unsupervised gene screening; (2 supervised gene screening; and (3 statistical model building. Supervised gene screening based on marginal gene ranking is commonly used to reduce the number of genes in the model building. Various simple statistics, such as t-statistic or signal to noise ratio, have been used to rank genes in the supervised screening. Despite of its extensive usage, statistical study of supervised gene screening remains scarce. Our study is partly motivated by the differences in gene discovery results caused by using different supervised gene screening methods. Results We investigate concordance and reproducibility of supervised gene screening based on eight commonly used marginal statistics. Concordance is assessed by the relative fractions of overlaps between top ranked genes screened using different marginal statistics. We propose a Bootstrap Reproducibility Index, which measures reproducibility of individual genes under the supervised screening. Empirical studies are based on four public microarray data. We consider the cases where the top 20%, 40% and 60% genes are screened. Conclusion From a gene discovery point of view, the effect of supervised gene screening based on different marginal statistics cannot be ignored. Empirical studies show that (1 genes passed different supervised screenings may be considerably different; (2 concordance may vary, depending on the underlying data structure and percentage of selected genes; (3 evaluated with the Bootstrap Reproducibility Index, genes passed supervised screenings are only moderately reproducible; and (4 concordance cannot be improved by supervised screening based on reproducibility.

  18. Gene functional similarity search tool (GFSST

    Directory of Open Access Journals (Sweden)

    Russo James J


    Full Text Available Abstract Background With the completion of the genome sequences of human, mouse, and other species and the advent of high throughput functional genomic research technologies such as biomicroarray chips, more and more genes and their products have been discovered and their functions have begun to be understood. Increasing amounts of data about genes, gene products and their functions have been stored in databases. To facilitate selection of candidate genes for gene-disease research, genetic association studies, biomarker and drug target selection, and animal models of human diseases, it is essential to have search engines that can retrieve genes by their functions from proteome databases. In recent years, the development of Gene Ontology (GO has established structured, controlled vocabularies describing gene functions, which makes it possible to develop novel tools to search genes by functional similarity. Results By using a statistical model to measure the functional similarity of genes based on the Gene Ontology directed acyclic graph, we developed a novel Gene Functional Similarity Search Tool (GFSST to identify genes with related functions from annotated proteome databases. This search engine lets users design their search targets by gene functions. Conclusion An implementation of GFSST which works on the UniProt (Universal Protein Resource for the human and mouse proteomes is available at GFSST Web Server. GFSST provides functions not only for similar gene retrieval but also for gene search by one or more GO terms. This represents a powerful new approach for selecting similar genes and gene products from proteome databases according to their functions.

  19. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism (United States)

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD


    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132




    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  1. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro


    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  2. Gene doping: the hype and the harm. (United States)

    McKanna, Trudy A; Toriello, Helga V


    "Gene doping" is the term used to describe the potential abuse of gene therapy as a performance-enhancing agent. Gene doping would apply the techniques used in gene therapy to provide altered expression of genes that would promote physical superiority. For example, insulin-like growth factor 1 (IGF-1) is a primary target for growth hormone; overexpression of IGF-1 can lead to increased muscle mass and power. Although gene doping is still largely theoretical, its implications for sports, health, ethics, and medical genetics are significant.

  3. Msx homeobox gene family and craniofacial development

    Institute of Scientific and Technical Information of China (English)



    Vertebrate Msx genes are unlinked,homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene.These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development.Inductive interactions mediated by the Msx genes are essential for normal craniofacial,limb and ectodermal organ morphogenesis,and are also essential to survival in mice,as manifested by the phenotypic abnormalities shown in knockout mice and in humans.This review summarizes studies on the expression,regulation,and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.

  4. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.


    We present 'gene prediction improvement pipeline' (GenePRIMP;, a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  5. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉


    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  6. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions. (United States)

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian


    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  7. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout


    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  8. Genes from scratch--the evolutionary fate of de novo genes. (United States)

    Schlötterer, Christian


    Although considered an extremely unlikely event, many genes emerge from previously noncoding genomic regions. This review covers the entire life cycle of such de novo genes. Two competing hypotheses about the process of de novo gene birth are discussed as well as the high death rate of de novo genes. Despite the high death rate, some de novo genes are retained and remain functional, even in distantly related species, through their integration into gene networks. Further studies combining gene expression with ribosome profiling in multiple populations across different species will be instrumental for an improved understanding of the evolutionary processes operating on de novo genes.

  9. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin


    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  10. Newer Gene Editing Technologies toward HIV Gene Therapy



    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realist...

  11. Gene based therapies for kidney regeneration. (United States)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico


    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  12. Genomic evidence for adaptation by gene duplication. (United States)

    Qian, Wenfeng; Zhang, Jianzhi


    Gene duplication is widely believed to facilitate adaptation, but unambiguous evidence for this hypothesis has been found in only a small number of cases. Although gene duplication may increase the fitness of the involved organisms by doubling gene dosage or neofunctionalization, it may also result in a simple division of ancestral functions into daughter genes, which need not promote adaptation. Hence, the general validity of the adaptation by gene duplication hypothesis remains uncertain. Indeed, a genome-scale experiment found similar fitness effects of deleting pairs of duplicate genes and deleting individual singleton genes from the yeast genome, leading to the conclusion that duplication rarely results in adaptation. Here we contend that the above comparison is unfair because of a known duplication bias among genes with different fitness contributions. To rectify this problem, we compare homologous genes from the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. We discover that simultaneously deleting a duplicate gene pair in S. cerevisiae reduces fitness significantly more than deleting their singleton counterpart in S. pombe, revealing post-duplication adaptation. The duplicates-singleton difference in fitness effect is not attributable to a potential increase in gene dose after duplication, suggesting that the adaptation is owing to neofunctionalization, which we find to be explicable by acquisitions of binary protein-protein interactions rather than gene expression changes. These results provide genomic evidence for the role of gene duplication in organismal adaptation and are important for understanding the genetic mechanisms of evolutionary innovation.

  13. Thesaurus-based disambiguation of gene symbols

    Directory of Open Access Journals (Sweden)

    Wain Hester M


    Full Text Available Abstract Background Massive text mining of the biological literature holds great promise of relating disparate information and discovering new knowledge. However, disambiguation of gene symbols is a major bottleneck. Results We developed a simple thesaurus-based disambiguation algorithm that can operate with very little training data. The thesaurus comprises the information from five human genetic databases and MeSH. The extent of the homonym problem for human gene symbols is shown to be substantial (33% of the genes in our combined thesaurus had one or more ambiguous symbols, not only because one symbol can refer to multiple genes, but also because a gene symbol can have many non-gene meanings. A test set of 52,529 Medline abstracts, containing 690 ambiguous human gene symbols taken from OMIM, was automatically generated. Overall accuracy of the disambiguation algorithm was up to 92.7% on the test set. Conclusion The ambiguity of human gene symbols is substantial, not only because one symbol may denote multiple genes but particularly because many symbols have other, non-gene meanings. The proposed disambiguation approach resolves most ambiguities in our test set with high accuracy, including the important gene/not a gene decisions. The algorithm is fast and scalable, enabling gene-symbol disambiguation in massive text mining applications.

  14. Gene Therapy and Gene Editing for the Corneal Dystrophies. (United States)

    Williams, Keryn A; Irani, Yazad D


    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  15. Sequence and gene expression evolution of paralogous genes in willows. (United States)

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia


    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  16. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.


    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  17. Cattle Candidate Genes for Milk Production Traits


    Kadlec, Tomáš


    The aim of this thesis is to make an overview of important candidate genes affecting milk yield and milk quality parameters, with an emphasis on genes associated with the quantity and quality of milk proteins and milk fat.

  18. Basics on Genes and Genetic Disorders (United States)

    ... egg and the other half from your father's sperm cell. A male child receives an X chromosome from ... If the gene mutation exists in egg or sperm cells, children can inherit the gene mutation from their ...

  19. Gene therapy for stroke: 2006 overview. (United States)

    Chu, Yi; Miller, Jordan D; Heistad, Donald D


    Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.

  20. Bioinformatics methods for identifying candidate disease genes

    NARCIS (Netherlands)

    Driel, M.A. van; Brunner, H.G.


    With the explosion in genomic and functional genomics information, methods for disease gene identification are rapidly evolving. Databases are now essential to the process of selecting candidate disease genes. Combining positional information with disease characteristics and functional information i

  1. Biodegradable nanoparticles for gene therapy technology

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail:; He, Wen-Jie [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Chiang, Chiao-Hsi [School of Pharmacy, National Defense Medical Center (China); Hong, Po-Da [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [The Hebrew University of Jerusalem, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis (Israel); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Research Center for Biomedical Devices and Prototyping Production (China)


    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  2. Researchers Pinpoint More Genes Linked to Vitiligo (United States)

    ... 161452.html Researchers Pinpoint More Genes Linked to Vitiligo Genetic clues to this autoimmune disease could lead ... identified more genes linked to the autoimmune disease vitiligo, which causes patches of white skin and hair. ...

  3. What Is a Gene? (For Kids) (United States)

    ... tested is replacing sick genes with healthy ones. Gene therapy trials — where the research is tested on people — and ... ON THIS TOPIC How to Deal With Hemophilia What's the Right Weight for Me? Do You ...

  4. Immunoglobulins and immunoglobulin genes of the horse. (United States)

    Wagner, Bettina


    Antibodies of the horse were studied intensively by many notable immunologists throughout the past century until the early 1970's. After a large gap of interest in horse immunology, additional basic studies on horse immunoglobulin genes performed during the past 10 years have resulted in new insights into the equine humoral immune system. These include the characterization of the immunoglobulin lambda and kappa light chain genes, the immunoglobulin heavy chain constant (IGHC) gene regions, and initial studies regarding the heavy chain variable genes. Horses express predominately lambda light chains and seem to have a relatively restricted germline repertoire of both lambda and kappa chain variable genes. The IGHC region contains eleven constant heavy chain genes, seven of which are gamma heavy chain genes. It is suggested that all seven genes encoding IgG isotypes are expressed and have distinct functions in equine immune responses.

  5. NIH Researchers Identify OCD Risk Gene (United States)

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  6. Mutation analysis of the preproghrelin gene

    DEFF Research Database (Denmark)

    Larsen, Lesli H; Gjesing, Anette P; Sørensen, Thorkild I A;


    To investigate the preproghrelin gene for variants and their association with obesity and type 2 diabetes.......To investigate the preproghrelin gene for variants and their association with obesity and type 2 diabetes....

  7. In The Genes? Searching for Methuselah (United States)

    ... Current Issue Past Issues Special Section In The Genes? Searching for Methuselah Past Issues / Winter 2007 Table ... 18 million effort to learn more about the genes, lifestyle or other factors that contribute to long, ...

  8. 'Uncombable' Hair? Maybe Genes Are to Blame (United States)

    ... gov/news/fullstory_162727.html 'Uncombable' Hair? Maybe Genes Are to Blame Condition is rare, tends to ... combed normally. Now researchers say they've found genes linked to what's known as "uncombable hair syndrome." " ...

  9. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal


    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  10. BRCA1 and BRCA2 gene testing (United States)

    ... of br east ca ncer. What is the BRCA Gene Mutation? BRCA1 and BRCA2 are genes that ... even negative results, with your genetic counselor. References BRCA and BRCA2: Cancer Risk and Genetic Testing. National ...

  11. Gene myths in public perceptions. (United States)

    Svalastog, Anna Lydia


    In this article I examine myths in the gene science debate, and their use as a tool in analysis of popular perceptions and public opinion of genetic science and gene technology. In daily language myth means something untrue, though theories of myth present them as carriers of knowledge and truth. I understand myth as a narrative, a cultural construct that aims to describe the world, its origin, and its constituent elements. I compare scholars' usage of myths, considering their implications. I conclude that i) As an analytical tool the concept of myth is too loosely defined, or understood through theories which leave out context, social relations and interaction. This provides limited insight about myths and myth-making in present day society. ii) An updated understanding of myths, including location/context and interaction/process would enrich analysis.

  12. Mitochondriogenesis genes and extreme longevity. (United States)

    Santiago, Catalina; Garatachea, Nuria; Yvert, Thomas; Rodríguez-Romo, Gabriel; Santos-Lozano, Alejandro; Fiuza-Luces, Carmen; Lucia, Alejandro


    Genes of the proliferator-activated receptor delta (PPARD)-peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A, also termed PGC1-α)-nuclear respiratory factor (NRF)-mitochondrial transcription Factor A (TFAM) mitochondriogenesis pathway can influence health/disease phenotypes, yet their association with extreme longevity is not known. We studied the association of five common polymorphisms in genes of this pathway (rs2267668, rs8192678, rs6949152, rs12594956, rs1937) and extreme longevity using a case (107 centenarians)-control (284 young adults) design. We found no between-group differences in allele/genotype frequencies, except for CC genotype in rs1937 (p=0.003), with no representation in controls (0%), versus 2.8% in centenarians (2 men, 1 woman). In summary, the studied genetic variants of the PPARD-PPARGC1A-NRF-TFAM pathway were not associated with extreme longevity, yet a marginal association could exist for rs1937.

  13. Pumilio genes from the Platyhelminthes. (United States)

    Koziol, Uriel; Marín, Monica; Castillo, Estela


    Pumilio proteins are proposed to have a conserved primordial function in the maintenance of proliferation in stem cells through post-transcriptional regulation. In this work, a search for pumilio homology domain (PUM-HD) sequences of pumilio genes from several Platyhelminthes species was performed, including representatives form Cestoda, Trematoda and Tricladida. Only one PUM-HD sequence was found in each triclad species; however, two PUM-HD homologues were found in all the parasitic species. These sequences formed two clearly separated clades: PlatyPum1, with sequences from all species, and PlatyPum2, composed exclusively of neodermatan sequences. Therefore, at least one duplication of the pumilio gene must have occurred before the divergence of cestodes and trematodes. Further duplications of PUM-HD were found in Fasciola hepatica, but these consist of retropseudogenes. This is the first comparative analysis of PUM-HD sequences in the Platyhelminthes and, more generally, in any lophotrochozoan phylum.

  14. Phenotypic deconstruction of gene circuitry. (United States)

    Lomnitz, Jason G; Savageau, Michael A


    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  15. Leader genes in osteogenesis: a theoretical study. (United States)

    Orlando, Bruno; Giacomelli, Luca; Ricci, Massimiliano; Barone, Antonio; Covani, Ugo


    Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis.

  16. Alcoholism and Alternative Splicing of Candidate Genes


    Toshikazu Sasabe; Shoichi Ishiura


    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  17. The evolution of heart gene delivery vectors


    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng


    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic m...

  18. Pectins, ROS homeostasis and UV-B responses in plant roots. (United States)

    Yokawa, Ken; Baluška, František


    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis.

  19. Gene Therapy for Fracture Repair (United States)


    structures suggestive of angiogenesis are visible (arrows). (B) Omitting the anti-FGF-2 primary antibody eliminated the immunostaining. 28...Several major families of growth factors, signaling molecules and structural genes are represented, providing one of the most comprehensive surveys...receptor accessory protein NM_012968 IL1 inflammation 1.6 NS 45 IL3 regulated nuclear factor NM_053727 IL3 MHC, eosinphil, basophil stimulation

  20. Gene Therapy for Childhood Neurofibromatosis (United States)


    of cells heterozygous for the neurofibromin ( NF1 ) gene. Cells with two functional alleles of NF1 did not support tumor growth. The treatment...objective was therefore to increase the level of expression from the one active copy of NF1 to complement the haploinsufficiency in the cells of the tumor... NF1 ), artificial transcription factor, TALE DNA-binding protein, bacterial delivery vector 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  1. Genes for super-intelligence? (United States)

    Sofaer, J A; Emery, A E


    The results of a postal questionnaire distributed to British members of Mensa failed to confirm an association of superior intelligence with torsion dystonia, retinoblastoma, or phenylketonuria, but were consistent with real associations between high IQ and infantile autism, gout, and myopia. Further confirmation of these findings in other populations might well indicate that genes producing these disorders have more or less direct effects on cerebral development and function.

  2. Genes for super-intelligence?


    Sofaer, J A; Emery, A E


    The results of a postal questionnaire distributed to British members of Mensa failed to confirm an association of superior intelligence with torsion dystonia, retinoblastoma, or phenylketonuria, but were consistent with real associations between high IQ and infantile autism, gout, and myopia. Further confirmation of these findings in other populations might well indicate that genes producing these disorders have more or less direct effects on cerebral development and function.

  3. Gene Therapy : myth or reality ?


    Fischer, Alain


    International audience; Gene therapy has become a reality, although still a fragile one. Clinical benefit has beenachieved over the last 17 years in a limited number of medical conditions for whichpathophysiological studies determined that they were favorable settings. They includeinherited disorders of the immune system, leukodystrophies, possibly hemoglobinopathies,hemophilia B, and retinal dystrophies. Advances in the treatment of B-cell leukemiasand lymphomas have also been achieved. Adva...

  4. Classification with binary gene expressions


    Tuna, Salih; Niranjan, Mahesan


    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  5. The Gene Expression Omnibus database (United States)

    Clough, Emily; Barrett, Tanya


    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at PMID:27008011

  6. Targeted gene flow for conservation. (United States)

    Kelly, Ella; Phillips, Ben L


    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  7. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish


    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  8. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings


    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  9. Gene Therapy In Oral Cancer : An Overview



    The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  10. Gene based therapies for kidney regeneration

    NARCIS (Netherlands)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico


    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molec

  11. Structure of the murine Thy-1 gene

    NARCIS (Netherlands)

    V. Giguere; K-I. Isobe; F.G. Grosveld (Frank)


    textabstractWe have cloned the murine Thy-1.1 (AKR) and Thy-1.2 (Balb/c) genes. The complete exon/intron structure and the nucleotide sequence of the Thy-1.2 gene was determined. The gene contains four exons and three intervening sequences. The complete transcriptional unit gives rise to a tissue an

  12. Targeting Gene-Virotherapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Yuan LIU; Jing-Fa GU; Wen-Fang SHI


    Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called "targeting genevirotherapy", which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called "targeting dual gene-virotherapy" (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory.Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vectorand another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.

  13. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu


    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  14. Genes Causing Male Infertility in Humans

    Institute of Scientific and Technical Information of China (English)

    Lawrence C. Layman


    There are an accumulating number of identified gene mutations that cause infertility in humans. Most of the known gene mutations impair normal puberty and subsequently cause infertility by either hypothalamic /pituitary deficiency of important tropic factors to the gonad or by gonadal genes.

  15. Uses of antimicrobial genes from microbial genome (United States)

    Sorek, Rotem; Rubin, Edward M.


    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  16. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN


    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  17. Updates on current advances in gene therapy. (United States)

    Tani, Jowy; Faustine; Sufian, Jomiany Tani


    Gene therapy is the attempt to treat diseases by means of genetic manipulation. Numerous challenges remain to be overcome before it becomes available as a safe and effective treatment option. Retroviruses and adenoviruses are among the most commonly used viral vectors in trials. The retrovirus introduces the gene it carries into the target cell genome while the adenovirus introduces the gene into the target cell nucleus without incorporating it into the target cell genome. Other viral vectors such as adeno-associated viruses, pseudotyped viruses and herpes simplex viruses, are also gaining popularity. Proposed non-viral methods for gene transfer include physical methods and the employment of chemical vectors (lipoplexes, polyplexes and inorganic nanoparticles). Recent studies have investigated potential applications of gene therapy in correcting genetic diseases, treating malignant disorders and for treatment of other diseases. Trials on gene therapy for SCID and Leber's congenital amaurosis have achieved considerable success, but the widely publicized adverse reaction in X-linked SCID patient receiving gene therapy raised concerns for safety profile of gene therapy. For that, several methods of improving safety and efficacy of gene therapy have been proposed. At present, the three main gene therapy strategies for treatment of cancer are application to oncolytic viruses, suicide-gene therapy and gene-based immunotherapy. Gendicine, the first approved anticancer drugs based on the use of gene therapy principle, is based on the use of oncolytic viruses. More evidence for wider clinical applications of gene therapy are expected as more gene therapy studies progress from the preclinical phase to clinical trial.

  18. Comparative genomic analysis of soybean flowering genes.

    Directory of Open Access Journals (Sweden)

    Chol-Hee Jung

    Full Text Available Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant

  19. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.


    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  20. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. (United States)

    Teunissen, A W; Steensma, H Y


    The quality of brewing strains is, in large part, determined by their flocculation properties. By classical genetics, several dominant, semidominant and recessive flocculation genes have been recognized. Recent results of experiments to localize the flocculation genes FLO5 and FLO8, combined with the in silicio analysis of the available sequence data of the yeast genome, have revealed that the flocculation genes belong to a family which comprises at least four genes and three pseudogenes. All members of this gene family are located near the end of chromosomes, just like the SUC, MEL and MAL genes, which are also important for good quality baking or brewing strains. Transcription of the flocculation genes is repressed by several regulatory genes. In addition, a number of genes have been found which cause cell aggregation upon disruption or overexpression in an as yet unknown manner. In total, 33 genes have been reported that are involved in flocculation or cell aggregation.

  1. Novel susceptibility genes in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Colin Noble; Elaine Nimmo; Daniel Gaya; Richard K Russell; Jack Satsangi


    The inflammatory bowel disease, Crohn's disease and ulcerative colitis, are polygenic disorders with important environmental interactions. To date, the most widely adopted approach to identifying susceptibility genes in complex diseases has involved genome wide linkage studies followed by studies of positional candidate genes in loci of interest. This review encompasses data from studies into novel candidate genes implicated in the pathogenesis of inflammatory bowel disease. Novel techniques to identify candidate genes-genome wide association studies, yeast-two hybrid screening, microarray gene expression studies and proteomic profiling,are also reviewed and their potential role in unravelling the pathogenesis of inflammatory bowel disease are discussed.

  2. Phoenix rising: gene therapy makes a comeback

    Institute of Scientific and Technical Information of China (English)

    Maria P.Limberis


    Despite the first application of gene therapy in 1990,gene therapy has until recently failed to meet the huge expectations set forth by researchers,clinicians,and patients,thus dampening enthusiasm for an imminent cure for many life-threatening genetic diseases.Nonetheless,in recent years we have witnessed a strong comeback for gene therapy,with clinical successes in young and adult subjects suffering from inherited forms of blindness or from X-linked severe combined immunodeficiency disease.In this review,various gene therapy vectors progressing into clinical development and pivotal advances in gene therapy trials will be discussed.

  3. Liposomes as a gene delivery system

    Directory of Open Access Journals (Sweden)

    C. Ropert


    Full Text Available Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.

  4. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun;


    BACKGROUND: Gene conversion causes a non-reciprocal transfer of genetic information between similar sequences. Gene conversion can both homogenize genes and recruit point mutations thereby shaping the evolution of multigene families. In the rice genome, the large number of duplicated genes...... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...

  5. The evolution of mammalian gene families.

    Directory of Open Access Journals (Sweden)

    Jeffery P Demuth

    Full Text Available Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic "revolving door" of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives.

  6. Integrating various resources for gene name normalization.

    Directory of Open Access Journals (Sweden)

    Yuncui Hu

    Full Text Available The recognition and normalization of gene mentions in biomedical literature are crucial steps in biomedical text mining. We present a system for extracting gene names from biomedical literature and normalizing them to gene identifiers in databases. The system consists of four major components: gene name recognition, entity mapping, disambiguation and filtering. The first component is a gene name recognizer based on dictionary matching and semi-supervised learning, which utilizes the co-occurrence information of a large amount of unlabeled MEDLINE abstracts to enhance feature representation of gene named entities. In the stage of entity mapping, we combine the strategies of exact match and approximate match to establish linkage between gene names in the context and the EntrezGene database. For the gene names that map to more than one database identifiers, we develop a disambiguation method based on semantic similarity derived from the Gene Ontology and MEDLINE abstracts. To remove the noise produced in the previous steps, we design a filtering method based on the confidence scores in the dictionary used for NER. The system is able to adjust the trade-off between precision and recall based on the result of filtering. It achieves an F-measure of 83% (precision: 82.5% recall: 83.5% on BioCreative II Gene Normalization (GN dataset, which is comparable to the current state-of-the-art.

  7. Gene therapy oversight: lessons for nanobiotechnology. (United States)

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter


    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology.

  8. Apolipoprotein gene involved in lipid metabolism (United States)

    Rubin, Edward; Pennacchio, Len A.


    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  9. Recent advances in gene therapy for thalassemia

    Directory of Open Access Journals (Sweden)

    J V Raja


    Full Text Available Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  10. Recent advances in gene therapy for thalassemia. (United States)

    Raja, J V; Rachchh, M A; Gokani, R H


    Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  11. Simulation of gene pyramiding in Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)


    Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated.But it has not been used in animal breeding,and some theoretical investigation and simulation analysis with respect to its strategies,feasibility and efficiency are needed before it can be implemented in animals.In this study,we used four different pure fines of Drosophila melanogaster,each of which is homozygous at a specific mutant gene with a visible effect on phenotype,to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies.We finally got the ideal individuals,which are homozygous at the four target genes simultaneously.This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.

  12. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang


    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  13. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences. (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark


    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  14. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. (United States)

    Chapman, Joanne R; Waldenström, Jonas


    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  15. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit


    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  16. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark


    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  17. Wnt gene loss in flatworms. (United States)

    Riddiford, Nick; Olson, Peter D


    Wnt genes encode secreted glycoproteins that act in cell-cell signalling to regulate a wide array of developmental processes, ranging from cellular differentiation to axial patterning. Discovery that canonical Wnt/β-catenin signalling is responsible for regulating head/tail specification in planarian regeneration has recently highlighted their importance in flatworm (phylum Platyhelminthes) development, but examination of their roles in the complex development of the diverse parasitic groups has yet to be conducted. Here, we characterise Wnt genes in the model tapeworm Hymenolepis microstoma and mine genomic resources of free-living and parasitic species for the presence of Wnts and downstream signalling components. We identify orthologs through a combination of BLAST and phylogenetic analyses, showing that flatworms have a highly reduced and dispersed complement that includes orthologs of only five subfamilies (Wnt1, Wnt2, Wnt4, Wnt5 and Wnt11) and fewer paralogs in parasitic flatworms (5-6) than in planarians (9). All major signalling components are identified, including antagonists and receptors, and key binding domains are intact, indicating that the canonical (Wnt/β-catenin) and non-canonical (planar cell polarity and Wnt/Ca(2+)) pathways are functional. RNA-Seq data show expression of all Hymenolepis Wnts and most downstream components in adults and larvae with the notable exceptions of wnt1, expressed only in adults, and wnt2 expressed only in larvae. The distribution of Wnt subfamilies in animals corroborates the idea that the last common ancestor of the Cnidaria and Bilateria possessed all contemporary Wnts and highlights the extent of gene loss in flatworms.

  18. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn


    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...

  19. HOX genes in the skin

    Institute of Scientific and Technical Information of China (English)

    YANG Mei; LI Qing-feng; ZHANG Feng


    @@ Deep skin wounds heal by scar formation with a loss of its original appearance, structure and function.However, when the same damage occurs to the skin of an early gestational fetus, complete regeneration can be observed. Despite significant research in the field of skin regeneration, many mysteries remain, such as the loss of wound healing ability with maturity, the differences in healing at different parts of the body, and the presence of hypertrophic scars and keloids in some races but not in others. The finding of HOX genes in the skin provides new explanations to these conundrums.

  20. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory


    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  1. An overview of gene therapy in head and neck cancer



    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  2. Gene family assignment-free comparative genomics

    Directory of Open Access Journals (Sweden)

    Doerr Daniel


    Full Text Available Abstract Background The comparison of relative gene orders between two genomes offers deep insights into functional correlations of genes and the evolutionary relationships between the corresponding organisms. Methods for gene order analyses often require prior knowledge of homologies between all genes of the genomic dataset. Since such information is hard to obtain, it is common to predict homologous groups based on sequence similarity. These hypothetical groups of homologous genes are called gene families. Results This manuscript promotes a new branch of gene order studies in which prior assignment of gene families is not required. As a case study, we present a new similarity measure between pairs of genomes that is related to the breakpoint distance. We propose an exact and a heuristic algorithm for its computation. We evaluate our methods on a dataset comprising 12 γ-proteobacteria from the literature. Conclusions In evaluating our algorithms, we show that the exact algorithm is suitable for computations on small genomes. Moreover, the results of our heuristic are close to those of the exact algorithm. In general, we demonstrate that gene order studies can be improved by direct, gene family assignment-free comparisons.

  3. Arabidopsis gene expression patterns during spaceflight (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  4. Nucleosome repositioning underlies dynamic gene expression. (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn


    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  5. Evolution of the Vertebrate Resistin Gene Family.

    Directory of Open Access Journals (Sweden)

    Qingda Hu

    Full Text Available Resistin (encoded by Retn was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish, but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.

  6. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy


    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  7. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology

    Directory of Open Access Journals (Sweden)

    C Ting


    Full Text Available Objective: To design a resistance gene detection chip that could, in parallel, detect common clinical drug resistance genes of Gram-negative bacteria. Materials and Methods: Seventy clinically significant Gram-negative bacilli (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii were collected. According to the known resistance gene sequences, we designed and synthesized primers and probes, which were used to prepare resistance gene detection chips, and finally we hybridized and scanned the gene detection chips. Results: The results between the gene chip and polymerase chain reaction (PCR were compared. The rate was consistently 100% in the eight kinds of resistance genes tested (TEM, SHV, CTX-M, DHA, CIT, VIM, KPC, OXA-23. One strain of Pseudomonas aeruginosa had the IMP, but it was not found by gene chip. Conclusion: The design of Gram-negative bacteria-resistant gene detection chip had better application value.

  8. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)


    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  9. Chemokine gene variants in schizophrenia. (United States)

    Dasdemir, Selcuk; Kucukali, Cem Ismail; Bireller, Elif Sinem; Tuzun, Erdem; Cakmakoglu, Bedia


    Background Chemokines are known to play a major role in driving inflammation and immune responses in several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and Parkinson's disease. Inflammation has also been implicated in the pathogenesis of schizophrenia. Aim We aimed to investigate a potential link between chemokines and schizophrenia and analyze the role of MCP-1-A2518G, SDF-1-3'A, CCR5-delta32, CCR5-A55029G, CXCR4-C138T and CCR2-V64I gene polymorphisms in the Turkish population. Methods Genotyping was conducted by PCR-RFLP based on 140 patients and 123 unrelated healthy controls to show the relation between chemokine gene variants and schizophrenia risk. Results Frequencies of CCR5-A55029G A genotypes and CCR5-A55029G AG genotypes were found higher in patients than the controls and even also CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes significantly associated according to Bonferroni correction. However, no significant association was found for any of the other polymorphisms with the risk of schizophrenia. Conclusions Our findings suggest that CCR5-A55029G polymorphisms and CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes might have association with schizophrenia pathogenesis.

  10. The iojap gene in maize

    Energy Technology Data Exchange (ETDEWEB)

    Martienssen, Robert


    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  11. apex: phylogenetics with multiple genes. (United States)

    Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, Hilmar


    Genetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.

  12. Obesity genes and insulin resistance (United States)

    Belkina, Anna C.; Denis, Gerald V.


    Purpose of review The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically healthy but obese’ (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. Recent findings The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Summary Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients. PMID:20585247

  13. Susceptibility genes in movement disorders. (United States)

    Scholz, Sonja; Singleton, Andrew


    During the last years, remarkable progress in our understanding of molecular genetic mechanisms underlying movement disorders has been achieved. The successes of linkage studies, followed by positional cloning, have dominated the last decade and several genes underlying monogenic disorders have been discovered. The pathobiological understanding garnered from these mutations has laid the foundation for much of the search for genetic loci that confer risk for, rather than cause, disease. With the introduction of whole genome association studies as a novel tool to investigate genetic variation underlying common, complex diseases, a new era in neurogenomics has just begun. As the field rapidly moves forward several new challenges and critical questions in clinical care have to be addressed. In this review, we summarize recent advances in the discovery of susceptibility loci underlying major movement disorders, explain the newest methodologies and tools employed for finding and characterizing genes and discuss how insights into the molecular genetic basis of neurological disorders will impact therapeutic concepts in patient care.

  14. Genes that bias Mendelian segregation.

    Directory of Open Access Journals (Sweden)

    Pierre Grognet

    Full Text Available Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs, complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  15. Genes that bias Mendelian segregation. (United States)

    Grognet, Pierre; Lalucque, Hervé; Malagnac, Fabienne; Silar, Philippe


    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  16. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. (United States)

    Wang, Dan; Gao, Guangping


    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  17. Computing gene expression data with a knowledge-based gene clustering approach. (United States)

    Rosa, Bruce A; Oh, Sookyung; Montgomery, Beronda L; Chen, Jin; Qin, Wensheng


    Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

  18. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  19. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L


    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  20. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage. (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan


    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  1. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu


    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  2. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong


    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  3. Perinatal Gene-Gene and Gene-Environment Interactions on IgE Production and Asthma Development

    Directory of Open Access Journals (Sweden)

    Jen-Chieh Chang


    Full Text Available Atopic asthma is a complex disease associated with IgE-mediated immune reactions. Numerous genome-wide studies identified more than 100 genes in 22 chromosomes associated with atopic asthma, and different genetic backgrounds in different environments could modulate susceptibility to atopic asthma. Current knowledge emphasizes the effect of tobacco smoke on the development of childhood asthma. This suggests that asthma, although heritable, is significantly affected by gene-gene and gene-environment interactions. Evidence has recently shown that molecular mechanism of a complex disease may be limited to not only DNA sequence differences, but also gene-environmental interactions for epigenetic difference. This paper reviews and summarizes how gene-gene and gene-environment interactions affect IgE production and the development of atopic asthma in prenatal and childhood stages. Based on the mechanisms responsible for perinatal gene-environment interactions on IgE production and development of asthma, we formulate several potential strategies to prevent the development of asthma in the perinatal stage.

  4. Alphavirus vectors for cancer gene therapy (review). (United States)

    Yamanaka, Ryuya


    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.


    Timofeev, V S; Bakhteeva, I V; Pavlov, V M; Mokrievich, A N


    This work describes the results, of the in silico analysis of the genetic diversity of the citrullinureidase gene (ctu) in two species of bacteria of the genus Francisella: tularensis (ssp. tularensis, holarctica, mediasiatica, novicida) and philomiragia. The strains of the Central Asiatic subspecies possessing the citrullinureidase activity differ in the gene ctu from the ssp tularensis Schu by three nucleotide substitutions leading to two insignificant amino acid substitutions in the encoded polypeptide. In the strain F. tularensis of the ssp. holarctica the gene ctu encodes inactive enzyme, which is probably due to amino acid substitutions: 151 Gly --> Asp, 183 Pro --> Leu, 222 Asp --> Asn. Except for the Japan biovar bacteria, in all strains of the Holarctic subspecies there are two stop codons in the gene ctu. The bacteria of the subspecies novicida contain the ctu gene only in the strain 3523, whereas the other strains contain the gene FTN_0827 encoding the C-N hydrolase, which probably provides the citrullinureidase activity.

  6. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)


    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  7. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal


    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here...

  8. Multiclass gene selection using Pareto-fronts. (United States)

    Rajapakse, Jagath C; Mundra, Piyushkumar A


    Filter methods are often used for selection of genes in multiclass sample classification by using microarray data. Such techniques usually tend to bias toward a few classes that are easily distinguishable from other classes due to imbalances of strong features and sample sizes of different classes. It could therefore lead to selection of redundant genes while missing the relevant genes, leading to poor classification of tissue samples. In this manuscript, we propose to decompose multiclass ranking statistics into class-specific statistics and then use Pareto-front analysis for selection of genes. This alleviates the bias induced by class intrinsic characteristics of dominating classes. The use of Pareto-front analysis is demonstrated on two filter criteria commonly used for gene selection: F-score and KW-score. A significant improvement in classification performance and reduction in redundancy among top-ranked genes were achieved in experiments with both synthetic and real-benchmark data sets.

  9. [Latest advances of SLA class I genes]. (United States)

    Tao, Xuan; Li, Hua; Li, Xue-Wei; Yu, Hui; Zuo, Qi-Zhen


    The Swine leukocyte antigen (SLA) class I genes encode multi-glycoproteins on cell surface, which present endogenous antigenic peptides to T cells and thus initiate specific immune responses. In this article, latest advances on molecular structure, expression in tissues, regulation of expression, genotyping, polymorphism, and evolution of SLA class I genes were introduced, in which genotyping and polymorphism were emphasized. Molecular typing methods of SLA class I genes include serological method, DNA sequencing, PCR-SSP, PCR-SSOP and MS, of which PCR-SSP is frequently used in genotyping of SLA class I genes as a simple and rapid method. Future directions for the study and application of SLA class I genes on gene functions, peptide vaccine, xenotransplantation were also discussed.

  10. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu


    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  11. HLA Immune Function Genes in Autism

    Directory of Open Access Journals (Sweden)

    Anthony R. Torres


    Full Text Available The human leukocyte antigen (HLA genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.

  12. The MHC class I genes of zebrafish. (United States)

    Dirscherl, Hayley; McConnell, Sean C; Yoder, Jeffrey A; de Jong, Jill L O


    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.

  13. Evolution of trappin genes in mammals

    Directory of Open Access Journals (Sweden)

    Furutani Yutaka


    Full Text Available Abstract Background Trappin is a multifunctional host-defense peptide that has antiproteolytic, antiinflammatory, and antimicrobial activities. The numbers and compositions of trappin paralogs vary among mammalian species: human and sheep have a single trappin-2 gene; mouse and rat have no trappin gene; pig and cow have multiple trappin genes; and guinea pig has a trappin gene and two other derivativegenes. Independent duplications of trappin genes in pig and cow were observed recently after the species were separated. To determine whether these trappin gene duplications are restricted only to certain mammalian lineages, we analyzed recently-developed genome databases for the presence of duplicate trappin genes. Results The database analyses revealed that: 1 duplicated trappin multigenes were found recently in the nine-banded armadillo; 2 duplicated two trappin genes had been found in the Afrotherian species (elephant, tenrec, and hyrax since ancient days; 3 a single trappin-2 gene was found in various eutherians species; and 4 no typical trappin gene has been found in chicken, zebra finch, and opossum. Bayesian analysis estimated the date of the duplication of trappin genes in the Afrotheria, guinea pig, armadillo, cow, and pig to be 244, 35, 11, 13, and 3 million-years ago, respectively. The coding regions of trappin multigenes of almadillo, bovine, and pig evolved much faster than the noncoding exons, introns, and the flanking regions, showing that these genes have undergone accelerated evolution, and positive Darwinian selection was observed in pig-specific trappin paralogs. Conclusion These results suggest that trappin is an eutherian-specific molecule and eutherian genomes have the potential to form trappin multigenes.

  14. Gene Therapy In Oral Cancer : An Overview

    Directory of Open Access Journals (Sweden)

    Kanaram Choudhary


    Full Text Available The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  15. An overview on gene therapy programs. (United States)

    Romano, Gaetano


    The 11th Annual Meeting of the American Society of Gene Therapy focused on clinical trials for the treatment of various pathological conditions, preclinical studies, use of gene transfer technology for genetic immunization purposes and problems related to the improvement of vector design. In this respect, a major emphasis was placed on safety issues, such as insertional mutagenesis and host immune responses to gene delivery systems.

  16. Snowball: Strain aware gene assembly of Metagenomes


    Gregor, I.; Schönhuth, A.; McHardy, A. C.


    Gene assembly is an important step in functional analysis of shotgun metagenomic data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools often fail to distinguish among strain variants or require closely related reference genomes of the studied species to be available. We have developed Snowball, a novel strain aware and reference-free gene assembler for shotgun metagenomic data. It uses profile hidden Markov models (HMMs) of gene domains of interest to ...

  17. Adenoviral Vectors for Hemophilia Gene Therapy


    Brunetti-Pierri, N; Ng, Philip


    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review ...

  18. Gene Therapy for Post-Traumatic Osteoarthritis (United States)


    AD______________ AWARD NUMBER: W81XWH-14-1-0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C...COVERED 30Sept 2014 - 29 Sept 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Gene Therapy for Posttraumatic Osteoarthritis 5b. GRANT NUMBER...Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin-1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self

  19. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)


    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  20. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael


    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  1. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa


    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  2. Global coordination in adaptation to gene rewiring


    Murakami, Yoshie; Matsumoto, Yuki; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya


    Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia col...

  3. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss. (United States)

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G


    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer.

  4. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi


    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  5. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy. (United States)

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung


    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.

  6. The drug target genes show higher evolutionary conservation than non-target genes. (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie


    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  7. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W


    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at

  8. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs. (United States)

    Borrás, Teresa


    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration.

  9. The Use of Viral Vectors in Gene Transfer Therapy


    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová


    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  10. Gene Expression Patterns in Ovarian Carcinomas (United States)

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.


    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  11. Candidate genes in ocular dominance plasticity

    Directory of Open Access Journals (Sweden)

    M. Liset Rietman


    Full Text Available The objective of this study was to identify new candidate genes involved in experience-dependent plasticity. To this aim, we combined previously obtained data from recombinant inbred BXD strains on ocular dominance (OD plasticity and gene expression levels in the neocortex. We validated our approach using a list of genes which alter OD plasticity when inactivated. The expression levels of one fifth of these genes correlated with the amount of OD plasticity. Moreover, the two genes with the highest relative inter-strain differences were among the correlated genes. This suggests that correlation between gene expression levels and OD plasticity is indeed likely to point to genes with a causal role in modulating or generating plasticity in the visual cortex. After this validation on known plasticity genes, we identified new candidate genes by a multi-step approach. First, a list was compiled of all genes of which the expression level in BXD strains correlate with the amount of OD plasticity. To narrow this list to the more promising candidates, we took its cross-section with a list of genes co-regulated with the sensitive period for OD plasticity and a list of genes associated with pathways implicated in OD plasticity. This analysis resulted in a list of 32 candidate genes. The list contained unproven, but not surprising, candidates, such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A receptor, acetylcholine esterase and the catalytic subunit of cAMP-dependent protein kinase A. This was indicative of the viability of our approach, but more interesting were the novel candidate genes: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. The possible role of some of these candidates is discussed in the article.

  12. Recent advances in fetal gene therapy. (United States)

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N


    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  13. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang


    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  14. Central auditory function of deafness genes. (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd


    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  15. Gene flow from glyphosate-resistant crops. (United States)

    Mallory-Smith, Carol; Zapiola, Maria


    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

  16. Gene transfer strategies for augmenting cardiac function. (United States)

    Peppel, K; Koch, W J; Lefkowitz, R J


    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  17. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan


    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  18. Modification of Cre Gene by PCR Method

    Institute of Scientific and Technical Information of China (English)


    Cre/LoxP site-specified recombination system is mainly used for excision,inversion and integration of target gene.Therefore,this system can be used for plant marker free genetic transformation,site-specific transgene expression and so on.However,the application of this system was limited due to its low expression and excision efficiency.In this study,an intron,which can enhance gene expression in plants,was inserted into Cre by using PCR method.And a modified Cre gene,named Crein,was obtained.This gene was ...

  19. Alcoholism and alternative splicing of candidate genes. (United States)

    Sasabe, Toshikazu; Ishiura, Shoichi


    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  20. Tillering and panicle branching genes in rice. (United States)

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing


    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.

  1. Consensus maps of cloned plant cuticle genes

    Institute of Scientific and Technical Information of China (English)

    Eviatar; Nevo


    Plant cuticle,which covers the plant surface,consists of waxes and cutins,and is associated with plant drought,cold,and salt resistance.Hitherto,at least 47 genes participating in the formation of plant cuticle have been cloned from Arabidopsis thaliana,Oryza sativa,Zea mays,Ricinus communis,Brassica napus,and Medicago truncatula;and about 85% of them encode proteins sharing above 50% identities with their rice homologous sequences.These cloned cuticle genes were mapped in silico on different chromosomes of rice and Arabidopsis,respectively.The mapping results revealed that plant cuticle genes were not evenly distributed in both genomes.About 40% of the mapped cuticle genes were located on chromosome 1 in Arabidopsis,while 20% of the mapped cuticle genes were located on chromosome 2 but none on chromosome 12 in rice.Some cloned plant cuticle genes have several rice homologous sequences,which might be produced by chromosomal segment duplication.The consensus map of cloned plant cuticle genes will provide important clues for the selection of candidate genes in a positional cloning of an unknown cuticle gene in plants.

  2. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu


    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  3. Employment of Salmonella in Cancer Gene Therapy. (United States)

    Lee, Che-Hsin


    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  4. Genes that escape from X inactivation. (United States)

    Berletch, Joel B; Yang, Fan; Xu, Jun; Carrel, Laura; Disteche, Christine M


    To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

  5. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen


    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  6. Identification of a Novel Garlic Cellulase Gene. (United States)

    Kim, Aeri; Kim, Ryong Nam; Kim, Dae-Won; Choi, Sang-Haeng; Kang, Aram; Nam, Seong-Hyeuk; Park, Hong-Seog


    Genes encoding cellulase enzymes have been investigated in various plants due to the importance of cellulase enzymes in industrial applications, especially in the conversion of biomass into biofuels. Although several cellulase genes have been cloned and characterized, little is known about cellulase genes from garlic or enzyme activities of their gene products. In this study, a cellulase gene from garlic was cloned and characterized in gene and protein levels for the first time. The DNA sequence of the garlic cellulase gene showed 81% identity with the sequence of the endo-beta-1,4-glucanase of Pisum sativum. The open reading frame of this gene is 1,506 bp, which corresponds to 501 deduced amino acids. We identified the novel ORF region, which was translated into a 55.2 kDa protein using the protein expression vector, pET28a, in Escherichia coli and we confirmed that this protein has cellulase activity in vitro. Our study demonstrates that garlic is very useful, not only for the culinary and pharmaceutical industries, but also as an excellent natural source of various kinds of important genes and enzymes.

  7. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger


    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  8. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev


    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  9. Dynamics of bacterial gene regulation (United States)

    Narang, Atul


    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  10. Suicide and the selfish gene. (United States)

    Satora, Leszek


    The application of an evolutionary perspective to human behaviour generates philosophical, political and scientific controversy. Modern human symbolic consciousness is not the cumulation of the long trend that natural selection would predict. The new archaeological data suggested the anatomical and behavioural innovation has been episodic and rare separated by long periods of stagnate. New behavioural mode and the new skeletal structure of modem human arose as an incidental exaptation. Additionally the genetic basis dysfunction connected with suicide behaviour and growing statistic suicide among teenager is contradictory to the theory that our behaviour are programmed in any detail by selfish genes. In this cases genetically determined suicidal behaviour should be rapidly eliminated by natural selection.

  11. Gene order computation using Alzheimer's DNA microarray gene expression data and the Ant Colony Optimisation algorithm. (United States)

    Pang, Chaoyang; Jiang, Gang; Wang, Shipeng; Hu, Benqiong; Liu, Qingzhong; Deng, Youping; Huang, Xudong


    As Alzheimer's Disease (AD) is the most common form of dementia, the study of AD-related genes via biocomputation is an important research topic. One method of studying AD-related gene is to cluster similar genes together into a gene order. Gene order is a good clustering method as the results can be optimal globally while other clustering methods are only optimal locally. Herein we use the Ant Colony Optimisation (ACO)-based algorithm to calculate the gene order from an Alzheimer's DNA microarray dataset. We test it with four distance measurements: Pearson distance, Spearmen distance, Euclidean distance, and squared Euclidean distance. Our computing results indicate: a different distance formula generated a different quality of gene order, the squared Euclidean distance approach produced the optimal AD-related gene order.

  12. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)



    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  13. Tagging Blast Resistance Gene Pi 1 in Rice (Oryza sativa) Using Candidate Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    LI Ai-hong; WU Jian-li; XU Xin-ping; Menchu BERNADO; DAI Zheng-yuan; ZHUANG Jie-yun; CHEN Zong-xiang; ZHENG Kang-le; LI Bao-jian; Hei LEUNG; ZHANG Hong-xi; PAN Xue-biao


    An F3 population derived from C101LAC/CO39 containing 90 lines was analyzed for blast resistance with 48 candidate genes developed from resistance gene analogs (RGA) and suppression subtractive library. Genetic analysis confirmed that blast resistance of the population was controlled by a single gene Pi 1. One of the candidate genes, R10 was identified as associated with the blast resistance gene on the long arm of chromosome 11 and mapped using a DH population derived from Azucena/IR64.A pair of PCR based primers was designed based on the sequence of R10 for marker-aided selection of the blast resistance gene.The recombination frequency between Pi 1 and the marker was estimated as 1.28%. It suggested that strategy of employing candidate genes is useful for gene identification and mapping. A new RFLP marker and the corresponding PCR marker for tagging of Pi 1 were provided.

  14. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ


    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  15. Gene Name Thesaurus - Gene Name Thesaurus | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ts Curators who have expertize in biological research edit gene names found in various databases and article...tabases. 2. The curators who have expertise in biological research confirm the name variation for genes and

  16. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression. (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  17. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  18. Selection and validation of reference genes for quantitative gene expression studies in Erythroxylum coca



    Real-time quantitative PCR is a powerful technique for the investigation of comparative gene expression, but its accuracy and reliability depend on the reference genes used as internal standards. Only genes that show a high level of expression stability are suitable for use as reference genes, and these must be identified on a case-by-case basis. Erythroxylum coca produces and accumulates high amounts of the pharmacologically active tropane alkaloid cocaine (especially in the leaves), and is ...

  19. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Directory of Open Access Journals (Sweden)

    Cordeiro Raposo Fernando


    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  20. Evidence for gene conversion among immunoglobulin heavy chain variable region genes. (United States)

    Clarke, S H; Rudikoff, S


    We have previously reported that the VH region amino acid sequence of a phosphocholine (PC)-binding hybridoma antibody of CBA/J origin, HP101 6G6 (6G6), differs extensively from the VH regions of other PC-binding antibodies. The sequence of 6G6 VH appears to be derived from a gene homologous to the BALB/c V11 gene, a member of the PC VH (T15 VH) gene family not normally used to encode PC-binding antibodies. The 6G6 VH sequence differs from the translated sequence of V11 by six amino acids, four of which occur at the same position in other members of this gene family. This coincidence led to the proposal that the 6G6 VH gene was derived by gene conversion involving three genes of the PC VH gene family. We report here the nucleic acid sequence of the rearranged VH gene of hybridoma 6G6. This sequence supports our previous suggestion of gene conversion by confirming those differences, relative to the BALB/c V11 gene sequence, that are encoded by other members of this gene family, and extends this correlation to include three silent base pair substitutions as well. In addition, 5' noncoding region sequence and Southern blot analysis using probes derived from the coding and 5' noncoding regions confirm that the 6G6 VH gene is likely to be derived from the V11 homologue in CBA/J mice, and suggest that all three genes believed to be involved in the generation of the 6G6 VH gene are present in the CBA/J genome, a prerequisite for their involvement in gene conversion.

  1. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang


    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  2. Discovering gene annotations in biomedical text databases

    Directory of Open Access Journals (Sweden)

    Ozsoyoglu Gultekin


    Full Text Available Abstract Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i automating the annotation of genomic entities with Gene Ontology concepts, and (ii providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate

  3. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S


    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  4. The Prediction of Rice Gene by Fgenesh

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng-li; LI Dong-fang; ZHANG Gai-sheng; WANG Jun-wei; NIU Na


    This study has been carried out to give some scientific reasons for genome annotation, shorten the annotating time, and improve the results of gene prediction. Taking the sequence of the 6th chromosome, which has more length sequences than others, of Oryza sativa L. ssp. japonica cv. Nipponbare as analysis data in this research, the gene prediction of monocots module, rice, has been done by using Fgenesh ver. 2.0, and the predicting results have been explored particularly by bioinformatics methods. Results showed that the number of predicted genes for this chromosome was very close to the number of TIGR annotated genes. The majority of the predicted genes were multi-exon genes which had a percentage of 77.52. Length range was very big in the predicted genes. According to the significant match number, multi-exon genes can be predicted more veracity than single exon genes and the support can be reached up to 100% by TIGR annotation and up to 78% by cDNA. From the angle of predicted exons location of multi-exon genes, the internal exons and last exons had a high support of cDNA. The length of internal exons was relatively short in high (>95% length, >78% similarity) cDNA and/or TIGR annotation support multi-exon genes, but the first exons and last exons were on the reverse. The majority of single exon genes which had more than 95% in length, and 78% in similarity support by cDNA and/or TIGR annotation was relatively short in length. From the angle of exon number, the majority of the multi-exon genes of high (> 95% length, > 78% similarity) cDNA and/or TIGR annotation support had no more than 5 exon number. It was concluded that the rice gene prediction by Fgenesh was very good but needed modification manually to some extent according to cDNA support after aligning the predicting sequence of genes with cDNA database of rice.

  5. Medea genes, handedness and other traits (United States)

    Hatfield, Jeffrey


    Medea factors or genes are maternal-effects mechanisms, found in many species, in which the mother's body selectively kills embryos of a certain genotype.Humans have a similar genetic mechanism, the gene RHD which produces Rh-factor involved in blood type.Recently I proposed that RHD acts as a maternal-effects gene that determines handedness (i.e., right handed or non-right handed) in individuals of our species. Here, I argue that RHD functions as a Medea gene as well.The handedness gene (and also RHD itself in some cases) has been implicated in autism spectrum disorders (ASD), bipolar disorder, cerebral laterality (i.e., right-brained or left-brained speech laterality), hair-whorl rotation, schizophrenia, sexual orientation, and speech dyslexia.Identifying the gene or genes that determine handedness or cerebral laterality may help uncover the mechanisms underlying these behavioral phenotypes in our species.A relatively simple test of the handedness hypothesis has been proposed:In a sample of humans for whom handedness has been evaluated, we would need to genotype for RHD by determining whether Rh+ individuals have one or two copies of the dominant allele. If RHD and perhaps also an interaction with RHCE are involved in sexual orientation, it explains how selection could favor a gene or genes which cause some people to become non-heterosexual.The literature on Medea genes provides the explanation:A Medea allele must increase in frequency, sometimes to fixation (i.e., 100% frequency) even if it reduces fecundity (e.g., birth rate).In addition, treatment for RHD maternal-fetal genotype incompatibility, which allows more fetuses to survive to term now, may be one explanation for why ASD appears to be increasing in frequency in some populations, if RHD is indeed the handedness gene, although many other mechanisms have also been suggested. One wonders if bipolar disorder and the other alternative phenotypes are also increasing in frequency.

  6. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    William J Murphy


    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  7. Divergence of flowering genes in soybean

    Indian Academy of Sciences (India)

    Moon Young Kim; Jin Hee Shin; Yang Jae Kang; Sang Rea Shim; Suk-Ha Lee


    Soybean genome sequences were blasted with Arabidopsis thaliana regulatory genes involved in photoperiod-dependent flowering. This approach enabled the identification of 118 genes involved in the flowering pathway. Two genome sequences of cultivated (Williams 82) and wild (IT182932) soybeans were employed to survey functional DNA variations in the flowering-related homologs. Forty genes exhibiting nonsynonymous substitutions between G. max and G. soja were catalogued. In addition, 22 genes were found to co-localize with QTLs for six traits including flowering time, first flower, pod maturity, beginning of pod, reproductive period, and seed filling period. Among the genes overlapping the QTL regions, two LHY/CCA1 genes, GI and SFR6 contained amino acid changes. The recently duplicated sequence regions of the soybean genome were used as additional criteria for the speculation of the putative function of the homologs. Two duplicated regions showed redundancy of both flowering-related genes and QTLs. ID 12398025, which contains the homeologous regions between chr 7 and chr 16, was redundant for the LHY/CCA1 and SPA1 homologs and the QTLs. Retaining of the CRY1 gene and the pod maturity QTLs were observed in the duplicated region of ID 23546507 on chr 4 and chr 6. Functional DNA variation of the LHY/CCA1 gene (Glyma07g05410) was present in a counterpart of the duplicated region on chr 7, while the gene (Glyma16g01980) present in the other portion of the duplicated region on chr 16 did not show a functional sequence change. The gene list catalogued in this study provides primary insight for understanding the regulation of flowering time and maturity in soybean.

  8. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing

    NARCIS (Netherlands)

    Romero, I.; Tikunov, Y.M.; Bovy, A.G.


    Virus-induced gene silencing (VIGS) is a technology that has rapidly emerged for gene function studies in plants. Many advances have been made in applying this technique in an increasing number of crops. Recently, VIGS has been successfully used to silence genes in tomato fruit through agroinfiltrat

  9. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER

    Indian Academy of Sciences (India)

    Gautam Aggarwal; Ramakrishna Ramaswamy


    We compare the annotation of three complete genomes using the ab initio methods of gene identification GeneScan and GLIMMER. The annotation given in GenBank, the standard against which these are compared, has been made using GeneMark. We find a number of novel genes which are predicted by both methods used here, as well as a number of genes that are predicted by GeneMark, but are not identified by either of the nonconsensus methods that we have used. The three organisms studied here are all prokaryotic species with fairly compact genomes. The Fourier measure forms the basis for an efficient non-consensus method for gene prediction, and the algorithm GeneScan exploits this measure. We have bench-marked this program as well as GLIMMER using 3 complete prokaryotic genomes. An effort has also been made to study the limitations of these techniques for complete genome analysis. GeneScan and GLIMMER are of comparable accuracy insofar as gene-identification is concerned, with sensitivities and specificities typically greater than 0.9. The number of false predictions (both positive and negative) is higher for GeneScan as compared to GLIMMER, but in a significant number of cases, similar results are provided by the two techniques. This suggests that there could be some as-yet unidentified additional genes in these three genomes, and also that some of the putative identifications made hitherto might require re-evaluation. All these cases are discussed in detail.

  10. Integrative characterization of germ cell-specific genes from mouse spermatocyte UniGene library

    Directory of Open Access Journals (Sweden)

    Eddy Edward M


    Full Text Available Abstract Background The primary regulator of spermatogenesis, a highly ordered and tightly regulated developmental process, is an intrinsic genetic program involving male germ cell-specific genes. Results We analyzed the mouse spermatocyte UniGene library containing 2155 gene-oriented transcript clusters. We predict that 11% of these genes are testis-specific and systematically identified 24 authentic genes specifically and abundantly expressed in the testis via in silico and in vitro approaches. Northern blot analysis disclosed various transcript characteristics, such as expression level, size and the presence of isoform. Expression analysis revealed developmentally regulated and stage-specific expression patterns in all of the genes. We further analyzed the genes at the protein and cellular levels. Transfection assays performed using GC-2 cells provided information on the cellular characteristics of the gene products. In addition, antibodies were generated against proteins encoded by some of the genes to facilitate their identification and characterization in spermatogenic cells and sperm. Our data suggest that a number of the gene products are implicated in transcriptional regulation, nuclear integrity, sperm structure and motility, and fertilization. In particular, we found for the first time that Mm.333010, predicted to contain a trypsin-like serine protease domain, is a sperm acrosomal protein. Conclusion We identify 24 authentic genes with spermatogenic cell-specific expression, and provide comprehensive information about the genes. Our findings establish a new basis for future investigation into molecular mechanisms underlying male reproduction.


    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇


    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.


    Institute of Scientific and Technical Information of China (English)

    张清媛; 李殿俊; 王志华


    Objective: To study the vaccine potency of gene-modified tumor cells. Methods: The EL-4 lymphoma was transduced with recombinant retrovirus containing the murine GM-CSF gene or B7-1 gene. The effect of gene transduction on antitumor immunity was investigated. Results: Flow cytometry analysis showed that expression of their surface marker between wild-type EL-4 cells and gene transduced tumor cells was the same except for CD80 positive in B7-1 gene transduced cells. GM-CSF gene or B7-1 gene transduced EL-4 cells resulted in remarkable loss of tumorigenicity in syngenetic mice. The systemic protective immunity was induced against the challenge with EL-4/wt cells. Therapeutic vaccine with EL-4/GM-CSF or EL/7-1 cells could retard the growth of established early-stage EL-4/wt tumor significantly, but not retard the growth of late-stage EL-4/wt tumor. Irradiated GM-CSF gene transduced EL-4 cells showed strong vaccine effect against EL-4 cell challenge, but irradiated B7-1 gene transduced EL-4 cells showed weak vaccine effect. Remarkable cooperative antitumor effect against EL-4 cell challenge was observed when both irradiated EL-4/GM-CSF and EL-4/B7-1 were inoculated together. Conclusion: GM-CSF gene or B7-1 gene transduced combination of the two kinds of vaccine may have potential application value in human cancer treatment.

  13. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete;

    approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...

  14. Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays

    NARCIS (Netherlands)

    Boeuf, S.; Keijer, J.; Franssen-Hal, van N.L.W.; Klaus, S.


    Gene expression profiling through the application of microarrays provides comprehensive assessment of gene expression levels in a given tissue or cell population, as well as information on changes of gene expression in altered physiological or pathological situations. Microarrays are particularly su

  15. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  16. Decreasing the stochasticity of mammalian gene expression by a synthetic gene circuit (United States)

    Nevozhay, Dmitry; Zal, Tomasz; Balazsi, Gabor


    Gene therapy and functional genetic studies usually require precisely controlled and uniform gene expression in a population of cells for reliable level of protein production. Due to this requirement, stochastic gene expression is perceived as undesirable in these fields and ideally has to be minimized. The number of approaches for decreasing gene expression stochasticity in mammalian cells is limited. This creates an unmet need to develop new gene expression systems for this purpose. Based on earlier synthetic constructs in yeast, we developed and assessed a negative feedback-based mammalian gene circuit, with uniform and low level of stochasticity in gene expression at different levels of induction. In addition, this new synthetic construct enables highly precise gene expression control in mammalian cells, due to the linear dependence of gene expression on the inducer concentration applied to the system. This mammalian gene expression circuit has potential applicability for the development of new treatment modalities in gene therapy and research tools in functional genetics. In addition, this work creates a roadmap for moving synthetic gene circuits from microbes into mammalian cells.

  17. Statistical Measure of a Gene Evolution The Case of Glyceraldehyde-3-Phosphate Dehydrogenase Gene

    CERN Document Server

    Chattopadhyay, S; Chakrabarti, J; Chattopadhyay, Sujay; Sahoo, Satyabrata; Chakrabarti, Jayprokas


    The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) catalyses the decomposition of glucose. The gene that produces the GAPDH is therefore present in a wide class of organisms. We show that for this gene the average value of the fluctuations in nucleotide distribution in the codons, normalized to strand bias, provides a reasonable measure of how the gene has evolved in time.

  18. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation (United States)

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth


    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  19. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

    Directory of Open Access Journals (Sweden)

    Stephanie K Mewborn

    Full Text Available BACKGROUND: Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. METHODS/FINDINGS: To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. CONCLUSIONS: These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.

  20. Novel definition files for human GeneChips based on GeneAnnot

    Directory of Open Access Journals (Sweden)

    Ferrari Sergio


    Full Text Available Abstract Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from, along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results.

  1. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. (United States)

    Rekawiecki, Robert; Rutkowska, Joanna; Kotwica, Jan


    The selection of proper housekeeping genes for studies requiring genes expression normalization is an important step in the appropriate interpretation of results. The expression of housekeeping genes is regulated by many factors including age, gender, type of tissue or disease. The aim of the study was to identify optimal housekeeping genes in the corpus luteum obtained from cyclic or pregnant cows. The mRNA expression of thirteen housekeeping genes: C2orf29, SUZ12, TBP, TUBB2B, ZNF131, HPRT1, 18s RNA, GAPDH, SF3A1, SDHA, MRPL12, B2M and ACTB was measured by Real-time PCR. Range of cycle threshold (C(t)) values of the tested genes varied between 12 and 30 cycles, and 18s RNA had the highest coefficient of variation, whereas C2orf29 had the smallest coefficient. GeNorm software demonstrated C2orf29 and TBP as the most stable and 18s RNA and B2M as the most unstable housekeeping genes. Using the proposed cut-off value (0.15), no more than two of the best GeNorm housekeeping genes are proposed to be used in studies requiring gene expression normalization. NormFinder software demonstrated C2orf29 and SUZ12 as the best and 18s RNA and B2M as the worst housekeeping genes. The study indicates that selection of housekeeping genes may essentially affect the quality of the gene expression results.


    Institute of Scientific and Technical Information of China (English)

    LIN Qing; CHEN Long-bang; TANG Yong-ming; WANG Jing


    Objective: To analyze the aberrant methylation of p16 gene and DAPK gene in sera from primary liver cancer patients ad to evaluate the clinical significance. Methods: A methylation-specific PCR was performed for the detection of promoter hypermethylation of p16 gene and DAPK gene in blood DNA from 64 cases of HCC patients, and to analyze the relation of the aberrant methylation of p16 gene and KAPK gene and the clinical pathological data. Results: 76.6%(49/64) of the sera from 64 cases of HCC patients showed hypermethylation for p16 promoter and 40.6% (26/64) for KAPK promoter, whereas no methylated p16 gene promoter and DAPK gene promoter were found in sera from benign liver diseases patients and normal control. Methylated p16 gene and KAPK gene promoters in sera did not strongly correlated with HBsAg, stage,metastasis and differentiation in HCC; but strongly correlated with AFP. Conclusion: Detection of the aberrant methylation of p16 gene and KAPK gene in blood DNA from HCC patients might offer an effective means for the earlier auxiliary diagnosis of the malignancy.

  3. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. (United States)

    Powers, John M; Trobridge, Grant D


    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  4. A global test for gene-gene interactions based on random matrix theory. (United States)

    Frost, H Robert; Amos, Christopher I; Moore, Jason H


    Statistical interactions between markers of genetic variation, or gene-gene interactions, are believed to play an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfortunately, detecting gene-gene interactions is extremely challenging due to the large number of potential interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is insufficient statistical power to evaluate all candidate gene-gene interactions. In these cases, a global test for gene-gene interactions may be the best option. Global tests have much greater power relative to multiple individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for specific interactions. In this paper, we describe a novel global test for gene-gene interactions, the global epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes, and breast cancer, our proposed GET method has superior performance characteristics relative to existing global gene-gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility of the GET method.

  5. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization

    Directory of Open Access Journals (Sweden)

    McDonald Karen


    Full Text Available Abstract Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at

  6. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.


    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  7. Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes. (United States)

    Premzl, Marko


    Using eutherian comparative genomic analysis protocol and public genomic sequence data sets, the present work attempted to update and revise two gene data sets. The most comprehensive third party annotation gene data sets of eutherian adenohypophysis cystine-knot genes (128 complete coding sequences), and d-dopachrome tautomerases and macrophage migration inhibitory factor genes (30 complete coding sequences) were annotated. For example, the present study first described primate-specific cystine-knot Prometheus genes, as well as differential gene expansions of D-dopachrome tautomerase genes. Furthermore, new frameworks of future experiments of two eutherian gene data sets were proposed.

  8. Searching for candidate genes for male infertility

    Institute of Scientific and Technical Information of China (English)

    B.N.Truong; E.K.Moses; J.E.Armes; D.J.Venter; H.W.G.Baker


    Aim: We describe an approach to search for candidate genes for male infertility using the two human genome databases: the public University of California at Santa Cruz (UCSC) and private Celera databases which list known and predicted gene sequences and provide related information such as gene function, tissue expression,known mutations and single nucleotide polymorphisms (SNPs). Methods and Results: To demonstrate this in silico research, the following male infertility candidate genes were selected: (1) human BOULE, mutations of which may lead to germ cell arrest at the primary spermatocyte stage, (2) mutations of casein kinase 2 alpha genes which may cause globozoospermia, (3) DMR-N9 which is possibly involved in the spermatogenic defect of myotonic dystrophy and (4) several testes expressed genes at or near the breakpoints of a balanced translocation associated with hypospermatogenesis. We indicate how information derived from the human genome databases can be used to confirm these candidate genes may be pathogenic by studying RNA expression in tissue arrays using in situ hybridization and gene sequencing. Conclusion: The paper explains the new approach to discovering genetic causes of male infertility using information about the human genome. ( Asian J Andro1 2003 Jun; 5:137-147 )

  9. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)


    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  10. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;


    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  11. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    M.L. Rietman; J.-P. Sommeijer; C.N. Levelt; J.A. Heimel; A.B. Brussaard; J.G.G. Borst; Y. Elgersma; N. Galjart; G.T. van der Horst; C.M. Pennartz; A.B. Smit; B.M. Spruijt; M. Verhage; C.I. de Zeeuw


    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  12. Inferring latent gene regulatory network kinetics

    NARCIS (Netherlands)

    González, Javier; Vujačić, Ivan; Wit, Ernst


    Regulatory networks consist of genes encoding transcription factors (TFs) and the genes they activate or repress. Various types of systems of ordinary differential equations (ODE) have been proposed to model these networks, ranging from linear to Michaelis-Menten approaches. In practice, a serious d

  13. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel


    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is unknow

  14. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  15. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.


    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  16. Gene therapy in peripheral nerve reconstruction approaches. (United States)

    Haastert, Kirsten; Grothe, Claudia


    Gene transfer to a transected peripheral nerve or avulsed nerve root is discussed to be helpful where neurosurgical peripheral nerve reconstruction alone will not result in full recovery of function. Axonal regeneration is supposed to be facilitated by this new therapeutic approach via delivery of specific regeneration promoting molecules as well as survival proteins for the injured sensory and motor neurons. Therefore gene therapy aims in long-term and site-specific delivery of those neurotrophic factors. This paper reviews methods and perspectives for gene therapy to promote functional recovery of severely injured and thereafter reconstructed peripheral nerves. Experimental in vivo and ex vivo gene therapy approaches are reported by different groups. In vivo gene therapy generally uses direct injection of cDNA vectors to injured peripheral nerves. Ex vivo gene therapy is based on the isolation of autologous cells followed by genetic modification of these cells in vitro and re-transplantation of the modified cells to the patient as part of tissue engineered nerve transplants. Vectors of different origin are published to be suitable for peripheral nerve gene therapy and this review discusses the different strategies with regard to their efficiency in gene transfer, their risks and their potential relevance for clinical application.

  17. Targeted gene repair – in the arena



    The development of targeted gene repair is under way and, despite some setbacks, shows promise as an alternative form of gene therapy. This approach uses synthetic DNA molecules to activate and direct the cell’s inherent DNA repair systems to correct inborn errors. The progress of this technique and its therapeutic potential are discussed in relation to the treatment of genetic diseases.

  18. Perspectives: Gene Expression in Fisheries Management (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.


    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  19. Brain disorders: getting 'Down' to the gene. (United States)

    Tessarollo, Lino


    Narrowing down the genetic basis of Down syndrome, in which hundreds of genes are triplicated, has been difficult. A new study finds that the expression of two affected genes, Olig1 and Olig2, is critical for maintaining the balance of inhibitory and excitatory signaling in a mouse model of Down syndrome.

  20. Modeling of hysteresis in gene regulatory networks. (United States)

    Hu, J; Qin, K R; Xiang, C; Lee, T H


    Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.

  1. Gene finding: putting the parts together

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose


    In this paper, the author discusses ways of combining information of splice sites, coding potential, etc. into a prediction of a complete gene structure.......In this paper, the author discusses ways of combining information of splice sites, coding potential, etc. into a prediction of a complete gene structure....

  2. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser


    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  3. Maternal genes and facial clefts in offspring

    DEFF Research Database (Denmark)

    Jugessur, Astanand; Shi, Min; Gjessing, Håkon Kristian;


    BACKGROUND: Fetal conditions can in principle be affected by the mother's genotype working through the prenatal environment. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes for 1536 SNPs in 357 cleft candidate genes were available from a previous analysis in which we focused on fetal gene effects [1]. ...

  4. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P


    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of thes...

  5. The selfish goal meets the selfish gene. (United States)

    Neuberg, Steven L; Schaller, Mark


    The connection between selfish genes and selfish goals is not merely metaphorical. Many goals that shape contemporary cognition and behavior are psychological products of evolutionarily fundamental motivational systems and thus are phenotypic manifestations of genes. An evolutionary perspective can add depth and nuance to our understanding of "selfish goals" and their implications for human cognition and behavior.

  6. HMM-Based Gene Annotation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haussler, David; Hughey, Richard; Karplus, Keven


    Development of new statistical methods and computational tools to identify genes in human genomic DNA, and to provide clues to their functions by identifying features such as transcription factor binding sites, tissue, specific expression and splicing patterns, and remove homologies at the protein level with genes of known function.

  7. Leptin gene polymorphisms and their phenotypic associations

    NARCIS (Netherlands)

    Lende, van der T.; Pas, te M.F.W.; Veerkamp, R.F.; Liefers, S.C.


    In an era of rapidly increasing prevalence of human obesity and associated health problems, leptin gene polymorphisms have drawn much attention in biomedical research. Leptin gene polymorphisms have furthermore drawn much attention from animal scientists for their possible roles in economically impo

  8. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN; Kanniah


    Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as

  9. Gene Therapy Shows Promise for Aggressive Lymphoma (United States)

    ... page: Gene Therapy Shows Promise for Aggressive Lymphoma Over one-third ... TUESDAY, Feb. 28, 2017 (HealthDay News) -- An experimental gene therapy for aggressive non-Hodgkin lymphoma beat back more ...

  10. Current gene therapy for stomach carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chang-Tai Xu; Lian-Tian Huang; Bo-Rong Pan


    astric cancer is common in China [1-42],and its early diagnosis and treatment in advanced stage are difficult [31-50].In recent years ,gene study in cancer is a hotspot ,and great progress has been achieved [41-80] .Cancer gene therapy has shifted from the imagination into the laboratory and clinical trials.

  11. The barley Jip23b gene

    DEFF Research Database (Denmark)

    Müller-Uri, Frieder; Cameron-Mills, Verena; Mundy, John


    The barley gene (Jip23) encoding a 23,000-Da protein of unknown function was isolated and shown to be induced by jasmonate methyl ester (MeJA) in leaves. 5'upstream Jip23 sequence was isolated and fused to the beta-glucuronidase gene (GUS), and this reporter was introduced by particle bombardment...

  12. Bioinformatics strategies for disease gene identification

    NARCIS (Netherlands)

    Driel, M.A. van


    Disease gene identification based on chromosomal localisation is sometimes difficult and often time-consuming. It requires collecting as much information on the disease as possible. Combining positional information with disease characteristics might give hints by which candidate disease genes can be

  13. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)


    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  14. Spatial gene expression quantification in changing morphologies

    NARCIS (Netherlands)

    Botman, D.


    In systems biology, an organisms’ behavior is explained from the interactions among individual components such as genes and proteins. With few exceptions, interactions among genes and proteins are not measured directly and are therefore inferred from the observed output of a biological system. A net

  15. BGDB: a database of bivalent genes. (United States)

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua


    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL:

  16. EcoGene 3.0. (United States)

    Zhou, Jindan; Rudd, Kenneth E


    EcoGene ( is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.

  17. Nanocarriers in gene therapy: a review. (United States)

    Xu, Hongpan; Li, Zhiyang; Si, Jin


    With its rapid development in the past few decades, gene therapy has shown potential for use as a standard clinical intervention for the treatment of several conditions, including cancers, infectious diseases, cardiovascular disorders, inner ear disorders, dermatological, ophthalmologic, and neurological pathologies. Current gene therapy is not limited to the delivery of DNA only. Other therapeutic nucleic acid materials such as small interfering RNA, antisense oligonucleotides, or microRNA have also been included into the protocols of gene therapy. The correct choice of vector is a key factor in the success of gene therapy, where both viral and non-viral vectors are commonly used. Viral vectors are associated with some severe side effects (e.g., immunologenicity and carcinogenicity). They show poor target cell specificity, are unable to transfer large-sized genes, and are costly. Therefore, non-viral vectors, especially nanocarriers, have become a realistic alternative to viral vectors for achieving better efficacy in gene therapy. Different types of nanocarriers such as liposomes, metallic and polymeric nanoparticles, dendrimers, gelatins, and quantum dots/rods have been developed, and each shows distinct characteristics. Nevertheless, a variety of new challenges should be properly addressed for ensuring the success of nanocarriers in clinical applications. In this review article, we first discuss the advances and applications of nanocarriers in gene therapy, and then describe the drawbacks and existing challenges of the emerging gene delivery methods based on the use of nanomaterials.

  18. Streptomyces hygroscopicus Has Two Glutamine Synthetase Genes

    NARCIS (Netherlands)

    Kumada, Y.; Takano, E.; Nagaoka, Kozo; Thompson, C.J.


    Streptomyces hygroscopicus, which produces the glutamine synthetase inhibitor phosphinothricin, possesses at least two genes (glnA and glnB) encoding distinct glutamine synthetase isoforms (GSI and GSII). The glnB gene was cloned from S. hygroscopicus DNA by complementation in an Escherichia coli gl

  19. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly


    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  20. Gene therapy in India: A focus

    Indian Academy of Sciences (India)

    Sarvani Chodisetty; Everette Jacob Remington Nelson


    Gene therapy refers to the treatment of genetic diseases using normal copies of the defective genes. It has the potential to cure any genetic disease with long-lasting therapeutic benefits. It remained an enigma for a long period of time, which was followed by a series of setbacks in the late 1990s. Gene therapy has re-emerged as a therapeutic option with reports of success from recent clinical studies. The United States and Europe has been pioneers in this field for over two decades. Recently, reports of gene therapy have started coming in from Asian countries like China, Japan and Korea. This review focuses on the current status of gene therapy in India.

  1. Magnetic targeting strategies in gene delivery. (United States)

    Delyagina, Evgenya; Li, Wenzhong; Ma, Nan; Steinhoff, Gustav


    Gene delivery is a process of the insertion of transgenes into cells with the purpose to obtain the expression of encoded protein. The therapeutic application of this process is termed gene therapy, which is becoming a promising instrument to treat genetic and acquired diseases. Although numerous methods of gene transfer have already been developed, including biological, physical and chemical approaches, the optimal strategy has to be discovered. Importantly, it should be effective, selective and safe to be translated to the clinic. Magnetic targeting has been demonstrated as an effective strategy to decrease side effects of gene transfer, while increasing the selectivity and efficiency of the applied vector. This article will focus on the latest progress in the development of different magnetic vectors, based on both viral and nonviral gene delivery agents. It will also include a description of magnetic targeting applications in stem cells and in vivo, which has gained interest in recent years due to the rapid development of technology.


    Institute of Scientific and Technical Information of China (English)


    Objective Cloning and sequencing of the human neurotrophin-4(hNT-4) gene.Methods With the chromosomal DNA of human blood lymphocytes as template,hNT-4 coding genes were amplified by polymerase chain reaction(PCR) and recombinated into phage vector pGEM-T Easy,which were sequenced by using Sanger's single stranded DNA terminal termination method.Results The sequence of the cloned gene is completely the same as that reported in the literature(GenBank data base,M86528).Conclusion This study successfully cloning and sequenced the gene of mhNT-4,and it would be convenient for us to study the expression of mhNT-4 in eukaryote,and to continue the research on the gene therapy of Alzheimer's disease intensively.This study indicate that the hNT-4 is conservative in different races and individuals.

  3. Role of cryptic genes in microbial evolution. (United States)

    Hall, B G; Yokoyama, S; Calhoun, D H


    Cryptic genes are phenotypically silent DNA sequences, not normally expressed during the life cycle of an individual. They may, however, be activated in a few individuals of a large population by mutation, recombination, insertion elements, or other genetic mechanisms. A consideration of the microbial literature concerning biochemical evolution, physiology, and taxonomy provides the basis for a hypothesis of microbial adaptation and evolution by mutational activation of cryptic genes. Evidence is presented, and a mathematical model is derived, indicating that powerful and biologically important mechanisms exist to prevent the loss of cryptic genes. We propose that cryptic genes persist as a vital element of the genetic repertoire, ready for recall by mutational activation in future generations. Cryptic genes provide a versatile endogenous genetic reservoir that enhances the adaptive potential of a species by a mechanism that is independent of genetic exchange.

  4. Gene therapy for primary immunodeficiencies: Part 1. (United States)

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro


    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  5. A gene map of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, G.D.; Boguski, M.S. [National Library of Medicine, Bethesda, MD (United States); Stewart, E.A. [Stanford Univ. School of Medicine, CA (United States)] [and others


    The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. 45 refs., 4 figs., 3 tabs.

  6. Vectors for gene therapy of skin diseases. (United States)

    Pfützner, Wolfgang


    The success of gene therapy mainly depends on the gene vector (GV) responsible for the efficient transport of genetic information. The qualities of a GV have a profound influence on the method of application, the efficiency of gene transfer in the target tissue, the amount and persistence of gene expression and the potential side effects and safety risks. Clinical gene therapy studies over the past 20 years have contributed to the development and testing of different GV systems, some of which also show great potential for the treatment of skin diseases. In this review the structures, methods of application, characteristics, clinical uses and possibilities for optimization of these GV will be discussed with regard to their cutaneous applications.

  7. Gene transfer to promote cardiac regeneration. (United States)

    Collesi, Chiara; Giacca, Mauro


    There is an impelling need to develop new therapeutic strategies for patients with myocardial infarction and heart failure. Leading from the large quantity of new information gathered over the last few years on the mechanisms controlling cardiomyocyte proliferation during embryonic and fetal life, it is now possible to devise innovative therapies based on cardiac gene transfer. Different protein-coding genes controlling cell cycle progression or cardiomyocyte specification and differentiation, along with microRNA mimics and inhibitors regulating pre-natal and early post-natal cell proliferation, are amenable to transformation in potential therapeutics for cardiac regeneration. These gene therapy approaches are conceptually revolutionary, since they are aimed at stimulating the intrinsic potential of differentiated cardiac cells to proliferate, rather than relying on the implantation of exogenously expanded cells to achieve tissue regeneration. For efficient and prolonged cardiac gene transfer, vectors based on the Adeno-Associated Virus stand as safe, efficient and reliable tools for cardiac gene therapy applications.


    Institute of Scientific and Technical Information of China (English)

    ZENG Ji-bin; SONG Yue; WANG Yi; SHI Yu-yuan


    @@ Genetic alternations, such as mutations caused inactivities of tumor suppressor gene, have been identified in a wide variety of tumors, including osteosarcoma. Osteosarcoma is the most frequent primary malignant bone tumor that occurs in the extremities of young adolescents in most cases. Because of the high frequent occurrence of this type of tumor in hereditary retinoblastoma patients, involvement of the Rb1 gene mutations was suspected in the development of osteosarcoma, and a few reports have shown alternations of the Rb1 gene in osteosarcoma. We studied Rb1 gene mutations in 9 osteosarcoma samples and one cell line (OS 732) to explore the types and mechanism of Rb1 gene mutations in osteosarcoma.

  9. Mutations in the human TWIST gene. (United States)

    Gripp, K W; Zackai, E H; Stolle, C A


    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  10. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne


    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  11. Bioinformatics analysis of estrogen-responsive genes (United States)

    Handel, Adam E.


    Estrogen is a steroid hormone that plays critical roles in a myriad of intracellular pathways. The expression of many genes is regulated through the steroid hormone receptors ESR1 and ESR2. These bind to DNA and modulate the expression of target genes. Identification of estrogen target genes is greatly facilitated by the use of transcriptomic methods, such as RNA-seq and expression microarrays, and chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq). Combining transcriptomic and ChIP-seq data enables a distinction to be drawn between direct and indirect estrogen target genes. This chapter will discuss some methods of identifying estrogen target genes that do not require any expertise in programming languages or complex bioinformatics. PMID:26585125

  12. Bioinformatics methods for identifying candidate disease genes

    Directory of Open Access Journals (Sweden)

    van Driel Marc A


    Full Text Available Abstract With the explosion in genomic and functional genomics information, methods for disease gene identification are rapidly evolving. Databases are now essential to the process of selecting candidate disease genes. Combining positional information with disease characteristics and functional information is the usual strategy by which candidate disease genes are selected. Enrichment for candidate disease genes, however, depends on the skills of the operating researcher. Over the past few years, a number of bioinformatics methods that enrich for the most likely candidate disease genes have been developed. Such in silico prioritisation methods may further improve by completion of datasets, by development of standardised ontologies across databases and species and, ultimately, by the integration of different strategies.

  13. Gene therapy for ischemic heart disease. (United States)

    Malosky, S; Kolansky, D M


    Gene therapy techniques are being developed as potential treatments for dyslipidemias, coronary restenosis, and vein graft disease. Retroviral and now adenoviral gene delivery techniques are being studied. A human protocol for the treatment of familial hypercholesterolemia has recently been completed using ex vivo hepatic low-density lipoprotein receptor gene transfer via a retroviral vector. Work in most other areas is currently in the animal model stage. Significant progress has been made in the area of coronary restenosis, particularly in identifying target genes to reduce neointima formation, such as herpesvirus thymidine kinase and the retinoblastoma gene. Work also continues in developing strategies to decrease neointima formation in vein grafts used in coronary bypass surgery and in improving methods of myocardial protection during surgery.

  14. Assessment of Suitable Reference Genes for Quantitative Gene Expression Studies in Melon Fruits (United States)

    Kong, Qiusheng; Gao, Lingyun; Cao, Lei; Liu, Yue; Saba, Hameed; Huang, Yuan; Bie, Zhilong


    Melon (Cucumis melo L.) is an attractive model plant for investigating fruit development because of its morphological, physiological, and biochemical diversity. Quantification of gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) with stably expressed reference genes for normalization can effectively elucidate the biological functions of genes that regulate fruit development. However, the reference genes for data normalization in melon fruits have not yet been systematically validated. This study aims to assess the suitability of 20 genes for their potential use as reference genes in melon fruits. Expression variations of these genes were measured in 24 samples that represented different developmental stages of fertilized and parthenocarpic melon fruits by qRT-PCR analysis. GeNorm identified ribosomal protein L (CmRPL) and cytosolic ribosomal protein S15 (CmRPS15) as the best pair of reference genes, and as many as five genes including CmRPL, CmRPS15, TIP41-like family protein (CmTIP41), cyclophilin ROC7 (CmCYP7), and ADP ribosylation factor 1 (CmADP) were required for more reliable normalization. NormFinder ranked CmRPS15 as the best single reference gene, and RAN GTPase gene family (CmRAN) and TATA-box binding protein (CmTBP2) as the best combination of reference genes in melon fruits. Their effectiveness was further validated by parallel analyses on the activities of soluble acid invertase and sucrose phosphate synthase, and expression profiles of their respective encoding genes CmAIN2 and CmSPS1, as well as sucrose contents during melon fruit ripening. The validated reference genes will help to improve the accuracy of gene expression studies in melon fruits. PMID:27536316

  15. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR

    Directory of Open Access Journals (Sweden)

    Xiang Fengning


    Full Text Available Abstract Background The wild grass species Brachypodium distachyon (Brachypodium hereafter is emerging as a new model system for grass crop genomics research and biofuel grass biology. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression studies will undoubtedly follow. Therefore, stable reference genes are necessary to normalize the gene expression data. Results A systematic exploration of suitable reference genes in Brachypodium is presented here. Nine reference gene candidates were chosen, and their gene sequences were obtained from the Brachypodium expressed sequence tag (EST databases. Their expression levels were examined by quantitative real-time PCR (qRT-PCR using 21 different Brachypodium plant samples, including those from different plant tissues and grown under various growth conditions. Effects of plant growth hormones were also visualized in the assays. The expression stability of the candidate genes was evaluated using two analysis software packages, geNorm and NormFinder. In conclusion, the ubiquitin-conjugating enzyme 18 gene (UBC18 was validated as a suitable reference gene across all the plant samples examined. While the expression of the polyubiquitin genes (Ubi4 and Ubi10 was most stable in different plant tissues and growth hormone-treated plant samples, the expression of the S-adenosylmethionine decarboxylase gene (SamDC ranked was most stable in plants grown under various environmental stresses. Conclusion This study identified the reference genes that are most suitable for normalizing the gene expression data in Brachypodium. These reference genes will be particularly useful when stress-responsive genes are analyzed in order to produce transgenic plants that exhibit enhanced stress resistance.

  16. Assessment of Suitable Reference Genes for Quantitative Gene Expression Studies in Melon Fruits. (United States)

    Kong, Qiusheng; Gao, Lingyun; Cao, Lei; Liu, Yue; Saba, Hameed; Huang, Yuan; Bie, Zhilong


    Melon (Cucumis melo L.) is an attractive model plant for investigating fruit development because of its morphological, physiological, and biochemical diversity. Quantification of gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) with stably expressed reference genes for normalization can effectively elucidate the biological functions of genes that regulate fruit development. However, the reference genes for data normalization in melon fruits have not yet been systematically validated. This study aims to assess the suitability of 20 genes for their potential use as reference genes in melon fruits. Expression variations of these genes were measured in 24 samples that represented different developmental stages of fertilized and parthenocarpic melon fruits by qRT-PCR analysis. GeNorm identified ribosomal protein L (CmRPL) and cytosolic ribosomal protein S15 (CmRPS15) as the best pair of reference genes, and as many as five genes including CmRPL, CmRPS15, TIP41-like family protein (CmTIP41), cyclophilin ROC7 (CmCYP7), and ADP ribosylation factor 1 (CmADP) were required for more reliable normalization. NormFinder ranked CmRPS15 as the best single reference gene, and RAN GTPase gene family (CmRAN) and TATA-box binding protein (CmTBP2) as the best combination of reference genes in melon fruits. Their effectiveness was further validated by parallel analyses on the activities of soluble acid invertase and sucrose phosphate synthase, and expression profiles of their respective encoding genes CmAIN2 and CmSPS1, as well as sucrose contents during melon fruit ripening. The validated reference genes will help to improve the accuracy of gene expression studies in melon fruits.

  17. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. (United States)

    Stukenbrock, Eva H; McDonald, Bruce A


    Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes

  18. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J


    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  19. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. (United States)

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C


    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014).

  20. Molecular evolution of Drosophila cuticular protein genes.

    Directory of Open Access Journals (Sweden)

    R Scott Cornman

    Full Text Available Several multigene families have been described that together encode scores of structural cuticular proteins in Drosophila, although the functional significance of this diversity remains to be explored. Here I investigate the evolutionary histories of several multigene families (CPR, Tweedle, CPLCG, and CPF/CPFL that vary in age, size, and sequence complexity, using sequenced Drosophila genomes and mosquito outgroups. My objective is to describe the rates and mechanisms of 'cuticle-ome' divergence, in order to identify conserved and rapidly evolving elements. I also investigate potential examples of interlocus gene conversion and concerted evolution within these families during Drosophila evolution. The absolute rate of change in gene number (per million years is an order of magnitude lower for cuticular protein families within Drosophila than it is among Drosophila and the two mosquito taxa, implying that major transitions in the cuticle proteome have occurred at higher taxonomic levels. Several hotspots of intergenic conversion and/or gene turnover were identified, e.g. some gene pairs have independently undergone intergenic conversion within different lineages. Some gene conversion hotspots were characterized by conversion tracts initiating near nucleotide repeats within coding regions, and similar repeats were found within concertedly evolving cuticular protein genes in Anopheles gambiae. Rates of amino-acid substitution were generally severalfold higher along the branch connecting the Sophophora and Drosophila species groups, and 13 genes have Ka/Ks significantly greater than one along this branch, indicating adaptive divergence. Insect cuticular proteins appear to be a source of adaptive evolution within genera and, at higher taxonomic levels, subject to periods of gene-family expansion and contraction followed by quiescence. However, this relative stasis is belied by hotspots of molecular evolution, particularly concerted evolution, during

  1. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  2. Disease Gene Prioritization Using Network and Feature (United States)

    Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T. Conrad; Maltsev, Natalia; Börnigen, Daniela


    Abstract Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

  3. Origin of saxitoxin biosynthetic genes in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    Full Text Available BACKGROUND: Paralytic shellfish poisoning (PSP is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX. STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. METHODOLOGY/PRINCIPAL FINDINGS: We generated a draft genome assembly of the saxitoxin-producing (STX+ cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX- sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX- strains among Anabaena

  4. Cloning and sequencing genes related to preeclampsia

    Institute of Scientific and Technical Information of China (English)

    SHI Juan-zi; LIU Yan-fang; YAO Yuan-qing; YAN Wei; ZHU Feng; ZHAO Zhong-liang


    To clone genes specifically expressed in the placenta of patients with preeclampsia, and to explain the mechanism in the etiopathology ofpreeclampsia. Methods: The placentae ofpreeclamptic and normotensive subjects with pregnancy were used as models, and the cDNA Library was constructed and 20 differentially expressed fragments were cloned after a new version of PCR-based subtractive hybridization. The false positive clones were identified by reverse dot blot analysis. With one of the obtained gene taken as the probe, the placentas of 10 normal pregnant women and 10 preeclamptic patients were studied by using dot hybridization methods. Results: Six false positive clones were identified by reverse dot blot, and the rest 14 clones were identified as preeclampsia-related genes. These clones were sequenced, and analyzed with BLAST analysis system. Eleven of 14 clones were genes already known, among which one belongs to necdin family; the rest 3 were identified as novel genes. These 3 genes were acknowledged by GenBank, with the accession numbers AF232216, AF232217, AF233648. The results of dot hybridization using necdin gene as probe were as follows: (1) There was this mRNA in the placental tissues of normal pregnancy as well as in that ofpreeclampsia.(2) The intensity of transcription of this mRNA in the placental tissues of preeclampsia increased significantly compared with that of the normal pregnancy (P<0.05). Conclusions: This study for the first time reported this group of genes, especially necdin-expressing gene, which are related to the etiopathology of preeclampsia. In addition, the overtranscription ofnecdin gene has been found in preeclampsia. It is helpful in further studies of the etiology ofpreeclampsia.

  5. A new model for gene patents

    Energy Technology Data Exchange (ETDEWEB)


    When the National Institutes of Health (NIH) filed for patents on thousands of gene fragments in 1991, it created a furor because it was attempting to assert broad rights to sequences whose functions were unknown. The cDNA fragments NIH researchers had discovered were simply short stretches of presumably expressed genes, yet the patent the agency was seeking would give it rights both to the full genes themselves and to all their possible future uses. If NIH prevailed, researchers argued, it would potentially discourage further work on those genes. Now the head of the genome project at the Department of Energy (DOE) - NIH's partner in the program - has proposed an alternative approach to gene patenting. At a meeting last week of a congressional Office of Technology Assessment panel that is preparing a report on this issue, DOE's David Galas revealed that University of Washington genome researcher Leroy Hood is preparing to file a patent application that could serve as a model for such patents in the future. Hood's team has been sequencing the genes encoding the beta chain of the human T cell receptor. Mutations in the T cell receptor genes may lead to any of a number of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. A broad patent on the genes could therefore conceivably cover not only techniques for diagnosing autoimmune diseases but also of therapies for the conditions, and indeed anything involving T cell activity. But Hood's patent application won't make such broad claims. Instead, Hood, with DOE's support, will not seek to patent the genes but will claim only the specific uses of developing the diagnostic and therapeutic tools for dealing with specific autoimmune diseases. By restricting patents just to known uses the problems of gene ownership are neatly avoided.

  6. An overview of gene therapy in head and neck cancer. (United States)

    Bali, Amit; Bali, Deepika; Sharma, Ashutosh


    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  7. A survey of disease connections for CD4+ T cell master genes and their directly linked genes. (United States)

    Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique


    Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes.

  8. Gene conversion between red and defective green opsin gene in blue cone monochromacy

    Energy Technology Data Exchange (ETDEWEB)

    Reyniers, E.; Van Thienen, M.N.; De Boulle, K.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others


    Blue cone monochromacy is an X-linked condition in which the function of both the red pigment gene (RCP) and the green pigment gene (GCP) is impaired. Blue cone monochromacy can be due to a red/green gene array rearrangement existing of a single red/green hybrid gene and an inactivating C203R point mutation in both RCP and GCP. The flanking sequences of the C230R mutation in exon 4 of RCP were characteristic for GCP, indicating that this mutation was transferred from GCP into RCP by gene conversion. 23 refs., 3 figs., 1 tab.

  9. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes. (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques


    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  10. The gene expression data of Mycobacterium tuberculosis based on Affymetrix gene chips provide insight into regulatory and hypothetical genes

    Directory of Open Access Journals (Sweden)

    Fu-Liu Casey S


    Full Text Available Abstract Background Tuberculosis remains a leading infectious disease with global public health threat. Its control and management have been complicated by multi-drug resistance and latent infection, which prompts scientists to find new and more effective drugs. With the completion of the genome sequence of the etiologic bacterium, Mycobacterium tuberculosis, it is now feasible to search for new drug targets by sieving through a large number of gene products and conduct genome-scale experiments based on microarray technology. However, the full potential of genome-wide microarray analysis in configuring interrelationships among all genes in M. tuberculosis has yet to be realized. To date, it is only possible to assign a function to 52% of proteins predicted in the genome. Results We conducted a functional-genomics study using the high-resolution Affymetrix oligonucleotide GeneChip. Approximately one-half of the genes were found to be always expressed, including more than 100 predicted conserved hypotheticals, in the genome of M. tuberculosis during the log phase of in vitro growth. The gene expression profiles were analyzed and visualized through cluster analysis to epitomize the full details of genomic behavior. Broad patterns derived from genome-wide expression experiments in this study have provided insight into the interrelationships among genes in the basic cellular processes of M. tuberculosis. Conclusion Our results have confirmed several known gene clusters in energy production, information pathways, and lipid metabolism, and also hinted at potential roles of hypothetical and regulatory proteins.

  11. Experimental gene therapy using p21Waf1 gene for esophageal squamous cell carcinoma by gene gun technology. (United States)

    Tanaka, Yuichi; Fujii, Teruhiko; Yamana, Hideaki; Kato, Seiya; Morimatsu, Minoru; Shirouzu, Kazuo


    In our previous study, the proliferation rate of esophageal squamous cell carcinoma cell lines, which poorly expressed p21Waf1, was found to be regulated by p21Waf1 gene transfection using adenovirus vector. In the present study, in order to examine the effect of p21Waf1 gene therapy in esophageal cancer, we used gene gun technology, which proved to be a powerful method to introduce the p21Waf1 gene into esophageal cancer cells. p21Waf1 transfection to KE3 and YES2 cells (weakly expressed p21Waf1 protein cells) showed a high expression of p21Waf1 protein after applying this gene gun technique. In KE3 and YES2 cells, statistical significant growth inhibition was observed after p21Waf1 transfection compared with LacZ transfection (KE3, p=0.0009; YES2, pgun technique significantly inhibited the low basal p21Waf1 expressed esophageal cancer cell growth in vitro and in vivo. Furthermore, p21Waf1 transfection strongly enhanced the effect of 5Fu suggesting that p21Waf1 may prove beneficial in chemotherapy combined with gene therapy using gene gun technology in patients with esophageal cancer who have a low level of p21Waf1 expressed tumor.

  12. Reference genes for normalization: A study of rat brain tissue

    DEFF Research Database (Denmark)

    Bonefeld, Birgit; Elfving, Betina; Wegener, Gregers


    Quantitative real-time polymerase chain reaction (qPCR) has become a widely used tool in the search for disease genes. When examining gene expression with qPCR in psychiatric diseases, endogenous reference gene(s) must be used for normalization. Traditionally, genes such as beta-actin (ActB), Gap...

  13. Radiation-induced gene responses

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.


    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  14. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.


    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  15. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies. (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D


    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production.

  16. Correlating Information Contents of Gene Ontology Terms to Infer Semantic Similarity of Gene Products

    Directory of Open Access Journals (Sweden)

    Mingxin Gan


    Full Text Available Successful applications of the gene ontology to the inference of functional relationships between gene products in recent years have raised the need for computational methods to automatically calculate semantic similarity between gene products based on semantic similarity of gene ontology terms. Nevertheless, existing methods, though having been widely used in a variety of applications, may significantly overestimate semantic similarity between genes that are actually not functionally related, thereby yielding misleading results in applications. To overcome this limitation, we propose to represent a gene product as a vector that is composed of information contents of gene ontology terms annotated for the gene product, and we suggest calculating similarity between two gene products as the relatedness of their corresponding vectors using three measures: Pearson’s correlation coefficient, cosine similarity, and the Jaccard index. We focus on the biological process domain of the gene ontology and annotations of yeast proteins to study the effectiveness of the proposed measures. Results show that semantic similarity scores calculated using the proposed measures are more consistent with known biological knowledge than those derived using a list of existing methods, suggesting the effectiveness of our method in characterizing functional relationships between gene products.

  17. Amplified and homozygously deleted genes in glioblastoma: impact on gene expression levels.

    Directory of Open Access Journals (Sweden)

    Inês Crespo

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY: Single-nucleotide polymorphism (SNP-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46, and to evaluate the impact of copy number alterations (CNA on mRNA levels of the genes involved. PRINCIPAL FINDINGS: Recurrent amplicons were detected for chromosomes 7 (50%, 12 (22%, 1 (11%, 4 (9%, 11 (4%, and 17 (4%, whereas homozygous deletions involved chromosomes 9p21 (52% and 10q (22%. Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2, while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively. Despite homozygous del(9p21 and del(10q23.31 included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS: Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.

  18. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium. (United States)

    Rekawiecki, Robert; Kowalik, Magdalena K; Kotwica, Jan


    The aim of this study was to determine the steady-state expression of 13 selected housekeeping genes in the myometrium of cyclic and pregnant cows. Cells taken from bovine myometrium on days 1-5, 6-10, 11-16 and 17-20 of the oestrous cycle and in weeks 3-5, 6-8 and 9-12 of pregnancy were used. Reverse transcribed RNA was amplified in real-time PCR using designed primers. Reaction efficiency was determined with the Linreg programme. The geNorm and NormFinder programmes were used to select the best housekeeping genes. They calculate the expression stability factor for each used housekeeping gene with the smallest value for most stably expressed genes. According to geNorm, the most stable housekeeping genes in the myometrium were C2orf29, TPB and TUBB2B, while the least stably expressed genes were 18S RNA, HPRT1 and GAPDH. NormFinder identified the best genes in the myometrium as C2orf29, MRPL12 and TBP, while the worst genes were 18S RNA, B2M and SF3A1. Differences in stability factors between the two programmes may also indicate that the physiological status of the female, e.g. pregnancy, affects the stability of expression of housekeeping genes. The different expression stability of housekeeping genes did not affect progesterone receptor expression but it could be important if small differences in gene expression were measured between studies.

  19. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. (United States)

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D


    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  20. Prioritization of Susceptibility Genes for Ectopic Pregnancy by Gene Network Analysis. (United States)

    Liu, Ji-Long; Zhao, Miao


    Ectopic pregnancy is a very dangerous complication of pregnancy, affecting 1%-2% of all reported pregnancies. Due to ethical constraints on human biopsies and the lack of suitable animal models, there has been little success in identifying functionally important genes in the pathogenesis of ectopic pregnancy. In the present study, we developed a random walk-based computational method named TM-rank to prioritize ectopic pregnancy-related genes based on text mining data and gene network information. Using a defined threshold value, we identified five top-ranked genes: VEGFA (vascular endothelial growth factor A), IL8 (interleukin 8), IL6 (interleukin 6), ESR1 (estrogen receptor 1) and EGFR (epidermal growth factor receptor). These genes are promising candidate genes that can serve as useful diagnostic biomarkers and therapeutic targets. Our approach represents a novel strategy for prioritizing disease susceptibility genes.

  1. Thyroid hormone-induced oxidative stress in rodents and humans: a comparative view and relation to redox regulation of gene expression. (United States)

    Fernández, Virginia; Tapia, Gladys; Varela, Patricia; Romanque, Pamela; Cartier-Ugarte, Denise; Videla, Luis A


    Thyroid hormone (3,3',5-triiodothyronine, T(3)) exerts significant actions on energy metabolism, with mitochondria being the major target for its calorigenic effects. Acceleration of O(2) consumption by T(3) leads to an enhanced generation of reactive oxygen and nitrogen species in target tissues, with a higher consumption of cellular antioxidants and inactivation of antioxidant enzymes, thus inducing oxidative stress. This redox imbalance occurring in rodent liver and extrahepatic tissues with a calorigenic response, as well as in hyperthyroid patients, is further enhanced by an increased respiratory burst activity in Kupffer cells, which may activate redox-sensitive transcription factors such as NF-kappaB thus up-regulating gene expression. T(3) elicits an 80-fold increase in the serum levels of tumor necrosis factor-alpha (TNF-alpha), which is abolished by pretreatment with the antioxidants alpha-tocopherol and N-acetylcysteine, the Kupffer-cell inactivator GdCl(3), or an antisense oligonucleotide against TNF-alpha. In addition, T(3) treatment activates hepatic NF-kappaB, a response that is (i) inhibited by antioxidants and GdCl(3) and (ii) accompanied by induced mRNA expression of the NF-kappaB-responsive genes for TNF-alpha and interleukin (IL)-10. T(3) also increases the hepatic levels of mRNA for IL-1alpha and those of IL-1alpha in serum. Up-regulation of liver iNOS expression is also achieved by T(3), through a cascade initiated by TNF-alpha and involving IkappaB-alpha phosphorylation and NF-kappaB activation. In conclusion, T(3)-induced oxidative stress in the liver enhances the DNA-binding of NF-kappaB and the NF-kappaB-dependent expression of cytokines and iNOS by actions primarily exerted at the Kupffer cell level.

  2. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    Directory of Open Access Journals (Sweden)

    Mixon Mark


    Full Text Available Abstract Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene

  3. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum


    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  4. Gene Expression Divergence and Evolutionary Analysis of the Drosomycin Gene Family in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Deng


    Full Text Available Drosomycin (Drs encoding an inducible 44-residue antifungal peptide is clustered with six additional genes, Dro1, Dro2, Dro3, Dro4, Dro5, and Dro6, forming a multigene family on the 3L chromosome arm in Drosophila melanogaster. To get further insight into the regulation of each member of the drosomycin gene family, here we investigated gene expression patterns of this family by either microbe-free injury or microbial challenges using real time RT-PCR. The results indicated that among the seven drosomycin genes, Drs, Dro2, Dro3, Dro4, and Dro5 showed constitutive expressions. Three out of five, Dro2, Dro3, and Dro5, were able to be upregulated by simple injury. Interestingly, Drs is an only gene strongly upregulated when Drosophila was infected with microbes. In contrast to these five genes, Dro1 and Dro6 were not transcribed at all in either noninfected or infected flies. Furthermore, by 5′ rapid amplification of cDNA ends, two transcription start sites were identified in Drs and Dro2, and one in Dro3, Dro4, and Dro5. In addition, NF-κB binding sites were found in promoter regions of Drs, Dro2, Dro3, and Dro5, indicating the importance of NF-κB binding sites for the inducibility of drosomycin genes. Based on the analyses of flanking sequences of each gene in D. melanogaster and phylogenetic relationship of drosomycins in D. melanogaster species-group, we concluded that gene duplications were involved in the formation of the drosomycin gene family. The possible evolutionary fates of drosomycin genes were discussed according to the combining analysis of gene expression pattern, gene structure, and functional divergence of these genes.

  5. EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance

    Directory of Open Access Journals (Sweden)

    Larsen Thomas


    Full Text Available Abstract Background Contrary to other areas of sequence analysis, a measure of statistical significance of a putative gene has not been devised to help in discriminating real genes from the masses of random Open Reading Frames (ORFs in prokaryotic genomes. Therefore, many genomes have too many short ORFs annotated as genes. Results In this paper, we present a new automated gene-finding method, EasyGene, which estimates the statistical significance of a predicted gene. The gene finder is based on a hidden Markov model (HMM that is automatically estimated for a new genome. Using extensions of similarities in Swiss-Prot, a high quality training set of genes is automatically extracted from the genome and used to estimate the HMM. Putative genes are then scored with the HMM, and based on score and length of an ORF, the statistical significance is calculated. The measure of statistical significance for an ORF is the expected number of ORFs in one megabase of random sequence at the same significance level or better, where the random sequence has the same statistics as the genome in the sense of a third order Markov chain. Conclusions The result is a flexible gene finder whose overall performance matches or exceeds other methods. The entire pipeline of computer processing from the raw input of a genome or set of contigs to a list of putative genes with significance is automated, making it easy to apply EasyGene to newly sequenced organisms. EasyGene with pre-trained models can be accessed at

  6. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja


    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

  7. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. (United States)

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G


    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  8. Resistance to leaf rust in coffee carrying S H3 gene and others S H genes

    Directory of Open Access Journals (Sweden)

    Gustavo Hiroshi Sera


    Full Text Available The aim of this work was to evaluate the resistance to rust in coffee carrying S H3 gene and other S H genes. Twenty one CIFC’s coffee trees with several resistance genes S H were evaluated in field conditions. All the evaluated coffees carrying Sh3 gene presented resistance to the rust. It was possible that rust races with the virulence gene v3 in the Paraná State didn’t exist. The S H3 gene in combination with genes S H5, S H6, S H7, S H8, S H9 and S H? would be very important to obtain cultivars with more durable resistance to the rust.O objetivo deste trabalho foi avaliar a resistência à ferrugem em cafeeiros portadores do gene S H3 e outros genes S H em Londrina, Paraná, Brasil. Foram avaliados vinte e um cafeeiros do CIFC com diferentes genes S H de resistência em condição de alta incidência natural em campo. Todos os cafeeiros avaliados portadores do gene S H3 apresentaram resistência à ferrugem. É possível que não existam raças de ferrugem com o gene de virulência v3 no Paraná. Plantas portadoras do gene S H3 em combinação com os genes S H5, S H6, S H7, S H8, S H9 e S H? seria muito importante para obter cultivares com resistência mais durável à ferrugem.

  9. Selection of reliable reference genes for gene expression studies in peach using real-time PCR

    Directory of Open Access Journals (Sweden)

    Zhou Jun


    Full Text Available Abstract Background RT-qPCR is a preferred method for rapid and reliable quantification of gene expression studies. Appropriate application of RT-qPCR in such studies requires the use of reference gene(s as an internal control to normalize mRNA levels between different samples for an exact comparison of gene expression level. However, recent studies have shown that no single reference gene is universal for all experiments. Thus, the identification of high quality reference gene(s is of paramount importance for the interpretation of data generated by RT-qPCR. Only a few studies on reference genes have been done in plants and none in peach (Prunus persica L. Batsch. Therefore, the present study was conducted to identify suitable reference gene(s for normalization of gene expression in peach. Results In this work, eleven reference genes were investigated in different peach samples using RT-qPCR with SYBR green. These genes are: actin 2/7 (ACT, cyclophilin (CYP2, RNA polymerase II (RP II, phospholipase A2 (PLA2, ribosomal protein L13 (RPL13, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 18S ribosomal RNA (18S rRNA, tubblin beta (TUB, tubblin alpha (TUA, translation elongation factor 2 (TEF2 and ubiquitin 10 (UBQ10. All eleven reference genes displayed a wide range of Cq values in all samples, indicating that they expressed variably. The stability of these genes except for RPL13 was determined by three different descriptive statistics, geNorm, NormFinder and BestKeeper, which produced highly comparable results. Conclusion Our study demonstrates that expression stability varied greatly between genes studied in peach. Based on the results from geNorm, NormFinder and BestKeeper analyses, for all the sample pools analyzed, TEF2, UBQ10 and RP II were found to be the most suitable reference genes with a very high statistical reliability, and TEF2 and RP II for the other sample series, while 18S rRNA, RPL13 and PLA2 were unsuitable as internal controls

  10. Gene-level integrated metric of negative selection (GIMS prioritizes candidate genes for nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Matthew G Sampson

    Full Text Available Nephrotic syndrome (NS gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1 autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS genes (p = 0.03 compared to reference, (2 glomerular expressed genes (p = 4×10(-23, and (3 predicted podocyte genes (p = 3×10(-9. Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3. As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS

  11. Gene-level integrated metric of negative selection (GIMS) prioritizes candidate genes for nephrotic syndrome. (United States)

    Sampson, Matthew G; Gillies, Christopher E; Ju, Wenjun; Kretzler, Matthias; Kang, Hyun Min


    Nephrotic syndrome (NS) gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS) score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1) autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS) genes (p = 0.03 compared to reference), (2) glomerular expressed genes (p = 4×10(-23)), and (3) predicted podocyte genes (p = 3×10(-9)). Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3)). As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS) to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS scores are

  12. A sequence-based approach to identify reference genes for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chari Raj


    Full Text Available Abstract Background An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer may not be suitable in another (e.g. breast cancer. Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate. Methods Serial analysis of gene expression (SAGE profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR, and their impact on differential expression analysis of microarray data was evaluated. Results We show that (i conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii reference genes identified for lung cancer do not perform well for other cancer types (breast and brain, (iii reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung

  13. Candidate qRT-PCR reference genes for barley that demonstrate better stability than traditional housekeeping genes (United States)

    Gene transcript expression analysis is a useful tool for correlating gene activity with plant phenotype. For these studies, an appropriate reference gene is necessary to quantify the expression of target genes. Classic housekeeping genes have often been used for this purpose, but may not be consis...

  14. ETS fusion genes in prostate cancer. (United States)

    Gasi Tandefelt, Delila; Boormans, Joost; Hermans, Karin; Trapman, Jan


    Prostate cancer is very common in elderly men in developed countries. Unravelling the molecular and biological processes that contribute to tumor development and progressive growth, including its heterogeneity, is a challenging task. The fusion of the genes ERG and TMPRSS2 is the most frequent genomic alteration in prostate cancer. ERG is an oncogene that encodes a member of the family of ETS transcription factors. At lower frequency, other members of this gene family are also rearranged and overexpressed in prostate cancer. TMPRSS2 is an androgen-regulated gene that is preferentially expressed in the prostate. Most of the less frequent ETS fusion partners are also androgen-regulated and prostate-specific. During the last few years, novel concepts of the process of gene fusion have emerged, and initial experimental results explaining the function of the ETS genes ERG and ETV1 in prostate cancer have been published. In this review, we focus on the most relevant ETS gene fusions and summarize the current knowledge of the role of ETS transcription factors in prostate cancer. Finally, we discuss the clinical relevance of TMRPSS2-ERG and other ETS gene fusions in prostate cancer.

  15. Mendel's genes: toward a full molecular characterization. (United States)

    Reid, James B; Ross, John J


    The discipline of classical genetics is founded on the hereditary behavior of the seven genes studied by Gregor Mendel. The advent of molecular techniques has unveiled much about the identity of these genes. To date, four genes have been sequenced: A (flower color), LE (stem length), I (cotyledon color), and R (seed shape). Two of the other three genes, GP (pod color) and FA (fasciation), are amenable to candidate gene approaches on the basis of their function, linkage relationships, and synteny between the pea and Medicago genomes. However, even the gene (locus) identity is not known for certain for the seventh character, the pod form, although it is probably V. While the nature of the mutations used by Mendel cannot be determined with certainty, on the basis of the varieties available in Europe in the 1850s, we can speculate on their nature. It turns out that these mutations are attributable to a range of causes-from simple base substitutions and changes to splice sites to the insertion of a transposon-like element. These findings provide a fascinating connection between Mendelian genetics and molecular biology that can be used very effectively in teaching new generations of geneticists. Mendel's characters also provide novel insights into the nature of the genes responsible for characteristics of agronomic and consumer importance.

  16. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan


    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  17. KEGG: kyoto encyclopedia of genes and genomes. (United States)

    Kanehisa, M; Goto, S


    KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www.

  18. Advances in gene therapy for heart failure. (United States)

    Fish, Kenneth M; Ishikawa, Kiyotake


    Chronic heart failure is expected to increase its social and economic burden as a consequence of improved survival in patients with acute cardiac events. Cardiac gene therapy holds significant promise in heart failure treatment for patients with currently very limited or no treatment options. The introduction of adeno-associated virus (AAV) gene vector changed the paradigm of cardiac gene therapy, and now it is the primary vector of choice for chronic heart failure gene therapy in clinical and preclinical studies. Recently, there has been significant progress towards clinical translation in this field spearheaded by AAV-1 mediated sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) gene therapy targeting chronic advanced heart failure patients. Meanwhile, several independent laboratories are reporting successful gene therapy approaches in clinically relevant large animal models of heart failure and some of these approaches are expected to enter clinical trials in the near future. This review will focus on gene therapy approaches targeting heart failure that is in clinical trials and those close to its initial clinical trial application.

  19. Evolution of the mammalian lysozyme gene family

    Directory of Open Access Journals (Sweden)

    Biegel Jason M


    Full Text Available Abstract Background Lysozyme c (chicken-type lysozyme has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties.

  20. Current progress of polymeric gene vectors

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; SUN YunXia; ZHUO RenXi; ZHANG XianZheng


    After over 40 years ot progress,gene therapy provides great opportunities for treating diseases from various genetic disorders,infections and cancers.The success of gene therapy largely depends on the availability of suitable gene vectors.As an attractive alternative to virus-based gene therapy,non-viral gene delivery system has been developed and investigated due to their merits including low immunogenecity,convenient operability,and large-scale manufacturability [1].Because polycations can condense with DNA as a result of electrostatic interactions,form nanosize polyplexes,and protect DNA from degradation by DNase,cationic polymer becomes a major type of non-viral gene delivery vectors (Figure 1) [2].A wide range of polymeric vectors have been developed and investigated in the past decade,such as polyethylenimine (PEI)-based vectors,poly(L-lysine) (PLL)-based vectors,dendrimer-based vectors,polypeptide-based vectors,and chitosan-based vectors [3].However,unlike viral vectors that have the ability to infect host cells and overcome cellular barriers through the course of evolution,nonviral gene vectors exhibit Significantly reduced transfection efficiency as they are obstructed by various extra- and intracellular barriers,including serum proteins in blood stream,cell membrane,endosomal compartment and nuclear membrane [4].