WorldWideScience

Sample records for b-immobilized fiber column

  1. Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Gonçalves, Luciana R. B.

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  2. Recovery of uranium from low uranium concentration waste water using collagen fiber immobilized bayberry tannin

    International Nuclear Information System (INIS)

    Wu Yun; Long Xianming; Zhao Ning; Liao Pinxue

    2012-01-01

    Tannin, extracted from plants, is a kind of natural polyphenol, which is able to chelate with various metal ions and also exhibits selectivity in some extent. The collagen fiber immobilized bayberry tannin was prepared by the immobilization of bayberry tannin onto collagen fiber through the Mannich reaction. Experiment of the adsorption of U from U containing wastewater by using collagen fiber immobilized bayberry tannin suggested that the pH increase of U containing wastewater can promote the adsorption of U onto the adsorbent. When the pH was 4.5 and the initial concentration of U was 300.0 mg/L, the adsorption capacity of U reached the maximum of 52 mg/g while the other impurity metal ions were less than 16.0 mg/g, thus exhibiting excellent selectivity. The treatment of wastewater can be optimized by changing the U concentration, inlet rate of wastewater, and the ratio of column height/diameter etc. In addition. the adsorbed U can be desorbed using 0.1 mol/L HNO 3 solution when the column was saturated, the column can also be re used for the treatment of U containing wastewater after the column is washed by deionized water, collagen fiber immobilized bayberry tannin exhibit selectivity, high adsorption capacity, good reusability when adsorbed U. (authors)

  3. Ameliorating Hemorheology by Direct Hemoperfusion with a Polymyxin B-immobilized Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Li Yuan; Wang Xiang; Gao Wei; Cai Shaoxi

    2004-01-01

    Direct hemoperfusion (DHP) with an adsorbent column using polymyxin B-immobilized polystyrene beads has been used to investigate the changes of hemorheology in rabbits with endotoxemia. We measured whole blood viscosity and hemotocrit before and after DHP with polymyxin B-immobilized polystyrene beads. Reduction in blood endotoxin concentration by DHP therapy positively correlated with improvement in hemorheological indexs. Our findings indicate that the amelioration in hemorheology was related directly to endotoxin removal by the adsorbent column with polymyxin B-immobilize polystyrene beads. So DHP with polymyxin B-immobilized polystyrene beads seems to be an important therapeutic strategy for endotoxemia.

  4. Immobilization of Candida antarctica Lipase B by Covalent Attachment to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60°C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5°C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60°C stability was reduced for both CALB-7 and CALB-10.

  5. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    Science.gov (United States)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  6. Activity behavior of a HPLC column including α-chymotrypsin immobilized monosized-porous particles

    International Nuclear Information System (INIS)

    Bilici, Z.; Camli, S.T.; Unsal, E.; Tuncel, A.

    2004-01-01

    In this study, a polymer-based, α-chymotrypsin (CT) immobilized HPLC column was prepared as a potential material for affinity-HPLC and chiral separation applications. Monosized-macroporous particles were synthesized as the support material by a relatively new polymerization protocol, the so-called, 'modified seeded polymerization'. The particles were obtained in the form of styrene-glycidyl methacrylate- divinylbenzene terpolymer approximately 11 μm in size. The particles were treated with aqueous ammonia to have primary amine groups on the porous surface. The amine functionalized particles were reacted by glutaraldehyde and the enzyme, CT, was covalently attached. CT carrying monosized-porous particles were slurry packed into the HPLC column 50 mmx4.6 mm in size. Since the activity behavior of immobilized CT played an important role in the enantiomeric separations performed by similar columns, the enzymatic activity behavior of the column produced by our protocol was determined. For this purpose, HPLC column was used as a packed bed reactor and the enzymatic reaction was continuously followed by measuring the absorbance of the output flow by the UV-detector of HPLC. S-shaped absorbance-time curves were obtained by monitoring the reactor output both in dynamic and steady-state periods. The columns with relatively lower immobilized enzyme content were more sensitive to the changes in the operating conditions and responded with more appreciable substrate conversion changes. The maximum reaction rate of the immobilized enzyme was estimated as approximately 25% of the free one by the mathematical model describing the activity behavior of the column. No significant loss was observed in the activity of the immobilized enzyme during the course of the experiments

  7. Fiber-based monolithic columns for liquid chromatography.

    Science.gov (United States)

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  8. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  9. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber.

    Science.gov (United States)

    Dey, Gargi; Nagpal, Varima; Banerjee, Rintu

    2002-01-01

    A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.

  10. Production of cellulase and xylanase in a bubble gum column using immobilized Aspergillus niger KKS

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Woo; Kim, Seung-Woo [Univ. of Suwon (Korea, Republic of); Lee, Jin-Suk [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    1995-05-01

    Aspergillus niger KKS, isolated from a farmland near Suwon, was immobilized on Celite and polyurethane foams. Enzyme activities produced by the immobilized cell system in a bubble column were higher than that of shake-flask culture. The enzyme productivities were twice as high. {Beta}-Glucosidase, {Beta}-xylosidase, and xylanase activities obtained in a bubble column were significant when the ground rice straw was used as a substrate. 9 refs., 2 figs., 3 tabs.

  11. Antibody Immobilization on Conductive Polymer Coated Nonwoven Fibers for Biosensors

    Directory of Open Access Journals (Sweden)

    Shannon K. MCGRAW

    2011-12-01

    Full Text Available This work is being performed to develop rapid and novel electrochemical biosensors for foodborne pathogen detection. This research focuses on electrotextile platforms to perform both capture and sensing functions in a single component. The biosensor uses nonwoven fiber membranes coated with conductive polymer and functionalized with antibodies for biological capture. This study examines three methods for antibody immobilization: passive adsorption, glutaraldehyde cross-linking, and EDC/Sulfo-NHS cross-linking. Antibodies are immobilized onto the conductive fiber surfaces for the specific capture of a target pathogen. The immobilization and capture capabilities of each method are analyzed through the use of two different fluorescent reporters: FITC and PicoGreen DNA stain. Fluorescence is measured using a fluorescent plate reader and then imaged using a fluorescent microscope. The effect of a blocking agent on specificity is also evaluated. It is found that glutaraldehyde with blocking is the best immobilization method with PicoGreen being the best fluorescent reporter.

  12. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  13. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  14. High-throughput hydrolysis of starch during permeation across {alpha}-amylase-immobilized porous hollow-fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi E-mail: marukyo@xtal.tf.chiba-u.ac.jp; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of {alpha}-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An {alpha}-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. {alpha}-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h{sup -1} for the {alpha}-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the {alpha}-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h{sup -1}; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the {alpha}-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the {alpha}-amylase-immobilized EA fiber.

  15. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    Science.gov (United States)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  16. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    International Nuclear Information System (INIS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-01-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1 ; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  17. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  18. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  19. Stress-Strain Relationship of Synthetic Fiber Reinforced Concrete Columns

    Directory of Open Access Journals (Sweden)

    Rosidawani

    2017-01-01

    Full Text Available Many empirical confinement models for normal and high strength concrete have been developed. Nevertheless, reported studies in the term of confinement of fiber reinforced concrete are limited. Whereas, the use of fiber reinforced concrete in structural elements has become the subject of the research and has indicated positive experiences. Since the stress-strain relationship of concrete in compression is required for analysis of structural members, the study of the stress-strain relationship for synthetic fiber reinforced concrete is substantial. The aim of the study is to examine the capabilities of the various models available in the literature to predict the actual experimental behavior of synthetic fiber reinforced high-strength concrete columns. The experimental data used are the results of the circular column specimens with the spiral spacing and the volume fraction of synthetic fiber as the test variables. The axial stress-strain curves from the tests are then compared with the various models of confinement from the literature. The performance index of each model is measured by using the coefficient of variation (COV concept of stress and strain behavior parameter. Among the confinement models, Cusson model shows the closest valid value of the coefficient of variation.

  20. Masonry Columns Confined by Steel Fiber Composite Wraps

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2011-01-01

    Full Text Available The application of steel fiber reinforced polymer (SRP as a means of increasing the capacity of masonry columns is investigated in this study. The behavior of 23 solid-brick specimens that are externally wrapped by SRP sheets in low volumetric ratios is presented. The specimens are subjected to axial monotonic load until failure occurs. Two widely used types of masonry columns of differing square cross-sections were tested in compression (square and octagonal cross-sections. It is concluded that SRP-confined masonry behaves very much like fiber reinforced polymers (FRP-confined masonry. Confinement increases both the load-carrying capacity and the deformability of masonry almost linearly with average confining stress. A comparative analysis between experimental and theoretical values computed in compliance with the Italian Council of Research (CNR was also developed.

  1. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  2. Obtaining of Fibers and granules of carbon for the Immobilization of Enzymes

    International Nuclear Information System (INIS)

    Malagon M, Martha L; Rico R, Yolanda Rico R; Lopez de, Helda A; Caicedo M, Luis Alfonso

    2002-01-01

    Fibers and pellets of carbon were prepared from coal tar. The tar was filtrated and stabilized in a nitrogen atmosphere at 330 degrades Celsius. Extrusion and pellets prepared the fibers by injection on water. Lactase was immobilized by adsorption process. Pellets were better support than fibers, because produced lower pressure drop and upper enzyme retention. Pellets showed the following characteristics: density 2,407 g/cm3, porosity 81,69% and diameter 3 mm

  3. High photocatalytic activity of immobilized TiO{sub 2} nanorods on carbonized cotton fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: bwang23@cityu.edu.hk [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); Karthikeyan, Rengasamy; Lu, Xiao-Ying [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); Xuan, Jin [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Leung, Michael K.H., E-mail: mkh.leung@cityu.edu.hk [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China)

    2013-12-15

    Highlights: • Hollow carbon fibers derived from natural cotton was successfully prepared by pyrolysis method. • TiO{sub 2} nanorods immobilized on carbon fibers by a facile hydrothermal method showed high photocatalytic activity. • The enhancement was due to the reduced band gap, improved dye adsorption capacity and effective electron–hole separation. -- Abstract: In this study, TiO{sub 2} nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO{sub 2}-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV–vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO{sub 2} was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (q{sub m}) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and q{sub m} of TiO{sub 2}-CCFs-1000 (9.0 mg/g) was 6–7 times higher than that of TiO{sub 2} nanorods. Photocatalytic activity of TiO{sub 2} nanorods prepared with 3 mL Ti(OBu){sub 4} showed the highest photocatalytic activity. TiO{sub 2}-CCFs-1000 exhibited higher activity than TiO{sub 2} immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO{sub 2}-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron–hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO{sub 2} on carbon fibers for environmental remediation.

  4. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    Science.gov (United States)

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  5. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    Directory of Open Access Journals (Sweden)

    C.C.F. Nascimento

    2008-09-01

    Full Text Available The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase. Data were analyzed statistically by the mixed effects linear model (P < 0.05. Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001. In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001. In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009. We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  6. Behaviour of reinforced columns with E_Glass fiber and carbon fiber

    OpenAIRE

    BOUCHELAGHEM Hafida; BEZAZI Abederrezak; Benzanache Naziha; SCARPA Fabrizio

    2018-01-01

    Externally bonded reinforcement using Fiber Reinforced Polymer (FRP) is a good response to the concern represented by the need for rehabilitation of concrete structures. These techniques are more and more attractive because of their fast and low labour costs, very good strength to weight ratio, good fatigue properties, and non-corrosive characteristics of FRP. The present work is an experimental study investigating the mechanical behaviour under a uni-axial loading of short concrete columns r...

  7. Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2018-01-01

    Full Text Available This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC, axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code can be safely adopted to evaluate the shear strength of HDC short columns.

  8. b-GALACTOSIDASE IMMOBILIZATION ON CONTROLLED PORE SILICA

    Directory of Open Access Journals (Sweden)

    H. C. Trevisan

    1997-12-01

    Full Text Available The immobilization of b -galactosidase from Kluyveromyces fragilis on controlled pore silica was investigated. Immobilization was performed on amino silica activated with glutaraldehyde and the product was applied to the hydrolysis of lactose of whey. The behaviors of the soluble and immobilized enzyme were compared by using whey and a lactose solution as the substrate. With the aim of optimizing the method, parameters such as the amount of glutaraldehyde and the size of the particles were evaluated by comparing activities and stabilities on batch and continuously fluidized bed reactors

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  10. Investigating the efficiency of using the carbon fiber polymer on beam–column connection

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Eldeeb

    2016-03-01

    Full Text Available Due to the huge amount of energy induced from earthquakes, such natural hazards usually represent the most significant threat on existing and new buildings. Recently, a lot of considerable efforts were dedicated to design buildings capable of withstanding earthquakes' ground motions by utilizing lateral resisting elements, such as reinforced concrete shear walls, cores, frames, and steel bracing. Contrasting the experience gained from the previously designed guidelines and provisions for lateral resisting systems, recent studies illustrated that the existence of lateral resisting system in low-rise buildings is essential in order to resist ground motions. As such, some endeavors are directed to reinforce old buildings against seismic loads. This paper focuses on investigating the efficiency of using Carbon Fiber Polymer (CFRP sheets on the behavior of beam–column connections considering a cantilever beam with concentrated load at its free end. In addition, to complement the published data, finite element model using the computer package ANSYS was used. The additional beam–column connections in this study are classified in 4 groups (A, B, C, and D depending on the percentage of reinforcement at the bottom and top of the beam (%As. The efficiency of using CFRP was concluded; the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam. The paper investigates the influence of boundary condition, columns as hinged supports, and the efficiency of using CFRP. It is concluded that the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam.

  11. Immobilized cells of Candida rugosa possessing fumarase activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Zhone, L.

    1980-01-01

    Immobilized cells of C. rugosa that possessed fumarase activity were prepared by different methods; the most active immobilized cells were entrapped in polyacrylamide gels. The effects of pH temperature, and divalent cations on the fumarase activity of both immobilized and native cells were the same. Mn/sup 2 +/, Mg/sup 2 +/, Ca/sup 2 +/, and Fe/sup 2 +/ did not protect the immobilized enzyme against thermal inactivation. The activity of immobilized fumarase remained constant during 91 days of storage of 4-6 degrees. The immobilized cell column was used for the continuous production of L-malic acid from 1M fumarate at 30 degrees and pH 8.5. The immobilized column operated steadily for 2 months. Half life of the immobilized fumarase at 30 degrees was 95 days.

  12. Properties of Immobilized Candida antarctica Lipase B on Highly Macroporous Copolymer

    International Nuclear Information System (INIS)

    Handayani, N.; Achmad, S.; Wahyuningrum, D.

    2011-01-01

    In spite of their excellent catalytic properties, enzymes should be improved before their implementation both in industrial and laboratorium scales. Immobilization of enzyme is one of the ways to improve their properties. Candida antarctica lipase B (Cal-B) has been reported in numerous publications to be a particularly useful enzyme catalizing in many type of reaction including regio- and enantio- synthesis. For this case, cross-linking of immobilized Cal-B with 1,2,7,8 diepoxy octane is one of methods that proved significantly more stable from denaturation by heat, organic solvents, and proteolysis than lyophilized powder or soluble enzymes. More over, the aim of this procedure is to improve the activity and reusability of lipase. Enzyme kinetics test was carried out by transesterification reaction between 4-nitrophenyl acetate (pNPA) and methanol by varying substrate concentrations, and the result is immobilized enzymes follows the Michaelis-Menten models and their activity is match with previous experiment. Based on the V max values, the immobilized enzymes showed higher activity than the free enzyme. Cross-linking of immobilized lipase indicate that cross-linking by lower concentration of cross-linker, FIC (immobilized lipase that was incubated for 24 h) gave the highest activity and cross-linking by higher concentration of cross-linker, PIC (immobilized lipase that was incubated for 2 h) gives the highest activity. However, pore size and saturation level influenced their activity. (author)

  13. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  14. Preparation of polymeric fibers immobilizing inorganic compounds, enzymes, and extractants designed for radionuclide decontamination, ultrapure water production, and rare-earth metal purification

    International Nuclear Information System (INIS)

    Saito, Kyoichi

    2014-01-01

    To remove and recover targeted ions and molecules at a high rate, inorganic compounds, enzymes, and extractants were immobilized onto a commercially available 6-nylon fiber by radiation-induced graft polymerization and subsequent chemical modifications. Fibrous supports with a smaller diameter provide a larger external interface area with liquids. Modified fibers are fabricated into various shapes such as wound filter and braid according to application sites. First, insoluble cobalt ferrocyanide-impregnated fiber was prepared via precipitation by immersing ferrocyanide ion-bound anion-exchange fiber in cobalt chloride solution. Cobalt ferrocyanide impregnated onto the polymer chain grafted onto the fiber specifically captured cesium ions in seawater. Similarly, sodium titanate impregnated onto a cation-exchange fiber selectively captured strontium ions in seawater. Second, urease was bound by an anion-exchange graft chain, followed by enzymatic cross-linking among urease molecules with transglutaminase. The bed charged with the urease-immobilized fiber exhibited a quantitative hydrolysis of urea at a high space velocity of urea solution. Third, an acidic extractant (HDEHP, bis(2-ethylhexyl) phosphate) was impregnated onto a dodecylamino-group-containing polymer chain grafted onto the 6-nylon fiber. Distribution coefficients of the HDEHP-impregnated fiber for neodymium and dysprosium agreed well with those in n-dodecane. (author)

  15. Adsorption of various antimicrobial agents to endotoxin removal polymyxin-B immobilized fiber (Toraymyxin®). Part 2: Adsorption of two drugs to Toraymyxin PMX-20R cartridges.

    Science.gov (United States)

    Shimokawa, Ken-ichi; Takakuwa, Ryotaro; Wada, Yuko; Yamazaki, Noriko; Ishii, Fumiyoshi

    2013-01-01

    In our previous study, the degree of adsorption of 9 representative antimicrobial agents to Toraymyxin(®) PMX-F sheets was quantitatively evaluated. As a result, the adsorption rate was 22.1% for Linezolid in the presence of serum. Therefore, we investigated whether two types of antimicrobial agents (Ciprofroxacin and Linezolid) can be better adsorbed on PMX-F sheets. When the number of PMX-F sheets was increased in a step wise manner, specifically 2, 4, 6, 8 and 12, the adsorption rate increased linearly. In addition, the adsorption to polymyxin-B immobilized fiber (Toraymyxin(®) PMX-20R) cartridges, widely used to remove endotoxins from circulating blood in the treatment of sepsis, was quantitatively evaluated. As a result, in the presence of serum, Linezolid showed adsorption to PMX-20R, and the adsorption rate after 2h was 54.5%, and that after 4h was 65.8%. The results of this study suggest the necessity of monitoring blood antimicrobial concentration during treatment for sepsis with Linezolid, which showed adsorption to PMX-20R in an environment close to a clinical environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  17. Polymethacrylate Coated Electrospun PHB Fibers as a Functionalized Platform for Bio-Diagnostics: Confirmation Analysis on the Presence of Immobilized IgG Antibodies against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Samira Hosseini

    2017-10-01

    Full Text Available In this article, a combination of far field electrospinning (FFES and free-radical polymerization has been used to create a unique platform for protein immobilization via the physical attachment of biomolecules to the surface of the fiber mats. The large specific surface area of the fibers with its tailored chemistry provides a desirable platform for effective analyte-surface interaction. The detailed analysis of protein immobilization on a newly developed bio-receptive surface plays a vital role to gauge its advantages in bio-diagnostic applications. We relied on scanning electron microscopy (SEM, diameter range analysis, and X-ray photoelectron spectroscopy (XPS, along with thermal gravimetric analysis (TGA, water-in-air contact angle analysis (WCA, Fourier transform infrared spectroscopy (FTIR, and atomic force microscopy (AFM to study our developed platforms and to provide valuable information regarding the presence of biomolecular entities on the surface. Detailed analyses of the fiber mats before and after antibody immobilization have shown obvious changes on the surface of the bioreceptive surface including: (i an additional peak corresponding to the presence of an antibody in TGA analysis; (ii extra FTIR peaks corresponding to the presence of antibodies on the coated fiber platforms; and (iii a clear alteration in surface roughness recorded by AFM analysis. Confirmation analyses on protein immobilization are of great importance as they underlay substantial grounds for various biosensing applications.

  18. Enhanced photo-H2 production by Rhodopseudomonas faecalis RLD-53 immobilization on activated carbon fibers

    International Nuclear Information System (INIS)

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Xing, De-Feng; Ren, Hong-Yu; Guo, Wan-Qian; Ren, Nan-Qi

    2012-01-01

    Activated carbon fibers (ACFs) were firstly applied as fluidized solid carrier to immobilize photo-fermentative bacteria (PFB) for H 2 production in batch culture. The observations by scanning electronic microscopy (SEM) demonstrated the close interaction between ACFs and PFB. The amount of immobilized bacteria and the performance of H 2 production were strongly affected by specific surface area, length and amount of ACFs, respectively. Large specific surface area provided more surface attachment sites and more PFB were immobilized. ACFs with proper length avoided intertwining with each other and better fluidized during reactor operation. Excessive amount of ACFs not only limited the light conversion efficiency, but also increased biofilm detachment, resulting in low H 2 yield. The maximum yield (3.08 mol H 2 mol −1 acetate) and rate (32.85 ml l −1 h −1 ) of H 2 production were obtained, using specific surface area (1500 m 2 g −1 ), length (1 mm) and amount (0.8 g l −1 ) of ACFs. Compared with the conventional solid carriers, ACFs were effective solid carriers to immobilize PFB for improving H 2 production, due to bacteria immobilized on the external surface of fluidized ACFs and formed a layer of dense biofilm. -- Highlights: ► ACFs were firstly used to immobilize photo-fermentative bacteria for H 2 production. ► ACFs were fluidized in the reactor during the operation. ► Bacteria covered on the external surface of ACFs and formed dense biofilm. ► Each bacterium on the ACFs could absorb the light and convert substrate into H 2 .

  19. Surface modification of polyacrylonitrile fiber for immobilization of antibodies and detection of analyte

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Chattopadhyay, Sruti, E-mail: srutic@hotmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Jackeray, Richa, E-mail: richajackeray.iitd@gmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Singh, Harpal, E-mail: harpal2000@yahoo.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India)

    2009-11-10

    Pendent nitrile groups of multifilamentous polyacrylonitrile (PAN) fibers were reduced to amino groups using lithium aluminum hydride for different time of reduction and amine content was estimated by performing acid-base titrations. Attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC) were used for the characterization of the generated amino groups and thermal properties of the reduced fibers, respectively. The surface morphology of the fibers after reduction and immobilization was characterized using Scanning Electron Microscope (SEM). The newly formed amino groups of the fibers were activated by using glutaraldehyde for the covalent linking of Goat anti-Rabbit IgG-HRP (GAR-HRP) antibody enzyme conjugate. Modified PAN fibers were evaluated as a matrix for sandwich ELISA by using Goat anti-Rabbit antibody (GAR-IgG), Rabbit anti-Goat (RAG-IgG) as analyte and enzyme conjugate GAR-HRP. The fibers reduced for 24 h were able to detect the analyte RAG-IgG at a concentration as low as 3.75 ng mL{sup -1} with 12% skimmed milk as blocking reagent for the optimized concentration of primary antibody GAR-IgG 3 {mu}g mL{sup -1} and peroxidase conjugate GAR-HRP dilution of 8000 fold. The sensitivity, specificity and reproducibility of the developed immunoassay was further established with antibodies present in human blood using Rabbit anti-Human (RAH-IgG) antibody and the corresponding HRP enzyme conjugate. As low as 0.1 {mu}L of human blood was sufficient to perform the assay with the modified fibers.

  20. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    Science.gov (United States)

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  1. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  2. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.......Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity...

  3. Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation

    Directory of Open Access Journals (Sweden)

    Le Wang

    2016-03-01

    Full Text Available Nitric acid (HNO3-treated carbon fiber (CF rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic–hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g−1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L−1∙h−1, respectively. The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.

  4. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    Science.gov (United States)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  5. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.

    Science.gov (United States)

    Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae

    2017-11-10

    The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g -1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g -1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm -1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm -1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L -1 ) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g -1 under the given conditions (fiber dose = 1-10 g L -1 ). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min -1 were 214.8 and 171.5 mg g -1 , respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.

  6. Adsorption recovery of thorium(IV) by Myrica rubra tannin and larch tannin immobilized onto collagen fibres

    International Nuclear Information System (INIS)

    Xuepin Liao; Li Li; Bi Shi

    2004-01-01

    Novel adsorbents which can concentrate Th(IV) in aqueous solution were prepared by immobilizing Myrica rubra tannin and larch tannin onto collagen fibre matrices. The adsorption capacities of the immobilized tannins to Th(IV) are related to temperature and pH value of the adsorption process. For example, when the initial concentration of Th(IV) was 116.0 mg x l -1 and the immobilized tannin was 100 mg, the adsorption capacities of immobilized Myrica rubra tannin and larch tannin were 55.98 mg Th(IV) x g -1 and 13.19 mg Th(IV) x g -1 , respectively at 303 K, and 73.67 mg Th(IV) x g -1 and 18.19 mg Th(IV) x g -1 at 323 K. It was also found that the higher adsorption capacity was obtained at higher pH value. The adsorption equilibrium data of the immobilized tannins for Th(IV) can be well fitted by the Langmuir model and the mechanism of the adsorption was found to be a chemical adsorption. In general, the adsorption capacity of immobilized Myrica rubra tannin to Th(IV) is significantly higher than that of immobilized larch tannin, probably due to the fact that the B ring of Myrica rubra tannin has a pyrogallol structure which has higher reaction activity with metal ions. The breakthrough point of the adsorption column of immobilized Myrica rubra tannin was at 33 bed volumes for the experimental system. The mass transfer coefficient of adsorption column determined by Adams-Bohart equation was 1.61 x 10 -4 l x mg -1 x min -1 . The adsorption column can be easily regenerated by 0.1 mol x l -1 HNO 3 solution, showing outstanding ability of concentrating Th(IV). (author)

  7. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells.

    Science.gov (United States)

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2017-08-01

    The objective of this study is to design the manner of ephrinB2 immobilized onto polyacrylamide (PAAm) hydrogels with varied elasticity and evaluate the effect of hydrogels elasticity and the immobilized manner of ephrinB2 on the Runx2 expression of human mesenchymal stem cells (hMSC). The PAAm hydrogels were prepared by the radical polymerization of acrylamide (AAm), and N,N'-methylenebisacrylamide (BIS). By changing the BIS concentration, the elasticity of PAAm hydrogels changed from 1 to 70kPa. For the bio-specific immobilization of ephrinB2, a chimeric protein of ephrinB2 and Fc domain was immobilized onto protein A-conjugated PAAm hydrogels by making use of the bio-specific interaction between the Fc domain and protein A. When hMSC were cultured on the ephrinB2-immobilized PAAm hydrogels with varied elasticity, the morphology of hMSC was of cuboidal shape on the PAAm hydrogels immobilized with ephrinB2 compared with non-conjugated ones, irrespective of the hydrogels elasticity. The bio-specific immobilization of ephrinB2 enhanced the level of Runx2 expression. The expression level was significantly high for the hydrogels of 3.6 and 5.9kPa elasticity with bio-specific immobilization of ephrinB2 compared with other hydrogels with the same elasticity. The hydrogels showed a significantly down-regulated RhoA activity. It is concluded that the Runx2 expression of hMSC is synergistically influenced by the hydrogels elasticity and their immobilized manner of ephrinB2 immobilized. Differentiation fate of mesenchymal stem cells (MSC) is modified by biochemical and biophysical factors, such as elasticity and signal proteins. However, there are few experiments about combinations of them. In this study, to evaluate the synergistic effect of them on cell properties of MSC, we established to design the manner of Eph signal ligand, ephrinB2, immobilized onto polyacrylamide hydrogels with varied elasticity. The gene expression level of an osteogenic maker, Runx2, was enhanced

  8. PVA-Glutaraldehyde as support for lectin immobilization and affinity chromatography

    Directory of Open Access Journals (Sweden)

    Moacyr Jesus Barreto de Melo Rêgo

    2016-12-01

    Full Text Available Immobilized lectins are a powerful biotechnological tool for separation and isolation of glycoconjugates. In the present study, polyvinyl alcohol (PVA and glutaraldehyde (GA were used as a support for Concanavalin A (Con A covalent immobilization and for entrapment of Parkia pendula seed gum (PpeG. Con A immobilization yielded approximately 30% and 0.6 M glucose solution was the minimum concentration able to elute fetuin from column. PVA-GA-PpeG column was efficiently recognized by pure P. pendula lectin (PpeL. These findings indicate that PVA-GA interpenetrated network showed to be an efficient support for lectin covalent immobilization and as affinity chromatography matrix after trapping of PpeG.

  9. Biosorption of 239Pu by immobilized sargassum fusiforme

    International Nuclear Information System (INIS)

    Liang Zhirong; Chen Qi; Wu Yusheng

    2009-01-01

    Sargassum fusiforme was immobilized with calcium alginates and its biosorption property to 239 Pu was studied by batch and column methods. Biosorption equilibrium time of immobilized Sargassum fusiforme biosorbent to 239 Pu is 120 min and biosorption efficiency is over 99.2% when the initial concentration of 239 Pu is 21.5 kBq/L and pH is 2.5-5.0. After five times repetition biosorption-desorption cycles biosorption efficiency is still over 98.0% when the velocity of flow is 2 ml/min in column experiment. Immobilized Sargassum fusiforme biosorbent is better to 239 Pu due to its better chemical stability, mechanical strength, lower cost, high biosorption efficiency and repeated biosorption-desorption cycles. (authors)

  10. Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization.

    Science.gov (United States)

    Cristóvão, Raquel O; Silvério, Sara C; Tavares, Ana P M; Brígida, Ana Iraidy S; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A; Coelho, Maria Alice Z

    2012-09-01

    Commercial laccase formulation was immobilized on modified green coconut fiber silanized with 3-glycidoxypropyltrimethoxysilane, aiming to achieve a cheap and effective biocatalyst. Two different strategies were followed: one point (pH 7.0) and multipoint (pH 10.0) covalent attachment. The influence of immobilization time on enzymatic activity and the final reduction with sodium borohydride were evaluated. The highest activities were achieved after 2 h of contact time in all situations. Commercial laccase immobilized at pH 7.0 was found to have higher activity and higher affinity to the substrate. However, the immobilization by multipoint covalent attachment improved the biocatalyst thermal stability at 50 °C, when compared to soluble enzyme and to the immobilized enzyme at pH 7.0. The Schiff's bases reduction by sodium borohydride, in spite of causing a decrease in enzyme activity, showed to contribute to the increase of operational stability through bonds stabilization. Finally, these immobilized enzymes showed high efficiency in the continuous decolourization of reactive textile dyes. In the first cycle, the decolourization is mainly due to dyes adsorption on the support. However, when working in successive cycles, the adsorption capacity of the support decreases (saturation) and the enzymatic action increases, indicating the applicability of this biocatalyst for textile wastewater treatment.

  11. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    Science.gov (United States)

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Catalysis by Candida antarctica B (CALB) immobilized on natural ...

    African Journals Online (AJOL)

    Objective: In this work, a lipase B from Candida antarctica strain was immobilized onto natural silica carriers via adsorption to enhance its feasibility in practical applications. Methodology and results: The biocatalyst was prepared by simple adsorption on the support whose composition was beforehand characterized and the ...

  13. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Science.gov (United States)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  14. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  15. Fungal laccase: copper induction, semi-purification, immobilization ...

    African Journals Online (AJOL)

    Fungal laccase: copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement. ... In order to apply in an effluent treatment, laccase was immobilized on different vitroceramics supports, pyrolytic graphite and also on a carbon fiber electrode as biosensor. The maximum ...

  16. Lipid-mediated protein functionalization of electrospun polycaprolactone fibers

    Directory of Open Access Journals (Sweden)

    C. Cohn

    2016-05-01

    Full Text Available In this study, electrospun polycaprolactone (PCL fibers are plasma-treated and chemically conjugated with cholesteryl succinyl silane (CSS. In addition to Raman spectroscopy, an immobilization study of DiO as a fluorescent probe of lipid membranes provides evidence supporting the CSS coating of plasma-treated PCL fibers. Further, anti-CD20 antibodies are used as a model protein to evaluate the potential of lipid-mediated protein immobilization as a mechanism to functionalize the CSS-PCL fiber scaffolds. Upon anti-CD20 functionalization, the CSS-PCL fiber scaffolds capture Granta-22 cells 2.4 times more than the PCL control does, although the two fiber scaffolds immobilize a comparable amount of anti-CD20. Taken together, results from the present study demonstrate that the CSS coating and CSS-mediated antibody immobilization offers an appealing strategy to functionalize electrospun synthetic polymer fibers and confer cell-specific functions on the fiber scaffolds, which can be mechanically robust but often lack biological functions.

  17. Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss

    Directory of Open Access Journals (Sweden)

    Seul-Ji Lee

    2013-01-01

    Full Text Available Immobilization of lead (Pb using soil amendments can reduce Pb toxicity and bioavailability in soil. This study evaluated Pb immobilization in a Pb-contaminated soil by using peat moss through various tests. The Pb-contaminated soil (2000 mg Pb·kg−1 was amended with 1%, 5%, and 10% of peat moss to immobilize Pb in the soil. The immobilization properties of Pb in the contaminated soil were evaluated by a column leaching experiment, a microcosm test, and a batch incubation test. Peat moss significantly reduced the Pb leaching in all of the experiments and more effectively reduced mobility and toxicity of Pb in the column leaching and microcosm tests than bioavailability in the batch incubation test. The immobilized lead from the soils amended with 1%, 5%, and 10% of peat moss was 37.9%, 87.1%, and 95.4% from the column leaching test, 18.5%, 90.9%, and 96.4% from the microcosm test, and 2.0%, 36.9%, and 57.9% from the NH4NO3 extraction method, respectively, indicating that peat moss can be effectively used for the remediation of Pb-contaminated soil.

  18. Implementation of Highly-Flowable Strain Hardening Fiber Reinforced Concrete in New RC Beam-Column Joints

    Directory of Open Access Journals (Sweden)

    Liao Wen-Cheng

    2018-01-01

    Full Text Available The purpose of New RC project was aimed to reduce the member sections and increase the available space of high rise buildings by using high strength concrete (f’c > 70 MPa and high strength rebars (fy > 685 MPa. Material consumptions and member section sizes can be further reduced owing to the upgrade of strength. However, the nature of brittleness of high strength may also cause early cover spalling and other ductility issues. Addition of steel fibers is an alternative as transverse reinforcement. Highly flowable strain hardening fiber reinforced concrete (HF-SHFRC has excellent workability in the fresh state and exhibits the strain-hardening and multiple cracking characteristics of high performance fiber reinforced cementitious composites (HPFRCC in their hardened state. The objective of this study is to investigate the feasibility of implementing HF-SHFRC in New RC building systems, particularly for beam-column joints as an alternative of transverse reinforcements. Four full-scale exterior beam-column joints, including two specimens with intensive transverse reinforcements and two specimens made of HF-SHFRC without any stirrup, are tested. Test results show that the HF-SHFRC specimens perform as well as specimens with intensive transverse reinforcements regarding failure mode, ductility, energy dissipation and crack width control. Integration of New RC building systems and HF-SHFRC can assuring construction qualities and further diminish labor work and give infrastructure longer service life, and eventually lower the life-cycle cost.

  19. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  20. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    Science.gov (United States)

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  1. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    International Nuclear Information System (INIS)

    Iwanade, Akio; Umeno, Daisuke; Saito, Kyoichi; Sugo, Takanobu

    2013-01-01

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group. - Highlights: ► A DMGABA membrane was immobilized by irradiation induced graft polymerization. ► The DMGABA was immobilized in a mixture of dioxane and water of various compositions. ► Lysozyme adsorptivity of DMGABA-immobilized membranes evaluated in the permeation mode. ► The composition of the DMGABA immobilized solvent can control adsorptivity

  2. DNA origami nanorobot fiber optic genosensor to TMV.

    Science.gov (United States)

    Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S

    2018-01-15

    In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  4. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  5. Phenol Biodegradation by Free and Immobilized Candida tropicalis RETL-Crl on Coconut Husk and Loofah Packed in Biofilter Column

    International Nuclear Information System (INIS)

    Shazryenna, D; Ruzanna, R; Jessica, M S; Piakong, M T

    2015-01-01

    Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL −1 h −1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL −1 compared to biomass concentration on coconut husk, 4.39 gL −1 . Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater. (paper)

  6. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Immobilized enzymes in blood plasma exchangers via radiation grafting

    Science.gov (United States)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  8. Assessing the Heterogeneity of the Fc-Glycan of a Therapeutic Antibody Using an engineered FcγReceptor IIIa-Immobilized Column.

    Science.gov (United States)

    Kiyoshi, Masato; Caaveiro, Jose M M; Tada, Minoru; Tamura, Hiroko; Tanaka, Toru; Terao, Yosuke; Morante, Koldo; Harazono, Akira; Hashii, Noritaka; Shibata, Hiroko; Kuroda, Daisuke; Nagatoishi, Satoru; Oe, Seigo; Ide, Teruhiko; Tsumoto, Kouhei; Ishii-Watabe, Akiko

    2018-03-02

    The N-glycan moiety of IgG-Fc has a significant impact on multifaceted properties of antibodies such as in their effector function, structure, and stability. Numerous studies have been devoted to understanding its biological effect since the exact composition of the Fc N-glycan modulates the magnitude of effector functions such as the antibody-dependent cell mediated cytotoxicity (ADCC), and the complement-dependent cytotoxicity (CDC). To date, systematic analyses of the properties and influence of glycan variants have been of great interest. Understanding the principles on how N-glycosylation modulates those properties is important for the molecular design, manufacturing, process optimization, and quality control of therapeutic antibodies. In this study, we have separated a model therapeutic antibody into three fractions according to the composition of the N-glycan by using a novel FcγRIIIa chromatography column. Notably, Fc galactosylation was a major factor influencing the affinity of IgG-Fc to the FcγRIIIa immobilized on the column. Each antibody fraction was employed for structural, biological, and physicochemical analysis, illustrating the mechanism by which galactose modulates the affinity to FcγRIIIa. In addition, we discuss the benefits of the FcγRIIIa chromatography column to assess the heterogeneity of the N-glycan.

  9. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column: Mathematical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Adela Kogej

    2010-01-01

    Full Text Available The biosorption of lead ions from aqueous solution on a self-immobilized Rhizopus nigricans biomass has been studied. Experiments were performed in a laboratory scale packed bed column at different liquid flow rates and biosorbent bed heights. Recorded experimental breakthrough curves were compared to those predicted by a mathematical model, which was developed to simulate a packed bed biosorption process by a soft, self-immobilized fungal biosorbent. In the range of examined experimental conditions, the biomass characteristics such as pellet porosity and biosorption capacity substantially affected the predicted response curve. General correlations for the estimation of the intra-pellet effective diffusivity, the external mass transfer coefficient, as well as axial dispersion were successfully applied in this biological system with specific mechanical properties. Under the experimental conditions, mass transfer is controlled by the external film resistance, while the intra-pellet mass transfer resistance, as well as the effect of axial dispersion, can be neglected. A new parameter α, the fraction of active biomass, with an average value of α=0.7, was introduced to take into account the specific biomass characteristics, and consequently the observed non-ideal liquid flow through the bed of fungal pellets.

  10. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  11. Immobilization of leachable toxic soil pollutants by using oxidative enzymes

    International Nuclear Information System (INIS)

    Shannon, M.J.R.; Bartha, R.

    1988-01-01

    Screening of leachable toxic chemicals in a horseradish peroxidase-H 2 O 2 immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo[a]pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of 14 C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylpheno was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods

  12. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  13. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    International Nuclear Information System (INIS)

    Glisic, B; Inaudi, D; Lau, J M; Fong, C C

    2013-01-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper. (paper)

  14. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    Science.gov (United States)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  15. Mussel-inspired immobilization of BN nanosheets onto poly(p-phenylene benzobisoxazole) fibers: Multifunctional interface for photothermal self-healing

    Science.gov (United States)

    Shao, Qing; Hu, Zhen; Xu, Xirong; Yu, Long; Zhang, Dayu; Huang, Yudong

    2018-05-01

    The composites with interfacial self-healing ability are smart and promising materials in the future. Although some approaches have been used to heal the micro-cracks in composite materials, it is still a great challenge to develop a versatile strategy to fabricate multifunctional interface for self-healing. Here, boron nitride nanosheets (BN) are immobilized onto PBO fibers by facile polydopamine (PDA) chemistry. Benefiting from the photothermal effect of BN-PDA, the obtained surface layer displays interfacial self-healing properties under Xenon light irradiation.

  16. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Science.gov (United States)

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  17. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  19. Oriented immobilized anti-hIgG via F(c) fragment-imprinted PHEMA cryogel for IgG purification.

    Science.gov (United States)

    Bereli, Nilay; Ertürk, Gizem; Tümer, M Aşkin; Say, Ridvan; Denizli, Adil

    2013-05-01

    Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, F(c) fragment-imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti-hIgG for IgG purification from human plasma. Non-imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti-hIgG to compare the adsorption capacities of oriented (MIP/anti-hIgG) and random (NIP/anti-hIgG) cryogel columns. The amount of immobilized anti-hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti-hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti-hIgG column (29.7 mg/g) for the MIP/anti-hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti-hIgG cryogel column. Adsorbed IgG was eluted using 1.0 M NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti-hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.

  20. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B

    Directory of Open Access Journals (Sweden)

    Khusna Widhyahrini

    2017-10-01

    How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 343-350 (doi:10.9767/bcrec.12.3.774.343-350

  1. A gold-immobilized microchannel flow reactor for oxidation of alcohols with molecular oxygen.

    Science.gov (United States)

    Wang, Naiwei; Matsumoto, Tsutomu; Ueno, Masaharu; Miyamura, Hiroyuki; Kobayashi, Shū

    2009-01-01

    Golden capillaries: A gold-immobilized capillary column reactor allows oxidation of alcohols to carbonyl compounds using molecular oxygen. These capillary columns (see picture) can be used for at least four days without loss of activity.

  2. Effects of treatment position and patient immobilization on the variability of patient motion in the treatment of prostate cancer patients

    International Nuclear Information System (INIS)

    Nguyen, A.; Washington, M.; Wyman, B.; Song, P.; Bauml, J.; Tobias, R.; Vaida, F.; Chen, G.; Vijayakumar, S.; Reese, Michael

    1995-01-01

    Purpose/Objective: As dose-escalation is being attempted in the treatment of prostate cancer, uncertainties in patient position due to day-to-day setup has become increasingly critical. We present results from an ongoing study of the variability of patient positioning in prone versus supine treatment positions, as well as with and without immobilization using an aquaplast cast. Materials and Methods: We compared the probability and the amount of day-to-day movement of patients with prostate cancer. Patients were divided into three groups: (a) those treated supine without immobilization, (b) those treated supine and immobilized with an aquaplast cast over the abdomen and pelvis, and (c) those treated prone and similarly immobilized in aquaplast. The three components of patient motion - cephalo-caudad, anterior-posterior, and lateral - were examined separately. Portal films, taken at least once a week during treatment, were compared to simulation films and appropriate changes were made on the next day before treatment. This film record was used in our retrospective analysis of patient motion. To study the probability of movement we carried out a Likelihood Ratio test (LR) on a sample of 43 patients (20, 15, and 8 in treatment positions (a), (b), and (c) respectively). To study the amount of movement, templates with outlines of bony landmarks were generated based on the simulation film and overlaid on the portal film to measure the displacement. Results: Our measurements are summarized in the table below, where the p values for the difference in probability of movement (leftmost three columns) comes from the LR test and the amount of movement (rightmost three columns) is expressed as an average accompanied by a root-mean-square, in millimeters. Conclusions: From the data so far analyzed, patients treated supine and immobilized in an aquaplast cast -- group (b) -- exhibit the lowest probability of cephalo-caudad and anterior-posterior movement. In addition, although

  3. Lipase B from Candida antarctica Immobilized on a Silica-Lignin Matrix as a Stable and Reusable Biocatalytic System

    Directory of Open Access Journals (Sweden)

    Jakub Zdarta

    2016-12-01

    Full Text Available A study was conducted of the possible use of a silica-lignin hybrid as a novel support for the immobilization of lipase B from Candida antarctica. Results obtained by elemental analysis, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and atomic force microscopy (AFM, as well as the determination of changes in porous structure parameters, confirmed the effective immobilization of the enzyme on the surface of the composite matrix. Based on a hydrolysis reaction, a determination was made of the retention of activity of the immobilized lipase, found to be 92% of that of the native enzyme. Immobilization on a silica-lignin matrix produces systems with maximum activity at pH = 8 and at a temperature of 40 °C. The immobilized enzyme exhibited increased thermal and chemical stability and retained more than 80% of its activity after 20 reaction cycles. Moreover immobilized lipase exhibited over 80% of its activity at pH range 7–9 and temperature from 30 °C to 60 °C, while native Candida antarctica lipase B (CALB exhibited the same only at pH = 7 and temperature of 30 °C.

  4. Sphingosine-1-Phosphate (S1P) Is a Feasible Biomarker in Predicting the Efficacy of Polymyxin B-Immobilized Fiber Direct Hemoperfusion (PMX-DHP) in Patients with Septic Shock.

    Science.gov (United States)

    Inoue, Satoshi; Sakamoto, Yuichiro; Koami, Hiroyuki; Yamada C, Kosuke; Nagashima, Futoshi; Miike, Toru; Iwamura, Takashi; Obata, Toru

    2018-01-01

    The aim of this study was to identify a useful biomarker to predict the efficacy of polymyxin B-immobilized fiber direct hemoperfusion (PMX-DHP) in patients with septic shock. The 44 patients included in this study were divided into two groups. Group A had an increase in systolic blood pressure (SBP) over 30 mmHg after PMX-DHP treatment. Group B had an increase in SBP less than 30 mmHg after PMX-DHP treatment. We evaluated the clinical characteristics and demographics of both groups. We also assessed whether the cause of sepsis affected the efficacy of PMX-DHP and compared the prognosis of both groups. Finally, we investigated whether there were any significant differences in the levels of sepsis-related biomarkers, including sphingosine-1-phosphate (S1P), between both groups before PMX-DHP in an effort to identify a biomarker that could predict the efficacy of PMX-DHP. PMX-DHP significantly increased SBP regardless of the cause of sepsis. Although there was some tendency, PMX-DHP did not significantly improve the prognosis of effective cases in comparison with non-effective cases, probably because of the limited number of patients included. Among the sepsis-related biomarkers, only S1P values were significantly different between the two groups before PMX-DHP, and S1P levels were significantly increased after treatment in the effective cases. S1P levels prior to PMX-DHP can be used to predict its efficacy. In addition, continuous monitoring of S1P levels can indicate the effectiveness of PMX-DHP in patients with septic shock.

  5. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  6. Novel glucose fiber sensor combining ThFBG with GOD

    Science.gov (United States)

    Li, Mengmeng; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2016-10-01

    We propose a novel glucose fiber optic sensor combining a thinned cladding fiber Bragg grating (ThFBG) with glucose oxidase (GOD). By immobilizing GOD on the surface of a ThFBG, the fabricated sensor can obtain a high specificity to glucose. Because of the evanescent field, the sensor is very sensitive to the ambient refractive index change arising from the catalytic reaction between glucose and GOD. A four-level fiber model was simulated and verified the precision of the sensing principle. Two methods, glutaraldehyde crosslinking method (GCM) and 3-aminopropyl triethoxysilane covalent coupling method (ATCCM), were experimentally utilized to immobilize GOD. And sensor fabricated with the method ATCCM shows a measurement range of 0-0.82 mg/mL which is better than the sensor fabricated with the method GCM with measurement range of 0-0.67 mg/mL under the same condition. By using ATCCM to immobilize GOD with different concentrations, three sensors were fabricated and used for glucose measurement by monitoring the Bragg wavelength (λb) shifts, the results indicate a good linear relationship between wavelength shift and glucose concentration within a specific range, and the measurement range increases as GOD concentration increases. The highest sensitivity of sensor reaches up to 0.0549 nm/(mg.mL-1). The proposed sensor has distinct advantages in sensing structure, cost and specificity.

  7. Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes.

    Science.gov (United States)

    Jaiswal, Virendra; Saxena, Sangeeta; Kaur, Ispreet; Dubey, Priya; Nand, Sampurna; Naseem, Mariya; Singh, Suman B; Srivastava, Pankaj Kumar; Barik, Saroj Kanta

    2018-08-15

    Immobilized biomass of novel indigenous fungal strains FNBR_3, FNBR_6, FNBR_13, and FNBR_19 were evaluated for arsenic (As) removal from aqueous solution. Alginate beads containing 0.1 g biomass were used in a batch experiment (200 mg l -1 As; pH 6). Biosorption equilibrium established in first 2 h with As adsorption (mg g -1 ) as 70, 68, 113 and 90 by FNBR_3, FNBR_6, FNBR_13 and FNBR_19, respectively. The equilibrium was fitted to the Langmuir model (r 2  = 0. 90-0.97). The absorption kinetic followed the pseudo second order. Changes in the surface of fungal cells and intracellular As-uptake by fungal biomass were also confirmed by scanning electron microscopy combined with X-ray energy dispersive spectrometer. The presence of different functional groups on fungal cells capable of As-binding was investigated by FTIR. The As-removal by immobilized fungal beads tested in the packed columns also. The As-adsorption by biomass (qe as mg g -1 ) were recorded as 59.5 (FNBR_3 and FNBR_6), 74.8 (FNBR_13), and 66.3 (FNBR_19) in the column and validated by Thomas model. This is the first report concerning the arsenic removal by immobilized biomass of these novel fungal strains from aqueous solution both in batch and column studies with a prospect of their further industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Hydrolysis of inulin from Jerusalem artichoke by inulinase immobilized on aminoethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.Y.; Byun, S.M.; Uhm, T.B.

    1982-01-01

    Purified inulinase (I, EC 3.2.1.7) of Kluyveromyces fragilis was immobilized on 2-aminoethylcellulose by treatment with 2% glutaraldehyde in 0.05M phosphate buffer, pH 7.0, for 2 hours at room temperature. The immobilized enzyme preparation had 39.3 units I activity/dried matrix, with 53.4% recovery yield of activity, and showed good operational stability in the presence of substrate, inulin or the tuber extract of Jerusalem artichoke. Optimum pH and temperature were 5.5 and 45 degrees, respectively. In a batch reactor, the conversion was 90% (D-fructose/D-glucose = 76/24) and 34 mg D-fructose/mL was produced from the artichoke tuber extract by the immobilized I in 20 hours. In column reactor packed with 28 mL immobilized I, the following conditions were optimal: height/diameter ratio of column 10.3 space time 3.8 hours temperature 40 degrees. Operation under these conditions gave 90% conversion of a 7% inulin solution and the productivity was 102 mmol/L/h.

  9. Synthesis of oligosaccharides derived from lactulose (OsLu using soluble and immobilized Aspergillus oryzae b-galactosidase

    Directory of Open Access Journals (Sweden)

    ALEJANDRA eCARDELLE COBAS

    2016-03-01

    Full Text Available b-galactosidase from Aspergillus oryzae offers a high yield for the synthesis of oligosaccharides derived from lactulose (OsLu by transgalactosylation. Oligosaccharides with degree of polymerization (DP ≥ 3 have shown to possess higher in vitro bifidogenic effect than di- and tetrasaccharides. Thus, in this work, an optimization of reaction conditions affecting the specific selectivity of A. oryzae b-galactosidase for synthesis of OsLu has been carried out to enhance OsLu with DP ≥ 3 production. Assays with b-galactosidase immobilized onto a glutaraldehyde-agarose support were also carried out with the aim of making the process cost-effective and industrially viable. Optimal conditions with both soluble and immobilized enzyme for the synthesis of OsLu with DP ≥ 3 were 50 °C, pH 6.5, 450 g/L of lactulose and 8 U/mL of enzyme, reaching yields of ca. 50% (w/v of total OsLu and ca. 20% (w/v of OsLu-3, being 6′-galactosyl-lactulose the major one, after a short reaction time. Selective formation of disaccharides, however, was favored at 60 °C, pH 4.5, 450 g/L of lactulose and 8 U/mL of enzyme. Immobilization increased the enzymatic stability to temperature changes and allowed to reuse the enzyme. We can conclude that the use, under determined optimal conditions, of the A. oryzae b-galactosidase immobilized on a support of glutaraldehyde-agarose constitutes an efficient and cost-effective alternative to the use of soluble b-galactosidases for the synthesis of prebiotic OsLu mixtures.

  10. Test determination of aluminum, beryllium, and cationic surfactants using phenolcarboxylic acids of the triphenylmethane series immobilized on cloths from synthetic and natural fibers

    International Nuclear Information System (INIS)

    Amelin, V.G.; Gan'kova, O.B.

    2007-01-01

    The use of cloth matrices from viscose and cotton fibers bearing phenolcarboxylic acids of the triphenylmethane series immobilized by adsorption in chemical test methods of analysis is considered. Chrome Azurol S, Sulfochrome, and Eriochrome Cyanine R were used for immobilization. It was found that the reagents are weakly retained on cellulose matrices. The degree of retention varied from 10 to 60%. It was observed that the reagent complexes of metal ions exhibited enhanced adsorbability on the matrices. Cloths with immobilized Chrome Azurol S were used in the test determination of 0.0005-0.5 mg/l beryllium and 0.0005-1.0 mg/l aluminum. When the reaction products were preconcentrated on the cloth from 100 ml of a test solution, the detection limit was 0.0001 mg/l. Procedures were developed for determining 0.1-100 mg/l aluminum and 0.02-0.6 mg/l beryllium in solutions using cloth test strips encapsulated into a polymeric film. It was demonstrated that Sulfochrome and Eriochrome Cyanine R immobilized on cloths can be used to determine 0.01-1 and 1-1000 mg/l cationic surfactants [ru

  11. Comparison Study of Axial Behavior of RPC-CFRP Short Columns

    Directory of Open Access Journals (Sweden)

    Taghreed Khaleefa Mohammed Ali

    2015-05-01

    Full Text Available In this paper, the axial behaviors of reactive powder     concrete (RPC short  columns confined with carbon fiber reinforced polymer (CFRP were   investigated. All the specimens have square cross section of 100 mm × 100   mm and length of 400 mm with aspect ratio 4. The experimental work consists   of three groups. The first group consists of six specimens of RPC with 2%  micro steel fiber, without ordinary reinforcing steel and confining by zero, one and two layer of CFRP respectively. The second group consists of six    specimens of RPC with 2% micro steel fiber and minimum ordinary reinforcing  steel and confining by zero, one and two layers of CFRP respectively. The third  group consists of four specimens of RPC without micro steel fiber and ordinary  reinforcing steel and confining by one and two layers of CFRP respectively.  Experimental data for strength, longitudinal and lateral displacement and  failure mode were obtained for each test. The toughness (area under the curve  for each test was obtained by using numerical integration. The RPC columns confined with CFRP showed stiffer behavior compared with RPC columns without CFRP. The ultimate load of the RPC columns with 2% micro steel  fiber + two layers of CFRP + minimum ordinary reinforcement were more than that of the RPC columns with 2% micro steel fiber + minimum ordinary   reinforcement and without CFRP by about 1.333.

  12. Fabrication of solar light induced Fe-TiO{sub 2} immobilized on glass-fiber and application for phenol photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaohua, E-mail: linsh75@163.com [School of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037 (China); Zhang, Xiwang [School of Applied Sciences and Engineering, Monash University Gippsland Campus, Churchill, Victoria 3842 (Australia); Sun, Qinju; Zhou, Tingting; Lu, Jingjing [School of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities were evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.

  13. Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Johnson, Glenn R; Spain, Jim C

    2006-01-01

    ...) using silica-encapsulated equine butyrycholinestearse (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column...

  14. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  15. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse....

  16. Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028

    International Nuclear Information System (INIS)

    Pons, M.P.; Fuste, M.C.

    1993-01-01

    Polyacrylamide-gel-immobilized cells of Pseudomonas strain EPS 5028 were effective in the removal of uranium (U) from synthetic effluents. Metal accumulation was performed in an open system in columns filled with immobilized cells that were challenged with continuous flows containing U. Possible variable of the system were studied. Uranium uptake by the immobilized cells of this microorganism was affected by pH but not by temperature or flow rate. In addition, U binding could be interpreted in terms of the Freundlich adsorption isotherm indicating single-layer adsorption. The feasibility of reusing the immobilized cells was suggested after the recovery of U with a solution of 0.1 M sodium carbonate. (orig.)

  17. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization

    Science.gov (United States)

    Fox, Daniel K.; Ebert, Scott M.; Bongers, Kale S.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Kunkel, Steven D.

    2014-01-01

    Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways. PMID:24895282

  18. Uranium speciation and stability after reductive immobilization in sediments.

    OpenAIRE

    Sharp J.O

    2011-01-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions we introduced lactate (15 mM for 3 months) into flow through columns containing sediments derived from a former uranium processing site at Old Rifle CO. This resulted in metal reducing conditions as evidenced by concurrent uranium uptake and iron re...

  19. Uranium speciation and stability after reductive immobilization in sediments

    OpenAIRE

    Sharp, Jonathan O.; Schofield, Eleanor J.; Lezama-Pacheco, Juan S.; Webb, Sam; Ulrich, Kai-Uwe; Blue, Lisa; Chinni, Satyavani; Veeramani, Harish; Junier, Pilar; Margot-Roquier, Camille; Suvorova Buffat, Elena; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-01-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron ...

  20. SU-F-T-515: Increased Skin Dose in Supine Craniospinal Irradiation Due to Carbon Fiber Couch and Vacuum Bag Immobilization Device

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D; Zhao, Z; Wang, X; Yang, J [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To measure the surface dose for supine craniospinal irradiation employing posterior beams, treating through an imaging couch and BlueBag immobilization device. Methods: The percentage depth dose (PDD) in the buildup region of a clinical 6 MV photon beam was measured using an Advanced Markus parallel plate ionization chamber in a solid water phantom. The PDD from a 10×10 cm{sup 2} anterior beam was measured at 100 cm SSD, simulating a traditional prone craniospinal technique. The measurements were compared to commissioning and treatment planning system data. The PDD was also measured in a posterior setup with the phantom surface laying directly on the Brainlab carbon fiber imaging couch, with the phantom surface 100 cm from the source, simulating a supine craniospinal setup. The posterior measurements were repeated with a BlueBag vacuum immobilization device between the couch and phantom, with thicknesses of 1.7 cm and 5 cm. The PDD from a 10×10 cm{sup 2} field and a typical 6×30 cm{sup 2} craniospinal field were also compared. The PDDs were normalized at 5 cm to reflect typical craniospinal prescription dose normalization. Results: The measured PDD curve from the anterior setup agreed well with commissioning and treatment planning data, with surface doses of 19.9%, 28.8% and 27.7%, respectively. The surface doses of the 10×10 cm{sup 2} and 6×30 cm{sup 2} fields delivered through the imaging couch were both 122.4%. The supine setup yielded surface doses of 122.4%, 121.6%, and 119.6% for the couch only, 1.7 cm bag, and 5 cm bag setups, respectively. Conclusion: Delivering craniospinal irradiation through a carbon fiber couch removes the majority of skin sparing. The addition of a vacuum bag immobilization device restores some skin sparing, but the magnitude of this effect is negligible.

  1. Nanoparticles of poly(hydroxybutyrate-co-hydroxyvalerate) as support for the immobilization of Candida antarctica lipase (fraction B)

    International Nuclear Information System (INIS)

    Fernandes, Ilizandra A.; Nyari, Nadia L.D.; Oliveira, Jose Vladimir de; Oliveira, Debora de; Rigo, Elisandra; Souza, Maria Cristiane M. de; Goncalves, Luciana R.B.; Pergher, Sibele Berenice C.

    2014-01-01

    This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 deg C), reuse and storage (at 4 deg C) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 deg C showed a 33% reduction of the initial activity while storage at 4 deg C led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products. (author)

  2. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    Science.gov (United States)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  3. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP

    International Nuclear Information System (INIS)

    Oktay, Burcu; Demir, Serap; Kayaman-Apohan, Nilhan

    2015-01-01

    In this study, novel α-amylase immobilized poly(vinyl alcohol) (PVA) nanofibers were prepared. The PVA nanofiber surfaces were functionalized with 2-bromoisobutyryl bromide (BiBBr) and followed by surface initiated atom transfer radical polymerization (SI-ATRP) of glycidyl methacrylate (GMA). The morphology of the poly(glycidyl methacrylate) (PGMA) grafted PVA nanofibers was characterized by scanning electron microscopy (SEM). Also PGMA brushes were confirmed by X-ray photo electron microscopy (XPS). α-Amylase was immobilized in a one step process onto the PGMA grafted PVA nanofiber. The characteristic properties of the immobilized and free enzymes were examined. The thermal stability of the enzyme was improved and showed maximum activity at 37 °C by immobilization. pH values of the maximum activity of the free and immobilized enzymes were also found at 6.0 and 6.5, respectively. Free enzyme lost its activity completely within 15 days. The immobilized enzyme lost only 23.8% of its activity within 30 days. - Highlights: • Electrospun photocrosslinkable PVA nanofiber was prepared. • PGMA brushes were conducted on PVA nanofiber via SI-ATRP. • The immobilized enzyme showed maximum activity at pH 6.0 and at 37 °C. • Functionalized nanofibers may be used as promising supports for enzyme immobilization

  4. Uranium speciation and stability after reductive immobilization in aquifer sediments

    Science.gov (United States)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  5. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  6. Immobilization of enzymes and antibodies to radiation grafted polymers for therapeutic and diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.S.; Gombotz, W.R.; Uenoyama, S.; Dong, L.C.; Schmer, G.

    1986-01-01

    Pre-irradiation and mutual radiation grafting were employed to produce poly(methacrylic acid) (MAAc) hydrogels on polypropylene/polyethylene (PP/PE) copolymer films, and porous PP fibers of a plasma filter. A diphenyl picryl hydrazyl (DPPH) assay was developed to measure the surface peroxide concentration of the pre-irradiated PP/PE films prior to grafting. Mutually grafted porous PP fibers were used for subsequent immobilization of L-asparaginase while the mutually grafted PP/PE films were used to immobilize a schistosoma monoclonal antibody.

  7. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  8. A new method of lower extremity immobilization in radiotherapy

    International Nuclear Information System (INIS)

    Zheng, Xuhai; Dai, Tangzhi; Shu, Xiaochuan; Pu, Yuanxue; Feng, Gang; Li, Xuesong; Liao, Dongbiao; Du, Xiaobo

    2012-01-01

    We developed a new method for immobilization of the fix lower extremities by using a thermoplastic mask, a carbon fiber base plate, a customized headrest, and an adjustable angle holder. The lower extremities of 11 patients with lower extremity tumors were immobilized by this method. CT simulation was performed for each patient. For all 11 patients, the device fit was suitable and comfortable and had good reproducibility, which was proven in daily radiotherapy

  9. Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads.

    Science.gov (United States)

    Keskin, Semra Yilmazer; Keskin, Can Serkan

    2014-01-01

    In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).

  10. Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red

    Science.gov (United States)

    Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-04-01

    A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.

  11. Optical fiber chemiluminescence sensor for iron (II) ion based on immobilized luminol

    International Nuclear Information System (INIS)

    Alipao, Arthur A.; Sevilla, Fortunato III.

    1999-01-01

    A chemiluminescence (CL) sensor for iron (II) was developed based on the catalytic action of the analyte on the CL reaction between luminol and oxygen. The reagents were immobilized on a cellulose membrane and set on a reaction cell which was coupled by means of an optical fiber to a spectrofluorometer. The concentration of iron(II) was quantified by measuring the intensity of the light generated from the CL reaction. The response of the sensor system was rapid and highly reproducible. Good sensitivity was displayed by the sensor system over the five orders of magnitude of iron(II) ion concentration. The calibration curve consisted of two portions: (1) a linear range at lower concentrations (7.5 x 10 -7 M to 1.0 x 10 -4 M) exhibiting a positive slope arising from a catalytic action, and (2) a linear range at higher concentrations (5.0 x 10 -2 M to 2.5 x 10 -4 M) wherein the slope is negative due to an inhibitory action of iron(II) on the CL reaction. The sensor system was highly selective for iron(II) ions. (Author)

  12. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  13. Scandium sorption by immobilized microdispersed forms of phosporus-containing ion exchangers

    International Nuclear Information System (INIS)

    Sokolova, Yu.V.; Kurdyumov, G.M.; Smirnov, A.V.; Mezhirov, M.S.

    1991-01-01

    The possibility to improve considerably kinetics of scandium sorption by phosphate ion exchangers, immobilized into polyacrylonitrile (PAN) fibers, as compared with granular samples of ion exchangers, was shown. The influence of dispersion degree of immobilized ionite particles on sorption rate was studied. It is ascertained that the ionite grinding to the particle size ≤ 52 μm is sufficient for the rate increase by 1-1.5 orders. A lower swelling of the immobilized ion exchanger is its additional advantage as compared with granular form

  14. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  15. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    Science.gov (United States)

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    Science.gov (United States)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  17. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    Science.gov (United States)

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  18. Bi-axial M-. Phi. analyses of RC columns using fiber model and comparison with experimental results. 2 jikumage wo ukeru hashirabuzai no M-. Phi. kankei eno fiber model no tekigosei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Y.; Tokuyama, S.; Furuichi, K. (Kajima Corp., Tokyo (Japan))

    1991-10-31

    In order to examine the accuracy of a fiber model for analyzing the stability of towers of a cable-stayed bridge subjected to biaxial bending force due to earthquake, experimental results of column test specimens were compared with analytical results. The relation between biaxial bending moment and curvature (M-{Phi}) was measured in biaxial bending model experiment using a reinforcement ratio, axial compressive force and loading pattern as parameters. Since the relation was greatly affected by axial modeling of a reinforcing material, the parameter analysis was conducted by paying particular attention to reinforcement models (bilinear model, cubic one and Ramberg-Osgood one). As a result, the Ramberg-Osgood model was suitable for columns with a large longitudinal reinforcement ratio and large axial tension such as seen in highrise buildings, while the cubic model was more suitable for columns with a small ratio such as seen in cable-stayed bridges. 4 refs., 10 figs., 1 tab.

  19. Ethanol fermentation by immobilized cells of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Grote, W.

    1985-01-01

    Previous studies have shown that immobilized yeast cell cultures have commercial potential for fuel ethanol production. In this study the suitability of strains of Z. mobilis for whole cell immobilization was investigated. Experiments revealed that immobilization in Ca-alginate or K-carrageenan gel or use of flocculating strains was effective for ethanol production at relatively high productivities. Two laboratory size reactors were designed and constructed. These were a compartmented multiple discshaft column and a tower fermentor. Results of this work supported other studies that established that growth and fermentation could be uncoupled. The data indicated that specific metabolic rates were dependent on the nature of the fermentation media. The addition of lactobacilli to Z. mobilis continuous fermentations had only a transient effect, and was unlikely to affect an immobilized Z. mobilis process. With 150 gl/sup -1/ glucose media and a Z. mobilis ZM4 immobilized cell reactor, a maximum volumetric ethanol productivity of 55 gl/sup -1/h/sup -1/ was obtained. The fermentation of sucrose media or sucrose-based raw materials (molasses, cane juice, synthetic mill liquor) by immobilized Z. mobilis ZM4 revealed a pattern of rapid sucrose hydrolysis, preferential glucose utilization and the conversion of fructose to the undesirable by-products levan and sorbitol.

  20. Development of immunoaffinity columns for pyraclostrobin extraction from fruit juices and analysis by liquid chromatography with UV detection.

    Science.gov (United States)

    Esteve-Turrillas, Francesc A; Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-07-29

    Pyraclostrobin belongs to a new generation of fungicides widely used to preserve high valuable crops. In the present study, three monoclonal antibodies with different affinities to this modern strobilurin have been evaluated for their usefulness in the production of immunoaffinity columns suitable for the solid-phase extraction, concentration, and clean-up of residues from food commodities. Different immunosorbents were produced and characterized in terms of antibody immobilization efficiency, immunosorbent binding capacity, optimum elution conditions, and reusability. Covalent coupling of the antibodies to Sepharose-CNBr gel took place with high yield (over 90%), whereas the immunosorbent efficacy to retain the analyte (from 28 to 68%) was shown to depend on the amount and type of antibody immobilized on the support. As a matter of fact, columns prepared with the monoclonal antibody PYs5#14 were able to selectively bound up to 53 μg of pyraclostrobin per gram of beads. Acetonitrile solutions were preferred over methanolic ones for analyte elution, and some immunosorbents could be reused at least 4-6 times provided that the amount of pyraclostrobin and the volume of sample did not overload the column. Effectiveness of the selected immunoaffinity column was evidenced by the development of an extraction procedure for pyraclostrobin residues from fruit juices and further determination by high-performance liquid chromatography with UV detection. A concentration factor of 50 times was achieved with the developed immunoaffinity column, which eventually resulted in a limit of quantification of 0.01 mg L(-1). Finally, quantitative recoveries were obtained on apple juice and red grape must samples spiked with pyraclostrobin from 0.01 to 1 mg L(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Fiber reinforced concrete: an advanced technology for LL/ML radwaste conditioning and disposal

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Verdier, A.

    1993-01-01

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre. (author). 3 refs., 5 figs., 7 tabs

  2. Effective immobilization of Candida antarctica lipase B in organic-modified clays: Application for the epoxidation of terpenes

    International Nuclear Information System (INIS)

    Tzialla, Aikaterini A.; Kalogeris, Emmanuel; Enotiadis, Apostolos; Taha, Ali A.; Gournis, Dimitrios; Stamatis, Haralambos

    2009-01-01

    The use of three smectite nanoclays (Laponite, SWy-2 and Kunipia) organic-modified with octadecyl-trimethyl-ammonium surfactant, as suitable host matrices for the immobilization of lipase B from Candida antarctica (CaLB) was demonstrated. The resulting hybrid biocatalysts were characterized by a combination of powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and infrared spectroscopy. The experimental results confirmed the remarkable binding capacity of the three organoclays for CaLB. Activity and operational stability of immobilized CaLB were determined for the chemo-enzymatic epoxidation of terpenes (α-pinene and d-limonene) in organic media using various oxidizing agents. The immobilized enzyme retains a significant part of its activity after repeated use under drastic reaction conditions originating from the use of oxidants.

  3. Behavior of Reinforced Hybrid Concrete Corbel-Column Connection with Vertical Construction Joint

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2017-03-01

    Full Text Available In this paper, shear behavior of reinforced hybrid concrete connection of corbel-column is experimentally investigated. Nine homogenous and hybrid concrete corbel-column connections subjected to vertical applied loads were constructed and tested within two test groups (A, B. The experimental program included the effect of several variables such as type of hybrid concrete;high strength concrete (HSC or steel fiber reinforced concrete (SFRC, monolithic casting of hybrid concrete connection, and presence of construction joint at the interface of corbel-column. Experimental results showed significant effects of concrete hybridization on the structural behavior of connection specimens such as: ultimate strength, cracking loads, cracking patterns, and failure modes. Hybridization process in group (A included hybrid connection of corbel-column with HSC or SFRC corbel instated of NSC. This process led to increase the capacity of connection by (26%, 38% and shear cracking loads by (20%, 120% respectively. Moreover, connections of hybrid concrete corbels cast monolithically improved the shear capacity of corbels by (19%, 42% for HSC or SFRC respectively. In group (B, presence of construction joint at connection region reduced the shear capacity of connectionsby (10% to 22% and cracking loads by (23%-62% compared with connections cast monolithically.

  4. Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions

    NARCIS (Netherlands)

    Drzyzga, O; EL Mamouni, R; Agathos, SN; Gottschal, JC

    2002-01-01

    A sediment column study was carried out to demonstrate the bioremediation of chloroethene- and nickel-contaminated sediment in a single anaerobic step under sulfate-reducing conditions. Four columns (one untreated control column and three experimental columns) with sediment from a chloroethene- and

  5. Stability of free and immobilized Lactobacillus acidophilus and Bifidobacterium lactis in acidified milk and of immobilized B. lactis in yoghurt Estabilidade de Lactobacillus acidophilus e Bifidobacterium lactis nas formas livre e imobilizada em leite acidificado e de B. lactis imobilizado em iogurte

    Directory of Open Access Journals (Sweden)

    Carlos Raimundo Ferreira Grosso

    2004-06-01

    Full Text Available This study evaluated the stability of Bifidobacterium lactis (Bb-12 and of Lactobacillus acidophilus (La-05 both free and immobilized in calcium alginate, in milk and in acidified milk (pH 5.0, 4.4 and 3.8. The stability of immobilized B. lactis in yoghurt (fermented to pH 4.2, during 28 days of refrigerated storage was also evaluated. The efficiency of two culture media (modified MRS agar and Reinforced Clostridial Agar plus Prussian Blue for counting of B. lactis in yoghurt was determined. Lee's agar was used to count Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus when B. lactis were counted in the MRS medium. B. lactis and L. acidophilus in both free and immobilized forms presented satisfactory rates of survival in milk and acidified milk because the average reduction of the population was only one log cycle after 21 days of storage. The number of viable cells of immobilized B. lactis in yoghurt presented a gradual decline throughout the storage period, passing from 10(8 cfu/ml to no count after 28 days of storage. When the cultures were not in equilibrium just the selective medium was efficient in counting B. lactis in yoghurt. The results showed that both microorganisms can be added to milk and acidified milk, because their population was only slightly affected during storage. The presence of traditional culture of yoghurt seems to be harmful for survival of immobilized B. lactis and the immobilization in calcium alginate failed as an effective barrier to protect the cells in all analysed treatments.Este trabalho avaliou a estabilidade de Bifidobacterium lactis (Bb-12 e de Lactobacillus acidophilus (La-05 nas formas livre e imobilizada em alginato de cálcio, em leite e leite acidificado (pHs 5.0, 4.4 e 3.8, e a estabilidade de B. lactis imobilizado em iogurte (fermentado até pH 4.2, durante 28 dias de estocagem refrigerada. Também foi estudada a eficiência de dois meios de cultura (ágar MRS modificado e

  6. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  7. Uranium Immobilization through Fe(II) bio-oxidation: A Column study

    Energy Technology Data Exchange (ETDEWEB)

    Coates, John D.

    2009-09-14

    Current research on the bioremediation of heavy metals and radionuclides is focused on the ability of reducing organisms to use these metals as alternative electron acceptors in the absence of oxygen and thus precipitate them out of solution. However, many aspects of this proposed scheme need to be resolved, not the least of which is the time frame of the treatment process. Once treatment is complete and the electron donor addition is halted, the system will ultimately revert back to an oxic state and potentially result in the abiotic reoxidation and remobilization of the immobilized metals. In addition, the possibility exists that the presence of more electropositive electron acceptors such as nitrate or oxygen will also stimulate the biological oxidation and remobilization of these contaminants. The selective nitrate-dependent biooxidation of added Fe(II) may offer an effective means of “capping off” and completing the attenuation of these contaminants in a reducing environment making the contaminants less accessible to abiotic and biotic reactions and allowing the system to naturally revert to an oxic state. Our previous DOE-NABIR funded studies demonstrated that radionuclides such as uranium and cobalt are rapidly removed from solution during the biogenic formation of Fe(III)-oxides. In the case of uranium, X-ray spectroscopy analysis indicated that the uranium was in the hexavalent form (normally soluble) and was bound to the precipitated Fe(III)-oxides thus demonstrating the bioremediative potential of this process. We also demonstrated that nitrate-dependent Fe(II)- oxidizing bacteria are prevalent in the sediment and groundwater samples collected from sites 1 and 2 and the background site of the NABIR FRC in Oakridge, TN. However, all of these studies were performed in batch experiments in the laboratory with pure cultures and although a significant amount was learned about the microbiology of nitrate-dependent bio-oxidation of Fe(II), the effects of

  8. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    Science.gov (United States)

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p lactoferricin immobilized on glass significantly (p lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  9. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Potsangbam Albino [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India); Chakraborty, Saswati [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India)], E-mail: saswati@iitg.ernet.in

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO{sub 4}{sup -}) with protonated amine group (NH{sub 3}{sup +}) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6 L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mg h and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  10. Comparison of TEVAR resin beads, PAN fibers, and ePTFE membranes as a solid support for Aliquat-336 in immobilized liquid extraction chromatography for separation of actinides

    International Nuclear Information System (INIS)

    Joe Dauner; Steve Workman

    2012-01-01

    The following paper covers a comparison of two new systems to traditional TEVA R resin systems for the analytical separation of actinides by immobilized liquid-liquid extraction using Aliquat-336. The new systems are using expanded polytetrafluroethane (ePTFE) membrane or polyacrylonitrile (PAN) fibers as the solid support. The systems are compared in two ways. First in how much Aliquat-336 they contain with the Vs, ratio of volume of Aliquat-336 to volume of polymeric support, being 0.158, 0.483, and 0.590 for the TEVA R resin, PAN fibers, and the ePTFE systems, respectively. The second comparison is in their performance capacity of extraction of uranyl chloride anion complex. The fiber and resins systems show similar capacities, and the membrane system being an order of magnitude less than the other systems. A cost comparison demonstrates the savings advantages of using a fiber based support compared with resin and membrane support systems. (author)

  11. Capture and immobilization of krypton-85

    International Nuclear Information System (INIS)

    Whitmell, D.S.; Geens, L.; Penzhorn, R.D.; Smith, M.J.S.

    1985-01-01

    It may become necessary to contain the krypton-85 released from nuclear fuel during reprocessing in order to reduce the exposure to the local population and the radioactive background throughout the world. A brief description is given of studies being carried out in the Indirect Action Programme. The separation of krypton from other off-gases by cryogenic distillation in the presence of oxygen is being studied at SCK/CEN Mol, together with the behavior of ozone in the distillation column. Two processes for the immobilization of krypton in solid forms have been successfully developed and demonstrated. At KfK Karlsruhe, krypton is encapsulated in vitrified zeolites; at AERE Harwell, krypton is immobilized within a metallic matrix. These processes offer excellent gas retention and either could be adopted for a reprocessing plant

  12. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  13. A Novel Screen for Suppressors of Breast Tumor Cell Growth Using an Oriented Random Peptide Library Method to Identify Inhibitors of the ErbB2 Tyrosine Kinase

    National Research Council Canada - National Science Library

    Carraway, Kermit

    1998-01-01

    .... To identify potential antagonists, the extracellular ligand binding domain of the ErbB2 is immobilized on a column support, and used to affinity purify cyclic peptides from oriented random peptide libraries...

  14. A Novel Screen for Suppressors of Breast Tumor Cell Growth Using an Oriented Random Peptide Library Method to Identify Inhibitors of the ErbB2 Tyrosine Kinase

    National Research Council Canada - National Science Library

    Carraway, Kermit

    1999-01-01

    .... To identify potential antagonists, the extracellular ligand binding domain of the ErbB2 is immobilized on a column support, and used to affinity purify cyclic peptides from oriented random peptide libraries...

  15. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  16. Transportation and disposal of low-and medium level waste using fiber reinforced concrete overpacks

    International Nuclear Information System (INIS)

    Pech, R.; Verdier, A.

    1993-01-01

    A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete overpacks reinforced with metal fibers. The fiber concrete overpacks satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. This presentation will cover the use of the fiber-reinforced concrete overpack for disposal and transportation, and will discuss their fabrication. (J.P.N.)

  17. Hollow-Core FRP–Concrete–Steel Bridge Columns under Torsional Loading

    Directory of Open Access Journals (Sweden)

    Sujith Anumolu

    2017-11-01

    Full Text Available This paper presents the behavior of hollow-core fiber-reinforced polymer–concrete–steel (HC-FCS columns under cyclic torsional loading combined with constant axial load. The HC-FCS consists of an outer fiber-reinforced polymer (FRP tube and an inner steel tube, with a concrete shell sandwiched between the two tubes. The FRP tube was stopped at the surface of the footing, and provided confinement to the concrete shell from the outer direction. The steel tube was embedded into the footing to a length of 1.8 times the diameter of the steel tube. The longitudinal and transversal reinforcements of the column were provided by the steel tube only. A large-scale HC-FCS column with a diameter of 24 in. (610 mm and applied load height of 96 in. (2438 mm with an aspect ratio of four was investigated during this study. The study revealed that the torsional behavior of the HC-FCS column mainly depended on the stiffness of the steel tube and the interactions among the column components (concrete shell, steel tube, and FRP tube. A brief comparison of torsional behavior was made between the conventional reinforced concrete columns and the HC-FCS column. The comparison illustrated that both column types showed high initial stiffness under torsional loading. However, the HC-FCS column maintained the torsion strength until a high twist angle, while the conventional reinforced concrete column did not.

  18. Activity and Spatial Distribution of Candida antarctica Lipase B Immobilized on Macroporous Organic Polymeric Adsorbents

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Andric, Pavle; Munk Nielsen, Per

    2014-01-01

    A systematic study of the influence of carrier particle size (500 − 850 μ m) and enzyme load (26 200 − 66 100 lipase activity units (LU)/g dry carrier) on the content and activity of Candida antarctica lipase B (CALB) immobilized by adsorption onto macroporous poly(methyl methacrylate) (PMM...

  19. Wetting morphologies on randomly oriented fibers.

    Science.gov (United States)

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  20. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  1. Pilot plant production of glucose from starch with soluble. cap alpha. -amylase and immobilized glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D D; Reilly, P J; Collins, Jr, E V

    1975-01-01

    Pilot plant studies were conducted on cooking and thinning of corn starch with free ..cap alpha..-amylase and the conversion of the resulting dextrin with immobilized glucoamylase adsorbed on porous SiO/sub 2/. Feeds of intermediate DE values gave maximum yields unless the flow rate of low DE feeds was decreased. Final DE values and glucose concentrations after dextrin treated with Thermamyl 60 ..cap alpha..-amylase had been further hydrolyzed in an immobilized glucoamylase column, were slightly lower than they were when free glucoamylase was used. Similar results were obtained when dextrin, thinned with HT-1000 ..cap alpha..-amylase, was hydrolyzed at 38/sup 0/ and pH 4.4 in the immobilized glucoamylase column. Free glucoamylase yielded values of DE and glucose almost identical with dextrin thinned with Thermamyl 60 ..cap alpha..-amylase. Yields with the free glucoamylase were also slightly higher than they were with SiO/sub 2/-bound enzyme.

  2. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  3. Impact of Different H/D Ratio on Axial Gas Holdup Measured by Four-Tips Optical Fiber Probe in Slurry Bubble Column

    Directory of Open Access Journals (Sweden)

    Yasser Imad Abdulaziz

    2016-02-01

    Full Text Available In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than 18" and H/D higher than 5 indicated that there is little effect of diameter on gas holdup. Also, local section-average gas holdups increase with increasing superficial gas velocity, while the effect of solid loading are less significant than that of superficial gas velocity.

  4. IMMOBILIZATION OF ACID PHOSPHATASE (TYPE I) FROM WHEAT GERM ON GLUTARALDEHYDE ACTIVATED CHITOSAN BEADS: OPTIMIZATION AND CHARACTERIZATION

    OpenAIRE

    K. Belho; S.R. Nongpiur; P.K. Ambasht

    2014-01-01

    Acid phosphatase from wheat germ (specific activity 1.327 U/mg protein) was used for immobilization on glutaraldehyde activated chitosan beads. Upon activation of chitosan beads, elongated fibers with pores were observed. The optimum percent immobilization obtained was 81.25%. The pH optimum of immobilized acid phosphatase was 5.5 with a shift of 0.5 units from the pH optimum of soluble enzyme (5.0). The values of Km for p-nitrophenylphosphate with soluble and immobilized acid pho...

  5. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    Science.gov (United States)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  8. Utility Estimation of the Manufactured Stereotactic Body Radiotherapy Immobilization

    International Nuclear Information System (INIS)

    Lee, Dong Hoon; Ahn, Jong Ho; Seo, Jeong Min; Shin, Eun Hyeak; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Immobilizations used in order to maintain the reproducibility of a patient set-up and the stable posture for a long period are important more than anything else for the accurate treatment when the stereotactic body radiotherapy is underway. So the purpose of this study is to adapt the optimum immobilizations for the stereotactic body radiotherapy by comparing two commercial immobilizations with the self-manufactured immobilizations. Five people were selected for the experiment and three different immobilizations (A: Wing-board, B: BodyFix system, C: Arm up holder with vac-lock) were used to each target. After deciding on the target's most stable respiratory cycles, the targets were asked to wear a goggle monitor and maintain their respiration regularly for thirty minutes to obtain the respiratory signals. To analyze the respiratory signal, the standard deviation and the variation value of the peak value and the valley value of the respiratory signal were separated by time zone with the self-developed program at the hospital and each tie-downs were compared for the estimation by calculating a comparative index using the above. The stability of each immobilizations were measured in consideration of deviation changes studied in each respiratory time lapse. Comparative indexes of each immobilizations of each experimenter are shown to be A: 11.20, B: 4.87, C: 1.63 / A: 3.94, B: 0.67, C: 0.13 / A: 2.41, B: 0.29, C: 0.04 / A: 0.16, B: 0.19, C: 0.007 / A: 35.70, B: 2.37, C: 1.86. And when all five experimenters wore the immobilizations C, the test proved the most stable value while four people wearing A and one man wearing D expressed relatively the most unstable respiratory outcomes. The self-developed immobilizations, so called the arm up holder vac-lock for the stereotactic body radiotherapy is expected to improve the effect of the treatment by decreasing the intra-fraction organ motions because it keeps the respiration more stable than other two immobilizations

  9. Stability of a fiber optic pH sensor at 100 degree F

    International Nuclear Information System (INIS)

    Angel, S.M.; Northrup, M.A.

    1993-02-01

    A simple ratiometric fiber-optic pH sensor was developed and accelerated aging studies were performed in 100 degree F distilled water. A ph-sensitive fluorescent indicator dye, HPTS (hydroxypyrenetrisulfonic acid) was convalently attached, using a procedure that was developed during this work, to a polyacrylamide polymer that was subsequently immobilized at the end of an optical fiber. Different immobilization techniques were compared and it was found that physically attaching the indicator gels to the fibers gave the most reproducible long-term results. These fiber-optic sensors were found to give linear pH responses, between pH 6 and 8, and resolution greater than 0.25 pH unit with useful lifetimes exceeding one year

  10. Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Badr, H.R.; Toledo, R.; Hamdy, M.K. [University of Georgia, Athens (Greece). Food Science and Technology Dept.

    2001-07-01

    Eight Clostridium acetobutylicum strains were examined for {alpha}-amylase and strains B-591, B-594 and P-262 had the highest activities. Defibered-sweet-potato-slurry (DSPS), containing 39.7 g starch l{sup -1}, supplemented with potassium phosphate (1.0 g l{sup -1}), cysteine-HCl (5.0 g l{sup -1}), the antifoam (polypropylene glycol, 0.1 mg ml{sup -1}), was used a continuous feedstock (FS) to a multistage bioreactor system for acetone-ethanol-butanol (AEB) fermentation. The system consisted on four columns (three vertical and one near horizontal) packed with beads containing immobilized cells of C. acetobutylicum P-262. When DSPS was pumped into the bioreactor system, at a flow rate of 2.36 ml min{sup -1}, the effluent has 7.73 g solvents l{sup -1} (1.56, acetone; 0.65, ethanol; 5.52 g, butanol) and no starch. Productivity of total solvents synthesized during continuous operation were 1.0 g 1{sup -1}h{sup -1} and 19.5 % yield compared to 0.12 g l{sup -1}h{sup -1} with 29% yield using the batch system. We proposed using DSPS for AEB fermentation in a continuous mode with immobilized P-262 cells that are active amylase producers which will lead to cost reduction compared to the batch system. (Author)

  11. Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.

    Science.gov (United States)

    Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian

    2017-10-01

    Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.

  12. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.M.; Williams, K.P.; McGuinness, B. [PerSeptive Biosystems, Framingham, MA (United States)] [and others

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  13. Catalytic Properties and Immobilization Studies of Catalase from Malva sylvestris L.

    Directory of Open Access Journals (Sweden)

    G. Arabaci

    2013-01-01

    Full Text Available Catalase was partially purified from Malva sylvestris L. and immobilized onto chitosan. Then, its catalytic properties were investigated. (NH42SO4 precipitation and dialysis were performed in the extracted enzyme. Further purification was performed with sephadex G-200 column. Kinetic studies of the purified enzyme activity were measured and characterized. The inhibitory effects of KCN, NaN3, CuSO4, and EDTA on M. sylvestris L. catalase activity were observed except NaCl. Furthermore, M. sylvestris L. catalase was immobilized covalently with glutaraldehyde onto chitosan particles. The pH and temperature optima as well as the changes in the kinetics (Km, Vmax of the immobilized and free M. sylvestris L. catalase were determined. The Km value for immobilized catalase (23.4 mM was higher than that of free enzyme (17.6 mM. Optimum temperature was observed higher than that of the free enzyme. The optimum pH was the same for both free and immobilized catalases (pH 7.50. Immobilized catalase showed higher storage and thermal stabilities than free catalases. Free catalase lost all its activity within 60 days whereas immobilized catalase lost 45% of its activity during the same incubation period at 4°C. The remaining immobilized catalase activity was about 70% after 8 cycles of batch operations.

  14. Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1990-06-20

    Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and

  15. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.

    Science.gov (United States)

    Mayacela Rojas, Celia Margarita; Rivera Velásquez, María Fernanda; Tavolaro, Adalgisa; Molinari, Antonio; Fallico, Carmine

    2017-06-24

    The Zero Valent Iron (ZVI) is the material most commonly used for permeable reactive barriers (PRB). For technical and economic reasons, hoter reactive substances usable in alternative to ZVI are investigated. The present study takes into account a vegetable fibers, the cabuya, investigating its capacity to retain heavy metals. The capacity of the cabuya fibers to adsorb heavy metals was verified in laboratory, by batch and column tests. The batch tests were carried out with cabuya and ZVI, using copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb). The results obtained by the cabuya fibers showed a very high adsorption capacity of heavy metals and resulted very similar to those obtained for the broom fibers in a previous study. The high value of the absorption capacity of the cabuya fibers was also confirmed by the analogous comparison made with the results of the batch tests carried out with ZVI. Column tests, using copper, zinc and cadmium, allowed to determine for the cabuya fibers the maximum removal percentage of the heavy metals considered, the corresponding times and the time ranges of the release phase. For each metal considered, for a given length and three different times, the constant of degradation of cabuya fibers was determined, obtaining values very close to those reported for broom fibers. The scalar behavior of heavy metal removal percentage was verified. An electron microscope analysis allowed to compare, by SEM images, the characteristics of the cabuya and broom fibers. Finally, to investigate the chemical structure of cabuya and broom fibers, the FTIR technique was used, obtaining their respective infrared spectra.

  16. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  17. Permeable Barrier Materials for Strontium Immobilization: - UFA Determination of Hydraulic Conductivity. - Column Sorption Experiments

    National Research Council Canada - National Science Library

    Moody, T

    1996-01-01

    Selected materials were tested to emulate a permeable barrier and to examine the: (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium in Hanford groundwater...

  18. A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite

    Directory of Open Access Journals (Sweden)

    Jingfang Hu

    2017-11-01

    Full Text Available We have developed a novel mediated biochemical oxygen demand (BOD biosensor based on immobilized Bacillus subtilis (B. subtilis on three-dimensional (3D porous graphene-polypyrrole (rGO-PPy composite. The 3D porous rGO-PPy composite was prepared using hydrothermal method following with electropolymerization. Then the 3D porous rGO-PPy composite was used as a support for immobilizing negatively charged B. subtilis denoted as rGO-PPy-B through coordination and electrostatic interaction. Further, the prepared rGO-PPy-B was used as a microbial biofilm for establishing a mediated BOD biosensor with ferricyanide as an electronic acceptor. The indirect determination of BOD was performed by electrochemical measuring ferrocyanide generated from a reduced ferricyanide mediator using interdigited ultramicroelectrode array (IUDA as the working electrode. The experimental results suggested a good linear relationship between the amperometric responses and BOD standard concentrations from 4 to 60 mg/L, with a limit detection of 1.8 mg/L (S/N ≥ 3. The electrochemical measurement of real water samples showed a good agreement with the conventional BOD5 method, and the good anti-interference as well as the long-term stability were well demonstrated, indicating that the proposed mediated BOD biosensor in this study holds a potential practical application of real water monitoring.

  19. Partial strengthening of R.C square columns using CFRP

    Directory of Open Access Journals (Sweden)

    Ahmed Shaban Abdel-Hay

    2014-12-01

    An experimental program was undertaken testing ten square columns 200 × 200 × 2000 mm. One of them was a control specimen and the other nine specimens were strengthened with CFRP. The main parameters studied in this research were the compressive strength of the upper part, the height of the upper poor concrete part, and the height of CFRP wrapped part of column. The experimental results including mode of failure, ultimate load, concrete strain, and fiber strains were analyzed. The main conclusion of this research was, partial strengthening of square column using CFRP can be permitted and gives good results of the column carrying capacity.

  20. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method.

    Science.gov (United States)

    Nicolás, Paula; Lassalle, Verónica L; Ferreira, María L

    2017-02-01

    The aim of this manuscript was to study the application of a new method of protein quantification in Candida antarctica lipase B commercial solutions. Error sources associated to the traditional Bradford technique were demonstrated. Eight biocatalysts based on C. antarctica lipase B (CALB) immobilized onto magnetite nanoparticles were used. Magnetite nanoparticles were coated with chitosan (CHIT) and modified with glutaraldehyde (GLUT) and aminopropyltriethoxysilane (APTS). Later, CALB was adsorbed on the modified support. The proposed novel protein quantification method included the determination of sulfur (from protein in CALB solution) by means of Atomic Emission by Inductive Coupling Plasma (AE-ICP). Four different protocols were applied combining AE-ICP and classical Bradford assays, besides Carbon, Hydrogen and Nitrogen (CHN) analysis. The calculated error in protein content using the "classic" Bradford method with bovine serum albumin as standard ranged from 400 to 1200% when protein in CALB solution was quantified. These errors were calculated considering as "true protein content values" the results of the amount of immobilized protein obtained with the improved method. The optimum quantification procedure involved the combination of Bradford method, ICP and CHN analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Immobilized xylenol orange as a sensitive element for fiber-optic sensors for thorium(4) and lead(2). Immobilizovannyj ksilenolovyj oranzhevyj kak chuvstvitel'nyj ehlement dlya volokonno-opticheskikh sensorov na torij(4) i svinets(2)

    Energy Technology Data Exchange (ETDEWEB)

    Trutneva, L M; Shvoeva, O P; Savvin, S B

    1989-10-01

    A new type of carrier for immobilization of reagent-fibrous materials of polyacrylonitrile fiber filled with fine-dispersed ion exchanger during formation- was suggested when creating sensitive element of optical sensor for lead (2) and thorium(4). The highest sensitivity and contrast are achieved in color reactions with xylenol orange, immobilized on weak-base anion-exchanger. Detection limits are decreased down to 2x10{sup -8}M, the range of determined concentrations -5x10{sup -8}-1x10{sup -6} M, reproducibility Sr 0.05-0.10, the response forms during 1-10 minutes.

  2. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Brask, Jesper; Pedersen, Anders K.

    2013-01-01

    We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol....... Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M↔D+G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D...

  3. {sup 125}I Labelling of Protein Using Immobilized Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Rok; Park, Kyung Bae; Awh, Ok Doo [Korea Advanced Energy Research Institute, Daejeon (Korea, Republic of)

    1984-03-15

    For an effective solid-phase labelling of protein with {sup 125}I, studies on the immobilization of lactoperoxidase (LPO) on the inner wall of polystyrene tubes were carried out. Labelling of bovine serum albumin (BSA) and insulin was also practiced using the LPO immobilized tubes. The immobilized enzyme of about 2.5 mu g/tube was sufficient for small scale labelling since the results of radio-paper chromatography of the labelling mixture of insulin indicated that the yields were sufficiently high (80%) even in the reactions conducted at room temperature for 60 sec. The results of the Sephadex column chromatography indicated that the labelled products were not contaminated with LPO-{sup 125}I, and the radiochemical purity of the products was more than 90%. In considering the general trend that the {sup 125}I labelled protein obtained by using LPO maintains its intactness better than those obtained by using chloramine-T, together with the tendency of yield enhancing with increase of reactants-concentration, the LPO immobilized tube method is estimated to be one of the simple methods of labelling. The product might be applicable without further purification.

  4. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization.

    Science.gov (United States)

    Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali

    2016-03-05

    A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSDpH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility. Copyright © 2015. Published by Elsevier B.V.

  5. NON-LINEAR ANALYSIS OF AN EXPERIMENTAL JOINT OF COLUMN AND BEAMS OF ARMED CONCRETE-STEEL COLUMN FOR FRAME

    Directory of Open Access Journals (Sweden)

    Nelson López

    2017-12-01

    Full Text Available In this research, the nonlinear behavior of a real-scale experimental joint (node is studied, consisting of three reinforced concrete elements, one column and two beams joined to a structural steel column at the upper level. In the numerical analysis the model of the union was analyzed in the inelastic range, this model was elaborated with the finite element program based on fibers, SeismoStruct to analyze as a function of time, the traction and compression efforts in the confined area and not confined area of the concrete column and in the longitudinal reinforcement steel, as well as verification of the design of the base plate that joins the two columns. The results showed that tensile stresses in the unconfined zone surpassed the concrete breaking point, with cracking occurring just below the lower edge of the beams; in the confined area the traction efforts were much lower, with cracks occurring later than in the non-confined area. The concrete column-steel column joint behaved as a rigid node, so the elastic design was consistent with the calculation methodology of base plates for steel columns.

  6. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    Science.gov (United States)

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds.

    Science.gov (United States)

    Zhang, Shaohua; Jiang, Zhongyi; Shi, Jiafu; Wang, Xueyan; Han, Pingping; Qian, Weilun

    2016-09-28

    Design and preparation of high-performance immobilized biocatalysts with exquisite structures and elucidation of their profound structure-performance relationship are highly desired for green and sustainable biotransformation processes. Learning from nature has been recognized as a shortcut to achieve such an impressive goal. Loose connective tissue, which is composed of hierarchically organized cells by extracellular matrix (ECM) and is recognized as an efficient catalytic system to ensure the ordered proceeding of metabolism, may offer an ideal prototype for preparing immobilized biocatalysts with high catalytic activity, recyclability, and stability. Inspired by the hierarchical structure of loose connective tissue, we prepared an immobilized biocatalyst enabled by microcapsules-in-hydrogel (MCH) scaffolds via biomimetic mineralization in agarose hydrogel. In brief, the in situ synthesized hybrid microcapsules encapsulated with glucose oxidase (GOD) are hierarchically organized by the fibrous framework of agarose hydrogel, where the fibers are intercalated into the capsule wall. The as-prepared immobilized biocatalyst shows structure-dependent catalytic performance. The porous hydrogel permits free diffusion of glucose molecules (diffusion coefficient: ∼6 × 10(-6) cm(2) s(-1), close to that in water) and retains the enzyme activity as much as possible after immobilization (initial reaction rate: 1.5 × 10(-2) mM min(-1)). The monolithic macroscale of agarose hydrogel facilitates the easy recycling of the immobilized biocatalyst (only by using tweezers), which contributes to the nonactivity decline during the recycling test. The fiber-intercalating structure elevates the mechanical stability of the in situ synthesized hybrid microcapsules, which inhibits the leaching and enhances the stability of the encapsulated GOD, achieving immobilization efficiency of ∼95%. This study will, therefore, provide a generic method for the hierarchical organization of (bio

  8. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study.

    Science.gov (United States)

    Danner, Simon M; Hofstoetter, Ursula S; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-03-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation, and movement. The human lumbar cord has become a target for modification of motor control by epidural and, more recently, by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large-diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are coactivated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Tailings neutralization and other alternatives for immobilizing toxic materials in tailings. Final report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Sherwood, D.R.; Dodson, M.E.; Serne, R.J.

    1985-09-01

    This document, ''Tailing Neutralization and Other Alternatives for Immobilizing Toxic Materials in Tailings,'' is the final report in a series of six. It summarizes research completed since the beginning of the project. Three subtasks are included: Subtask A - Neutralization Methods Selection; Subtask B - Laboratory Analysis; and Subtask C - Field Testing. Subtask A reviews treatment processes from other industries to evaluate whether current waste technology from other fields is applicable to the uranium industry. This task also identifies several reagents that were tested for their effectiveness in treating acidic tailings and tailings solution in order to immobilize the contaminants associated with the acid waste. Subtask B describes the laboratory batch and column treatment studies performed on solid waste tailings and tailings solutions over the course of the project. The evaluation of several reagents identified in Subtask A was based on three criteria: (1) treated effluent water quality; (2) neutralized sludge handling and hydraulic properties; and (3) reagent costs and acid neutralizing efficiency. Subtask C presents a field demonstration plan that will evaluate the effectiveness, costs, and benefits of neutralizing acidic uranium mill tailings solution to reduce the potential leaching of toxic trace metals, radionuclides, and macro ions from a tailings impoundment. Details of the related research can be found in the documents listed in the ''Previous Documents in Series.'' 43 refs., 9 figs., 46 tabs

  10. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.

    Science.gov (United States)

    Kumar, Satyendra; Pahujani, Shweta; Ola, R P; Kanwar, S S; Gupta, Reena

    2006-06-01

    A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.

  11. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  12. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    Science.gov (United States)

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones.

    Science.gov (United States)

    Song, Xin-Yue; Ha, Wei; Chen, Juan; Shi, Yan-Ping

    2014-12-29

    A new, efficient, and environmental friendly solid-phase microextraction (SPME) medium based on β-cyclodextrin (β-CD)-modified carbon nanotubes (CNTs) and a hollow fiber (HF) was prepared. Functionalized β-CD was covalently linked to the surface of the carboxylic CNTs and then the obtained nanocomposite was immobilized into the wall pores of HFs under ultrasonic-assisted effect. The scanning electron microscope was used to inspect surface characteristics of fibers, demonstrating the presence of nanocomposites in their wall pores. The reinforced HF was employed in SPME, and its extraction performance was evaluated by analyzing 1-naphthaleneacetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA) in vegetables. Without any tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent immobilized in HFs and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimized extraction conditions, the method provided 275- and 283-fold enrichment factors of NAA and 2-NOA, low limits of detection and quantification (at an ngg(-1) level), satisfactory spiked recoveries, good inter-fiber repeatability, and batch-to-batch reproducibility. The selectivity of the developed fiber was investigated to three structurally similar compounds and two reference compounds with recognition coefficients up to 3.18. The obtained results indicate that the newly developed fiber is a feasible, selective, green, and cost-effective microextraction medium and could be successfully applied for extraction and determination of naphthalene-derived plant hormones in complex matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  15. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    Science.gov (United States)

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  16. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    Science.gov (United States)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  17. Escherichia coli Fiber Sensors Using Concentrated Dielectrophoretic Force with Optical Defocusing Method.

    Science.gov (United States)

    Tai, Yi-Hsin; Lee, Chia-Wei; Chang, Dao-Ming; Lai, Yu-Sheng; Huang, Ding-Wei; Wei, Pei-Kuen

    2018-05-25

    A sensitive tapered optical fiber tip combined with dielectrophoretic (DEP) trapping was used for rapid and label-free detection of bacteria in water. The angular spectrum of the optical field at the fiber tip was changed with the surrounding refractive index (RI). By measuring far-field intensity change at the defocus plane, the intensity sensitivity was up to 95 200%/RIU (RI unit), and the detection limit was 5.2 × 10 -6 RIU at 0.5% intensity stability. By applying an AC voltage to a Ti/Al coated fiber tip and an indium-tin-oxide glass, the DEP force effectively trapped the Escherichia coli ( E. coli) near the fiber tip. Those bacteria can be directly measured from optical intensity change due to the increase of surrounding RI. By immobilizing the antibody on the Ti/Al fiber tip, the tests for specific K12 bacteria and nonspecific BL21 bacteria verified the specificity. The antibody-immobilized Ti/Al coated fiber tip with DEP trapping can detect bacteria at a concentration about 100 CFU/mL.

  18. Up-flow immobilized fungal Column Reactor for the Treatment of ...

    African Journals Online (AJOL)

    This research work is on the decolorization of a reactive anthraquinone dye Drimarene blue (Db) K2RL, which is known for its markedly usage in textile industry. Due to poor adsorbability to textile fiber, it has a higher exhaustion rate in wastewater. The main objective of our research work was to evaluate the potential of an ...

  19. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    Science.gov (United States)

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons.

    Science.gov (United States)

    McCormick, Aleesha M; Jarmusik, Natalie A; Leipzig, Nic D

    2015-12-01

    Immobilization of axon guidance cues offers a powerful tissue regenerative strategy to control the presentation and spatial location of these biomolecules. We use our previously developed immobilization strategy to specifically tether recombinant biotinylated nerve growth factor (bNGF) and biotinylated semaphorin3A (bSema3A) to chitosan films as an outgrowth and guidance platform. DRG neurite length and number for a range of single cues of immobilized bNGF or bSema3A were examined to determine a concentration response. Next single and dual cues of bNGF and bSema3A were immobilized and DRG guidance was assessed in response to a step concentration change from zero. Overall, immobilized groups caused axon extension, retraction and turning depending on the ratio of bNGF and bSema3A immobilized in the encountered region. This response indicated the exquisite sensitivity of DRG axons to both attractive and repulsive tethered cues. bSema3A concentrations of 0.10 and 0.49 ng/mm(2), when co-immobilized with bNGF (at 0.86 and 0.43 ng/mm(2) respectively), caused axons to turn away from the co-immobilized region. Immunocytochemical analysis showed that at these bSema3A concentrations, axons inside the co-immobilized region display microtubule degradation and breakdown of actin filaments. At the lowest bSema3A concentration (0.01 ng/mm(2)) co-immobilized with a higher bNGF concentration (2.16 ng/mm(2)), neurite lengths are shorter in the immobilized area, but bNGF dominates the guidance mechanism as neurites are directed toward the immobilized region. Future applications can pattern these cues in various geometries and gradients in order to better modulate axon guidance in terms of polarity, extension and branching. Nervous system formation and regeneration requires key molecules for guiding the growth cone and nervous system patterning. In vivo these molecules work in conjunction with one another to modulate axon guidance, and often they are tethered to limit spatial

  1. Separations using biological carriers immobilized in porous polymeric and sol-gel template synthesized nanotubular membranes

    Science.gov (United States)

    Lakshmi, Brinda B.

    1998-12-01

    The overall goal of the dissertation was to use immobilized biological carriers in membranes to separate compounds as challenging as enantiomers. The membranes were prepared by a process called 'template synthesis'. Template synthesis has been used to synthesize semiconductor nanostructures and also membranes which do the enantioseparation by a process called facilitated transport. The immobilized proteins act as carriers facilitating the transport of the substrate molecules through the membrane. The apoenzymes are enzymes devoid of cofactor. Apoenzymes will possess the molecular recognition site for the substrate but will not catalyze the reaction. Apoenzymes immobilized in the pores of porous polycarbonate membrane was used as a carrier. The ends of the pores were closed with porous polypyrrole. Compounds as interesting as enantiomers were separated with these membranes. Template synthesis has been extended to the synthesis of many important semiconductor oxide naostructures like TiO2, SiO2, ZnO, Co3O4 and MnO2. These structures were made by dipping the alumina template membrane in the sol and heating. Ti0 2 tubules and fibers were obtained by this method. The fibers were used to study photocatalysis reaction of organic compounds in sunlight. Proteins were immobilized within the inner surface of the tubules using Sn chemistry. Bovine serum albumn (BSA) immobilized within the different diameter tubules showed varying degree of facilitation with phenylalanine. The membranes also show interesting switching of selectivity from L to D depending on the tube size and feed concentration.

  2. Chitosan-immobilized pectinolytics with novel catalytic features and fruit juice clarification potentialities.

    Science.gov (United States)

    Irshad, Muhammad; Murtza, Aimen; Zafar, Muddassar; Bhatti, Khizar Hayat; Rehman, Abdul; Anwar, Zahid

    2017-11-01

    Biological macromolecules are primarily composed of complex polysaccharides that strengthen microbial growth for the production of industrially relevant enzymes. The presence of polysaccharides in the form of the disrupted cell wall and cell materials are among major challenges in the fruit juice industry. The breakdown of such biological macromolecules including cellulose and pectin is vital for the juices processing. In this background, pectinolytic enzymes including polygalacturonase (PG), pectin lyase (PL), and pectin methylesterase (PME) were isolated from Aspergillus ornatus, statistically optimized and purified via ammonium sulfate fractionation (ASF), dialysis, and Sephadex G-100 gel permeation chromatography. After passing through Sephadex G-100 column, PG, PL, and PME were 2.60-fold, 3.30-fold, and 4.52-fold purified with specific activities of 475.2U/mg, 557.1U/mg, and 205.7U/mg. The active PG, PL, and PME, each separately, were surface immobilized using various concentrations of chitosan and dextran polyaldehyde as a macromolecular crosslinking agent. Prior to exploit for juice clarification purposes, various parameters including pH, thermal and Michaelis-Menten kinetic constants of purified and chitosan-immobilized fractions were investigated. A considerable improvement in the pH and thermal profiles was recorded after immobilization. However, the negligible difference between the K m and V max values of purified free and chitosan-immobilized fractions revealed that the conformational flexibility of pectinolytics was retained as such. A significant color and turbidity reductions were recorded after 60min treatment with CTS-PG, followed by CTS-PME, and CTS-PL. It can be concluded that the clarification of apples, mango, peach, and apricot juices was greatly affected by CTS-PG, CTS-PME, and CTS-PL treatments rendering them as potential candidatures for food industry applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.

    Science.gov (United States)

    Li, Jie; Sun, Jin; He, Zhonggui

    2007-01-26

    We aimed to establish quantitative structure-retention relationship (QSRR) with immobilized artificial membrane (IAM) chromatography using easily understood and obtained physicochemical molecular descriptors and to elucidate which descriptors are critical to affect the interaction process between solutes and immobilized phospholipid membranes. The retention indices (logk(IAM)) of 55 structurally diverse drugs were determined on an immobilized artificial membrane column (IAM.PC.DD2) directly or obtained by extrapolation method for highly hydrophobic compounds. Ten simple physicochemical property descriptors (clogP, rings, rotatory bond, hydro-bond counting, etc.) of these drugs were collected and used to establish QSRR and predict the retention data by partial least squares regression (PLSR). Five descriptors, clogP, rotatory bond (RotB), rings, molecular weight (MW) and total surface area (TSA), were reserved by using the Variable Importance for Projection (VIP) values as criterion to build the final PLSR model. An external test set was employed to verify the QSRR based on the training set with the five variables, and QSRR by PLSR exhibited a satisfying predictive ability with R(p)=0.902 and RMSE(p)=0.400. Comparison of coefficients of centered and scaled variables by PLSR demonstrated that, for the descriptors studied, clogP and TSA have the most significant positive effect but the rotatable bond has significant negative effect on drug IAM chromatographic retention.

  4. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  5. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  6. Stabilization of Candida antarctica Lipase B (CALB Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI

    Directory of Open Access Journals (Sweden)

    Sara Peirce

    2016-06-01

    Full Text Available Lipase B from Candida antarctica (CALB was immobilized on octyl agarose (OC and physically modified with polyethyleneimine (PEI in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release from the support by incubation in the non-ionic detergent Triton X-100 was more difficult after the PEI-coating, suggesting that some intermolecular physical crosslinking had occurred, making this desorption more difficult. Thermal stability was marginally improved, but the stability of the OCCALB-PEI was significantly better than that of OCCALB during inactivation in mixtures of aqueous buffer and organic cosolvents. SDS-PAGE analysis of the inactivated biocatalyst showed the OCCALB released some enzyme to the medium during inactivation, and this was partially prevented by coating with PEI. This effect was obtained without preventing the possibility of reuse of the support by incubation in 2% ionic detergents. That way, this modified CALB not only has a strong anion exchange nature, while maintaining the activity, but it also shows improved stability under diverse reaction conditions without affecting the reversibility of the immobilization.

  7. Inhibition of Hb Binding to GP1bα Abrogates Hb-Mediated Thrombus Formation on Immobilized VWF and Collagen under Physiological Shear Stress.

    Science.gov (United States)

    Annarapu, Gowtham K; Singhal, Rashi; Peng, Yuandong; Guchhait, Prasenjit

    2016-01-01

    Reports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb. Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation. This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.

  8. Use of activated carbon as a support medium for H2S biofiltration and effect of bacterial immobilization on available pore surface.

    Science.gov (United States)

    Ng, Y L; Yan, R; Chen, X G; Geng, A L; Gould, W D; Liang, D T; Koe, L C C

    2004-12-01

    The use of support media for the immobilization of microorganisms is widely known to provide a surface for microbial growth and a shelter that protects the microorganisms from inhibitory compounds. In this study, activated carbon is used as a support medium for the immobilization of microorganisms enriched from municipal sewage activated sludge to remove gas-phase hydrogen sulfide (H2S), a major odorous component of waste gas from sewage treatment plants. A series of designed experiments is used to examine the effect on bacteria-immobilized activated carbon (termed "biocarbon") due to physical adsorption, chemical reaction, and microbial degradation in the overall removal of H2S. H2S breakthrough tests are conducted with various samples, including microbe-immobilized carbon and Teflon discs, salts-medium-washed carbon, and ultra-pure water-washed carbon. The results show a higher removal capacity for the microbe-immobilized activated carbon compared with the activated carbon control in a batch biofilter column. The increase in removal capacity is attributed to the role played by the immobilized microorganisms in metabolizing adsorbed sulfur and sulfur compounds on the biocarbon, hence releasing the adsorption sites for further H2S uptake. The advantage for activated carbon serving as the support medium is to adsorb a high initial concentration of substrate and progressively release this for microbial degradation, hence acting as a buffer for the microorganisms. Results obtained from surface area and pore size distribution analyses of the biocarbon show a correlation between the available surface area and pore volume with the extent of microbial immobilization and H2S uptake. The depletion of surface area and pore volume is seen as one of the factors which cause the onset of column breakthrough. Microbial growth retardation is due to the accumulation of metabolic products (i.e., sulfuric acid); and a lack of water and nutrient salts in the batch biofilter are other

  9. Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.

    Science.gov (United States)

    Mystrioti, C; Papassiopi, N; Xenidis, A; Dermatas, D; Chrysochoou, M

    2015-01-08

    Injection of a nano zero valent iron (nZVI) suspension in the subsurface is a remedial option for obtaining the in situ reduction and immobilization of hexavalent chromium in contaminated aquifers. Prerequisite for the successful implementation of this technology is that the nanoparticles form a stable colloidal suspension with good transport properties when delivered in the subsurface. In this study we produced stable suspensions of polyphenol-coated nZVI (GT-nZVI) and we evaluated their transport behavior through representative porous media. Two types of porous materials were tested: (a) silica sand as a typical inert medium and (b) a mixture of calcareous soil and sand. The transport of GT-nZVI through the sand column was effectively described using a classic 1-D convection-dispersion flow equation (CDE) in combination with the colloid filtration theory (CFT). The calculations indicate that nZVI travel distance will be limited in the range 2.5-25cm for low Darcy velocities (0.1-1m/d) and in the order of 2.5m at higher velocities (10m/d). The mobility of GT-nZVI suspension in the soil-sand column is lower and is directly related to the progress of the neutralization reactions between the acidic GT-nZVI suspension and soil calcite. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preparation of Metal Immobilized Orange Waste Gel for Arsenic(V Removal From Water

    Directory of Open Access Journals (Sweden)

    Biplob Kumar Biswas

    2014-05-01

    Full Text Available Abstract - The toxicity of arsenic is known to be a risk to aquatic flora and fauna and to human health even in relatively low concentration. In this research an adsorption gel was prepared from agricultural waste material (orange waste through simple chemical modification in the view to remove arsenic (V from water. Orange waste was crushed into small particles and saponified with Ca(OH2 to prepare saponified orange waste, which was further modified by immobilizing gadolinium(III to obtain desired adsorption material (Gd(III-immobilized SOW gel. The effective pH range for arsenic adsorption was found to be 7.5 – 8.5. Adsorption capacity of the gel was evaluated to be 0.45 mol-arsenic (V/kg. Dynamic adsorption of arsenic (V in column-mode was conducted and a dynamic capacity was found to be 0.39 mol/kg. Elution of arsenate was tested after complete saturation of the column packed with gadolinium-immobilized orange waste adsorption gel. A complete elution of arsenate was achieved with the help of 1 M HCl and 28 times pre-concentration factor was attained. This study showed that a cheap and abundant agro-industrial waste material could be successfully employed for the remediation of arsenic pollution in aquatic environment. Keywords: Arsenic; Orange waste; Gadolinium(III; Adsorption; Elution.

  11. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    Science.gov (United States)

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  12. Safe and Effective Ag Nanoparticles Immobilized Antimicrobial NanoNonwovens

    DEFF Research Database (Denmark)

    Song, Jie; Chen, Menglin; Regina, Viduthalai R.

    2012-01-01

    and possibility of introduction of secondary pollution. Here, we present a novel strategy to produce a safe and effective antimicrobial nanononwoven material by immobilizing AgNPs on a rigid polymer nanofibrous matrix through simple co-electrospinning of pre-prepaired AgNPs and polystyrene (PS). Distribution...... of the AgNPs on the surface of PS fibers was achieved by tuning fiber diameters during electrospinning. Atomic force microscopy (AFM) analysis revealed that the AgNPs distributed at the fiber surface were still covered by a layer of polymer, which inhibited their antimicrobial activity. UV/ozone treatment...... was thus employed to degrade the polymer coating without loosening the AgNPs, resulting in an active antimicrobial nonwoven against Gram-positive Staphylococcus xylosus. The mechanism based on cellular uptake of silver ions via close contact to the surface of AgNPs is proposed. The novel nanononwoven...

  13. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    Science.gov (United States)

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  14. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    Science.gov (United States)

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.

  15. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean

    International Nuclear Information System (INIS)

    Zhai, Haiyun; Su, Zihao; Chen, Zuanguang; Liu, Zhenping; Yuan, Kaisong; Huang, Lu

    2015-01-01

    Highlights: • A new GO-MISPE monolithic capillary column was prepared. • The column showed ability of impurities removal and excellent selectivity. • Phloxine B existed in real sample was enriched more than 90 times. • The GO-MISPE column presented good recovery and high stability. • The method was prospered to analyze phloxine B and LOD achieved 0.3 ng g −1 . - Abstract: A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC–LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001–2.0 μg mL −1 (r = 0.9995) with the detection limit (S/N = 3) of 0.075 ng mL −1 . Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC–LIF method can be applied to sensitively determine phloxine B in coffee bean

  16. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Haiyun, E-mail: zhaihaiyun@126.com [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Su, Zihao [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Chen, Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China); Liu, Zhenping; Yuan, Kaisong; Huang, Lu [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2015-03-20

    Highlights: • A new GO-MISPE monolithic capillary column was prepared. • The column showed ability of impurities removal and excellent selectivity. • Phloxine B existed in real sample was enriched more than 90 times. • The GO-MISPE column presented good recovery and high stability. • The method was prospered to analyze phloxine B and LOD achieved 0.3 ng g{sup −1}. - Abstract: A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC–LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001–2.0 μg mL{sup −1} (r = 0.9995) with the detection limit (S/N = 3) of 0.075 ng mL{sup −1}. Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC–LIF method can be applied to sensitively determine phloxine B in coffee bean.

  17. Investigation of Optical Properties of Biomolecular Materials for Developing a Novel Fiber Optic Biosensor.

    Science.gov (United States)

    Gao, Harry Hong

    1995-01-01

    Recently considerable efforts have been devoted to the development of optical biosensors for applications such as environmental monitoring and biomedical technology. The research described in this thesis focuses on the development of a novel fiber optic biosensor system for pesticide detection based on enzyme catalyzed chemiluminescence. To optimize the collection efficiency, the tapering effect of a fiber tip has been studied in different cases of light source distribution utilizing fluorescence technique. Our results indicate that a continuously tapered tip with the largest tapering angle is the most efficient configuration when the light source is in a "thick" layer ({> }1 μm) while a combination tapered tip is the best configuration when the light source is either in a thin layer ({offers the flexibility of controlling the number of enzymes on a fiber surface. Multilayer of alkaline phosphatase have been characterized using various techniques including chemiluminescence, ellipsometry and surface plasma resonance. The results indicated that at least 3 layers of enzyme can be assembled on a fiber surface. With this approach, it is possible to immobilize different kinds of enzyme on a fiber surface for biosensors based on a multi-enzyme system. Based on the studies of tapered tip and immobilization schemes, a novel fiber optic biosensor system for the detection of organophosphorous-based pesticide has been developed. The detection mechanism is pesticide inhibition of alkaline phosphatase catalyzed chemiluminescence. Paraoxon with concentration as low as 167 ppb has been detected. This is the first fiber optic chemiluminescence-based biosensor utilizing tapered tips with enzyme immobilized on the fiber surface and a cooled CCD array detector.

  18. Use of activated carbon as a support medium for H{sub 2}S biofiltration and effect of bacterial immobilization on available pore surface

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Y.L.; Yan, R.; Chen, X.G.; Geng, A.L.; Liang, D.T.; Koe, L.C.C. [Institute of Environmental Science and Engineering, Nanyang Technological Univ., Singapore (Singapore); Gould, W.D. [Environmental Lab., CANMET, Natural Resources Canada, Ottawa, ON (Canada)

    2004-12-01

    The use of support media for the immobilization of micro-organisms widely known to provide a surface for microbial growth and a shelter that protects the microorganisms from inhibitory compounds. In this study, activated carbon is used as a support medium for the immobilization of microorganisms enriched from municipal sewage activated sludge to remove gas-phase hydrogen sulfide (H{sub 2}S), a major odorous component of waste gas from sewage treatment plants. A series of designed experiments is used to examine the effect on bacteria-immobilized activated carbon (termed ''biocarbon'') due to physical adsorption, chemical reaction and microbial degradation in the overall removal of H{sub 2}S. H{sub 2}S breakthrough tests are conducted with various samples, including micro-immobilized carbon and Teflon discs, salts-medium-washed carbon, and ultra-pure water-washed carbon. The results show a higher removal capacity for the microbe-immobilized activated carbon compared with the activated carbon control in a batch biofilter column. The increase in removal capacity is attributed to the role played by the immobilized micro-organisms in metabolizing adsorbed sulfur and sulfur compounds on the biocarbon, hence releasing the adsorption sites for further H{sub 2}S uptake. The advantage for activated carbon serving as the support medium is to adsorb a high initial concentration of substrate and progressively release this for microbial degradation, hence acting as a buffer for the microorganisms. Results obtained from surface area and pore size distribution analyses of the biocarbon show a correlation between the available surface area and pore volume with the extent of microbial immobilization and H{sub 2}S uptake. The depletion of surface area and pore volume is seen as one of the factors which cause the onset of column breakthrough. Microbial growth retardation is due to the accumulation of metabolic products (i.e., sulfuric acid); and a lack of water and

  19. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  20. Nanoparticles of poly(hydroxybutyrate-co-hydroxyvalerate) as support for the immobilization of Candida antarctica lipase (fraction B); Nanoparticulas de poli-hidroxibutirato-co-valerato como suporte para a imobilizacao da lipase de Candida antarctica fracao B

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ilizandra A.; Nyari, Nadia L.D. [Universidade Regional Integrada, Erechim, RS (Brazil). Departamento de Ciencias Agrarias; Oliveira, Jose Vladimir de; Oliveira, Debora de, E-mail: debora@enq.ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Engenharia Quimica e Engenharia de Alimentos; Rigo, Elisandra [Universidade do Estado de Santa Catarina (UDESC), Pinhalzinho, SC (Brazil). Departamento de Engenharia de Alimentos; Souza, Maria Cristiane M. de; Goncalves, Luciana R.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Engenharia Quimica; Pergher, Sibele Berenice C. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil). Instituto de Quimica

    2014-04-15

    This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 deg C), reuse and storage (at 4 deg C) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 deg C showed a 33% reduction of the initial activity while storage at 4 deg C led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products. (author)

  1. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg{sup 2+} in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na [State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Li, Gang, E-mail: liganghg@dlut.edu.cn [State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Cheng, Zhuhong [State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Zuo, Xiujin [Key Laboratory of Bio-organic Chemistry, College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622 (China)

    2012-08-30

    Graphical abstract: Au-HMS-Probe with worm-like mesoporous framework for detection of Hg{sup 2+} in aqueous media has been simply and effectively synthesized by immobilizing a Rhodamine B derivative on Au-HMS via Au-N groups under room temperature. Highlights: Black-Right-Pointing-Pointer Au-HMS-Probe is prepared via Au-N bonds. Black-Right-Pointing-Pointer Gold nanoparticles are chosen as connectors instead of silane agents. Black-Right-Pointing-Pointer Au-HMS is chosen as carrier for the first time. Black-Right-Pointing-Pointer The immobilization method of Au-HMS-Probe is very simple and effective. Black-Right-Pointing-Pointer Au-HMS-Probe shows excellent ability for detecting Hg{sup 2+} by naked-eye. - Abstract: A simple, effective method has been demonstrated to immobilize Rhodamine B (RhB) probes on mesoporous silica (Au-HMS). The prepared chemosensor (Au-HMS-Probe) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectrum and Fourier transform infrared spectroscopy (FT-IR). Further application of Au-HMS-Probe in sensing Hg{sup 2+} was confirmed by fluorescence titration experiment. Au-HMS-Probe afforded 'turn-on' fluorescence enhancement and displayed high brightness in water, and it also showed excellent selectivity for Hg{sup 2+} over alkali (Na{sup +}, K{sup +}), alkaline earth (Mg{sup 2+}, Ca{sup 2+}) and other heavy metal ions (Ag{sup +}, Cd{sup 2+}, Co{sup 2+}, Pb{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Fe{sup 2+}). Importantly, Au-HMS-Probe could be regenerated by treatment with tetrapropylammonium hydroxide solution.

  2. Preparation and Properties of Urease Immobilized onto Glutaraldehyde Cross-linked Chitosan Beads

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Shu Xian MENG; Zhi Yan LIANG

    2005-01-01

    Urease was immobilized onto the glutaraldehyde cross-linked chitosan beads that were prepared under microwave irradiation. The activity and the yield of activity of immobilized urease was 10.83 U/g B and 47.7%, respectively. The conditions of urease immobilization were optimized. The properties of the immobilized urease were investigated and compared with that of the free enzyme.

  3. Comparative Analysis of Existing RC Columns Jacketed with CFRP or FRCC

    Directory of Open Access Journals (Sweden)

    Marta Del Zoppo

    2018-03-01

    Full Text Available Reinforced concrete (RC columns typical of existing structures often exhibit premature failures during seismic events (i.e., longitudinal bars buckling and shear interaction mechanisms due to the poor quality concrete and the absence of proper seismic details in the potential plastic hinge region. The Fiber Reinforced Polymers (FRP externally bonded reinforcement is known to be a valid technique to improve the shear capacity or the ductility of existing RC columns. However, few experimental tests have proven its effectiveness in the case of columns affected by shear interaction mechanisms. In this work, the behavior of existing RC columns with border line behavior between flexure and shear have been investigated in the case of poor quality concrete and light FRP strengthening with local jacketing and medium quality concrete and strong FRP strengthening with local jacketing, in order to highlight the effect of concrete strength on the effectiveness of the retrofit intervention. As an alternative to FRP jacketing; the effectiveness of the Fiber Reinforced Cementitious Composite (FRCC jacketing for the seismic strengthening of columns with highly deteriorated concrete cover or columns already damaged by an earthquake is also evaluated. Six full-scale RC columns have been tested under cyclic loading: one was used as a control specimen; four were strengthened in the potential plastic hinge region with carbon FRP (CFRP; and one was fully jacketed with FRCC. The comparison between poor and medium quality concrete columns showed that the CFRP local jacketing is more effective in the case of poor quality concrete. The FRCC jacketing appears to be a sound repair strategy and a suitable alternative to the FRP jacketing in case of poor quality; however, more experimental research is needed for improving this retrofit technique.

  4. Silver nanoparticles immobilized onto polycaprolactone (PCL)/poly[2-(dimethylamino)ethyl metacrilate) nanofiber meshes

    International Nuclear Information System (INIS)

    Santos, Fernanda G.; Bonkovoski, Leticia C.; Witt, Maria A.; Rubira, Adley F.; Muniz, Edvani C.

    2015-01-01

    The present work comprises the fabrication of nanofiber meshes of polycaprolactone (PCL)/poly [(2-dimethylamino) ethyl methacrylate] (PDMAEMA) and the subsequent immobilization of silver nanoparticles, in order to obtain materials with potential application in tissue engineering. The nanofibers composed of different ratios of PDMAEMA / PCL (m/m) were obtained by electrospinning. These nanofiber meshes were then immersed in colloidal suspensions containing the AgNPs under different pH values to immobilize the nanoparticles onto the fiber's surface. A greater amount of AgNPs was deposited when the fibers were immersed in a solution of pH 5, as one can observe from the scanning electron microscopy (SEM) images and the X-ray spectroscopy (EDS) spectra. It was observed that the meshes of the blends suffered morphological changes after immersion in acid solution (pH 5), and, the deposition of AgNPs onto the meshes in general was more effective in acid environment (pH 5). (author)

  5. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  7. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  8. Behavior of FRP-Confined Concrete-Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Yiyan Lu

    2014-05-01

    Full Text Available This paper presents the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP. Eleven columns were tested to investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity. The experimental results indicated that the FRP wrap can effectively confine the concrete expansion and delay the local buckling of the steel tube. Both the load capacity and the axial deformation capacity of concrete-filled steel tube columns can be substantially enhanced with FRP confinement. A model is proposed to predict the load capacity of the FRP-confined concrete-filled steel tube columns. The predicted results are generally in good agreement with the experimental ones obtained in this study and in the literature.

  9. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  11. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  12. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  13. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    International Nuclear Information System (INIS)

    Zhang, Zhen-Peng; Tay, Joo-Hwa; Show, Kuan-Yeow; Liang, David Tee; Lee, Duu-Jong; Su, Ay

    2008-01-01

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  14. Evaluation of Seismic Behaviors of Partially Deteriorated Reinforced Concrete Circular Columns Retrofitted with CFRP

    Directory of Open Access Journals (Sweden)

    Dongxu Hou

    2014-01-01

    Full Text Available Deficiency of the concrete strength in some regions of reinforced concrete (RC columns in practice may weaken the seismic behaviors of columns. Its effects on RC columns should be well understood. This paper aims to investigate the influences of deteriorated segment on the seismic behaviors of partially deteriorated RC columns and attempts to recover the seismic behaviors of partially deteriorated columns with Carbon Fiber Reinforced Polymer (CFRP composites. A finite element analysis was carried out to simulate the seismic behaviors of CFRP-confined partially deteriorated RC columns. The numerical results were verified by the laboratory tests of six specimens. Based on the finite element results, the failure location of partially deteriorated columns in an earthquake was predicted, and the effectiveness of CFRP retrofitted on partially deteriorated columns was evaluated.

  15. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  16. Immobilization and positioning systems for treatment of patients with image-guided radiation therapy and intensity modulated radiation therapy)

    International Nuclear Information System (INIS)

    Hueso Bernad, M. Nuria; Suarez Dieguez, Raquel; Roures Ramos, M. Teresa; Broseta Tormos, M.Mercedes; Tirado Porcar, Miriam M; Del Castillo Arres, Jose; Franch Martinez, Silvia

    2009-01-01

    For adequate reproduction of daily patient positioning during treatment we use a 3-coordinate system alignment. The first set of axes would be the system of light (laser). - The second coordinate system is recognized by marks on the skin patient and / or immobilization systems. The third set of alignment refers to alignment of coordinates volume to try to locate the isocenter use Guided Radiotherapy Imaging when applied technologies with Intensity Modulated Radiotherapy treatment fields tend to be very small so it made individual protection and immobilization systems such as thermoplastic masks, vacuum sealed bags exterotaxicos conjugated systems and immobilization systems carbon fiber results by combining these immobilization and positioning systems can ensure effective treatment volume to be treated. There is no perfect immobilization system. However the choice of pool of qualified stun makes treatment more precise. (author)

  17. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  18. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    Science.gov (United States)

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  20. Hemoadsorption of high-mobility-group box 1 using a porous polymethylmethacrylate fiber in a swine acute liver failure model.

    Science.gov (United States)

    Amemiya, Ryusuke; Shinoda, Masahiro; Yamada, Masayuki; Ueno, Yoshiyuki; Shimada, Kaoru; Fujieda, Hiroaki; Yagi, Hiroshi; Mizota, Takamasa; Nishiyama, Ryo; Oshima, Go; Yamada, Shingo; Matsubara, Kentaro; Abe, Yuta; Hibi, Taizo; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2018-04-01

    High-mobility-group box chromosomal protein 1 has been identified as an important mediator of various kinds of acute and chronic inflammation. In this study, we aimed to develop a column that effectively adsorbs high-mobility-group box chromosomal protein 1 by altering the pore size of the fiber. First, we produced three types of porous polymethylmethacrylate fiber by altering the concentration of polymethylmethacrylate dissolved in dimethylsulfoxide. We then selected a fiber based on the results of an in vitro incubation test of high-mobility-group box chromosomal protein 1 adsorption. Using the selected fiber, we constructed a new column and tested its high-mobility-group box chromosomal protein 1 adsorption capacity during 4-h extracorporeal hemoperfusion in a swine acute liver failure model. Electron microscope observation showed that the three types of fibers had different pore sizes on the surface and in cross section, which were dependent on the concentration of polymethylmethacrylate. In the in vitro incubation test, fiber with moderate-sized pores demonstrated the highest adsorption capacity. In the in vivo hemoperfusion study, the ratio of the high-mobility-group box chromosomal protein 1 concentration at the outlet versus the inlet of the column was significantly lower with the new column than with the control column during 4-h extracorporeal hemoperfusion. The normalized plasma level of high-mobility-group box chromosomal protein 1 at 12 h after the completion of hemoperfusion was significantly lower with the new column than with the control column. The newly developed polymethylmethacrylate column adsorbs high-mobility-group box chromosomal protein 1 during hemoperfusion in swine ALF model.

  1. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron

    DEFF Research Database (Denmark)

    Astrup, Thomas; Stipp, S. L. S.; Christensen, Thomas Højlund

    2000-01-01

    The purpose of this investigation was (i) to test the effectiveness of a barrier engineered to remove Cr(VI) from leachates of higher pH and salinity typical of coal burning ashes and (ii) to determine which geochemical processes control Cr immobilization. Laboratory column and batch desorption e...

  2. Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips

    Directory of Open Access Journals (Sweden)

    Junjie Zeng

    2018-03-01

    Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.

  3. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization

    Science.gov (United States)

    Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali

    2016-03-01

    A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSD < 5%) in the pH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility.

  4. Mechanical tuning of the evaporation rate of liquid on crossed fibers.

    Science.gov (United States)

    Boulogne, François; Sauret, Alban; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-03-17

    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column, and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate significantly depends upon the liquid morphology and that the drying of the liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology toward the column state, and therefore, enhances the drying rate of a volatile liquid deposited on it.

  5. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and application.

    Science.gov (United States)

    Ruan, Guihua; Wei, Meiping; Chen, Zhengyi; Su, Rihui; Du, Fuyou; Zheng, Yanjie

    2014-09-15

    A novel large-volume immobilized enzyme reactor (IMER) on small column was prepared with organic-inorganic hybrid silica particles and applied for fast (10 min) and oriented digestion of protein. At first, a thin enzyme support layer was formed in the bottom of the small column by polymerization with α-methacrylic acid and dimethacrylate. After that, amino SiO2 particles was prepared by the sol-gel method with tetraethoxysilane and 3-aminopropyltriethoxysilane. Subsequently, the amino SiO2 particles were activated by glutaraldehyde for covalent immobilization of trypsin. Digestive capability of large-volume IMER for proteins was investigated by using bovine serum albumin (BSA), cytochrome c (Cyt-c) as model proteins. Results showed that although the sequence coverage of the BSA (20%) and Cyt-c (19%) was low, the large-volume IMER could produce peptides with stable specific sequence at 101-105, 156-160, 205-209, 212-218, 229-232, 257-263 and 473-451 of the amino sequence of BSA when digesting 1mg/mL BSA. Eight of common peptides were observed during each of the ten runs of large-volume IMER. Besides, the IMER could be easily regenerated by reactivating with GA and cross-linking with trypsin after breaking the -C=N- bond by 0.01 M HCl. The sequence coverage of BSA from regenerated IMER increased to 25% comparing the non-regenerated IMER (17%). 14 common peptides. accounting for 87.5% of first use of IMER, were produced both with IMER and regenerated IMER. When the IMER was applied for ginkgo albumin digestion, the sequence coverage of two main proteins of ginkgo, ginnacin and legumin, was 56% and 55%, respectively. (Reviewer 2) Above all, the fast and selective digestion property of the large-volume IMER indicated that the regenerative IMER could be tentatively used for the production of potential bioactive peptides and the study of oriented protein digestion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Influence of the Morphology of Core-Shell Supports on the Immobilization of Lipase B from Candida antarctica

    Directory of Open Access Journals (Sweden)

    Martina C. C. Pinto

    2014-08-01

    Full Text Available Core-shell polymer particles with different properties were produced through combined suspension-emulsion polymerizations and employed as supports for immobilization of lipase B from Candida antarctica. In order to evaluate how the morphology of the particles affects the immobilization parameters, empirical models were developed to describe the performance of the biocatalysts as a function of the specific area, volume of pores and average pore diameter of the supports. It was observed that the average pore sizes did not affect the enzymatic activities in the analyzed range of pore sizes. It was also observed that the increase of the specific area (and of the volume of pores led to higher enzyme loadings, also leading to an increase in the esterification activity, as expected. However, when the specific area (and volume of pores increased, the hydrolytic activity and the retention of hydrolytic activity of the biocatalysts decreased, indicating the existence of diffusional limitations for some hydrolytic reactions, probably because of the high reaction rates.

  8. Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary.

    Science.gov (United States)

    Xu, Liang; Xu, Bei; Zhao, Zhi-Yu; Yang, Hui-Ping; Tang, Cheng; Dong, Lin-Yi; Liu, Kun; Fu, Li; Wang, Xian-Hua

    2017-09-22

    Cell membrane chromatography (CMC) is an effective tool in screening active compounds from natural products and studying membrane protein interactions. Nevertheless, it always consumes a large amount of cells (e.g. 10 7 -10 8 ) for column preparation. To overcome this, micro-CMC (mCMC), that employs a silica capillary as membrane carrier, was developed. However, both CMC and mCMC suffer from short column life span (e.g. 3days), mainly due to the falling-off of cellular membranes (CMs). This has greatly limited further application of CMC and mCMC, especially when the cells are hard to obtain. To solve this, N-hydroxysuccinimide (NHS)-modified silica-based porous layer open tubular capillary was first prepared for mCMC. The NHS groups can easily react with amino groups on CMs to form a stable covalent bond under a mild condition. So, CMs immobilized on the NHS-modified capillary are less likely to fall off. To verify this, SKBR3/mCMC (Her2 positive) and BALL1/mCMC (CD20 positive) columns were prepared. Two monoclonal antibody drugs, trastuzumab (anti-Her2) and rituximab (anti-CD20), were selected as analytes to characterize the columns. As a result, NHS-modified column for mCMC can afford higher chromatographic retention than non-modified column. Besides, the column life span was significantly improved to more than 16days for SKBR3/mCMC and 14days for BALL1/mCMC, while the compared column showed a sharp decline in retention factor in first 3days. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A study on electrochemical redox behavior of nitric acid by using a glassy carbon fiber column electrode system

    International Nuclear Information System (INIS)

    Kim, K. W.; Song, K. C.; Lee, I. H.; Choi, I. K.; You, J. H.

    1999-01-01

    Electrochemical redox behaviors of nitric acid were studied by using a glassy carbon fiber column electrode system, and its reaction mechanism was analyzed in several ways. The electrochemical reaction in less than 2.0 M nitric acid was not observed, but in more than 2.0 M nitric acid, the reduction rate of nitric acid to produce nitrous acid was slow so that the nitric acid solution had to be contacted with electrode enough in order for a apparent reduction current of nitric acid to nitrous acid be to observed. The nitrous acid generated in more than 2.0 M nitric acid was rapidly and easily reduced to NOx through an autocatalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. The sulfamic acid of at least 0.05M was necessary to remove the nitrous acid generated in 3.5 M nitric acid

  10. Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix

    International Nuclear Information System (INIS)

    Hu, M.C.Z.; Reeves, M.

    1997-01-01

    A number of polymeric materials, including calcium alginate, polyacrylamide, polysulfone, and polyurethane, were evaluated as possible immobilization matrices for lyophilized biomass of P. aeruginoso CSU. Polyurethane-based materials such as hydrogel were identified as superior candidates for biomass immobilization. A novel polyurethane gel-bead fabrication technique was developed and successfully demonstrated at pilot-plant scale for producing mass qualities of spherical, uniform-size beads. The immobilized bacterial biomass was evaluated via the measurement of sorption isotherms and dynamics within a batch, stirred-tank reactor; and loading and elution behavior within a continuous, upflow, packed-bed columnar reactor. Sorption equilibrium and dynamics in a batch stirred tank were modeled with a pore-diffusion mass transfer model, by which a pore-diffusion coefficient was determined to be approximately 2.0 x 10 -6 cm 2 /s for uranyl ion transport through the polyurethane gel matrix. The biosorbent beads were regenerable with dilute (0.01-0.1 M) sodium carbonate solutions. Preliminary column breakthrough-elution studies indicated that P. aeruginosa CSU biomass immobilized within polyurethane gel beads was effective for removal of uranium from low-concentration, acidic wastewater. 35 refs., 9 figs., 4 tabs

  11. Preparation of Affinity Column Based on Zr4+ Ion for Phosphoproteins Isolation

    International Nuclear Information System (INIS)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho

    2009-01-01

    This paper has described about preparation of Zr 4+ affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr 4+ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr 4+ -immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr 4+ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr 4+ affinity polymeric microsphere by liquid chromatography. This Zr 4+ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography

  12. Effect of oxygen on ethanol fermentation in packed-bed tapered-column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hamamci, H.; Ryu, D.D.Y.

    1988-07-01

    In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O/sub 2/ being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O/sub 2/ to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO/sub 2/ gas, a tapered-column reactor and pulsed flow of oxygen gas was used. The supplement of O/sub 2/ gas to the tapered column increased the productivity from 21.1 g ethanol x (l gel x h)/sup -1/ to 26.7 g x (l gelxh)/sup -1/, when the ethanol concentration at the outlet was about 80 g/l. The yield coefficient of ethanol was also increased from 0.41 g ethanol/g glucose to 0.43 after O/sub 2/ supplement was started. The effects of frequency and duration of O/sub 2/ supplement were also determined.

  13. Synthesis of the light/pH responsive polymer for immobilization of α-amylase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Long [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710119 (China); Lei, Ming [School of Material Science and Engineering, Shaanxi Normal University, Xi' an 710119 (China); Zhao, Min [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710119 (China); Yang, Hong [Basic Experimental Teaching Center, Shaanxi Normal University, Xi' an 710062 (China); Zhang, Hong; Li, Yan; Zhang, Kehu [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710119 (China); Lei, Zhongli, E-mail: lzl2016@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710119 (China)

    2017-02-01

    In this study, light/pH responsive methoxy poly (ethylene glycol)-(5-propargylether-2-nitrobenzyl bromoisobutyrate)-poly methylacrylic acid-b-polystyrene (mPEG-ONB-PMAA-b-PS) polymers were synthesized, and successfully utilized to fabricate micelles and immobilize α-amylase. The critical micelle concentrations (CMC) of the polymers were measured with Pyrene Fluorescent Probe Technique. The morphology and diameter of micelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). In addition, the effects of pH, temperature and light-responsive on the catalytic activity were investigated. The optimized fabrication conditions of α-amylase-loaded micelles which α-amylase gave the higher activity were as follows: Immobilization time, 60 min; Immobilization temperature, 50 °C; enzyme concentration, 10 U mL{sup −1}; PBS buffer, pH = 5.4. α-Amylase immobilized in these micelles was much more stable than that free α-amylase. - Highlights: • Light/pH dual-responsive polymer mPEG-ONB-PMAA-b-PS was developed. • The polymer mPEG-ONB-PMAA-b-PS was characterized and utilized to immobilized α-amylase. • A systematic study of dual-responsive polymer influence on α-amylase active was performed.

  14. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol.

    Science.gov (United States)

    Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng

    2014-01-01

    ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  16. Immobilization of Na,K-ATPase isolated from rat brain synaptic plasma membranes

    Directory of Open Access Journals (Sweden)

    ANICA HROVAT

    2002-12-01

    Full Text Available Rat brain Na,K-ATPase partially purified by SDS from synaptic plasma membranes (SPM was immobilized by adsorption on nitrocellulose (NC, polyvinylidene fluoride (PVDF and glass fiber (GF membranes. Partial SDS solubilization increased the enzyme activity by 40 %. With regard to the preservation of the enzyme activity, nitrocellulose was shown to be the optimal support for the immobilization. The enzyme showed the highest percentage activity (14 % after 30 min of SPM adsorption, at 20°C under the vaccum, with 25 mg of proteins per NC disc filter. In addition, adsorption on NC stabilizes the Na,K-ATPase, since the activity was substantial 72 h after adsorption at 20°C. After adsorption, the sensitivity of the enzyme to HgCl2and CdCll2 inhibition was higher. The results show that immobilized Na,K-ATPase SPM can be used as a practical model for the detection of metal ions in different samples.

  17. Catalytic Properties and Immobilization Studies of Catalase from Malva sylvestris L.

    OpenAIRE

    Arabaci, G.; Usluoglu, A.

    2013-01-01

    Catalase was partially purified from Malva sylvestris L. and immobilized onto chitosan. Then, its catalytic properties were investigated. (NH4)2SO4 precipitation and dialysis were performed in the extracted enzyme. Further purification was performed with sephadex G-200 column. Kinetic studies of the purified enzyme activity were measured and characterized. The inhibitory effects of KCN, NaN3, CuSO4, and EDTA on M. sylvestris L. catalase activity were observed except NaCl. Furthermore, M. sylv...

  18. Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods

    Directory of Open Access Journals (Sweden)

    Kang Zhao

    2016-08-01

    Full Text Available Lipase from Candida sp. 99–125 is widely employed to catalyzed transesterification and can be used for biodiesel production. In this study, the lipase was immobilized by combined adsorption and entrapment to catalyze biodiesel production from waste cooking oil (WCO via transesterification, and investigating co-immobilizing agents as additives according to the enzyme activity. The addition of the mixed co-immobilizing agents has positive effects on the activities of the immobilized lipase. Three different immobilizing methods were compared by the conversion ratio of biodiesel and structured by Atom Force Microscopy (AFM and Scanning Electron Microscopy (SEM, respectively. It was found that entrapment followed by adsorption was the best method. The effect of the co-immobilizing agent amount, lipase dosage, water content, and reuse ability of the immobilized lipase was investigated. By comparison with previous research, this immobilized lipase showed good reuse ability: the conversion ratio excesses 70% after 10 subsequent reactions, in particular, was better than Novozym435 and TLIM on waste cooking oil for one unit of lipase.

  19. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  20. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, Andrey, E-mail: andrey.shishov.rus@gmail.com [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Zabrodin, Andrey; Moskvin, Leonid [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Andruch, Vasil [Department of Analytical Chemistry, University of P.J. Šafárik, SK-04154 Košice (Slovakia); Bulatov, Andrey [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation)

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex{sup ®} 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg{sup −1}, and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg{sup −1}. The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples. - Highlights: • Novel fluidized beds strategy for utilization of particle-immobilized reagents. • First application of fluidized beds condition in SWIA. • Novel approach based on interfacial formation of copper glycerate. • Automated method for glycerol determination in biodiesel.

  1. Effect of prior immobilization on muscular glucose clearance in resting and running rats

    International Nuclear Information System (INIS)

    Vissing, J.; Ohkuwa, Tetsuo; Ploug, T.; Galbo, H.

    1988-01-01

    In vitro studies have shown that prior disuse impairs the glucose clearance of red skeletal muscle because of a developed insensitivity to insulin. We studied whether an impaired glucose clearance is present in vivo in 42-h immobilized muscles of resting rats and, furthermore, whether the exercise-induced increase in glucose clearance of red muscles is affected by prior immobilization. The 2-[ 3 H]deoxy-D-glucose (2DG) bolus injection method was used to determine glucose clearance of individual muscles. At rest, glucose clearance was markedly impaired in rats with previously immobilized red muscles compared with nonimmobilized control rats. During running, glucose clearance did not differ between muscles in previously immobilized and control rats. Insulin levels were always similar in the two groups and decreased during exercise. Intracellular nonphosphorylated 2DG was present in tissues with high glucose clearances. In conclusion, 42 h of immobilization markedly impairs glucose clearance of resting red muscle fibers in vivo. Apparently, physical inactivity in particular affects steps involved in insulin-mediated action that are not part of contraction-induced glucose uptake and metabolism. Presence of intracellular 2DG shows that separate determination of phosphorylated 2DG is necessary for accurate estimates of glucose metabolism and that accumulation of phosphorylated 2DG does not accurately reflect glucose transport

  2. Nitrogen immobilization in plant growth substrates: clean chip residual, pine bark and peat moss

    Science.gov (United States)

    A study was undertaken to determine the extent of nitrogen (N) immobilization and microbial respiration in a high wood-fiber content substrate (clean chip residual (CCR)). Control treatments of pine bark (PB) and peat moss (PM) were compared to two screen sizes (0.95 cm and 0.48 cm) of CCR for micro...

  3. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    Science.gov (United States)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  4. Column, particularly extraction column, for fission and/or breeder materials

    International Nuclear Information System (INIS)

    Vietzke, H.; Pirk, H.

    1980-01-01

    An absorber rod with a B 4 C insert is situated in the long extraction column for a uranyl nitrate solution or a plutonium nitrate solution. The geometrical dimensions are designed for a high throughput with little corrosion. (DG) [de

  5. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai

    2018-01-31

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self-assembled micelles were immobilized by cross-linking reaction of VTES in a shell layer of micelles. The chemical structures of block copolymers and morphology of micelles were characterized in detail. It was found that the size of immobilized micelles was strongly affected by the copolymer concentration, composition of mixture solvent, and block ratios.

  6. Preparation of Affinity Column Based on Zr{sup 4+} Ion for Phosphoproteins Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho [Hannam University, Daejeon (Korea, Republic of)

    2009-06-15

    This paper has described about preparation of Zr{sup 4+} affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr{sup 4+} ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr{sup 4+}-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr{sup 4+} affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr{sup 4+} affinity polymeric microsphere by liquid chromatography. This Zr{sup 4+} affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

  7. Strengthening of Masonry Columns with BFRCM or with Steel Wires: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Marinella Fossetti

    2016-05-01

    Full Text Available Nowadays, innovative materials are more frequently adopted for strengthening historical constructions and masonry structures. The target of these techniques is to improve the structural efficiency with retrofitting methods while having a reduced aesthetical impact. In particular, the use of basalt fiber together with a cementitious matrix emerges as a new technique. This kind of fiber is obtained by basalt rock without other components, and consequently it could be considered a natural material, compatible with masonry. Another innovative technique for strengthening masonry columns consists of applying steel wires in the correspondence of mortar joints. Both techniques have been recently proposed and some aspects of their structural performances are still open. This paper presents the results of an experimental study on the compressive behavior of clay brick masonry columns reinforced either with Basalt Fiber–Reinforced Cementitious Matrix (BFRCM or with steel wire collaring. Uniaxial compressive tests were performed on eight retrofitted columns and four control specimens until failure. Two masonry grades were considered by varying the mix used for the mortar. Results are presented and discussed in terms of axial stress-strain curves, failure modes and crack patterns of tested specimens. Comparisons with unreinforced columns show the capability of these techniques in increasing ductility with limited strength enhancements.

  8. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    Science.gov (United States)

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  9. Height determination at the transfer unit in isotopic distillation of hydrogen on type B7 ordered column packing

    International Nuclear Information System (INIS)

    Pop, F.; Croitoru, C.; Peculea, M.

    2001-01-01

    Owing to the low pressure drop implied by ordered column packings these are often utilized for vacuum distillations and separation of mixtures in which the important component occurs at a very low concentration, as for instance is the case of water, deuterium or oxygen isotopic distillation. The paper presents a model for determination of the height of transfer unit (HTU) in the hydrogen isotopic distillation installation, equipped with ordered column packing of B7 type. The computed values for HUT based on the analogy between heat, moment and mass transfer, were compared with the experimental data

  10. Intron-Mediated Alternative Splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B Regulates Cell Wall Thickening during Fiber Development in Populus Species1[W

    Science.gov (United States)

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-01-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777

  11. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Ye-Yu; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-03-21

    Metal-organic frameworks (MOFs) have received considerable attention as novel sorbents for sample preparation due to their fascinating structures and functionalities such as large surface area, good thermal stability, and uniform structured nanoscale cavities. Here, we report the application of a thermal and solvent stable MOF MIL-88B with nanosized bipyramidal cages and large surface area for solid-phase microextraction (SPME) of polychlorinated biphenyls (PCBs). Novel MIL-88B coated fiber was fabricated via an in situ hydrothermal growth of MIL-88B film on etched stainless steel fiber. The MIL-88B coated fiber gave large enhancement factors (757-2243), low detection limits (0.45-1.32ngL(-1)), and good linearity (5-200ngL(-1)) for PCBs. The relative standard deviation (RSD) for six replicate extractions of PCBs at 100ngL(-1) on MIL-88B coated fiber ranged from 4.2% to 8.7%. The recoveries for spiked PCBs (10ngL(-1)) in water and soil samples were in the range of 79.7-103.2%. Besides, the MIL-88B coated fiber was stable enough for 150 extraction cycles without significant loss of extraction efficiency. The developed method was successfully applied to the determination of PCBs in water samples and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A reversed phase high performance liquid chromatography method for the determination of fumonisins B1 and B2 in food and feed using monolithic column and positive confirmation by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Khayoon, Wejdan Shakir; Saad, Bahruddin; Salleh, Baharuddin; Ismail, Nor Azliza; Abdul Manaf, Normaliza Hj; Abdul Latiff, Aishah

    2010-10-29

    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using

  13. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Visible and UV-curable chitosan derivatives for immobilization of biomolecules.

    Science.gov (United States)

    Kim, Eun-Hye; Han, Ga-Dug; Kim, Jae-Won; Noh, Seung-Hyun; Lee, Jae-Gwan; Ito, Yoshihiro; Son, Tae-Il

    2017-11-01

    Chitosan, which has many biocompatible properties, is used widely in medical field like wound healing, drug delivery and so on. Chitosan could be used as a biomaterial to immobilize protein-drug. There are many methods to immobilize protein-drug, but they have some drawbacks such as low efficiency and denaturation of protein. Therefore, photo-immobilization method is suggested to immobilize protein-drug. Photo-immobilization method is simple-reaction and also needs no additional crosslinking reagent. There has been some effort to modify chitosan to have an ability of photo-immobilization. Generally, visible and UV light reactive chitosan derivatives were prepared. Various types of photo-curable chitosan derivatives showed possibility for application to medical field. For example, they showed ability for protein-immobilization and some of them showed wound-healing effect, anti-adhesive effect, or property to interact directly with titanium surface. In this study, we introduce many types of photo-curable chitosan derivative and their possibility of medical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  16. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    Science.gov (United States)

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  17. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions

    International Nuclear Information System (INIS)

    Lalhmunsiama; Lalhriatpuia, C.; Tiwari, Diwakar; Lee, Seung-Mok

    2014-01-01

    Highlights: • Rice hulls and areca nut wastes are utilized to obtain activated carbons. • Nickel hexacyanoferrate is immobilized on activated carbon samples. • Materials are characterized by SEM–EDX and XRD data. • Materials are employed in attenuation of Cs(I) under batch and column studies. • Possible mechanism is deduced at solid/solution interface. - Abstract: The aim of this study is to immobilize nickel hexacyanoferrate onto the large surface of activated carbons (ACs) precursor to rice hulls and areca nut waste materials. These nickel hexacyanoferrate immobilized materials are then assessed in the effective attenuation of radio logically important cesium ions from aqueous solutions. The solid samples are characterized by the XRD analytical method and surface morphology is obtained from the SEM images. The batch reactor experiments show that an increase in sorptive pH (2.0–10.0) apparently not affecting the high percent uptake of Cs(I). Equilibrium modeling studies suggest that the data are reasonably and relatively fitted well to the Langmuir adsorption isotherm. Kinetic studies show that sorption process is fairly rapid and the kinetic data are fitted well to the pseudo-second order rate model. Increasing the background electrolyte concentration from 0.001 to 0.1 mol/L NaCl causes insignificant decrease in Cs(I) removal which infers the higher selectivity of these materials for Cs(I) from aqueous solutions. Further, the column reactor operations enable to obtain the breakthrough data which are then fitted to the Thomas non-linear equation as to obtain the loading capacity of column for Cs(I). The results show that the modified materials show potential applicability in the attenuation of radio toxic cesium from aqueous solution

  19. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  20. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  1. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  2. FY 1998 annual summary report on development of techniques for keeping water environments in good conditions by utilizing phenomena involving immobilization of microorganisms on soft structures of carbon fibers (abbreviated to carbon/water environment project); 1998 nendo tanso sen'i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu seika hokokusho. Ryakusho tanso mizukankyo project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is aimed at creation of the new industry of keeping water environments in good conditions in wide amphitrichous areas by establishing the technical systems for applying the phenomena in which microorganisms are massively immobilized on a carbon fiber bundle suspended in water to, e.g., purification of sewage systems, rivers and ponds, and providing sites for algae to grow, and by commercializing these systems. The following 3 themes have been established. The first theme is to develop the techniques for braiding/weaving carbon fibers. The second theme is to analyze characteristics of the immobilized microorganism groups. The third theme is to establish the principles of utilization. The FY 1997 R&D efforts were directed to production of a total of 57 types of braided/woven carbon fibers, development of sizing agents, and analysis of microorganism groups. In FY 1998, the carbon fibers treated with new sizing agents have been developed, and the braided/woven carbon fibers are being tested in water purification systems and algae sites. It is found that the microorganism groups exhibit synergistic effects between the pumping function and carbon/gel materials. The simulation models are being developed for system designs. The systems which apparently show the effects of this method have been classified by analyzing the field test results. (NEDO)

  3. Analysis of direct immobilized recombinant protein G on a gold surface

    International Nuclear Information System (INIS)

    Kim, Hyunhee; Kang, Da-Yeon; Goh, Hyun-Jeong; Oh, Byung-Keun; Singh, Ravindra P.; Oh, Soo-Min; Choi, Jeong-Woo

    2008-01-01

    Abstact: For the immobilization of IgG, various techniques such as chemical linker, thiolated protein G methods, and fragmentation of antibodies have been reported [Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, J.W. Choi, Biosensors Bioelectron. 21 (2005) 103; W. Lee, B.K. Oh, W.H. Lee, J.W. Choi, Colloids Surf. B-Biointerfaces, 40 (2005) 143; A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova, A.M. Egorov, Anal. Chem. 72 (2000) 3805]. Here, we modified the immunoglobulin Fc-binding B-domain of protein G to contain two cysteine residues at its C-terminus by a genetic engineering technique. The resulting recombinant protein, RPGcys, retained IgG-binding activity in the same manner as native protein G. RPGcys was immobilized on a gold surface by strong affinity between thiol of cysteine and gold. The orientations of both IgG layers immobilized on the base recombinant protein Gs were analyzed by fluorescence microscope, atomic force microscope (AFM), and surface plasmon resonance (SPR). Our data revealed that IgG-binding activity of RPGcys on gold surface significantly increased in comparison to wild type of protein G (RPGwild), which was physically adsorbed due to absence of cysteine residue. Immobilization of highly oriented antibodies based on cysteine-modified protein G could be useful for the fabrication of immunosensor systems

  4. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    Science.gov (United States)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  5. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.

    Science.gov (United States)

    Schweiger, Susanne; Jungbauer, Alois

    2018-02-16

    Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Planeta, Josef; Wiedmer, S. K.

    2013-01-01

    Roč. 1317, SI (2013), s. 159-166 ISSN 0021-9673 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : monolithic silica capillary column * immobilized liposomes * biomimicking stationary phase Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  7. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  8. [Lateral column lengthening osteotomy of calcaneus].

    Science.gov (United States)

    Hintermann, B

    2015-08-01

    Lengthening of the lateral column for adduction of forefoot and restoration of the medial arch. Stabilization of the ankle joint complex. Supple flatfoot deformity (posterior tibial tendon dysfunction stage II). Instability of the medial ankle joint complex (superficial deltoid and spring ligament). Posttraumatic valgus and pronation deformity of the foot. Rigid flatfoot deformity (posterior tibial tendon dysfunction stage III and IV). Talocalcaneal and naviculocalcaneal coalition. Osteoarthritis of calcaneocuboid joint. Exposition of calcaneus at sinus tarsi. Osteotomy through sinus tarsi and widening until desired correction of the foot is achieved. Insertion of bone graft. Screw fixation. Immobilization in a cast for 6 weeks. Weight-bearing as tolerated from the beginning. In the majority of cases, part of hindfoot reconstruction. Reliable and stable correction. Safe procedure with few complications.

  9. Nonlinear Label-Free Biosensing With High Sensitivity Using As2S3 Chalcogenide Tapered Fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Bang, Ole

    2015-01-01

    We demonstrate an experimentally feasible fiber design, which can act as a highly sensitive, label-free, and selective biosensor using the inherent high nonlinearity of an As2S3 chalcogenide tapered fiber. The surface immobilization of the fiber with an antigen layer can provide the possibility t......, this high sensitivity can be obtained using a low-power 1064-nm microchip laser....

  10. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    Science.gov (United States)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  11. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  12. Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis

    Directory of Open Access Journals (Sweden)

    Hale Öztürk

    2016-12-01

    Full Text Available The immobilization of Candida antarctica lipase B (CALB was performed by physical adsorption on both neat and organo-modified forms of sepiolite and montmorillonite. The influence of different parameters, e.g., solvent, enzyme loading, cross-linking, and type of clay support, on immobilization efficiency and catalyst hydrolytic activity has been investigated. The highest hydrolytic activities were obtained for CALB immobilized on organo-modified clay minerals, highlighting the beneficial effect of organo-modification. The esterification activity of these CALB/organoclay catalysts was also tested in the ring-opening polymerization of ε-caprolactone. The polymerization kinetics observed for clay-immobilized catalysts confirmed that CALB adsorbed on organo-modified montmorillonite (CALB/MMTMOD was the highest-performing catalytic system.

  13. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  14. Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation.

    Science.gov (United States)

    Arola, Suvi; Tammelin, Tekla; Setälä, Harri; Tullila, Antti; Linder, Markus B

    2012-03-12

    In a number of different applications for enzymes and specific binding proteins a key technology is the immobilization of these proteins to different types of supports. In this work we describe a concept for protein immobilization that is based on nanofibrillated cellulose (NFC). NFC is a form of cellulose where fibers have been disintegrated into fibrils that are only a few nanometers in diameter and have a very large aspect ratio. Proteins were conjugated through three different strategies using amine, epoxy, and carboxylic acid functionalized NFC. The conjugation chemistries were chosen according to the reactive groups on the NFC derivatives; epoxy amination, heterobifunctional modification of amino groups, and EDC/s-NHS activation of carboxylic acid groups. The conjugation reactions were performed in solution and immobilization was performed by spin coating the protein-NCF conjugates. The structure of NFC was shown to be advantageous for both protein performance and stability. The use of NFC allows all covalent chemistry to be performed in solution, while the immobilization is achieved by a simple spin coating or spreading of the protein-NFC conjugates on a support. This allows more scalable methods and better control of conditions compared to the traditional methods that depend on surface reactions.

  15. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  16. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  17. Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column

    Science.gov (United States)

    Wang, Debin; Fan, Guoxi

    2017-11-01

    The purpose of this paper is to study the effect of torsional effect and loading rate on the flexural capacity of RC members. Based on the fiber model of finite element software ABAQUS, a model has been established with the consideration of the strain rate sensitivity of steel and concrete. The model is used to reflect the influence of the rotational component of ground motion by applying the initial angular displacement. The mechanical properties of RC columns under monotonic loads are simulated. The simulation results show that there has been a decrease in the carrying capacity and initial stiffness of RC columns for high initial torsion angle. With the increase of initial torsion angle, the influence of loading rate on RC columns gradually increases.

  18. Immobilization of microorganisms. Part 1. Preparation of immobilized Lactobacillus bulgaricus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K H

    1981-01-01

    The immobilization of Lactobacillus bulgaricus on polyacrylamide and on alginate beads was investigated. The most active immobilized cells were obtained by entrapment in Ca alginate beads. These immobilized microbial cells, when introduced into 4.5% lactose solution and whey solution showed maximum relative activity of 28% for lactose and 18% for whey compared to free cells.

  19. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  20. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin

    Science.gov (United States)

    Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter

    1997-12-01

    In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.

  1. Fe(III)-loaded collagen fiber as a heterogeneous catalyst for the photo-assisted decomposition of Malachite Green

    International Nuclear Information System (INIS)

    Liu Xiaohu; Tang Rui; He Qiang; Liao Xuepin; Shi Bi

    2010-01-01

    A heterogeneous catalyst for Fenton reaction was prepared by immobilizing Fe(III) onto collagen fiber and its catalytic activity for the photo-assisted decomposition of Malachite Green (MG) was investigated. The results indicated that this Fe(III)-immobilized collagen fiber (Fe-CF) can effectively catalyse the decoloration and decomposition/mineralization of MG in aqueous solution. Catalysed by Fe-CF, MG solution was completely decolorized in 30 min, while 55.0% of TOC was removed from the dye solution within 120 min in the presence of H 2 O 2 and UVA irradiation (365 nm, 10 W). Fe-CF was recycled for seven times with certain activity loss (32.6% in decoloration, 18.5% in TOC removal), and its catalytic activity can be easily recovered by re-immobilization of Fe(III). Therefore, Fe-CF could act as an efficient and cost-effective catalyst for the photo-assisted decomposition of MG, and shows potential applications in practice.

  2. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    Science.gov (United States)

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  3. Expression and Role of the BDNF Receptor-TrkB in Rat Adrenal Gland under Acute Immobilization Stress

    International Nuclear Information System (INIS)

    Kondo, Yusuke; Saruta, Juri; To, Masahiro; Shiiki, Naoto; Sato, Chikatoshi; Tsukinoki, Keiichi

    2010-01-01

    We reported that plasma brain-derived neurotrophic factor (BDNF) was maximally elevated following a 60-min period of acute immobilization stress and that salivary glands were the main source of plasma BDNF under this stress condition. However, the expression pattern of the BDNF receptor, Tyrosine receptor kinase B (TrkB), under this condition has yet to be determined. We therefore investigated the effect of this stress on the expression level of TrkB in various rat organs using real-time PCR. No significant differences were found between controls and 60 min-stressed rats with respect to TrkB level in various organs. Only adrenal glands showed significantly increased TrkB mRNA levels after 60 min of stress. TrkB mRNA and protein were observed to localize in chromaffin cells. In addition, we investigated whether BDNF-TrkB interaction influences the release of stress hormones from PC12 cells, derived from chromaffin cells. Truncated receptor, TrkB-T1, was identified in PC12 cells using RT-PCR. Exposure of PC12 cells to BDNF induced the release of catecholamine. This BDNF-evoked release was totally blocked by administration of the K252a in which an inhibitor of Trk receptors. Thus, BDNF-TrkB interactions may modulate catecholamine release from adrenal chromaffin cells under acute stress conditions

  4. Galactose oxidase immobilized on silica in an analytical determination of galactose-containing carbohydrates.

    Science.gov (United States)

    Kondakova, Lyudmila; Yanishpolskii, Victor; Tertykh, Valentin; Buglova, Tat'yana

    2007-01-01

    Galactose oxidase from Fusarium graminearum IMV-1060 adsorbed on, and covalently bound to, silica carriers has been used for analytical determinations of D-galactose and galactose-containing sugars. Using a flowing oxygen electrode of the Clark-type, sensor system for enzymatic analysis of water solutions of galactose-containing carbohydrates was made. Measurements were taken both in the pulse and continuous modes of a substrate flowing through a column with an immobilized biocatalyst. The linear measurement ranges for galactose-containing carbohydrates concentrations were determined.

  5. Sol gel based fiber optic sensor for blook pH measurement

    International Nuclear Information System (INIS)

    Grant, S. A.; Glass, R. S.

    1996-01-01

    This paper describes a fiber-optic pH sensor based upon sol-gel encapsulation of a self-referencing dye, seminaphthorhodamine-1 carboxylate (SNARF-1C). The simple sol-gel fabrication procedure and low coating leachability are ideal for encapsulation and immobilization of dye molecules onto the end of an optical fiber. A miniature bench-top fluorimeter system was developed for use with the optical fiber to obtain pH measurements. Linear and reproducible responses were obtained in human blood in the pH range 6.8 to 8.0, which encompasses the clinically-relevant range. Therefore, this sensor can be considered for in vivo use

  6. Quantitation of fumonisin B1 and B2 in feed using FMOC pre-column derivatization with HPLC and fluorescence detection.

    Science.gov (United States)

    Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L

    2017-11-01

    Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-08-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  8. A simple and robust approach to immobilization of antibody fragments.

    Science.gov (United States)

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column. Optimization of process variables

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.H.; Srivastava, P.; Ranjan, D. [Banaras Hindu Univ., Varanasi (India). Water Pollution Research Lab.; Talat, M. [Banaras Hindu Univ., Varanasi (India). Dept. of Biochemistry

    2009-06-15

    In the present study, continuous up-flow fixed-bed column study was carried out using immobilized dead biomass of Aeromonas hydrophila for the removal of Cr(VI) from aqueous solution. Different polymeric matrices were used to immobilized biomass and polysulfone-immobilized biomass has shown to give maximum removal. The sorption capacity of immobilized biomass for the removal of Cr(VI) evaluating the breakthrough curves obtained at different flow rate and bed height. A maximum of 78.58% Cr(VI) removal was obtained at bed height of 19 cm and flow rate of 2 mL/min. Bed depth service time model provides a good description of experimental results with high correlation coefficient (>0.996). An attempt has been made to investigate the individual as well as cumulative effect of the process variables and to optimize the process conditions for the maximum removal of chromium from water by two-level two-factor full-factorial central composite design with the help of Minitab {sup registered} version 15 statistical software. The predicted results are having a good agreement (R{sup 2}=98.19%) with the result obtained. Sorption-desorption studies revealed that polysulfone-immobilized biomass could be reused up to 11 cycles and bed was completely exhausted after 28 cycles. (orig.)

  11. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Khaleda, E-mail: kbanu@ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States); Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Shimura, Takayoshi [Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University (Japan); Sadeghi, Saman, E-mail: samsadeghi@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States)

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl{sub 4}, and the electrochemical reduction of HAuCl{sub 4} to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl{sub 4} along with FeCl{sub 3} and/or CuCl{sub 2}, the NCPF remained selective toward the electrochemical reduction of HAuCl{sub 4} into the metallic state. The chemical reduction of HAuCl{sub 4} into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes.

  12. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    International Nuclear Information System (INIS)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl 4 , and the electrochemical reduction of HAuCl 4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl 4 along with FeCl 3 and/or CuCl 2 , the NCPF remained selective toward the electrochemical reduction of HAuCl 4 into the metallic state. The chemical reduction of HAuCl 4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes

  13. Bioleaching of Primary Nickel Ore Using Acidithiobacillus ferrooxidans LR Cells Immobilized in Glass Beads

    Directory of Open Access Journals (Sweden)

    Ellen Cristine Giese

    2015-06-01

    Full Text Available Sulphide minerals are one of the most important sources of value metals. For several years, a large number of hydrometallurgical and biotechnological processes have been developed to leach low-grade sulphide ores and the conditions are well established. However, the management of microorganisms in the bioleaching process is not easy to handle. In this paper, the use of immobilized cells of Acidithiobacillus ferrooxidans LR in glass beads in bioleaching of primary nickel ore was evaluated. The column experiments inoculated with immobilized cells of A. ferrooxidans LR showed the same efficiency than the conventional method using free cells and is promising for application on a larger scale as it ensuring integrity and activity of biomining microorganisms and reduce process costs. DOI: http://dx.doi.org/10.17807/orbital.v7i2.698 

  14. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  15. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    Science.gov (United States)

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  16. Continuous glycerolysis in an immobilized enzyme packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    . In spite of optimal reaction conditions a complex heterogeneous reactant mixture with a glycerol in oil emulsion occurs. Hence, the movement of material from phase to phase as well as through the catalyst pores becomes important since it can influence the performance of the immobilized enzyme reactor...... and sunflower oil dissolved in a binary tert-butanol:tert-pentanol medium. Practical design-related issues such as required reaction time, enzyme capacity, expansion of the enzyme during wetting, and the effect of different column length-to-diameter ratios, fluid velocities and particle sizes of the enzymes...

  17. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  18. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine).

    Science.gov (United States)

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-09-15

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus

    International Nuclear Information System (INIS)

    Zakaria, Zainul Akmar; Zakaria, Zainoha; Surif, Salmijah; Ahmad, Wan Azlina

    2007-01-01

    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L -1 of Cr(VI) was reduced at a flow rate of 8.0 mL min -1 . The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment

  20. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Zainul Akmar; Zakaria, Zainoha [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Surif, Salmijah [Department of Environmental Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Ahmad, Wan Azlina [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)], E-mail: azlina@kimia.fs.utm.my

    2007-09-05

    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L{sup -1} of Cr(VI) was reduced at a flow rate of 8.0 mL min{sup -1}. The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment.

  1. Chromatographic properties PLOT multicapillary columns.

    Science.gov (United States)

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  3. C-MAC compared with direct laryngoscopy for intubation in patients with cervical spine immobilization: A manikin trial.

    Science.gov (United States)

    Smereka, Jacek; Ladny, Jerzy R; Naylor, Amanda; Ruetzler, Kurt; Szarpak, Lukasz

    2017-08-01

    The aim of this study was to compare C-MAC videolaryngoscopy with direct laryngoscopy for intubation in simulated cervical spine immobilization conditions. The study was designed as a prospective randomized crossover manikin trial. 70 paramedics with immobilization (Scenario A); manual inline cervical immobilization (Scenario B); cervical immobilization using cervical extraction collar (Scenario C). Scenario A: Nearly all participants performed successful intubations with both MAC and C-MAC on the first attempt (95.7% MAC vs. 100% C-MAC), with similar intubation times (16.5s MAC vs. 18s C-MAC). Scenario B: The results with C-MAC were significantly better than those with MAC (pimmobilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    Science.gov (United States)

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  5. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  6. Adiabatic packed column supercritical fluid chromatography using a dual-zone still-air column heater.

    Science.gov (United States)

    Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof

    2018-02-02

    An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    Directory of Open Access Journals (Sweden)

    Ambra Giannetti

    2015-04-01

    Full Text Available Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  8. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina

    2017-09-18

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  9. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina; Kim, Dooli; Katuri, Krishna; Saikaly, Pascal; Nunes, Suzana Pereira

    2017-01-01

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  10. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  11. Preservation of Bacillus pumilus PU4-2 xylanases by immobilization technique into pollard and cation addition

    Directory of Open Access Journals (Sweden)

    T Haryati

    2010-03-01

    Full Text Available Utilization of by-product from agriculture as alternative source of feedstuff has been widely practiced. However their usage is limited due to high fiber content and low nutrient digestibility. The use of specific hydrolizing enzymes, xylanases are gaining importance because of their wide application in various industrial sectors especially in bioconversion of hemicellulosic material. This experiment was done to evaluate the effect of cation addition and immobilization of enzyme into pollard on stability of B. pumilus xylanase. The enzyme extract was purified by precipitation with 75% ammonium sulphate. Four kinds of cation (Ca2+, Fe3+, Mg2+, Zn2+ were added to the purified enzyme, at concentration of 1m M and stored at 4 and 27˚C. For immobilization process, the optimum enzyme concentration that will be added to pollard has been evaluated by analysis of xylanase activity and their recovery. The specific activity of enzyme after precipitation increased 1.8 times, from 420.3 to 765.2 U/mg protein. All cations act as activator which relative activity become 130.6; 139.0; 103.8 and 163.5% respectively. Concentration of 0.5mM Ca2+ and Fe3+ were most able to keep xylanases activity stable at 4˚C. The optimum composition of enzymes and pollard was 1.5 ml for 5 gram of pollard with recovery of xylanases activity of 82.2%. In immobilized enzyme, the activity of enzyme without cation addition is higher than that with addition of Ca2+ and Fe3+. Activity of enzyme stored at 4˚C is more stable than that at 27˚C. Immobilized enzyme is more stable for storage, which lasted for 7 weeks at 27˚C and 12 weeks at 4˚C compared to liquid enzyme which lasted for only 7 days at 27˚C and 13 days at 4˚C.

  12. Green enzymatic production of glyceryl monoundecylenate using immobilized Candida antarctica lipase B.

    Science.gov (United States)

    Yadav, Manish G; Kavadia, Monali R; Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2017-11-26

    Enzymatic synthesis of glyceryl monoundecylenate (GMU) was performed using indigenously immobilized Candida anatarctica lipase B preparation (named as PyCal) using glycerol and undecylenic acid as substrates. The effect of molar ratio, enzyme load, reaction time, and organic solvent on the reaction conversion was determined. Both batch and continuous processes for GMU synthesis with shortened reaction time were developed. Under optimized batch reaction conditions such as 1:5 molar ratio of undecylenic acid and glycerol, 2 h of reaction time at 30% substrate concentration in tert-butyl alcohol, conversion of 82% in the absence of molecular sieve, and conversion of 93% in the presence of molecular sieve were achieved. Packed bed reactor studies resulted in high conversion of 86% in 10-min residence time. Characterization of formed GMU was performed by FTIR, MS/MS. Enzymatic process resulted in GMU as a predominant product in high yield and shorter reaction time periods with GMU content of 92% and DAG content of 8%. Optimized GMU synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of glycerol by the enzymatic route.

  13. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    Science.gov (United States)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  14. Limb immobilization and corticobasal syndrome.

    Science.gov (United States)

    Graff-Radford, Jonathan; Boeve, Bradley F; Drubach, Daniel A; Knopman, David S; Ahlskog, J Eric; Golden, Erin C; Drubach, Dina I; Petersen, Ronald C; Josephs, Keith A

    2012-12-01

    Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS. The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization. 10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery. 23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation.

    Science.gov (United States)

    Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang

    2018-04-01

    The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fiber-optic pH sensor for in-situ applications

    International Nuclear Information System (INIS)

    Michels, M.H.; Dureault, B.

    1992-01-01

    An evaluation of the feasibility of a fiber-optic pH sensor was carried out. The pH sensor is composed of an optode connected to the transmitter-receiver apparatus (Optolec H) through a 100 m-long fiber. Three diodes of carefully chosen wavelengths are located in the Optolec H and emit through a bundle of nine fibers to the end of the optode where the oncoming light is reflected on an immobilized pH-indicator-based spherical bead of resin and sent back for analysis to the Optolec H through a central fiber. The influence of ionic strength as well as precision, response time, and lifetime have been determined. This device is to be used for routine in-situ measurements in an underground laboratory devoted to studies in connection with nuclear waste repositories where harsh conditions are encountered for direct collection of waters and traditional post-determination with a pH-meter

  17. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  18. Hydrolysis of whey lactose by immobilized β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Marcela Panaro Mariotti

    2008-12-01

    Full Text Available Hydrolysis of whey lactose to glucose and galactose by immobilized galactosidase comes as an alternative to enlarge the possibilities of commercial use of this feedstock. To be applied at industrial scale, the process should be performed continuously .This work aimed to study the hydrolysis of whey lactose by an immobilized enzyme reactor. b-Galactosidase from Aspergillus oryzae was immobilized on silica and activity and stability were evaluated. The best immobilization results were attained by using glutaraldehyde as support's activator and enzyme stabilizer. The optimized enzyme proportion for immobilization was 15-20 mg g-1 of support. Treatments of whey were performed (microfiltration, thermal treatment and ultrafiltration, seeking the elimination of sludge, and the effects on operating the fixed bed reactor were evaluated. Ultrafiltration was the best treatment towards a proper substrate solution for feeding the reactor.A hidrólise de lactose de soro de leite, resultando em glicose e galactose, apresenta-se como uma alternativa para ampliar as possibilidades de uso comercial deste insumo. Para ser aplicado em escala industrial, o processo deve ser operado de modo contínuo. Reporta-se o estudo de um sistema objetivando hidrólise de lactose de soro de leite através de um reator com enzima imobilizada. b-Galactosidase de Aspergillus oryzae foi imobilizada em sílica, sendo avaliadas a estabilidade e atividade. Os melhores resultados de imobilização foram obtidos usando glutaraldeído como ativante do suporte e estabilizador da enzima. A proporção otimizada entre enzima e suporte foi 15-20 mg.g-1. Foram estudadas formas de tratamento do soro (microfiltração, tratamento térmico e ultrafiltração, objetivando eliminação de material suspenso, e avaliando os efeitos na operação de reator de leito fixo. A ultrafiltração foi o melhor tratamento, na busca de uma solução de substrato apropriada para o reator contínuo.

  19. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  20. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  1. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  2. A novel first aid stretcher for immobilization and transportation of spine injured patients.

    Science.gov (United States)

    Liu, Yan-Sheng; Feng, Ya-Ping; Xie, Jia-Xin; Luo, Zhuo-Jing; Shen, Cai-Hong; Niu, Fang; Zou, Jian; Tang, Shao-Feng; Hao, Jiang; Xu, Jia-Xiang; Xiao, Li-Ping; Xu, Xiao-Ming; Zhu, Hui

    2012-01-01

    Effective immobilization and transportation are vital to the life-saving acute medical care needed when treating critically injured people. However, the most common types of stretchers used today are wrought with problems that can lead to further medical complications, difficulty in employment and rescue, and ineffective transitions to hospital treatment. Here we report a novel first aid stretcher called the "emergency carpet", which solves these problems with a unique design for spine injured patients. Polyurethane composite material, obtained by a novel process of manually mixing isocyanate and additives, can be poured into a specially designed fabric bag and allowed to harden to form a rigid human-shaped stretcher. The effectiveness of the emergency carpet was examined in the pre-hospital management of victims with spinal fractures. Additionally, it was tested on flat ground and complex terrain as well as in the sea and air. We demonstrated that the emergency carpet can be assembled and solidified on the scene in 5 minutes, providing effective immobilization to the entire injured body. With the protection of the emergency carpet, none of the 20 patients, who were finally confirmed to have spinal column fracture or dislocation, had any neurological deterioration during transportation. Furthermore, the carpet can be handled and transported by multiple means under differing conditions, without compromising immobilization. Finally, the emergency carpet allows the critically injured patient to receive multiple examinations such as X-ray, CT, and MRI without being removed from the carpet. Our results demonstrate that the emergency carpet has ideal capabilities for immobilization, extrication, and transportation of the spine injured patients. Compared with other stretchers, it allows for better mobility, effective immobilization, remarkable conformity to the body, and various means for transportation. The emergency carpet is promising for its intrinsic advantages in

  3. A novel first aid stretcher for immobilization and transportation of spine injured patients.

    Directory of Open Access Journals (Sweden)

    Yan-Sheng Liu

    Full Text Available Effective immobilization and transportation are vital to the life-saving acute medical care needed when treating critically injured people. However, the most common types of stretchers used today are wrought with problems that can lead to further medical complications, difficulty in employment and rescue, and ineffective transitions to hospital treatment. Here we report a novel first aid stretcher called the "emergency carpet", which solves these problems with a unique design for spine injured patients. Polyurethane composite material, obtained by a novel process of manually mixing isocyanate and additives, can be poured into a specially designed fabric bag and allowed to harden to form a rigid human-shaped stretcher. The effectiveness of the emergency carpet was examined in the pre-hospital management of victims with spinal fractures. Additionally, it was tested on flat ground and complex terrain as well as in the sea and air. We demonstrated that the emergency carpet can be assembled and solidified on the scene in 5 minutes, providing effective immobilization to the entire injured body. With the protection of the emergency carpet, none of the 20 patients, who were finally confirmed to have spinal column fracture or dislocation, had any neurological deterioration during transportation. Furthermore, the carpet can be handled and transported by multiple means under differing conditions, without compromising immobilization. Finally, the emergency carpet allows the critically injured patient to receive multiple examinations such as X-ray, CT, and MRI without being removed from the carpet. Our results demonstrate that the emergency carpet has ideal capabilities for immobilization, extrication, and transportation of the spine injured patients. Compared with other stretchers, it allows for better mobility, effective immobilization, remarkable conformity to the body, and various means for transportation. The emergency carpet is promising for its

  4. Immobilization of industrial waste in cement–bentonite clay matrix

    Indian Academy of Sciences (India)

    Unknown

    Immobilization of industrial waste in cement–bentonite clay matrix. I B PLECAS* and S ... high structural integrity and minimizing the risk of escape by leaching. ..... Radioactive Waste Management and Nuclear Fuel Cycle 14. 195. Plecas I ...

  5. Production and immobilization of alpha amylase using biotechnology techniques for use in biological and medical applications

    International Nuclear Information System (INIS)

    Mobasher, E.E.F.

    2009-01-01

    The immobilized enzymes on polymeric supports are prepared for purpose of repeated use and the possibilities of continuous reaction system. One of the most important properties is the stability of proteins when they are used in some medical and industrial applications. The immobilization of the enzymes improves this property as well as many other properties.In this study, alpha amylase was purified and immobilized onto two different polymers. α- amylase was used in this study for its biological and industrial applications. It is used in paper textile, pharmaceutical applications, food, and detergent industries. α- amylase was found in plants, animals, and microorganisms. Purification of α-amylase from microorganisms is the main source of α-amylase because it was excreted from many bacteria and fungi. In this study, α-amylase was purified from Aspergillus niger. Fractional precipitation of the α- amylase produced by A. niger with 80% ammonium sulphate saturation. The crude enzyme was applied on column chromatography packed with Sephadex G 100 for purification. The active eluents containing partially purified enzyme were collected for further investigation. The specific activity of α-amylase was (34.9 U/mg) which was corresponding to 2.09 fold purification for the tested organism. The purified α-amylase was immobilized by entrapment method into two types of polymers. One of them was natural consist of chitosan and alginate. The other polymer was synthetic consist of N- isopropyl acrylamide and alginate. The temperature optimum and thermal inactivation showed a severe loss in the activity of the free enzymes, while the temperature profile of the immobilized enzymes was much broader at higher temperatures demonstrating the effectiveness of the polymer protecting the enzymes. Also, the immobilized enzymes (natural polymer and synthetic polymer) showed higher thermal stability. Optimum ph and stability showed that immobilization of enzymes resulted in more

  6. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber.

    Science.gov (United States)

    Muri, Harald Ian; Bano, Andon; Hjelme, Dag Roar

    2018-01-11

    We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR) signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI), which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label-free biosensing. These

  7. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber

    Directory of Open Access Journals (Sweden)

    Harald Ian Muri

    2018-01-01

    Full Text Available We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI, which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label

  8. Tapered silicon core fibers with nano-spikes for optical coupling via spliced silica fibers

    OpenAIRE

    Ren, Haonan; Aktas, Ozan; Franz, Yohann; Runge, Antoine; Hawkins, Thomas A.; Ballato, John; Gibson, Ursula; Peacock, Anna

    2017-01-01

    Abstract: Reported here is the fabrication of tapered silicon core fibers possessing a nanospike input that facilitates their seamless splicing to conventional single mode fibers. A proofof-concept 30 µm cladding diameter fiber-based device is demonstrated with nano-spike coupling and propagation losses below 4 dB and 2 dB/cm, respectively. Finite-elementmethod-based simulations show that the nano-spike coupling losses could be reduced to below 1 dB by decreasing the cladding diameters down t...

  9. Studies on the preparation of immobilized enzymes by radio-polymerization, 10. Preparation of. beta. -galactosidase and its utilization for the continuous determination of lactose. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Amarakone, S P [Ceylon Inst. of Scientific and Industrial Research, Colombo (Sri Lanka); Hayashi, Toru; Kawashima, Koji

    1983-03-01

    ..beta..-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3% lactose in the sample.

  10. Conversion of radioactive ferrocyanide compounds to immobile glasses

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.

    1977-01-01

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B 2 O 3 ) or (b) silica (SiO 2 ) and lime (CaO). 7 claims

  11. Enhanced broadband upconversion emission and 23 dB optical gain at 780 nm in Tm3+/Nd3+ codoped optical fiber

    International Nuclear Information System (INIS)

    Fan, Weiwei; Chen, Shuyue; Htein, Lin; Han, Won-Taek

    2015-01-01

    Maximum gain of 23 dB at 780 nm and a broadband optical gain with full width at half maximum (FWHM) of 88 nm (761–849 nm) were obtained from the Tm 3+ /Nd 3+ codoped fiber upon pumping at 1550 nm. The enhancement of the upconversion emission stretching from 730 to 970 nm was observed in the Tm 3+ /Nd 3+ codoped fiber due to the energy transfer from Tm 3+ to Nd 3+ ions. - Highlights: • We fabricated the Tm 3+ /Nd 3+ codoped silica based fiber. • The broadband upconversion emission was observed with 1550 nm pumping. • Maximum gain of 23 dB was observed at 780 nm from the Tm 3+ /Nd 3+ codoped fiber. • The gain bandwidth of the upconversion emission was largely increased due to energy transfer process

  12. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bottenus, Courtney LH [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-22

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.

  13. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  14. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  15. Effects of water content on reactive transport of Sr in Chernobyl sand columns

    International Nuclear Information System (INIS)

    Szenknect, S.; Dewiere, L.; Ardois, C.; Gaudet, J.P.

    2005-01-01

    Full text of publication follows: While transport of non-reactive solutes has been studied extensively in unsaturated porous media, much less is known about the factors that control the transport of sorbing solutes in unsaturated conditions. Three laboratory techniques were used to analyze the transport of Sr in the aeolian sand from Chernobyl Pilot Site [1] in both saturated and unsaturated flow conditions. Batch experiments were performed to study the chemical equilibrium state of the soil/solution system. Stirred flow-through reactor (SFTR) experiments were performed to study the kinetics and reversibility of sorption reactions at the surface of solid particles. Column experiments were also performed in saturated and unsaturated steady flow conditions. Experimental data pointed out a non-linear, instantaneous and reversible sorption process of Sr. A suitable cation-exchange model was used to describe the solute/soil reaction. The former model was coupled with transport models to describe behavior of Sr in saturated [2] and unsaturated flow conditions. Transport properties of sand packed columns have been determined with an inert tracer (HTO). BTCs obtained under saturated conditions exhibit a small amount of dispersion compared to those obtained under unsaturated conditions. Classical advection-dispersion model described successfully saturated tritium breakthrough curves (BTCs), whereas a mobile-immobile model (MIM) was required to described asymmetrical unsaturated BTCs. The MIM assumes that the porous medium contains a mobile water phase in which convective-dispersive transport occurs, and a immobile water phase with which solutes can exchange with a first order kinetic. In our experiments, transport by advection in the mobile phase is the predominant process whatever the flow conditions and mass transfer rate between the mobile and immobile regions is the predominant process for broadening the BTCs. Since dispersion is blurred by mass transfer resistance, the

  16. Detection of anti-tetanus toxoid antibody on modified polyacrylonitrile fibers.

    Science.gov (United States)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Zainul Abid, C K V; Kumar, Manoj; Singh, Harpal

    2010-10-15

    Accurate determination of concentration of immunoglobulin (IgG) to tetanus toxoid is important in order to evaluate the immunogenicity of tetanus toxoid vaccines, immune competence in individual patients and to measure the prevalence of immunity in populations. Surface modified polyacrylonitrile (PAN) fibers were evaluated as a matrix to develop highly sensitive method for the detection of anti-tetanus antibody in a sandwich ELISA format. In the proposed method tetanus toxoid immobilized on modified PAN fibers was used to detect anti-tetanus antibody (raised in horse hence represented as horse anti-tetanus toxoid or HAT-Ab) with horse raddish peroxidase enzyme conjugated with Rabbit anti-Horse IgG (RAH-HRP) as the label within 2.5h. A sigmoidal pattern for the detection of different concentration of antibody ranging from 1.0 to 0.0001 IU mL(-1) was validated. The immunoassay recorded a very high sensitivity as concentration as low as 0.0005 IU mL(-1) of HAT-Ab was detected. The intra- and inter-assay precision for 3 parallel measurements of 0.01 and for 0.001 IU mL(-1) of antibody varied from 5.4% to 11% and 5.7% to 20% respectively. PAN fibers were also used to qualitatively access the presence of different level of anti-tetanus antibody spiked in human blood. Seroepidemiological studies to measure the immunity against tetanus were conducted with twenty-five human beings belonging to various age groups using modified PAN-ELISA. The sensitivity, specificity and the reproducibility of the developed immunoassay indicate the potential application of modified PAN fibers in the field of immunodiagnostics. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2

    Directory of Open Access Journals (Sweden)

    Elodie De Bruyckere

    2018-04-01

    Full Text Available Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs. Moreover, a dramatic decline of long-term potentiation (LTP of the dentate gyrus-CA3 (DG-CA3 projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.

  18. Cervical column morphology and craniofacial profiles in monozygotic twins.

    Science.gov (United States)

    Sonnesen, Liselotte; Pallisgaard, Carsten; Kjaer, Inger

    2008-02-01

    Previous studies have described the relationships between cervical column morphology and craniofacial morphology. The aims of the present study were to describe cervical column morphology in 38 pairs of adult monozygotic (MZ) twins, and compare craniofacial morphology in twins with fusions with craniofacial morphology in twins without fusion. Visual assessment of cervical column morphology and cephalometric measurements of craniofacial morphology were performed on profile radiographs. In the cervical column, fusion between corpora of the second and third vertebrae was registered as fusion. In the twin group, 8 twin pairs had fusion of the cervical column in both individuals within the pair (sub-group A), 25 pairs had no fusions (subgroup B), and in 5 pairs, cervical column morphology was different within the pair (subgroup C), as one twin had fusion and the other did not. Comparison of craniofacial profiles showed a tendency to increased jaw retrognathia, larger cranial base angle, and larger mandibular inclination in subgroup A than in subgroup B. The same tendency was observed within subgroup C between the individual twins with fusion compared with those without fusion. These results confirm that cervical fusions and craniofacial morphology may be interrelated in twins when analysed on profile radiographs. The study also documents that differences in cervical column morphology can occur in individuals within a pair of MZ twins. It illustrates that differences in craniofacial morphology between individuals within a pair of MZ twins can be associated with cervical fusion.

  19. Life-threatening urethral hemorrhage after placement of a Foley catheter in a patient with uroseptic disseminated intravascular coagulation due to chronic urinary retention induced by untreated benign prostatic hyperplasia.

    Science.gov (United States)

    Ikegami, Yukihiro; Yoshida, Keisuke; Imaizumi, Tsuyoshi; Isosu, Tsuyoshi; Kurosawa, Shin; Murakawa, Masahiro

    2016-10-01

    A 77-year-old man with severe septic disseminated intravascular coagulation following urinary infection was transported to our hospital. He had developed urinary retention induced by untreated prostatic hyperplasia. Immediate drainage with a Foley catheter was successfully carried out, but the hematuria progressed to life-threatening hemorrhage. Complete hemostasis was impossible by surgical treatment because the tissue around the prostatic urethra was very fragile and hemorrhagic. Organized treatments (continuous hemodiafiltration combined with polymyxin-B immobilized fiber column hemoperfusion and systemic treatment with antibiotics and coagulation factors) were commenced soon after the operation. The patient eventually recovered from the septic disseminated intravascular coagulation. This case report illustrates the risk of placement of Foley catheters in patients with severe septic disseminated intravascular coagulation.

  20. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  1. Assessing attitudes toward spinal immobilization.

    Science.gov (United States)

    Bouland, Andrew J; Jenkins, J Lee; Levy, Matthew J

    2013-10-01

    Prospective studies have improved knowledge of prehospital spinal immobilization. The opinion of Emergency Medical Services (EMS) providers regarding spinal immobilization is unknown, as is their knowledge of recent research advances. To examine the attitudes, knowledge, and comfort of prehospital and Emergency Department (ED) EMS providers regarding spinal immobilization performed under a non-selective protocol. An online survey was conducted from May to July of 2011. Participants were drawn from the Howard County Department of Fire and Rescue Services and the Howard County General Hospital ED. The survey included multiple choice questions and responses on a modified Likert scale. Correlation analysis and descriptive data were used to analyze results. Comfort using the Kendrick Extrication Device was low among ED providers. Experienced providers were more likely to indicate comfort using this device. Respondents often believed that spinal immobilization is appropriate in the management of penetrating trauma to the chest and abdomen. Reported use of padding decreased along with the frequency with which providers practice and encounter immobilized patients. Respondents often indicated that they perform spinal immobilization due solely to mechanism of injury. Providers who feel as if spinal immobilization is often performed unnecessarily were more likely to agree that immobilization causes an unnecessary delay in patient care. The results demonstrate the need for improved EMS education in the use of the Kendrick Extrication Device, backboard padding, and spinal immobilization in the management of penetrating trauma. The attitudes highlighted in this study are relevant to the implementation of a selective spinal immobilization protocol. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  3. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    Science.gov (United States)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  4. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles.

    Science.gov (United States)

    Deepak, Venkataraman; Pandian, Suresh babu Ram Kumar; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2009-12-01

    In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100-125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 degrees C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also.

  5. Cost-effective immobilization for whole brain radiation therapy.

    Science.gov (United States)

    Rubinstein, Ashley E; Ingram, W Scott; Anderson, Brian M; Gay, Skylar S; Fave, Xenia J; Ger, Rachel B; McCarroll, Rachel E; Owens, Constance A; Netherton, Tucker J; Kisling, Kelly D; Court, Laurence E; Yang, Jinzhong; Li, Yuting; Lee, Joonsang; Mackin, Dennis S; Cardenas, Carlos E

    2017-07-01

    To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    Science.gov (United States)

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3

  7. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  8. Preparation of Mg(OH)_2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing

    2016-01-01

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH)_2 crystal for Mg(OH)_2 pigments. • Uniform coverage of nanosized Mg(OH)_2 pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH)_2 pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH)_2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)_2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)_2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)_2 crystals and affect the formation of lamella-like Mg(OH)_2 crystals. The cellulose fiber grafted with modified Mg(OH)_2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  9. Immobilization of cellulase by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  10. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wufeng; Zhang, Xiazhi; Wu, Keke; Liu, Xiaoyan; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2016-12-01

    A simple but straightforward approach was reported to prepare fiber mats modified with fibronectin (Fn) protein for endothelial cells activity study. Based on the self-polymerization and strong adhesion feature of dopamine, poly L-Lactic acid (PLLA) fibers mat was modified via simply immersing them into dopamine solution for 16 h. Subsequently, Fn was immobilized onto the fiber mats surface by the coupling reactive polydopamine (PDA) layer and Fn. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical compositions of fiber mats surface, which confirmed the successful immobilization of PDA and Fn molecules on the fiber surface. Scanning electronic microscopy (SEM) was used to observe the surface morphology changes after modification with PDA and Fn. The data of water contact angle showed that the hydrophilicity of the fiber mats was improved after surface modification. The data of in vitro cell culture proved that the PDA and Fn modified surface significantly enhanced the adhesion, proliferation and cell activity of endothelial cells on the fiber mats. And the release of tumor necrosis factor-α (TNF-α) by endothelial cells on the modified surface was suppressed compared to that on culture plate and PLLA film at 2 and 4 days, while the secretion of interleukin-1β (IL-1β) was increased compared to that on culture plate and PLLA film at 2 days. - Highlights: • Fibronectin (Fn) was grafted on PLLA fiber surface mediated by polydopamine coating. • Fn modified PLLA fiber enhanced the adhesion, proliferation of endothelial cells. • Fn and polydopamine modified PLLA fiber could adjust the release of inflammatory factor.

  11. Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Awsiuk, K., E-mail: kamil.awsiuk@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Rysz, J. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Petrou, P. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece); Budkowski, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Bernasik, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059 (Poland); Kakabakos, S. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece); Marzec, M.M. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059 (Poland); Raptis, I. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR “Demokritos”, End Patriarchou Gregoriou Str., Aghia Paraskevi 15310 (Greece)

    2014-01-30

    To immobilize effectively oligonucleotide probes on SiO{sub 2} modified with (3-aminopropyl)triethoxysilane, four procedures based on streptavidin–biotin system are compared with Atomic Force Microscopy, Angle-Resolved X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. The first approach involves: adsorption of biotinylated Bovine Serum Albumin, blocking free surface sites with BSA, binding of streptavidin and biotinylated oligonucleotide (b-oligo). Final steps are exchanged in the second procedure with immobilization of preformed streptavidin–b-oligo conjugate. The third approach consists of streptavidin adsorption, blocking with BSA and b-oligo binding. Finally, streptavidin–b-oligo conjugate is immobilized directly within the fourth method. Surface coverage with biomolecules, determined from ARXPS, accords with average AFM height, and is anti-correlated with the intensity of Si+ ions. Higher biomolecular coverage was achieved during the last steps of the first (2.45(±0.38) mg/m{sup 2}) and second (1.31(±0.22) mg/m{sup 2}) approach, as compared to lower surface density resulting from the third (0.58(±0.20) mg/m{sup 2}) and fourth (0.41(±0.11) mg/m{sup 2}) method. Phosphorus atomic concentration indicates effectiveness of oligonucleotide immobilization. Secondary ions intensities, characteristic for oligonucleotides, streptavidin, BSA, and proteins, allow additional insight into overlayer composition. These measurements verify the ARXPS results and show the superiority of the first two immobilization approaches in terms of streptavidin and oligonucleotide density achieved onto the surface.

  12. Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques

    International Nuclear Information System (INIS)

    Awsiuk, K.; Rysz, J.; Petrou, P.; Budkowski, A.; Bernasik, A.; Kakabakos, S.; Marzec, M.M.; Raptis, I.

    2014-01-01

    To immobilize effectively oligonucleotide probes on SiO 2 modified with (3-aminopropyl)triethoxysilane, four procedures based on streptavidin–biotin system are compared with Atomic Force Microscopy, Angle-Resolved X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. The first approach involves: adsorption of biotinylated Bovine Serum Albumin, blocking free surface sites with BSA, binding of streptavidin and biotinylated oligonucleotide (b-oligo). Final steps are exchanged in the second procedure with immobilization of preformed streptavidin–b-oligo conjugate. The third approach consists of streptavidin adsorption, blocking with BSA and b-oligo binding. Finally, streptavidin–b-oligo conjugate is immobilized directly within the fourth method. Surface coverage with biomolecules, determined from ARXPS, accords with average AFM height, and is anti-correlated with the intensity of Si+ ions. Higher biomolecular coverage was achieved during the last steps of the first (2.45(±0.38) mg/m 2 ) and second (1.31(±0.22) mg/m 2 ) approach, as compared to lower surface density resulting from the third (0.58(±0.20) mg/m 2 ) and fourth (0.41(±0.11) mg/m 2 ) method. Phosphorus atomic concentration indicates effectiveness of oligonucleotide immobilization. Secondary ions intensities, characteristic for oligonucleotides, streptavidin, BSA, and proteins, allow additional insight into overlayer composition. These measurements verify the ARXPS results and show the superiority of the first two immobilization approaches in terms of streptavidin and oligonucleotide density achieved onto the surface.

  13. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Immobilized waste leaching

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    The main mechanism by which the immobilized radioactive materials can return to biosphere is the leaching due to the intrusion of water into the repositories. Some mathematical models and experiments utilized to evaluate the leaching rates in different immobilization matrices are described. (author) [pt

  15. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Shi Fenghui; Zhang Baoyan; Li Min; Zhang Zuoguang

    2011-01-01

    This paper aims to study effect of sizing on surface properties of carbon fiber and the fiber/epoxy interfacial adhesion by comparing sized and desized T300B and T700SC carbon fibers. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the desized carbon fibers present less concentration of activated carbon, especially those connect with the hydroxyl and epoxy groups. Inverse gas chromatography (IGC) analysis reveals that the desized carbon fibers have larger dispersive surface energy γ S D and smaller polar component γ S SP than the commercial sized ones. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the desized carbon fiber/epoxy is higher than those of the T300B and T700SC. Variations of the IFSS for both the sized and desized carbon fibers correspond to γ S D /γ S tendency of the fiber surface, however the work of adhesion does not reveal close correlation with IFSS trend for different fiber/epoxy systems.

  16. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-01-01

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  17. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  18. Activities of lectins and their immobilized derivatives in detergent solutions. Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins.

    Science.gov (United States)

    Lotan, R; Beattie, G; Hubbell, W; Nicolson, G L

    1977-05-03

    The effects of several commonly used detergents on the saccharide-binding activities of lectins were investigated using lectin-mediated agglutination of formalin-fixed erythrocytes and affinity chromatography of glycoproteins on columns of lectins immobilized on polyacrylic hydrazide-Sepharose. In the hemagglutination assays, Ricinus communis I (RCA1) and II (RCAII), concanavalin A (Con A), and the agglutinins from peanut (PNA), soybean (SBA), wheat germ (WGA), and Limulus polyphemus (LPA) were tested with several concentrations of switterionic, cationic, anionic, and nonionic detergents. It was found that increasing detergent concentrations eventually affected hemagglutination titers in both test and control samples, and the highest detergent concentrations not affecting lectin hemagglutinating activities were determined. The effects of detergents on specific binding of [3H]fetuin and asialo[3H]fetuin to and elution from columns of immobilized lectins were less severe when compared with lectins in solution, suggesting that the lectins are stabilized by covalent attachment to agarose beads. Nonionic detergents did not affect the binding efficiency of the immobilized lectins tested at concentrations used for membrane solubilization while cationic and zwitterionic detergents caused significant inhibition of Con A- and SBA-Sepharose activities. In sodium deoxycholate (greater than 1%) only RCAI-Sepharose retained its activity, whereas the activities of the other lectins were reduced dramatically. Low concentrations of sodium dodecyl sulfate (0.05%) inhibited only the activity of immobilized SBA, but at higher concentration (0.1%) and prolonged periods of incubation (16 h, 23 degrees C) most of the lectins were inactivated. These data are compared with previous reports on the use of detergents in lectin affinity chromatography, and the conditions for the optimal use of detergents are detailed.

  19. Retrieve of atmospheric SO2 and O3 columns in the UV region using mobile DOAS

    International Nuclear Information System (INIS)

    Galicia, R.; La Rosa, J. de la; Stolik, S.

    2012-01-01

    We present the use of a passive DOAS system to retrieve SO2 and O3 columns emitted by industrial chimneys. It works with software built in LabVIEW and running with a PC linked to mini spectrometer and GPS. The system uses the sun light as light source, a telescope a fiber optic, a mini-spectrometer and a GPS. The spectrometer and the GPS are linked to a PC where the system is controlled and where all data are processed to retrieve the SO2 and O3 slant columns. (Author)

  20. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  1. Effects of immobilization and whole-body vibration on rat serum Type I collagen turnover.

    Science.gov (United States)

    Dönmez, Gürhan; Doral, Mahmut Nedim; Suljevic, Şenay; Sargon, Mustafa Fevzi; Bilgili, Hasan; Demirel, Haydar Ali

    2016-08-01

    The aim of this study was to investigate the effects of short-term, high-magnitude whole-body vibration (WBV) on serum type I collagen turnover in immobilized rats. Thirty Wistar albino rats were randomly divided into the following 5 groups: immobilization (IS), immobilization + remobilization (IR), immobilization + WBV (IV), control (C), and WBV control (CV). Immobilization was achieved by casting from the crista iliaca anterior superior to the lower part of the foot for 2 weeks. The applied WBV protocol involved a frequency of 45 Hz and amplitude of 3 mm for 7 days starting a day after the end of the immobilization period. Serum type I collagen turnover markers were measured by using ELISA kits. Serum NH2-terminal propeptide of type I collagen (PINP) levels were significantly lower in the immobilization groups (p immobilization groups. Similarly, serum COOH-terminal telopeptide of type I collagen (CTX) levels were higher in the WBV controls than their own controls (p Immobilization led to deterioration of tendon tissue, as observed by histopathological analysis with a transmission electron microscope. Although 1 week of WBV had a positive effect on type I collagen turnover in controls, it is not an efficient method for repairing tissue damage in the early stage following immobilization. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  2. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    Science.gov (United States)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  3. The central column structure in SPHEX

    International Nuclear Information System (INIS)

    Duck, R.C.; French, P.A.; Browning, P.K.; Cunningham, G.; Gee, S.J.; al-Karkhy, A.; Martin, R.; Rusbridge, M.G.

    1994-01-01

    SPHEX is a gun injected spheromak in which a magnetised Marshall gun generates and maintains an approximately axisymmetric toroidal plasma within a topologically spherical flux conserving vessel. The central column has been defined as a region of high mean floating potential, f > up to ∼ 150 V, aligned with the geometric axis of the device. It has been suggested that this region corresponds to the open magnetic flux which is connected directly to the central electrode of the gun and links the toroidal annulus (in which f > ∼ 0 V). Poynting vector measurements have shown that the power required to drive toroidal current in the annulus is transmitted out of the column by the coherent 20 kHz mode which pervades the plasma. Measurements of the MHD dynamo in the column indicate an 'antidynamo' electric field due to correlated fluctuations in v and B at the 20 kHz mode frequency which is consistent with the time-averaged Ohm's Law. On shorting the gun electrodes, the density in the column region decays rapidly leaving a 'hole' of radius R c ∼ 7 cm. This agrees with the estimated dimension of the open flux from mean internal B measurements and axisymmetric force-free equilibrium modelling, but is considerably smaller than the radius of ∼ 13 cm inferred from the time-averaged potential. In standard operating conditions the gun delivers a current of I G ∼ 60 kA at V G ∼ 500 V for ∼ 1 ms, driving a toroidal current of I t ∼ 60 kA. Ultimately we wish to understand the mechanism which drives toroidal current in the annulus; the central column is of interest because of the crucial role it plays in this process. (author) 8 refs., 6 figs

  4. Experimental study on cesium immobilization in struvite structures.

    Science.gov (United States)

    Wagh, Arun S; Sayenko, S Y; Shkuropatenko, V A; Tarasov, R V; Dykiy, M P; Svitlychniy, Y O; Virych, V D; Ulybkina, Е А

    2016-01-25

    Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  6. DENTAL SPLINTS: TYPES AND TIME OF IMMOBILIZATION POST TOOTH AVULSION

    Directory of Open Access Journals (Sweden)

    Samuel Rodrigo de Andrade VERAS

    2017-12-01

    Full Text Available Avulsion is defined as the complete displacement of the tooth out of its socket with disruption of the fibers of periodontal ligament, remaining some of them adhered to the cementum and the rest to the alveolar bone. This condition is more frequent in young permanent teeth, because the root development is still incomplete. Splints are used to immobilize traumatized teeth that suffered damage in their structures of support, preventing their constant movement. The literature has shown that after replantation, it is necessary to use splints in order to immobilize the teeth during the initial period, which is essential for the repair of periodontal ligament; the use of semi-rigid splint is more indicated than the rigid one, and long periods of splinting showed that substitutive resorption or ankylosis is an expected complication. Thus, the aim of this review is to describe the different types of splints; their time of permanency, and its influence on the process of healing and reparation on the occurrence of substitutive resorption or ankylosis. It is very important to keep gathering knowledge about this content, since it has been proved that the approaches and the protocols keep changing over time.

  7. Membranes suited for immobilizing biomolecules

    NARCIS (Netherlands)

    2009-01-01

    The present invention relates to flow-through membranes suitable for the immobilization of biomols., methods for the prepn. of such membranes and the use of such membranes for the immobilization of biomols. and subsequent detection of immobilized biomols. The invention concerns a flow-through

  8. Immobilization of Fab' fragments onto substrate surfaces: A survey of methods and applications.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2015-08-15

    Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  10. A novel and sensitive method for determining vitamin B3 and B7 by pre-column derivatization and high-performance liquid chromatography method with fluorescence detection.

    Directory of Open Access Journals (Sweden)

    Baolei Fan

    Full Text Available A new labeling reagent for vitamin analysis, 2-amino-10-ethyl acridine ketone (AEAO, has been synthesized and successfully applied to the analysis of vitamin B3 and vitamin B7 in different tea samples. The reaction of AEAO with vitamins could proceed easily and quickly in the presence of 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride (EDC as condensing reagent within 45 min. The derivatives exhibited excellent fluorescence property with excitation and emission wavelengths of 290 nm and 430 nm, respectively. Response surface methodology (RSM was applied to the optimization of pre-column derivatization. Solid phase extraction with HLB cartridges was used for the extraction and purification of water-soluble vitamins in tea samples. The LODs for vitamin B3 and vitamin B7 were 2.56 and 2.22 ng mL-1, respectively. The proposed method was successfully applied to the analysis of vitamin B3 and vitamin B7 in different tea samples. The study provided a highly sensitive method for accurate analysis of trace vitamins from natural products.

  11. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    International Nuclear Information System (INIS)

    Cação-Benedini, L.O.; Ribeiro, P.G.; Prado, C.M.; Chesca, D.L.; Mattiello-Sverzut, A.C.

    2014-01-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres

  12. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cação-Benedini, L.O.; Ribeiro, P.G. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Prado, C.M.; Chesca, D.L. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattiello-Sverzut, A.C. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  13. Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Choi, Han Nim; Cho, Sung-Hee; Park, Yu-Jin; Lee, Dai Woon; Lee, Won-Yong

    2005-01-01

    The sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy) 3 2+ ] electrogenerated chemiluminescence (ECL) sensor was applied to the reversed-phase high-performance liquid chromatography (HPLC) determination of phenothiazine derivatives (promazine, chlorpromazine, triflupromazine, thioridazine, and trifluoperazine) and erythromycin in human urine samples. In this method, Ru(bpy) 3 2+ was immobilized in sol-gel-derived titania (TiO 2 )-Nafion nanocomposite films coated on a dual platinum electrode. This method eliminates an extra pump needed for the delivery of Ru(bpy) 3 2+ reagent into a reaction/observation zone in front of photomultiplier tube because the immobilized-Ru(bpy) 3 2+ is recycled on the electrode surface by an applied potential at +1.3 V versus Ag/AgCl (3 M NaCl) reference electrode. The resulting analytical performances such as detection limit, working range, sensitivity, and measurement precision were slightly worse than those obtained with the conventional post-column Ru(bpy) 3 2+ addition approach. The lack of significant interferences and the low detection limits for phenothiazine derivatives and erythromycin indicate that the proposed HPLC-Ru(bpy) 3 2+ ECL detection method is suitable for the determination of those compounds in biological fluids

  14. Preliminary study on the dye removal efficacy of immobilized marine ...

    African Journals Online (AJOL)

    Preliminary study on the dye removal efficacy of immobilized marine and freshwater microalgal beads from textile wastewater. SD Kumar, P Santhanam, R Nandakumar, S Anath, B Balaji Prasath, A Shenbaga Devi, S Jeyanthi, T Jayalakshima, P Ananthi ...

  15. Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2016-12-01

    Full Text Available This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS columns and conventional reinforced concrete (RC columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

  16. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  17. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  18. Biomechanical Analysis of Cuboid Osteotomy Lateral Column Lengthening for Stage II B Adult-Acquired Flatfoot Deformity: A Cadaveric Study.

    Science.gov (United States)

    Zhou, Haichao; Ren, Haoyang; Li, Chunguang; Xia, Jiang; Yu, Guangrong; Yang, Yunfeng

    2017-01-01

    Purpose . To investigate the effect of cuboid osteotomy lateral column lengthening (LCL) for the correction of stage II B adult-acquired flatfoot deformity in cadaver. Methods . Six cadaver specimens were loaded to 350 N. Flatfoot models were established and each was evaluated radiographically and pedobarographically in the following conditions: (1) intact foot, (2) flatfoot, and (3) cuboid osteotomy LCL (2, 3, 4, and 5 mm). Results . Compared with the flatfoot model, the LCLs showed significant correction of talonavicular coverage on anteroposterior radiographs and talus-first metatarsal angle on both anteroposterior and lateral radiographs ( p stage II B adult-acquired flatfoot deformity with a 3 mm lengthening in cadavers.

  19. Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP

    Directory of Open Access Journals (Sweden)

    Pawel Wysmulski

    2017-09-01

    Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.

  20. Modeling Stone Columns.

    Science.gov (United States)

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  1. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    Science.gov (United States)

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Biomechanical Analysis of Cuboid Osteotomy Lateral Column Lengthening for Stage II B Adult-Acquired Flatfoot Deformity: A Cadaveric Study

    OpenAIRE

    Zhou, Haichao; Ren, Haoyang; Li, Chunguang; Xia, Jiang; Yu, Guangrong; Yang, Yunfeng

    2017-01-01

    Purpose. To investigate the effect of cuboid osteotomy lateral column lengthening (LCL) for the correction of stage II B adult-acquired flatfoot deformity in cadaver. Methods. Six cadaver specimens were loaded to 350?N. Flatfoot models were established and each was evaluated radiographically and pedobarographically in the following conditions: (1) intact foot, (2) flatfoot, and (3) cuboid osteotomy LCL (2, 3, 4, and 5?mm). Results. Compared with the flatfoot model, the LCLs showed significant...

  4. Towards biochips using microstructured optical fiber sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Hoiby, Poul Erik; Jensen, Jesper Bo

    2006-01-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows...... the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing...... layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique...

  5. Investigation for preparation and production of radio-kit Vitamin B12 with med-grade (part 1)

    International Nuclear Information System (INIS)

    Ghafourian, H.; Mazaheri Tehrani, M.; Ezadyar, A.; Shams Rafiee, M.; Nazari, A.

    2005-01-01

    Labelled vitamins B 12 with 58 Co is one of the important ingredients of the diagnostic Kits for diagnosis of patients affected by anemia. The insufficient absorption of vitamin B 12 is one of the causes of anemia in humans and one of the accurate methods for measurement of the absorbed vitamin B 12 is application of labelled vitamin B 12 with the cobalt-58 radioisotope.The isolation and purifications of the labelled vitamin B 12 from fermentation medium of streptomyces olivaceus is an essential process for kit preparation. The first experiment in this research was isolation and purification of B 12 using different resins with the solution of cyanocobalamin containing cobalt-59, produced by this bacterium. After investigation and pre-feasibility experiments two non-polar resins XAD-4 and XAD-7 were selected. The results that obtained from different experiments on XAD-4 and XAD-7 showed that XAD-4 is much better than the latter one due to immobilization of cobalamin. The isolation of vitamin B1 2 on XAD-4 column was achieved by different solvents such as methanol, ethanol and isopropanol in different concentration ratios. The results of Thin Layer Chromatography showed that the best eluant solutions for desorbtion of cobalamin from XAD-4 column are solvents such as methanol,ethanol and isopropanol with the maximum concentration of vitamin B 12 in the concentration ranges of 25 up to 50 per-cent, 30 up to 40 per-cent and 10 per-cent, respectively. Cobalamin was collected in aceton and crystallized in low temperature

  6. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    Science.gov (United States)

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  7. Ethanol production in an immobilized-cell column reactor: The effects of micro-aeration and dual feeds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K

    1988-01-01

    Immobilized Saccharomyces cerevesiae cells adsorbed onto wood chips in a packed-bed bioreactor were used for ethanol fermentation from glucose solution. In aerobic and anaerobic batch experiments, an increase in initial glucose concentration resulted in a reduction of the specific growth rate, but no apparent glucose inhibition was found at initial glucose concentrations of ca <120 g/l. Since it is inevitable to use high substrate concentration to obtain high product concentration, experiments were performed in an immobilized-cell reactor (ICR) to examine any improvements achieved by a dual-feed mode over a continuous ICR system. The dual scheme can provide the same total amount of substrate while keeping the maximum substrate concentration to which the cells are exposed to about half of that in the single-feed case. In the dual-feed ICR, the ethanol production rate was 15% higher than that of the single-fed ICR. Experiments in skewed and vertical ICRs were performed to observe the difference in CO{sub 2} bubble removal; the bubbles were smoothly released in the skewed ICR compared to significant CO{sub 2} accumulation in the vertical ICR, and a biomass buildup on the wood surface was also observed. The experimental results indicate that trace amounts of dissolved oxygen stimulated fermentation rates, with one experiment showing a 31% improvement in ethanol productivity using aeration. At a controlled aeration rate, cells were observed to flocculate naturally onto the wood surface. Plugging of the void spaces, due to excess cell growth and intermittent CO{sub 2} holdup, was observed to begin at the base of the packed bed and progressed upward with time, thus undesirable channelling of liquid flow occurred. 200 refs., 76 figs., 21 tabs.

  8. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  9. Strengthening of defected beam–column joints using CFRP

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahmoud

    2014-01-01

    Full Text Available This paper presents an experimental study for the structural performance of reinforced concrete (RC exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP. The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  10. Strengthening of defected beam-column joints using CFRP.

    Science.gov (United States)

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  11. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    Energy Technology Data Exchange (ETDEWEB)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India)

    2016-05-06

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  12. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system.

    Science.gov (United States)

    Singh, R S; Singh, R P; Kennedy, J F

    2017-02-01

    An extracellular inulinase was partially purified by ethanol precipitation and gel exclusion chromatography from a cell free extract of Kluyveromyces marxianus. Partially purified inulinase exhibited 420 IU/mg specific activity and it was immobilized on chitosan beads. Activity yield of immobilized inulinase was optimized with glutaraldehyde concentration (1-5%), glutaraldehyde treatment time (30-240min), enzyme coupling-time (2-16h) and enzyme loading (5-30 IU) as functions. Under the optimized conditions maximum yield 65.5% of immobilized inulinase was obtained. Maximum hydrolysis of inulin 84.5% and 78.2% was observed at 125rpm after 4h by immobilized and free enzyme, respectively. A retention-time of 4h and 5h was found optimal for the hydrolysis of inulin under agitation (125rpm) by free and immobilized enzyme, respectively. The recycling of the developed immobilized biocatalyst was carried out after 5h of inulin hydrolysis in a batch system. The developed immobilized biocatalyst was successfully used for the hydrolysis of inulin for 14 batches. This is the first report on the immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process.

    Science.gov (United States)

    Nishida, Verônica S; de Oliveira, Roselene F; Brugnari, Tatiane; Correa, Rúbia Carvalho G; Peralta, Rosely A; Castoldi, Rafael; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosane M

    2018-05-01

    In this work, a β-glucosidase of Aspergillus awamori with a molecular weight of 180 kDa was produced in solid-state cultures using a mixture of pineapple crown leaves and wheat bran. Maximum production of the enzyme (820 ± 30 U/g substrate) was obtained after 8 days of culture at 28 °C and initial moisture of 80%. The crude enzyme was efficiently immobilized on glutaraldehyde cross-linked commercial gelatin. Immobilization changed the kinetics of the enzyme, whose behavior could no longer be described by a saturation function of the Michaelis-Menten type. Comparative evaluation of the free and immobilized enzyme showed that the immobilized enzyme was more thermostable and less inhibited by glucose than the free form. In consequence of these properties, the immobilized enzyme was able to hydrolyze cellobiose more extensively. In association with Trichoderma reesei cellulase, the free and immobilized β-glucosidase increased the liberation of glucose from cellulose 3- and 5-fold, respectively. Immobilization of the A. awamori β-glucosidase on glutaraldehyde cross-linked commercial gelatin is an efficient and cheap method allowing the reuse of the enzyme by at least 10 times. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  15. Study on adsorption of activated carbon fiber to background-level xenon in air by the method of 133Xe tracer

    International Nuclear Information System (INIS)

    Zhang Haitao; Wang Yalong; Zhang Lixing; Wang Xuhui; Zhang Xiaolin

    2001-01-01

    The adsorption behaviors of the different activated carbon fibers to ultra-trace xenon in air are studied using the method of 133 Xe as tracer. The efficiency equation of adsorption columns are determined. The comparison of adsorptive capacity between activated carbon fibers and activated carbon indicates that activated carbon fibers are better than activated carbon under low temperature

  16. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  17. Study of immobilization of radioactive wastes in asphaltic matrices and elastomeric residues by using microwave technique

    International Nuclear Information System (INIS)

    Caratin, Reinaldo Leonel

    2007-01-01

    In the present work, the technique of microwave heating was used to study the immobilization of low and intermediate activity level radioactive waste, such as spent ion exchange resin used to remove undesirable ions of primary circuits of refrigeration in water refrigerated nuclear reactors, and those used in chemical and radionuclide separation columns in the quality control of radioisotopes. Bitumen matrices reinforced with some kinds of rubber (Neoprene R , silicon and ethylene-vinyl-acetate), from production leftovers or scraps, were used for incorporation of radioactive waste. The samples irradiation was made in a home microwave oven that operates at a frequency of 2.450 MHZ with 1.000 W power. The samples were characterized by developing assays on penetration, leaching resistance, softening, flash and combustion points, thermogravimetry and optical microscopy. The obtained results were compatible with the pattern of matrices components, which shows that technique is a very useful alternative to conventional immobilization methods and to those kinds of radioactive waste. (author)

  18. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I Theory

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-Gutiérrez

    2014-05-01

    Full Text Available An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load at the ends (causing a single or double curvature under uniaxial or biaxial bending is presented. The proposed method, which is an extension of a method previously developed by the authors, is capable of predicting not only the complete load-rotation and load-deflection curves (both the ascending and descending parts but also the maximum load capacity. The columns that can be analyzed include solid and hollow (rectangular, circular, oval, C-, T-, L-, or any arbitrary shape cross sections and columns made of circular and rectangular steel tubes filled with HSC. The fiber method is used to calculate the moment-curvature diagrams at different levels of the applied axial load (i.e., the M-P-φ curves, and the Gauss method of integration (for the sum of the contributions of the fibers parallel to the neutral axis is used to calculate the lateral rotations and deflections along the column span. Long-term effects, such as creep and shrinkage of the concrete, are also included. However, the effects of the shear deformations and torsion along the member are not included. The validity of the proposed method is presented in a companion paper and compared against the experimental results for over seventy column specimens reported in the technical literature by different researchers.

  19. Nepem-211 ion exchange conductive membrane immobilized tris(2,2´-bipyridyl) ruthenium(II) electrogenerated chemiluminescence flow sensor for high-performance liquid chromatography and its application.

    Science.gov (United States)

    Li, Yongbo; Zhang, Zhujun

    2013-01-01

    We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)3(2+) immobilized with a Nepem-211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)3(2+). The flow sensor has been used as a post-column detector in high-performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03-26 ng/μL and 0.01-1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post-column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    Science.gov (United States)

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  1. Collapsed optical fiber: A novel method for improving thermoluminescence response of optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mahdiraji, G. Amouzad, E-mail: ghafour@um.edu.my [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Adikan, F.R. Mahamd [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-15

    A new technique is shown to provide improved thermoluminescence (TL) response from optical fibers, based on collapsing down hollow capillary optical fibers (COF) into flat fibers (FF), producing fused inner walls and consequent defects generation. Four different fused silica preform tubes are used to fabricate in-house COFs and FFs, i.e., ultra-pure (F300), relatively pure silica (PS), germanium-doped (Ge), and Ge–Boron-doped (GeB). The optical fibers are then subjected to 6 MeV electron irradiation. While the results show similar TL response from F300-COF and -FF, the TL response of PS-COF is improved by a factor of 6 by collapsing it down to a FF. By doping Ge into the F300 tube, the TL response of the resultant Ge-COF shows an improvement of 3 times over that of F300-COF, while an improvement of a factor of 12 is obtained by producing a Ge-FF. In GeB preform, by collapsing the capillary fiber into a FF, an improvement in TL response of 31 times that of GeB-COF is obtained. TL glow curve analysis shows an additional peak to be generated in the FFs compared to that observed in the COFs. The TL intensity value of the new peak is significantly increased in the doped FFs compared to the undoped FFs. The results suggest that defects generation occurs as a result of the fusing/collapsing technique, providing a TL response from the optical fibers that can substantially improve upon that of existing TL system sensitivities. - Highlights: • A new method for increasing TL response of optical fiber is presented. • By collapsing capillary fiber wall surface, TL response of the fiber increased. • By adding impurity in the collapsing area, TL response significantly improved.

  2. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse.

    Science.gov (United States)

    Huang, Yang Z; Pan, Enhui; Xiong, Zhi-Qi; McNamara, James O

    2008-02-28

    The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.

  3. A stochastic view on column efficiency.

    Science.gov (United States)

    Gritti, Fabrice

    2018-03-09

    packed efficiently (1 columns and 2.1 mm i.d. columns cannot be packed well (h min >3) with sub-2 μm particles and with 1 μm particles, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The influence of concentration of Nd-Fe-B powder in composite coating of optical fiber to the sensibility to external magnetic field

    Directory of Open Access Journals (Sweden)

    Radojević Vesna J.

    2005-01-01

    Full Text Available Multi-mode optical fiber with magnetic composite coating was investigated as an optical fiber sensor element (OFMSE for magnetic field sensing The composite coating was formed with dispersions of permanent magnet powder of Nd-Fe-B in poly (ethylene-co-vinyl acetate-EVA solutions in toluene. The influence of the applied external magnetic field on the change of intensity of the light signal propagate trough developed optical fibers sensor element was investigated. In this paper the influence of the content of magnetic powder in the composite coating on the optical propagation characteristics of optical fiber were particularly investigated.

  5. 2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser

    Science.gov (United States)

    Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa

    2017-10-01

    A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.

  6. Immobilization of Glucose Oxidase to Nanostructured Films of Polystyrene-block-poly(2-vinylpyridine)

    OpenAIRE

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-01-01

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to inv...

  7. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  8. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  9. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations.

    Science.gov (United States)

    Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo

    2017-06-01

    Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  11. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  12. Exploring the effect of mesopore size reduction on the column performance of silica-based open tubular capillary columns.

    Science.gov (United States)

    Hara, Takeshi; Futagami, Shunta; De Malsche, Wim; Baron, Gino V; Desmet, Gert

    2018-06-01

    We report on a modification in the hydrothermal treatment process of monolithic silica layers used in porous-layered open tubular (PLOT) columns. Lowering the temperature from the customary 95 °C to 80 °C, the size of the mesopores reduced by approximately about 35% from 12-13.5 nm to 7.5-9 nm, while the specific pore volume essentially remains unaltered. This led to an increase of the specific surface area (SA) of about 40%, quasi-independent of the porous layer thickness. The increased surface area provided a corresponding increase in retention, somewhat more (48%) than expected based on the increase in SA for the thin layer columns, and somewhat less than expected (34%) for the thick layer columns. The recipes were applied in 5 μm i.d.-capillaries with a length of 60 cm. Efficiencies under retained conditions amounted up to N = 137,000 for the PLOT column with a layer thickness (d f ) of 300 nm and to N = 109,000 for the PLOT column with d f  = 550 nm. Working under conditions of similar retention, the narrow pore/high SA columns produced with the new 80 °C recipe generated the same number of theoretical plates as the wide pore size/low SA columns produced with the 95 °C recipe. This shows the 80 °C-hydrothermal treatment process allows for an increase in the phase ratio of the PLOT columns without affecting their intrinsic mass transfer properties and separation kinetics. This is further corroborated by the fact that the plate height curves generated with the new and former recipe can both be well-fitted with the Golay-Aris equation without having to change the intra-layer diffusion coefficient. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men

    DEFF Research Database (Denmark)

    Gram, Martin; Vigelsø Hansen, Andreas; Yokota, Takashi

    2014-01-01

    Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative...... capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mt......HSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content...

  14. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  15. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  16. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    International Nuclear Information System (INIS)

    Kato, K.; Fukuda, H.

    1985-01-01

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with 3 H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with 3 H-muscimol and 3 H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables

  17. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions.

    Science.gov (United States)

    Vanderlinden, Kim; Broeckhoven, Ken; Vanderheyden, Yoachim; Desmet, Gert

    2016-04-15

    We report on the results of an experimental and theoretical study of the effect of the extra-column band broadening (ECBB) on the performance of narrow-bore columns filled with the smallest particles that are currently commercially available. Emphasis is on the difference between the effect of ECBB under gradient and isocratic conditions, as well as on the ability to model and predict the ECBB effects using well-established band broadening expressions available from the theory of chromatography. The fine details and assumptions that need to be taken into account when using these expressions are discussed. The experiments showed that, the steeper the gradient, the more pronounced the extra-column band broadening losses become. Whereas the pre-column band broadening can in both isocratic and gradient elution be avoided by playing on the possibilities to focus the analytes on top of the column (e.g. by using the POISe injection method when running isocratic separations), the post-column extra-column band broadening is inescapable in both cases. Inducing extra-column band broadening by changing the inner diameter of the post-column tubing from 65 to 250 μm, we found that all peaks in the chromatogram are strongly affected (around a factor of 1.9 increase in relative peak width) when running steep gradients, while usually only the first eluting peak was affected in the isocratic mode or when running shallow gradients (factor 1.6-1.8 increase in relative peak width for the first eluting analyte). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors

    Science.gov (United States)

    Liu, Qijie; Zhang, Chao; Bao, Yanling; Dai, Guangze

    2018-06-01

    A biofilm support with high biocompatibility is needed for bioreactors. A nano-hydroxyapatite (HA) coating on carbon fibers (CFs) was prepared by electrochemical deposition (ECD). The sludge immobilization assays, bacterial cells adhesion assays and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used to evaluate the capacity of CF supports to immobilize activated sludge and bacterial cells. The sludge immobilization and bacterial cells adhesion assays illustrated that HA coating could enhance the capacity of CFs to immobilize microorganisms. SEM images showed that HA and bacterial cells formed a dense film on CFs surface. In addition, HA, acting as a glue, could combine CFs with bacterial cells or between cells, which helped CFs capture more bacterial cells. DLVO theory illustrated that CFs with HA coating had a lower total interaction energy than CFs without handling, explaining the higher capacity of CFs with HA coating to immobilize bacterial cells. This result was owning to the less negative zeta potential and higher hydrophilicity of CFs with HA coating, and the hydrophilicity made a greater contribution to the lower total interaction energy. Experiments and theory reveal that HA coating could enhance the biocompatibility of CFs, and CFs with HA coating could be used as an excellent biofilm support for bioreactors.

  19. Adsorption of Amido Black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite

    International Nuclear Information System (INIS)

    Zhang, Lujie; Hu, Pan; Wang, Jing; Huang, Ruihua

    2016-01-01

    Graphical abstract: - Highlights: • Zr-CCB was prepared and characterized. • The adsorption of AB10B followed the Langmuir isotherm model. • The pseudo-second-order model described the kinetic behavior. - Abstract: Zr(IV) surface-immobilized cross-linked chitosan/bentonite composite was synthesized by immersing cross-linked chitosan/bentonite composite in zirconium oxychloride solution, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy techniques. The adsorption of an anionic dye, Amido Black 10B, from aqueous solution by Zr(IV) loaded cross-linked chitosan/bentonite composite was investigated as a function of loading amount of Zr(IV), adsorbent dosage, pH value of initial dye solution, and ionic strength. The removal of Amido Black 10B increased with an increase in loading amount of Zr(IV) and adsorbent dosage, but decreased with an increase in pH or ionic strength. The adsorption of AB10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite was favored at lower pH values and higher temperatures. The Langmuir isotherm model fitted well with the equilibrium adsorption isotherm data and the maximum monolayer adsorption capacity was 418.4 mg/g at natural pH value and 298 K. The pseudo-second-order kinetic model well described the adsorption process of Amido Black 10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite. The possible mechanisms controlling Amido Black 10B adsorption included hydrogen bonding and electrostatic interactions.

  20. Adsorption of Amido Black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lujie; Hu, Pan; Wang, Jing; Huang, Ruihua, E-mail: hrh20022002@163.com

    2016-04-30

    Graphical abstract: - Highlights: • Zr-CCB was prepared and characterized. • The adsorption of AB10B followed the Langmuir isotherm model. • The pseudo-second-order model described the kinetic behavior. - Abstract: Zr(IV) surface-immobilized cross-linked chitosan/bentonite composite was synthesized by immersing cross-linked chitosan/bentonite composite in zirconium oxychloride solution, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy techniques. The adsorption of an anionic dye, Amido Black 10B, from aqueous solution by Zr(IV) loaded cross-linked chitosan/bentonite composite was investigated as a function of loading amount of Zr(IV), adsorbent dosage, pH value of initial dye solution, and ionic strength. The removal of Amido Black 10B increased with an increase in loading amount of Zr(IV) and adsorbent dosage, but decreased with an increase in pH or ionic strength. The adsorption of AB10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite was favored at lower pH values and higher temperatures. The Langmuir isotherm model fitted well with the equilibrium adsorption isotherm data and the maximum monolayer adsorption capacity was 418.4 mg/g at natural pH value and 298 K. The pseudo-second-order kinetic model well described the adsorption process of Amido Black 10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite. The possible mechanisms controlling Amido Black 10B adsorption included hydrogen bonding and electrostatic interactions.

  1. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  2. Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing.

    Science.gov (United States)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong; Xue, Jian; Chen, Xianfeng

    2014-03-01

    We present a new cysteamine (CS)-modified polyaniline (PANI) film for highly efficient immobilization of biomolecules in biosensing technology. This electrochemical deposited PANI film treated with CS and glutaraldehyde could be employed as an excellent substrate for biomolecules immobilization. The parameters of PANI growth were optimized to obtain suitable surface morphology of films for biomolecules combination with the help of electron and atomic force microscopy. Cyclic voltammetry (CV) was utilized to illustrate the different electrochemical activities of each modified electrode. Due to the existence of sulfydryl group and amino group in CS, surface modification with CS was proven to reduce oxidized units on PANI film remarkably, as evidenced by both ATR-FTIR and Raman spectroscopy characterizations. Furthermore, bovine serum albumin (BSA) was used as the model protein to investigate the immobilization efficiency of biomolecules on the PANI film, comparative study using quartz crystal microbalance (QCM) showed that BSA immobilized on CS-modified PANI could be increased by at least 20% than that without CS-modified PANI in BSA solution with the concentration of 0.1-1mg/mL. The CS-modified PANI film would be significant for the immobilization and detection of biomolecules and especially promising in the application of immunosensor for ultrasensitive detection. © 2013 Published by Elsevier B.V.

  3. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.

    Science.gov (United States)

    Zhao, Mei; Li, Huifang; Liu, Wei; Guo, Yumei; Chu, Weiru

    2016-05-15

    A novel protein immobilization method based on plasma treatment of paper on the low-cost paper-based immunodevice was established in this work. By using a benchtop plasma cleaner, the paper microzone was treated by oxygen plasma treatment for 4 min and then the antibody can be directly immobilized on the paper surface. Aldehyde group was produced after the plasma treatment, which can be verified from the fourier transform infrared spectroscopy (FT-IR) spectra and x-ray photoelectron spectroscopy (XPS) spectra. By linked to aldehyde group, the antibody can be immobilized on the paper surface without any other pretreatment. A paper-based immunodevice was introduced here through this antibody immobilization method. With sandwich chemiluminescence (CL) immunoassay method, the paper-based immunodevice was successfully performed for carcinoembryonic antigen (CEA) detection in human serum with a linear range of 0.1-80.0 ng/mL. The detection limit was 0.03 ng/mL, which was 30 times lower than the clinical CEA level. Comparing to the other protein immobilization methods on paper-based device, this strategy was faster and simpler and had potential applications in point-of-care testing, public health and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Immobilized fluid membranes for gas separation

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  5. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  6. Performance Evaluation of Monolith Based Immobilized Acetylcholinesterase Flow-Through Reactor for Copper(II Determination with Spectrophotometric Detection

    Directory of Open Access Journals (Sweden)

    Parawee Rattanakit

    2014-01-01

    Full Text Available A monolith based immobilized acetylcholinesterase (AChE flow-through reactor has been developed for the determination of copper(II using flow injection spectrophotometric system. The bioreactor was prepared inside a microcapillary column by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, and 2,2-dimethoxy-1,2-diphynyletane-1-one in the presence of 1-decanol, followed by vinyl azlactone functionalization and AChE immobilization. The behavior of AChE before and after being immobilized on the monolith was evaluated by kinetic parameters from Lineweaver and Burk equation. The detection was based on measuring inhibition effect on the enzymatic activity of AChE by copper(II using Ellman’s reaction with spectrophotometric detection at 410 nm. The linear range of the calibration graph was obtained over the range of 0.02–3.00 mg L−1. The detection limit, defined as 10% inhibition (I10, was found to be 0.04 mg L−1. The repeatability was 3.35 % (n=5 for 1.00 mg L−1 of copper(II. The proposed method was applied to the determination of copper(II in natural water samples with sampling rate of 4 h−1.

  7. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  8. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  9. Immobilization of inorganic ion-exchanger into bio-polymer foams - Application to cesium sorption

    International Nuclear Information System (INIS)

    Vincent, Chloe; Hertz, Audrey; Barre, Yves; Vincent, Thierry; Guibal, Eric

    2014-01-01

    Nickel-potassium ferrocyanide (along with other ferrocyanide sub-products, as shown by mineralization, SEM-EDX and XRD analyses) has been immobilized in highly porous discs of chitin for the sorption of Cs(I) from near neutral solutions. The immobilization process allows synthesizing stable materials that can bind up to 80 mg Cs g -1 (i.e., 240 mg Cs g -1 ion-exchanger). Cesium sorption is hardly affected by the pH between pH 2 and 8. The sorbent is selective to Cs(I) even in the presence of high concentrations of Na(I), K(I), Rb(I) or NH 4+ . The pseudo-second order rate equation fits well kinetic profiles: the rate coefficient increases with the flow rate of recirculation (to force the access to potentially non-interconnected pores), as an evidence of the control of uptake kinetics by diffusion properties. In fixed-bed columns, the breakthrough curve is accurately described by the Clark model and the sorption capacity (at sorbent saturation) is consistent with the values obtained in sorption isotherms. Preliminary tests performed on 137 Cs spiked solutions confirm the efficiency of the material for the treatment of effluents bearing radionuclides. (authors)

  10. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudifard, Matin [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Soudi, Sara [Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soleimani, Masoud [Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hosseinzadeh, Simzar [Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Esmaeili, Elaheh [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vossoughi, Manouchehr, E-mail: vosoughi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O{sub 2} plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. - Highlights: • Introduction of novel strategy for antibody immobilization using high surface area electrospun

  11. An investigation of the retention of some radioelements on natural fibers

    International Nuclear Information System (INIS)

    Sanad, W.; El-Naggar, I.; Souka, N.

    1993-01-01

    The retention of radio-Eu, Go, Cs and Sr, at the tracer level, on raw fibers produced from hemp, linen and Jute plants was investigated. The study was conducted from different media including: sea and tap waters, sodium chloride and nitric acid solutions of different Ph. The percentage retention and elution, on prolonged contact, varied from one element to another depending on conditions. Extraction chromatography columns, using these fibers as supporting material were also experimented. Results were discussed together with possible applications. 7 tabs

  12. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  13. A flow-through column electrolytic cell for supercritical fluid chromatography.

    Science.gov (United States)

    Yamamoto, Kazuhiro; Ueki, Tatsuya; Higuchi, Naoyuki; Takahashi, Kouji; Kotani, Akira; Hakamata, Hideki

    2017-10-01

    A novel flow-through column electrolytic cell was proposed as a detector to obtain current signals for supercritical fluid chromatography. The electrochemical cell consisted of two electrodes and its holder, and a working and a counter electrode were fabricated from 192 carbon strings, which were composed of 400 carbon fibers of 10 μm in diameter filled into a heat-shrinkable tube. These electrodes were placed in the center of a holder made from polyether ether ketone blocks and they were separated by polytetrafluoroethylene membrane filters. To evaluate the sensitivity of this cell, a standard solution of ferrocene was injected into the supercritical fluid chromatography system connected to the electrolytic cell. The ferrocene was eluted through a silica gel column using a mixture of a mobile phase of supercritical CO 2 and a modifier of methanol containing ammonium acetate. The current peak area of ferrocene correlated to the ferrocene concentration in the range of 10-400 μmol/L (r = 0.999). Moreover, the limit of detection on the column estimated from a signal-to-noise ratio of 3 was 9.8  × 10 -13  mol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin; Zhu, Hongdan; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte; Meng, Changgong

    2017-01-01

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated

  15. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    Science.gov (United States)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  16. Effects of immobilization on spermiogenesis

    Science.gov (United States)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  17. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    Science.gov (United States)

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 °C, pH 5.0 and a 12 h reaction time for congo red; 25 °C, pH 3.0 and 36 h for bordeaux red; and 25 °C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents.

  18. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis; Song, Wenhui; Li Yali; Zhong Xiaohua

    2010-01-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 μm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 μM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  19. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Science.gov (United States)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  20. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  1. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice

    Science.gov (United States)

    You, Jae-Sung; Anderson, Garrett B.; Dooley, Matthew S.; Hornberger, Troy A.

    2015-01-01

    ABSTRACT The maintenance of skeletal muscle mass contributes substantially to health and to issues associated with the quality of life. It has been well recognized that skeletal muscle mass is regulated by mechanically induced changes in protein synthesis, and that signaling by mTOR is necessary for an increase in protein synthesis and the hypertrophy that occurs in response to increased mechanical loading. However, the role of mTOR signaling in the regulation of protein synthesis and muscle mass during decreased mechanical loading remains largely undefined. In order to define the role of mTOR signaling, we employed a mouse model of hindlimb immobilization along with pharmacological, mechanical and genetic means to modulate mTOR signaling. The results first showed that immobilization induced a decrease in the global rates of protein synthesis and muscle mass. Interestingly, immobilization also induced an increase in mTOR signaling, eIF4F complex formation and cap-dependent translation. Blocking mTOR signaling during immobilization with rapamycin not only impaired the increase in eIF4F complex formation, but also augmented the decreases in global protein synthesis and muscle mass. On the other hand, stimulating immobilized muscles with isometric contractions enhanced mTOR signaling and rescued the immobilization-induced decrease in global protein synthesis through a rapamycin-sensitive mechanism that was independent of ribosome biogenesis. Unexpectedly, the effects of isometric contractions were also independent of eIF4F complex formation. Similar to isometric contractions, overexpression of Rheb in immobilized muscles enhanced mTOR signaling, cap-dependent translation and global protein synthesis, and prevented the reduction in fiber size. Therefore, we conclude that the activation of mTOR signaling is both necessary and sufficient to alleviate the decreases in protein synthesis and muscle mass that occur during immobilization. Furthermore, these results indicate

  2. RP-HPLC Determination of vitamins B1, B3, B6, folic acid and B12 in multivitamin tablets

    Directory of Open Access Journals (Sweden)

    SOTE VLADIMIROV

    2005-10-01

    Full Text Available Abstract:Asimple and sensitive reversed-phase, ion-pair HPLC method was developed and validated for the simultaneous determination of B-group vitamins, thiamine chloride hydrochloride (B1, nicotinamide (B3, pyridoxine hydrochloride (B6 and folic acid in Pentovit® coated tablets. The cyanocobalamine (B12 was determined separately, because of its low concentration in the investigated multivitamin preparation. RP-HPLC analysis was performed with a LKB 2150 HPLC system, equipped with a UV/VIS Waters M484 detector. The procedures for the determination of B1, B2, B6 and folic acid were carried out on a Supelcosil ABZ+ (15 cm 4.6 mm; 5 µm column with methanol-5mM heptanesulphonic acid sodium salt 0.1%triethylamine TEA(25:75 V/V; pH 2.8 as themobile phase. For the determination of B12 a Suplex pKb-100 (15 cm 4.6 mm; 5 µm column andmethanol–water (22:78 V/V as themobile phase were used. The column effluentsweremonitored at 290 nm for B 1, B3, B6 and folic acid, and at 550 nm for B12. The obtained results and statistical parameters for all the investigated vitamins of the B-group in Pentovit® coated tablets were satisfactory and ranged from 90.4 % to 108.5 % (RSD. from 0.5% to 4.1 %. The parameters for the validation of the methods are given.

  3. Remote handling in the Plutonium Immobilization Project: Plutonium conversion and first stage immobilization

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    Since the break up of the Soviet Union at the end of the Cold War, the United States and Russia have been negotiating ways to reduce their nuclear stockpiles. Economics is one of the reasons behind this, but another important reason is safeguarding these materials from unstable organizations and countries. With the downsizing of the nuclear stockpiles, large quantities of plutonium are being declared excess and must be safely disposed of. The Savannah River Site (SRS) has been selected as the site where the immobilization facility will be located. Conceptual design and process development commenced in 1998. SRS will immobilize excess plutonium in a ceramic waste form and encapsulate it in vitrified high level waste in the Defense Waste Processing Facility (DWPF) canister. These canisters will then be interred in the national repository at Yucca Mountain, New Mexico. The facility is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. This paper will discuss the first two operations

  4. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    Science.gov (United States)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  5. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers.

    Science.gov (United States)

    Duan, Chao; Meng, Jingru; Wang, Xinqi; Meng, Xin; Sun, Xiaole; Xu, Yongjian; Zhao, Wei; Ni, Yonghao

    2018-08-01

    A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    Science.gov (United States)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S

  7. Enantioseparation of angiotensin II receptor type 1 blockers: evaluation of 6-substituted carbamoyl benzimidazoles on immobilized polysaccharide-based chiral stationary phases. Unusual temperature behavior.

    Science.gov (United States)

    Su, Ran; Hou, Zhun; Sang, Lihong; Zhou, Zhi-Ming; Fang, Hao; Yang, Xinying

    2017-09-15

    Enantioseparation of thirteen 6-substituted carbamoyl benzimidazoles by high-performance liquid chromatography (HPLC) was investigated using two immobilized polysaccharide-based chiral stationary phases (CSPs), Chiralpak IC and Chiralpak IA, in normal-phase mode. Most of the examined compounds were completely resolved. The effects of a polar alcohol modifier, analyte structure, and column temperature on the chiral recognition were investigated. Furthermore, the structure-retention relationship was evaluated, and thermodynamic parameters were calculated from plots of ln k' or ln α versus 1/T. The thermodynamic parameters indicated that the separations were enthalpy-driven. Moreover, nonlinear van't Hoff plots were obtained on Chiralpak IA. However, two unusual phenomena were observed: (1) an unusual increase in retention with increasing temperature with linear van't Hoff plots on Chiralpak IC and (2) an extremely high T iso value (i.e., several thousand degrees centigrade). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Immobilization needs and technology programs

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.; Shaw, H.; Armantrout, G.

    1995-01-01

    In the aftermath of the Cold War, the US and Russia agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium in keeping with US policy that plutonium must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, we first reviewed published information on high-level waste immobilization technologies and identified 72 possible plutonium immobilization forms to be prescreened. Surviving forms were further screened using multi-attribute utility analysis to determine the most promising technology families. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long- term disposition of plutonium. From this evaluation, a detailed research and development plan has been developed to provide answers to these remaining questions

  9. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  10. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  11. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  12. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  13. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    Science.gov (United States)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  14. Performance of Hybrid Reinforced Concrete Beam Column Joint: A Critical Review

    Directory of Open Access Journals (Sweden)

    Md Rashedul Kabir

    2016-04-01

    Full Text Available Large residual strain in reinforced concrete structures after a seismic event is a major concern for structural safety and serviceability. Alternative reinforcement materials like fiber-reinforced polymer (FRP have been widely used to mitigate corrosion problems associated with steel. Low modulus of elasticity and brittle behavior compared to steel has made the use of FRP unsuitable in seismic resistant strictures. A combination of steel-FRP reinforcement configuration can address the problem of corrosion. Therefore, introducing a material that shows strong post elastic behavior without any decay due to corrosion is in demand. Shape memory alloy (SMA, a novel material, is highly corrosion resistive and shows super elastic property. Coupling SMA with FRP or steel in the plastic hinge region allows the structure to undergo large deformations, but regains its original shape upon unloading. In this study, the performance characteristics of four previously tested beam-column joints reinforced with different configurations (steel, SMA/steel, glass fiber reinforced polymer (GFRP and SMA/FRP are compared to assess their capacity to endure extreme loading. Experimental results are scrutinized to compare the behavior of these specimens in terms of load-story drift and energy dissipation capacity. SMA/FRP and SMA/Steel couples have been found to be an acceptable approach to reduce residual deformation in beam-column joints with adequate energy dissipation capacity. However, SMA/FRP is superior to SMA/Steel concerning to the corrosion issue in steel.

  15. Nine Words - Nine Columns

    DEFF Research Database (Denmark)

    Trempe Jr., Robert B.; Buthke, Jan

    2016-01-01

    This book records the efforts of a one-week joint workshop between Master students from Studio 2B of Arkitektskolen Aarhus and Master students from the Harbin Institute of Technology in Harbin, China. The workshop employed nine action words to instigate team-based investigation into the effects o...... as formwork for the shaping of wood veneer. The resulting columns ‘wear’ every aspect of this design pipeline process and display the power of process towards an architectural resolution....

  16. Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor

    International Nuclear Information System (INIS)

    Mondal, P.; Majumder, C.B.; Mohanty, B.

    2008-01-01

    The present paper describes the observations on the treatment of arsenic contaminated synthetic industrial effluent in a bio-column reactor. Ralstonia eutropha MTCC 2487 has been immobilized on the granular activated carbon (GAC) bed in the column reactor. The synthetic water sample containing As(T) (As(III):As(V) = 1:1), Fe, Mn, Cu and Zn at the initial concentrations of 25, 10, 2, 5, 10 ppm, respectively, was used. Concentrations of all the elements have been found to be reduced below their permissible limits in the treated water. The significant effect of empty bed contact time (EBCT) and bed height on the arsenic removal was observed in the initial stage. However, after some time of operation (approximately 3-4 days) no such effect was observed. Removal of As(III) and As(V) was almost similar after ∼2 days of operation. However, at the initial stage As(V) removal was slightly more than that of As(III). In absence of washing, after ∼4-5 days of operation, the bio-column reactor was observed to act as a GAC column reactor based on physico-chemical adsorption. Like arsenic, the percent removals of Fe, Mn, Cu and Zn also attained minimum after ∼1 day and increased significantly to the optimum value within 3-4 days of operation. Dissolved oxygen (DO) has been found to decrease along with the increasing bed height from the bottom. The pH of the solution in the reactor has increased slightly and oxidation-reduction potential (ORP) has decreased with the time of operation

  17. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    International Nuclear Information System (INIS)

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-01-01

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d max on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm 2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without

  18. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  19. Hydrolysis of whey by whole cells of Kluyveromyces bulgaricus immobilized in calcium alginate gels in hen egg white

    Energy Technology Data Exchange (ETDEWEB)

    Decleire, M; Huynh, N van; Motte, J C; Cat, W de

    1985-10-01

    Whey hydrolysis was compared in column reactors containing whole yeast cells immobilized in Ca-alginate or in hen egg white in relation to cell US -galactosidase activity, flow rates, temperature and time. With cells of 1.3 U/mg dry weight (ONPG method) immobilized in Ca-alignate, 80% hydrolysis was obtained at 4 and 20C with, respectively 0.50 and 1.65 bed volume/H; the values were 0.2 and 0.74 with cells entrapped in hen egg white. When the flow rate was expressed as ml/H/g wet yeast, no significant difference was observed between both matrices and 80% hydrolysis was reached with a flow rate 1.7 and 5 according to the temperature. The best performance was achieved by the yeast egg white reactor. At 4C, hydrolysis deccreased by 10% after 13 days; by 20% after 17 days. The presence of lactose transport inhibitors in whey did not significantly influence lactose hydrolysis. (orig.).

  20. Method for immobilizing particulate materials in a packed bed

    Science.gov (United States)

    Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas

    1999-01-01

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  1. Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of rhodamine B in chili powder.

    Science.gov (United States)

    Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang

    2017-01-01

    A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-07-03

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  3. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie; Lively, Ryan P.; Lee, Jong Suk; Koros, William J.

    2013-01-01

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  4. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    Science.gov (United States)

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  5. Biodegradation of chlorobenzene using immobilized crude extracts ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... immobilized crude extracts were reused for all other experiments and found that immobilization .... India which are of analytical reagent grade. .... 9. 60. 3. 1. Figure 3. Degradation of chlorobenzene by immobilized crude.

  6. Neptunium detector using fiber-optic light guides

    International Nuclear Information System (INIS)

    Spencer, W.A.; Killeen, T.E.; Herold, T.R.

    1981-01-01

    A colorimeter has been constructed and installed to detect neptunium (IV) on-line as it elutes from an ion exchange column in a plant process stream. Because of the high radiation and corrosive atmosphere at the monitoring location, the instrument was designed using remote electronics and glass fiber optic cables. The five-foot cables transmit pulsed white light into a glass monitoring window in a containment box and return the transmitted portion to a photosensor. A simple spring clamp was designed to couple the cables to the monitoring window without modifying existing processes. Details of the design, installation, and operational problems are discussed. Other applications and modifications of the present colorimeter for other actinides, as well as preliminary results on a fiber optic spectrophotometer, are presented

  7. Using Monoclonal Antibody to Determine Lead Ions with a Localized Surface Plasmon Resonance Fiber-optic Biosensor

    Directory of Open Access Journals (Sweden)

    Mon-Fu Chung

    2008-01-01

    Full Text Available A novel reflection-based localized surface plasmon resonance (LSPR fiber-optic probe has been developed to determine the heavy metal lead ion concentration. Monoclonal antibody as the detecting probe containing massive amino groups to capture Pb(II-chelate complexes was immobilized onto gold nanoparticle-modified optical fiber (NMAuOF. The optimal immobilizing conditions of monoclonal antibody on to the NMAuOF are 189 μg/mL in pH7.4 PBS for 2 h at 25°C. The absorbability of the functionalized NMAuOF sensor increases to 12.2 % upon changing the Pb(II-EDTA level from 10 to 100 ppb with a detection limit of 0.27 ppb. The sensor retains 92.7 % of its original activity and gives reproducible results after storage in 5% D-( -Trehalose dehydrate solution at 4°C for 35 days. In conclusion, the monoclonal antibody-functionalized NMAuOF sensor shows a promising result for determining the concentration of Pb(II with high sensitivity.

  8. Wideband multi-element Er-doped fiber amplifier

    International Nuclear Information System (INIS)

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K

    2014-01-01

    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  9. Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment

    International Nuclear Information System (INIS)

    Jiang Chunxiao; Sun Hongwen; Sun Tieheng; Zhang Qingmin; Zhang Yanfeng

    2009-01-01

    Immobilization of cadmium (10 mg Cd per kilogram soil) in soil by bioaugmentation of a UV-mutated microorganism, Bacillus subtilis 38 accompanied with amendment of a bio-fertilizer, NovoGro was investigated using extractable cadmium (E-Cd) by DTPA. B. subtilis 38, the mutant with the strongest resistance against Cd, could bioaccumulate Cd four times greater than the original wild type. Single bioaugmentation of B. subtilis 38 (SB treatment) to soil however did not reduce E-Cd significantly, while the amendment of NovoGro (SN treatment) reduced E-Cd remarkably. Simultaneous application of B. subtilis 38 and NovoGro (SNB treatment) exhibited a synergetic effect compared to the single SB and SN treatment. The immobilization effect was significantly affected by temperature, soil moisture, and pH. It seems that the immobilization on Cd reached the maximum when environmental conditions favored the activity of microorganisms. Under the optimum conditions, after 90 days incubation, E-Cd was 3.34, 3.39, 2.25 and 0.87 mg kg -1 in the control soil, SB, SN and SNB soils, respectively. NovoGro not only showed a great capacity for Cd adsorption, but also promoted the growth of B. subtilis 38. This study provides a potential cost-effective technique for in situ remediation of Cd contaminated soils with bioaugmentation.

  10. Immobilized sialyltransferase fused to a fungal biotin-binding protein: Production, properties, and applications.

    Science.gov (United States)

    Kajiwara, Hitomi; Tsunashima, Masako; Mine, Toshiki; Takakura, Yoshimitsu; Yamamoto, Takeshi

    2016-04-01

    A β-galactoside α2,6-sialyltransferase (ST) from the marine bacterium Photobacterium sp. JT-ISH-224 with a broad acceptor substrate specificity was fused to a fungal biotin-binding protein tamavidin 2 (TM2) to produce immobilized enzyme. Specifically, a gene for the fusion protein, in which ST from Photobacterium sp. JT-ISH-224 and TM2 were connected via a peptide linker (ST-L-TM2) was constructed and expressed in Escherichia coli. The ST-L-TM2 was produced in the soluble form with a yield of approximately 15,000 unit/300 ml of the E. coli culture. The ST-L-TM2 was partially purified and part of it was immobilized onto biotin-bearing magnetic microbeads. The immobilized ST-L-TM2 onto microbeads could be used at least seven consecutive reaction cycles with no observed decrease in enzymatic activity. In addition, the optimum pH and temperature of the immobilized enzyme were changed compared to those of a free form of the ST. Considering these results, it was strongly expected that the immobilized ST-L-TM2 was a promising tool for the production of various kind of sialoligosaccharides. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Development of a new Emergency Medicine Spinal Immobilization Protocol for trauma patients and a test of applicability by German emergency care providers.

    Science.gov (United States)

    Kreinest, Michael; Gliwitzky, Bernhard; Schüler, Svenja; Grützner, Paul A; Münzberg, Matthias

    2016-05-14

    In order to match the challenges of quickly recognizing and treating any life-threatening injuries, the ABCDE principles were established for the assessment and treatment of trauma patients. The high priority of spine protection is emphasized by the fact that immobilization of the cervical spine is performed at the very first step in the ABCDE principles. Immobilization is typically performed to prevent or minimize secondary damage to the spinal cord if instability of the spinal column is suspected. Due to increasing reports about disadvantages of spinal immobilization, the indications for performing spinal immobilization must be refined. The aim of this study was (i) to develop a protocol that supports decision-making for spinal immobilization in adult trauma patients and (ii) to carry out the first applicability test by emergency medical personnel. A structured literature search considering the literature from 1980 to 2014 was performed. Based on this literature and on the current guidelines, a new protocol that supports on scene decision-making for spinal immobilization has been developed. Parameters found in the literature concerning mechanisms and factors increasing the likelihood of spinal injury have been included in the new protocol. In order to test the applicability of the new protocol two surveys were performed on German emergency care providers by means of a questionnaire focused on correct decision-making if applying the protocol. Based on the current literature and guidelines, the Emergency Medicine Spinal Immobilization Protocol (E.M.S. IMMO Protocol) for adult trauma patients was developed. Following a fist applicability test involving 21 participants, the first version of the E.M.S. IMMO Protocol has to be graphically re-organized. A second applicability test comprised 50 participants with the current version of the protocol confirmed good applicability. Questions regarding immobilization of trauma patients could be answered properly using the E

  12. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  13. Some properties of kefir enriched with apple and lemon fiber

    OpenAIRE

    Busra Goncu; Asli Celikel; Mutlu B. Guler-Akin; M. Serdar Akin

    2017-01-01

    The effects of apple and lemon fiber addition on some properties of kefir were investigated. Five different kefirs were produced (A is control, B, C, D, E, F and G: contain 0.25 % apple fiber, 0.5 % apple fiber, 1 % apple fiber, 0.25 % lemon fiber, 0.5 % lemon fiber and 1 % lemon fiber, respectively) and stored for 20 days at 4±1 °C. pH, titratable acidity, dry matter, water activity, water holding capacity, viscosity, L, a and b values, sensorial analysis, total lactic bacteria, Lactococcus ...

  14. Development of absorption fiber optic sensor for distributed measurement of ammonia gas

    Science.gov (United States)

    Aubrecht, J.; Kalvoda, L.

    2013-05-01

    Polymer-clad silica optical fibers are employed for development of different absorption optic fiber sensors of gaseous analytes. In our case, the physical principles of the detection are combined with a chemical reaction between analyte and suitable opto-chemical absorption reagents. Selected organometallic complex reagents with different lengths of lateral aliphatic chains are studied with respect to the type of central ions and their coordinative conditions to surrounding ligands. The effect of solvent type on solubility and the long-term stability of the prepared reagents in solid matrix are presented and discussed. Various methods are also tested in order to achieve an effective reagent immobilization into the polymer matrix, which creates optical fiber cladding. The chemical reaction of the reagents with ammonia based on ligand exchange process is accompanied by changes of visible-near-infrared optical absorption influencing via evanescent field on the guided light intensity. Experimental results suggest that the selected reagents provide optical properties suitable for practical sensing applications and that the sensitized PCS optical fibers could be used for detection of ammonia gas.

  15. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials.

    Science.gov (United States)

    Derkus, Burak; Emregul, Kaan Cebesoy; Emregul, Emel

    2015-11-01

    This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin-chitosan structures due to the presence of structural active groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  17. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  18. Study of the compressive behavior of short concrete columns confined by fiber reinforced composite

    International Nuclear Information System (INIS)

    Benzaid, Riad; Mesbah, Habib; Chikh, Nasr eddine

    2009-01-01

    Fiber reinforced polymer (FRP) composites are very attractive for use in civil engineering applications due to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, light weight, and potentially high durability. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, etc. This is mainly due to their tailorable performance characteristics, ease of application, and low life cycle costs. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on circular and square prismatic high strength concrete specimens, strengthened with external E-glass fiber reinforced polymer (GFRP). The parameters considered are the number of composite layers, the corner radius for square shape, and the relation of GFRP confinement with steel reinforcement. All the test specimens were loaded to failure in axial compression and the behavior of the specimens in the axial directions was investigated. The obtained results showed that the efficiency of the confinement was very sensitive to the specimen cross section geometry (circular and square) and the confining stress expressed in the number of the GFRP sheet layers applied. In square cross sections, the stress-strain curve was influenced by the radius to which the corners of the section are rounded off, in order to avoid the breakage of the fibers. (author)

  19. Solid-phase microextraction Ni-Ti fibers coated with functionalised silica particles immobilized in a sol-gel matrix.

    Science.gov (United States)

    Azenha, Manuel; Ornelas, Mariana; Fernando Silva, A

    2009-03-20

    One of the possible approaches for the development of novel solid-phase microextraction (SPME) fibers is the physical deposition of porous materials onto a support using high-temperature epoxy glue. However, a major drawback arises from decomposition of epoxy glue at temperatures below 300 degrees C and instability in some organic solvents. This limitation motivated us to explore the possibility of replacing the epoxy glue with a sol-gel film, thermally more stable and resistant to organic solvents. We found that functionalised silica particles could be successfully attached to a robust Ni-Ti wire by using a UV-curable sol-gel film. The particles were found to be more important than the sol-gel layer during the microextraction process, as shown by competitive extraction trials and by the different extraction profiles observed with differently functionalised particles. If a quality control microscopic-check aiming at the rejection of fibers exhibiting unacceptably low particle load was conducted, acceptable (6-14%) reproducibility of preparation of C(18)-silica fibers was observed, and a strong indication of the durability of the fibers was also obtained. A cyclohexyldiol-silica fiber was used, as a simple example of applicability, for the successful determination of benzaldehyde, acetophenone and dimethylphenol at trace level in spiked tap water. Recoveries: 95-109%; limits of detection: 2-7 microg/L; no competition effects within the studied range (

  20. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  1. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  2. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  3. Nde of Frp Wrapped Columns Using Infrared Thermography

    Science.gov (United States)

    Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.

    2008-02-01

    This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.

  4. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  5. Management of immobilization and its complication for elderly.

    Science.gov (United States)

    Laksmi, Purwita W; Harimurti, Kuntjoro; Setiati, Siti; Soejono, Czeresna H; Aries, Wanarani; Roosheroe, Arya Govinda

    2008-10-01

    Increased life expectancy have an effect on the rising percentage of elderly population in Indonesia and health problem associated with the elderly, particularly immobilization. Immobilization may cause various complications, especially when it has been overlooked without any appropriate and proper medical care in keeping with the procedures. High incidence of immobilization in elderly and the life-threatening complication call for an agreement on management of immobilization and its complication. Management of immobilization needs interdisciplinary team-work cooperation, the patients and their family. The management may be commenced through a complete geriatric review, formulating functional goals and constructing therapeutic plan. Various medical conditions and external factors that may act as risk factors of immobilization as well as drugs intake that may exaggerate the immobilization should be evaluated and optimally managed. Any complication due to immobilization and other concomitant disease/condition should be recognized and managed comprehensively in order to reduce morbidity and mortality. Management of immobilization and its complications include pharmacological and non-pharmacological treatment, i.e. various mobility exercises, utilization of ambulatory device and supporting appliance for assisting patients in stand-up position, as well as the management of urinary voiding and defecation.

  6. Effect of fiber extensibility on the fracture toughness of short fiber or brittle matrix composites

    International Nuclear Information System (INIS)

    Jain, L.K.; Wetherhold, R.C.

    1992-01-01

    A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σ b -γ) relationship. An approximate analysis is then presented which gives both G and σ b -γ directly. To illustrate the effect extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied. 28 refs., 9 figs., 1 tab

  7. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  8. Dose estimation in B16 tumour bearing mice for future irradiation in the thermal column of the TRIGA reactor after B/Gd/LDL adduct infusion

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N., E-mail: nicoletta.protti@pv.infn.it [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy)] [National Institute of Nuclear Physics (INFN) Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Ballarini, F.; Bortolussi, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy)] [National Institute of Nuclear Physics (INFN) Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bruschi, P. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy); Stella, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy)] [National Institute of Nuclear Physics (INFN) Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Geninatti, S.; Alberti, D.; Aime, S. [University of Torino, Chemistry Department, via Nizza 52, 10126 Torino (Italy); Altieri, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy)] [National Institute of Nuclear Physics (INFN) Section of Pavia, via Bassi 6, 27100 Pavia (Italy)

    2011-12-15

    To test the efficacy of a new {sup 10}B-vector compound, the B/Gd/LDL adduct synthesised at Torino University, in vivo irradiations of murine tumours are in progress at the TRIGA Mark II reactor of the Pavia University. A localised B16 melanoma tumour is generated in C57BL/6 mice and subsequently infused with the adduct. During the irradiation, the mouse will be put in a shield to protect the whole body except the tumour in the back-neck area. To optimise the treatment set-up, MCNP simulations were performed. A very simplified mouse model was built using MCNP geometry capabilities, as well as the geometry of the shield made of 99% {sup 10}B enriched boric acid. A hole in the shield is foreseen in correspondence of the back-neck region. Many configurations of the shield were tested in terms of neutron flux, dose distribution and mean induced activity in the tumour region and in the radiosensitive organs of the mouse. In the final set-up, up to five mice can be treated simultaneously in the reactor thermal column and the neutron fluence in the tumour region for 10 min of irradiation is of about 5 Multiplication-Sign 10{sup 12} cm{sup -2}.

  9. Excess Weapons Plutonium Immobilization in Russia

    International Nuclear Information System (INIS)

    Jardine, L.; Borisov, G.B.

    2000-01-01

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R and D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R and D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the

  10. Double-phase liquid membrane extraction for the analysis of pesticides

    International Nuclear Information System (INIS)

    Mohd Marsin Sanagi; Nurul Auni Zainal Abidin; Heng, See Hong; Wan Aini Wan Ibrahim

    2008-01-01

    A simple and solvent minimized sample preparation technique based on two-phase hollow fiber-protected liquid-phase micro extraction was investigated for HPLC analysis of selected pesticides in water samples. Four pesticides (procymidon, methidathion, quinalphos, and vinclozolin) were considered as target analysts. Parameters such as extraction solvent, salt concentration, stirring speed, extraction time, and pH value were optimized using spiked deionised water samples. The analysts were extracted from 12 mL water samples through organic solvent (n-hexane and isooctane) immobilized in the pores of a porous polypropylene hollow fiber into 50 μL acceptor phase present inside the hollow fiber. Excellent separations of analytes were obtained on C18 column using acetonitrile-water ratio of 55:45 v/v at elevated flow rate of 0.8 mL/ min. (author)

  11. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  12. Radiation immobilization of catalase and its application

    International Nuclear Information System (INIS)

    Wang Guanghui; Ha Hongfei; Wang Xia; Wu Jilan

    1988-01-01

    Catalase was immobilized by a chemical method on porous polyacrylamide particles produced by radiation polymerization of acrylamide monomer at low temperature (-78 0 C). Activity of immobilized catalase was enhanced distinctly by joining a chemical arm to the support. The method of recovery of catalase activity on immobilized polymer was found by soaking it in certain buffer. The treatment of H 2 O 2 both in aqueous solution and alcoholic solution by using the immobilized catalase was performed. (author)

  13. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    Science.gov (United States)

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Feasibility of using DNA-immobilized nanocellulose-based immunoadsorbent for systemic lupus erythematosus plasmapheresis.

    Science.gov (United States)

    Xu, Changgang; Carlsson, Daniel O; Mihranyan, Albert

    2016-07-01

    The goal of this project was to study the feasibility of using a DNA-immobilized nanocellulose-based immunoadsorbent for possible application in medical apheresis such as systemic lupus erythematosus (SLE) treatment. Calf thymus DNA was bound to high surface area nanocellulose membrane at varying concentrations using UV-irradiation. The DNA-immobilized samples were characterized with scanning electron microscopy, atomic force microscopy, and phosphorus elemental analysis. The anti-ds-DNA IgG binding was tested in vitro using ELISA. The produced sample showed high affinity in vitro to bind anti-ds-DNA-antibodies from mice, as much as 80% of added IgG was bound by the membrane. Furthermore, the binding efficiency was quantitatively dependent on the amount of immobilized DNA onto nanocellulose membrane. The described nanocellulose membranes are interesting immunoadsorbents for continued clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  16. Study on Progressive Collapse Behavior of SRC Column-Steel Beam Hybrid Frame Based on Pushdown Analysis

    Directory of Open Access Journals (Sweden)

    Liusheng Chu

    2017-01-01

    Full Text Available To investigate the progressive collapse behavior of Steel Reinforced Concrete (SRC column-steel beam hybrid frame after the failure of key structural elements, a PQ-Fiber model for an 8-storey structure is established in ABAQUS program. Nonlinear dynamic and static pushdown analysis are carried out after the failure and removal of the bottom-middle and bottom-corner columns. Numerical results of both methods agree well with each other. Results show that SRC column-steel frame has good resistance to progressive collapse under dynamic instantaneous load. After sudden removal of a bottom middle column, the development of structural collapse exhibits two mechanisms, the beam mechanism and the catenary mechanism. When the structure is within small deformation range, the collapse resistance of the residual frame is provided by the beam bending moment capacity, which is beam mechanism. For large deformation situation, the collapse resistance is mainly provided by the beam tensile strength, which is catenary mechanism. However, with the removal of a bottom corner column, the residual structure only undergoes the beam mechanism even for large deformations. For future practical applications, the influence of the steel ratio, steel section size, and the vertical position of the removed key components are investigated through a detailed parametric study.

  17. Preparation and evaluation of 400μm I.D. polymer-based hydrophilic interaction chromatography monolithic columns with high column efficiency.

    Science.gov (United States)

    Liu, Chusheng; Li, Haibin; Wang, Qiqin; Crommen, Jacques; Zhou, Haibo; Jiang, Zhengjin

    2017-08-04

    The quest for higher column efficiency is one of the major research areas in polymer-based monolithic column fabrication. In this research, two novel polymer-based HILIC monolithic columns with 400μm I.D.×800μm O.D. were prepared based on the thermally initiated co-polymerization of N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine (SPP) and ethylene glycol dimethacrylate (EDMA) or N,N'-methylenebisacrylamide (MBA). In order to obtain a satisfactory performance in terms of column permeability, mechanical stability, efficiency and selectivity, the polymerization parameters were systematically optimized. Column efficiencies as high as 142, 000 plates/m and 120, 000 plates/m were observed for the analysis of neutral compounds at 0.6mm/s on the poly(SPP-co-MBA) and poly(SPP-co-EDMA) monoliths, respectively. Furthermore, the Van Deemter plots for thiourea on the two monoliths were compared with that on a commercial silica based ZIC-HILIC column (3.5μm, 200Å, 150mm×300μm I.D.) using ACN/H 2 O (90/10, v/v) as the mobile phase at room temperature. It was noticeable that the Van Deemter curves for both monoliths, particularly the poly(SPP-co-MBA) monolith, are significantly flatter than that obtained for the ZIC-HILIC column, which indicates that in spite of their larger internal diameters, they yield better overall efficiency, with less peak dispersion, across a much wider range of usable linear velocities. A clearly better separation performance was also observed for nucleobases, nucleosides, nucleotides and small peptides on the poly(SPP-co-MBA) monolith compared to the ZIC-HILIC column. It is particularly worth mentioning that these 400μm I.D. polymer-based HILIC monolithic columns exhibit enhanced mechanical strength owing to the thicker capillary wall of the fused-silica capillaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.

    Science.gov (United States)

    Guo, Hui; Tang, Yi; Yu, Yang; Xue, Lu; Qian, Jun-Qing

    2016-06-01

    Enzyme immobilized on magnetic particles can be used as efficient recoverable biocatalysts under strong magnetic response. To enable re-use of enzyme, modified Fe3O4 particles were used as carrier to immobilize α-amylase in this paper. Firstly, the surface of Fe3O4 particles were coated with amino groups by direct using TEOS (tetraethoxysilane) followed by treatment with APTES (3-aminopropyltriethoxysilane) and then carboxylated by reacting it with succinic anhydride. In addition, the effect of the immobilization condition on enzyme activity recovery and immobilization efficiency were investigated. The results showed that the optimal immobilization occurred under following conditions: pH 5.5, 40°C, enzyme concentration of 20mgmL(-1), reaction time for 36h. Using immobilized α-amylase as biocatalyst, the optimum pH and temperature for hydrolysis were observed to be 6.5 and 60°C. The kinetics of hydrolysis reaction were studied using Michaelis-Menten equation. The affinity constant (Km) and maximum reaction rate (vmax) of magnetic particles immobilization α-amylase (MPIA) was 0.543mgmL(-1) and 1.321mgmin(-1) compared to those of 0.377mgmL(-1) and 6.859mgmin(-1) of free enzyme. After immobilization, enzymatic activity, storage stability, thermo-stability, and reusability of MPIA were found superior to those of the free one. MPIA maintained 86% enzyme activity after 30 days and maintained 78% enzyme activity after recycling six times. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw.

    Science.gov (United States)

    Kumar, Ajay; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2017-03-01

    The holocellulase from Aspergillus niger SH3 was characterized and found to contain 125 proteins including cellulases (26), hemicellulases (21), chitinases (10), esterases (6), amylases (4) and hypothetical protein (32). The crude enzyme was immobilized on five different nanoparticles (NPs) via physical adsorption and covalent coupling methods. The enzyme-nanoparticle complexes (ENC) were screened for protein binding, enzymatic activities and immobilization efficiency. Magnetic enzyme-nanoparticle complexes (MENC) showed higher immobilization efficiency (60-80%) for most of the enzymes. MENC also showed better catalytic efficiencies in term of higher V max and lower K m than free enzyme. Saccharification yields from alkali treated paddy straw were higher (375.39mg/gds) for covalently immobilized MENC than free enzyme (339.99mg/gds). The immobilized enzyme was used for two cycles of saccharification with 55% enzyme recovery. Hence, this study for the first time demonstrated the immobilization of indigenous enzyme and its utilization for saccharification of paddy straw. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers

    International Nuclear Information System (INIS)

    Yun-Jiang, Rao; Bing, Xu; Zeng-Ling, Ran; Yuan, Gong

    2010-01-01

    Micro extrinsic Fabry–Perot interferometers (MEFPIs), with cavity lengths of up to ∼ 9 μm and maximum fringe contrast of ∼ 19 dB, are fabricated by chemically etching Er- and B-doped optical fibers and then splicing the etched fiber to a single-mode fiber, for the first time to the best of our knowledge. The strain and temperature responses of the MEFPI sensors are investigated experimentally. Good linearity and high sensitivity are achieved. Such a type of MEFPI sensor is cost-effective and suitable for mass production, indicating its great potential for a wide range of applications. (fundamental areas of phenomenology(including applications))