WorldWideScience

Sample records for b-hsf interacting proteins

  1. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  2. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  3. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  4. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  5. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  6. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  7. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  8. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sá nchez Claros, Carmen; Tramontano, Anna

    2012-01-01

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  9. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  10. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  11. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  13. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  14. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  15. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  16. Coevolution of interacting fertilization proteins.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Clark

    2009-07-01

    Full Text Available Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female-male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.

  17. Drosophila Protein interaction Map (DPiM)

    OpenAIRE

    Guruharsha, K.G.; Obar, Robert A.; Mintseris, Julian; Aishwarya, K.; Krishnan, R.T.; VijayRaghavan, K.; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when,...

  18. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  19. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  20. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  1. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  2. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  3. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  4. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  5. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  7. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.; Schaefer, Ulf; Sundararajan, Vijayaraghava Seshadri; Bajic, Vladimir B.; Christoffels, Alan G.

    2011-01-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers

  8. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  9. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  10. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  11. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  12. Yeast Interacting Proteins Database: YPR103W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors...gulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf

  13. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  14. Yeast Interacting Proteins Database: YLR447C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp...; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act

  15. Yeast Interacting Proteins Database: YGR013W, YKL012W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tion U1 snRNP protein involved in splicing, interacts with the branchpoint-binding protein during the formation of the second commitm... PRP40 U1 snRNP protein involved in splicing, interacts with the branchpoint-binding protein during the form...ation of the second commitment complex Rows with this prey as prey (1) Rows with

  16. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  17. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  18. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  19. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  20. Building blocks for protein interaction devices

    Science.gov (United States)

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  1. Selection of peptides interfering with protein-protein interaction.

    Science.gov (United States)

    Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M

    2009-01-01

    Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.

  2. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  3. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  5. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  6. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  7. Yeast Interacting Proteins Database: YGL237C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote... expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein

  8. Yeast Interacting Proteins Database: YKL002W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote...xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp

  9. Non-interacting surface solvation and dynamics in protein-protein interactions

    NARCIS (Netherlands)

    Visscher, Koen M.; Kastritis, Panagiotis L.|info:eu-repo/dai/nl/315886668; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238

    2015-01-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo

  10. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  11. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  12. Interactions between whey proteins and kaolinite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barral, S. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villa-Garcia, M.A. [Department of Organic and Inorganic Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: mavg@uniovi.es; Rendueles, M. [Project Management Area, University of Oviedo, Independencia 13, 33004 Oviedo (Spain); Diaz, M. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2008-07-15

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered.

  13. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  14. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  15. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  16. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  17. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  18. Yeast Interacting Proteins Database: YGL145W, YNL258C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ripheral membrane protein required for Golgi-to-ER retrograde traffic; component ... membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interact

  19. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    Science.gov (United States)

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  20. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  1. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  2. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  3. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  4. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  5. A rice kinase-protein interaction map.

    Science.gov (United States)

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  6. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  7. Yeast Interacting Proteins Database: YOR047C, YKL038W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a...Bait description Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose senso...rs Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator of the tra

  8. Yeast Interacting Proteins Database: YFR049W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator... (0) YOR047C STD1 Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sens...ors Snf3p and Rgt2p, and TATA-binding protein Spt15p; ac

  9. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  10. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  11. Potential disruption of protein-protein interactions by graphene oxide

    International Nuclear Information System (INIS)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan; Yang, Zaixing; Zhou, Ruhong

    2016-01-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  12. Specificity of molecular interactions in transient protein-protein interaction interfaces.

    Science.gov (United States)

    Cho, Kyu-il; Lee, KiYoung; Lee, Kwang H; Kim, Dongsup; Lee, Doheon

    2006-11-15

    In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of

  13. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  14. KFC Server: interactive forecasting of protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  15. PIWI Proteins and PIWI-Interacting RNA

    DEFF Research Database (Denmark)

    Han, Yi Neng; Li, Yuan; Xia, Sheng Qiang

    2017-01-01

    tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem-cell......P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic...... maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer...

  16. Yeast Interacting Proteins Database: YMR280C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available olved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensor... glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, an

  17. Receptor-interacting protein (RIP) kinase family

    OpenAIRE

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  18. Yeast Interacting Proteins Database: YOR358W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act...rotein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator o

  19. Yeast Interacting Proteins Database: YGL127C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regula...rotein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors

  20. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  1. Identification of NAD interacting residues in proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2010-03-01

    Full Text Available Abstract Background Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs from amino acid sequence using bioinformatics tools. Results We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity. In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred. A support vector machine (SVM based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC 0.47 with accuracy 74.13% at window length 17

  2. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  3. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  4. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  5. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  6. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak; de Laté , Perle Latré ; Kennedy, Eileen J.; Langsley, Gordon

    2017-01-01

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way

  7. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  8. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  9. Tools for controlling protein interactions with light

    Science.gov (United States)

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  10. Feature generation and representations for protein-protein interaction classification.

    Science.gov (United States)

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  11. [Interaction of protein with charged colloidal particles].

    Science.gov (United States)

    Durdenko, E V; Kuznetsova, S M; Basova, L V; Tikhonenko, S A; Saburova, E A

    2011-01-01

    The functional state of three proteins of different molecular weight (urease, lactate dehydrogenase, and hemoglobin) in the presence of the linear polyelectrolytes poly(allylamine hydrochloride) (PAA) and sodium poly(styrenesulfonate) (PSS) in the dissolved state and of the same polyelectrolytes bound to the surface of microspheres has been investigated. Microspheres were prepared by consecutive absorption of oppositely charged polyelectrolytes so that the outer layer of the shell was PAA for the acidic protein urease, and PSS for the alkaline proteins LDH and hemoglobin. It was shown that the dissolved polyelectrolyte completely inactivates all three proteins within one minute with a slight difference in the time constant. (By Hb inactivation are conventionally meant changes in the heme environment observed from the spectrum in the Soret band.) In the presence of microspheres, the proteins were adsorbed on their surface; in this case, more than 95% of the activity was retained within two hours. The proportion of the protein adsorbed on microspheres accounted for about 98% for urease, 72% for Hb, and 35% for LDH, as determined from the tryptophan fluorescence data. The interaction of hemoglobin with another type of charged colloidal particles, phospholipid vesicles, leads to the destruction of the tertiary structure of the protein, which made itself evident in the optical absorption spectra in the Soret band, as well as the spectra of tryptophan fluorescence and circular dichroism. In this case, according to circular dichroism, the percentage of alpha-helical structure of Hb was maintained. The differences in the physical and chemical mechanisms of interaction of proteins with these two types of charged colloidal particles that leads to differences in the degree of denaturing effects are discussed.

  12. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  13. Yeast Interacting Proteins Database: YOR302W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available rol of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt...tein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt1

  14. Yeast Interacting Proteins Database: YNL258C, YKR022C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL258C DSL1 Peripheral membrane protein required for Golgi-to-ER retrograde traffi...equired for Golgi-to-ER retrograde traffic; component of the ER target site that interacts with coatomer, th...it ORF YNL258C Bait gene name DSL1 Bait description Peripheral membrane protein r

  15. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  16. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  17. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen

    2015-09-01

    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  18. Yeast Interacting Proteins Database: YDR176W, YDL239C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle pole...ining structure at the leading edge of the prospore membrane via interaction with spindle pole body componen...DY3 Prey description Protein required for spore wall formation, thought to mediate assembly of a Don1p-conta

  19. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  20. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  1. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  2. Parallel force assay for protein-protein interactions.

    Science.gov (United States)

    Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  3. Parallel force assay for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Daniela Aschenbrenner

    Full Text Available Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  4. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  5. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  6. Rationalizing the chemical space of protein-protein interaction inhibitors.

    Science.gov (United States)

    Sperandio, Olivier; Reynès, Christelle H; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-03-01

    Protein-protein interactions (PPIs) are one of the next major classes of therapeutic targets, although they are too intricate to tackle with standard approaches. This is due, in part, to the inadequacy of today's chemical libraries. However, the emergence of a growing number of experimentally validated inhibitors of PPIs (i-PPIs) allows drug designers to use chemoinformatics and machine learning technologies to unravel the nature of the chemical space covered by the reported compounds. Key characteristics of i-PPIs can then be revealed and highlight the importance of specific shapes and/or aromatic bonds, enabling the design of i-PPI-enriched focused libraries and, therefore, of cost-effective screening strategies. 2009 Elsevier Ltd. All rights reserved.

  7. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  8. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Receptor-interacting protein (RIP) kinase family

    Science.gov (United States)

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  10. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  11. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  12. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  13. Unified Alignment of Protein-Protein Interaction Networks.

    Science.gov (United States)

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  14. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  15. Yeast Interacting Proteins Database: YDL239C, YDR273W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...it as prey (1) YDR273W DON1 Meiosis-specific component of the spindle pole body, part of the leading... edge protein (LEP) coat, forms a ring-like structure at the leading edge of the prospore...ption Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading...description Meiosis-specific component of the spindle pole body, part of the leading edge protein (LEP) coat

  16. Protein-lipid interactions at interfaces

    Directory of Open Access Journals (Sweden)

    Wilde, P.

    2000-04-01

    Full Text Available Foams and emulsions are both types of multiphase foods and are a dispersion of one immiscible phase (e.g. air or oil in another (e.g. water. Amphiphilic molecules (either proteins or chemical compounds are able to stabilise the interface between these phases and are termed emulsifiers. The ability of protein emulsifiers to bind lipid is reviewed, and the mechanisms underlying the behaviour of these and low molecular weight surfactants (LMWS at the interface are summarised. New research, exploiting atomic force microscopy, has given fresh insights into the mechanisms by which proteins and LMWS interact when both are present at the interface, compromising the stability of foams and emulsions stabilised by these mixtures. The understanding of component interactions at the interfacial level is essential if advances are to be made in the control and manipulation of multiphase foods during production and storage.Las espumas y las emulsiones son dispersiones de una fase inmiscible (ejemplo aire o aceite en otra (ejemplo agua. Las moléculas anfifílicas (bien proteínas o compuestos químicos pueden estabilizar la interfase y se denominan emulsionantes. En este artículo se revisa la habilidad de los emulsionantes proteínicos para enlazar lípidos y los mecanismos que subyacen en el comportamiento de estas moléculas así como de los tensioactivos de bajo peso molecular en la interfase. Recientes investigaciones que usan la microscopía han ofrecido visiones nuevas de los mecanismos mediante los cuales las proteínas y los tensioactivos de bajo peso molecular interaccionan cuando ambos están presentes en la interfase, comprometiendo la estabilidad de espumas y emulsiones estabilizadas por estas mezclas. El entendimiento de las interacciones entre componentes a nivel interfacial es esencial para lograr avances en el control y manipulación de alimentos multifases durante la producción y el almacenamiento.

  17. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  18. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  19. Yeast Interacting Proteins Database: YDL239C, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...cription Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading

  20. Yeast Interacting Proteins Database: YDL239C, YPL070W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...cription Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading

  1. Yeast Interacting Proteins Database: YDL239C, YML042W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...iption Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading

  2. Yeast Interacting Proteins Database: YDL239C, YKL103C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...ait description Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading

  3. Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets*

    Science.gov (United States)

    Yu, Xueping; Ivanic, Joseph; Memišević, Vesna; Wallqvist, Anders; Reifman, Jaques

    2011-01-01

    We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not

  4. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  5. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  6. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  7. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  8. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  9. Evidence of probabilistic behaviour in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-01-01

    Full Text Available Abstract Background Data from high-throughput experiments of protein-protein interactions are commonly used to probe the nature of biological organization and extract functional relationships between sets of proteins. What has not been appreciated is that the underlying mechanisms involved in assembling these networks may exhibit considerable probabilistic behaviour. Results We find that the probability of an interaction between two proteins is generally proportional to the numerical product of their individual interacting partners, or degrees. The degree-weighted behaviour is manifested throughout the protein-protein interaction networks studied here, except for the high-degree, or hub, interaction areas. However, we find that the probabilities of interaction between the hubs are still high. Further evidence is provided by path length analyses, which show that these hubs are separated by very few links. Conclusion The results suggest that protein-protein interaction networks incorporate probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem to be at odds with a biologically-guided organization. One interpretation of the findings is that we are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein interactions that are actually utilized by the cell in biological processes. Therefore, the topological study of a degree-weighted network requires a more refined methodology to extract biological information about pathways, modules, or other inferred relationships among proteins.

  10. RAIN: RNA-protein Association and Interaction Networks

    DEFF Research Database (Denmark)

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian

    2017-01-01

    is challenging due to data heterogeneity. Here, we present a database of ncRNA-RNA and ncRNA-protein interactions and its integration with the STRING database of protein-protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data...

  11. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  12. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  13. Analysis of protein-protein interaction networks by means of annotated graph mining algorithms

    NARCIS (Netherlands)

    Rahmani, Hossein

    2012-01-01

    This thesis discusses solutions to several open problems in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery. PPI networks are usually represented as undirected graphs, with nodes corresponding to proteins and edges representing interactions among protein pairs. A large

  14. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...

  15. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  16. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  17. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen; Wang, Dongdong; Liu, Jin; Feng, Yitao; Weng, Jingwei; Li, Yu; Gao, Xin; Liu, Jianwei; Wang, Wenning

    2017-01-01

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a

  18. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Identification of proteins that may directly interact with human RPA.

    Science.gov (United States)

    Nakaya, Ryou; Takaya, Junichiro; Onuki, Takeshi; Moritani, Mariko; Nozaki, Naohito; Ishimi, Yukio

    2010-11-01

    RPA, which consisted of three subunits (RPA1, 2 and 3), plays essential roles in DNA transactions. At the DNA replication forks, RPA binds to single-stranded DNA region to stabilize the structure and to assemble other replication proteins. Interactions between RPA and several replication proteins have been reported but the analysis is not comprehensive. We systematically performed the qualitative analysis to identify RPA interaction partners to understand the protein-protein interaction at the replication forks. We expressed in insect cells the three subunits of human RPA, together with one replication protein, which is present at the forks under normal conditions and/or under the replication stress conditions, to examine the interaction. Among 30 proteins examined in total, it was found that at least 14 proteins interacted with RPA. RPA interacted with MCM3-7, MCM-BP and CDC45 proteins among the proteins that play roles in the initiation and the elongation of the DNA replication. RPA bound with TIPIN, CLASPIN and RAD17, which are involved in the DNA replication checkpoint functions. RPA also bound with cyclin-dependent kinases and an amino-terminal fragment of Rb protein that negatively regulates DNA replication. These results suggest that RPA interacts with the specific proteins among those that play roles in the regulation of the replication fork progression.

  20. quinolinium iodide in suppression of protein–protein interactions

    Indian Academy of Sciences (India)

    In searching for alternative ways to reduce protein–protein interactions or to inhibit the amyloid formation, the inhibitory effects ..... ing the exposure of hydrophobic surfaces mirrors the ... is well-supported by electrostatic interactions between.

  1. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  2. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    Science.gov (United States)

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  3. Proteins interacting with the 26S proteasome

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Gordon, C

    2004-01-01

    The 26S proteasome is the multi-protein protease that recognizes and degrades ubiquitinylated substrates targeted for destruction by the ubiquitin pathway. In addition to the well-documented subunit organization of the 26S holoenzyme, it is clear that a number of other proteins transiently...... associate with the 26S complex. These transiently associated proteins confer a number of different roles such as substrate presentation, cleavage of the multi-ubiquitin chain from the protein substrate and turnover of misfolded proteins. Such activities are essential for the 26S proteasome to efficiently...... fulfill its intracellular function in protein degradation....

  4. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  5. PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    KAUST Repository

    Li, Chuanxi; Chen, Peng; Wang, Rujing; Wang, Xiujie; Su, Yaru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea

  6. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  7. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen

    2017-05-11

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a structured protein, while the Interaction between two IDPs is poorly understood. In this study, we combined NMR, smFRET, and molecular dynamics (MD) simulation to characterize the interaction between two IDPs, the C-terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by MD and mutagenesis studies. Our study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.

  8. Core Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available y are in the reverse direction. *1 A comprehensive two-hybrid analysis to explore the yeast protein interact...s. 2000 Jan 1;28(1):73-6. *2 The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive...000 Jan 1;28(1):73-6. *3 A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisia

  9. BRCA1 interacts directly with the Fanconi anemia protein FANCA.

    Science.gov (United States)

    Folias, Alexandra; Matkovic, Mara; Bruun, Donald; Reid, Sonja; Hejna, James; Grompe, Markus; D'Andrea, Alan; Moses, Robb

    2002-10-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by skeletal defects, anemia, chromosomal instability and increased risk of leukemia. At the cellular level FA is characterized by increased sensitivity to agents forming interstrand crosslinks (ICL) in DNA. Six FA genes have been cloned and interactions among individual FANC proteins have been found. The FANCD2 protein co-localizes in nuclear foci with the BRCA1 protein following DNA damage and during S-phase, requiring the FANCA, C, E and G proteins to do so. This finding may reflect a direct role for the BRCA1 protein in double strand break (DSB) repair and interaction with the FANC proteins. Therefore interactions between BRCA1 and the FANC proteins were investigated. Among the known FANC proteins, we find evidence for direct interaction only between the FANCA protein and BRCA1. The evidence rests on three different tests: yeast two-hybrid analysis, coimmunoprecipitation from in vitro synthesis, and coimmunoprecipitation from cell extracts. The amino terminal portion of FANCA and the central part (aa 740-1083) of BRCA1 contain the sites of interaction. The interaction does not depend on DNA damage, thus FANCA and BRCA1 are constitutively interacting. The demonstrated interaction directly connects BRCA1 to the FA pathway of DNA repair.

  10. Protein interactions in genome maintenance as novel antibacterial targets.

    Directory of Open Access Journals (Sweden)

    Aimee H Marceau

    Full Text Available Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs form conserved protein interaction "hubs" that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.

  11. The simulation approach to lipid-protein interactions.

    Science.gov (United States)

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  12. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-01-01

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  13. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  14. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  15. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  16. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  17. Interactions among tobacco sieve element occlusion (SEO) proteins.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; Zielonka, Sascia; Noll, Gundula A; Prüfer, Dirk

    2012-12-01

    Angiosperms transport their photoassimilates through sieve tubes, which comprise longitudinally-connected sieve elements. In dicots and also some monocots, the sieve elements contain parietal structural proteins known as phloem proteins or P-proteins. Following injury, P proteins disperse and accumulate as viscous plugs at the sieve plates to prevent the loss of valuable transport sugars. Tobacco (Nicotiana tabacum) P-proteins are multimeric complexes comprising subunits encoded by members of the SEO (sieve element occlusion) gene family. The existence of multiple subunits suggests that P-protein assembly involves interactions between SEO proteins, but this process is largely uncharacterized and it is unclear whether the different subunits perform unique roles or are redundant. We therefore extended our analysis of the tobacco P-proteins NtSEO1 and NtSEO2 to investigate potential interactions between them, and found that both proteins can form homomeric and heteromeric complexes in planta.

  18. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  19. Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Timmers-Parohi, D.; Langeveld, J.; Bossers, A.

    2009-01-01

    Protein-protein interactions are at the basis of most if not all biological processes in living cells. Therefore, adapting existing techniques or developing new techniques to study interactions between proteins are of importance in elucidating which amino acid sequences contribute to these

  20. Imaging protein-protein interactions in living cells

    NARCIS (Netherlands)

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  1. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  2. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    Science.gov (United States)

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  4. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    Science.gov (United States)

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  6. Interaction between Protein, Phytate, and Microbial Phytase. In Vitro Studies

    NARCIS (Netherlands)

    Kies, A.K.; Jonge, de L.H.; Kemme, P.A.; Jongbloed, A.W.

    2006-01-01

    The interaction between protein and phytate was investigated in vitro using proteins extracted from five common feedstuffs and from casein. The appearance of naturally present soluble protein-phytate complexes in the feedstuffs, the formation of complexes at different pHs, and the degradation of

  7. NatalieQ: A web server for protein-protein interaction network querying

    NARCIS (Netherlands)

    El-Kebir, M.; Brandt, B.W.; Heringa, J.; Klau, G.W.

    2014-01-01

    Background Molecular interactions need to be taken into account to adequately model the complex behavior of biological systems. These interactions are captured by various types of biological networks, such as metabolic, gene-regulatory, signal transduction and protein-protein interaction networks.

  8. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2002-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  9. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    Science.gov (United States)

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  10. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  11. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    Science.gov (United States)

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  13. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  14. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  15. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  16. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  17. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  18. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emilie eGauliard

    2015-02-01

    Full Text Available Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins. Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.

  19. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  20. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain

  1. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    Science.gov (United States)

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction

  2. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  3. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  4. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  5. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  6. Protein prenylation: a new mode of host-pathogen interaction.

    Science.gov (United States)

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Anomalous Protein-Protein Interactions in Multivalent Salt Solution

    Czech Academy of Sciences Publication Activity Database

    Pasquier, C.; Vazdar, M.; Forsman, J.; Jungwirth, Pavel; Lund, M.

    2017-01-01

    Roč. 121, č. 14 (2017), s. 3000-3006 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : Monte Carlo * molecular dynamics * membranes * proteins * multivalent salts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  8. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  9. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  10. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Saiful M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yoon, Hyunjin [Dartmouth College, Hanover, NH (United States); Ansong, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rommereim, Leah M. [Dartmouth College, Hanover, NH (United States); Norbeck, Angela D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Auberry, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Joshua N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heffron, Fred [Oregon Health and Science Univ., Portland, OR (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  11. Quality control methodology for high-throughput protein-protein interaction screening.

    Science.gov (United States)

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  12. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  13. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  14. Evolutionary diversification of protein-protein interactions by interface add-ons.

    Science.gov (United States)

    Plach, Maximilian G; Semmelmann, Florian; Busch, Florian; Busch, Markus; Heizinger, Leonhard; Wysocki, Vicki H; Merkl, Rainer; Sterner, Reinhard

    2017-10-03

    Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.

  15. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  16. Visualization and targeted disruption of protein interactions in living cells

    Science.gov (United States)

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  17. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    International Nuclear Information System (INIS)

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-01-01

    Highlights: → Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. → BAI2 interaction with GIP was revealed by yeast two-hybrid assay. → Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. → BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, β-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  18. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  19. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions...... all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...

  20. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  1. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  2. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    Science.gov (United States)

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  3. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  4. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  5. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  6. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  7. Yeast Interacting Proteins Database: YNR006W, YHL002W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ling Golgi proteins, forming lumenal membranes and sorting ubiquitinated proteins destined for degradation; ..., as well as for recycling of Golgi proteins and formation of lumenal membranes Rows with this prey as prey ...1p; required for recycling Golgi proteins, forming lumenal membranes and sorting ubiquitinated proteins dest...degradation, as well as for recycling of Golgi proteins and formation of lumenal membranes

  8. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  9. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  10. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  11. Understanding Protein Synthesis: An Interactive Card Game Discussion

    Science.gov (United States)

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  12. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  13. Prediction of localization and interactions of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Matula Pavel

    2009-07-01

    Full Text Available Abstract During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF and endonuclease G (endoG. Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID. We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.

  14. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  15. Catching the PEG-induced attractive interaction between proteins.

    Science.gov (United States)

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  16. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...

  17. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  18. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  19. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    Full Text Available Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  20. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    Li-Feng, Gao; Jian-Jun, Shi; Shan, Guan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  1. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  2. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale

    Science.gov (United States)

    Kuzu, Guray; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2013-01-01

    Cellular functions are performed through protein-protein interactions; therefore, identification of these interactions is crucial for understanding biological processes. Recent studies suggest that knowledge-based approaches are more useful than ‘blind’ docking for modeling at large scales. However, a caveat of knowledge-based approaches is that they treat molecules as rigid structures. The Protein Data Bank (PDB) offers a wealth of conformations. Here, we exploited ensemble of the conformations in predictions by a knowledge-based method, PRISM. We tested ‘difficult’ cases in a docking-benchmark dataset, where the unbound and bound protein forms are structurally different. Considering alternative conformations for each protein, the percentage of successfully predicted interactions increased from ~26% to 66%, and 57% of the interactions were successfully predicted in an ‘unbiased’ scenario, in which data related to the bound forms were not utilized. If the appropriate conformation, or relevant template interface, is unavailable in the PDB, PRISM could not predict the interaction successfully. The pace of the growth of the PDB promises a rapid increase of ensemble conformations emphasizing the merit of such knowledge-based ensemble strategies for higher success rates in protein-protein interaction predictions on an interactome-scale. We constructed the structural network of ERK interacting proteins as a case study. PMID:23590674

  3. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Unknown

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and ... In a bacterial system where the complete genome sequence is available, it is an arduous ... teins (primary mutations) are useful in these studies. ... of interaction of this antibiotic with the central enzyme.

  4. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    Science.gov (United States)

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  5. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  6. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    Science.gov (United States)

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    Mousseau, Guillaume; Thomas, Olivier P.; Agez, Morgane; Thai, Robert; Cintrat, Jean-Christophe; Rousseau, Bernard; Raffy, Quentin; Renault, Jean Philippe; Pin, Serge; Ochsenbein, Francoise

    2010-01-01

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3 122-135 and the protein hAsflA 1-156 afforded data in good agreement with NMR results. (authors)

  8. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  9. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  10. Yeast Interacting Proteins Database: YHL002W, YNR006W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ycling of Golgi proteins and formation of lumenal membranes Rows with this bait as bait (1) Rows with this b...required for recycling Golgi proteins, forming lumenal membranes and sorting ubiquitinated proteins destined...on, as well as for recycling of Golgi proteins and formation of lumenal membranes...ith Hse1p; required for recycling Golgi proteins, forming lumenal membranes and sorting ubiquitinated protei

  11. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  12. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  13. Direct measurements of protein-stabilized gold nanoparticle interactions.

    Science.gov (United States)

    Eichmann, Shannon L; Bevan, Michael A

    2010-09-21

    We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.

  14. Coarse-grained versus atomistic simulations : realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, Ali; Pool, René; van Dijk, Erik; Bijlard, Jochem; Abeln, Sanne; Heringa, Jaap; Feenstra, K Anton

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  15. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, A.; Pool, R.; van Dijk, E.; Bijlard, J.; Abeln, S.; Heringa, J.; Feenstra, K.A.

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  16. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    ABSTRACT: BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  17. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions.

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  18. Interaction of influenza virus proteins with nucleosomes

    International Nuclear Information System (INIS)

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence

    2005-01-01

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed

  19. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    International Nuclear Information System (INIS)

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg

    2006-01-01

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro

  20. Prediction of Protein–Protein Interactions by Evidence Combining Methods

    Directory of Open Access Journals (Sweden)

    Ji-Wei Chang

    2016-11-01

    Full Text Available Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.

  1. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    2007-05-01

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  2. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  3. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  4. Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen.

    Science.gov (United States)

    Plante, Geneviève; Lusignan, Marie-France; Lafleur, Michel; Manjunath, Puttaswamy

    2015-08-15

    Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage. We have demonstrated that bovine BSP proteins interact with major milk proteins and proposed that this interaction could be the basis of sperm protection by milk extenders. In the present study, we investigated if homologous BSP proteins present in boar, stallion and ram seminal plasma display a similar affinity for the milk proteins in order to assess whether the mechanism of sperm protection by milk for these species could be general. Skim milk was incubated with seminal plasma proteins (boar, stallion and ram), chromatographed on a Sepharose CL-4B column and protein fractions were analyzed by immunoblotting. Boar, stallion and ram BSP proteins displayed affinity for a milk protein fraction (F1) mainly composed of α-lactalbumin, β-lactoglobulin, and κ-casein. They also had affinity for another milk protein fraction (F2) composed mostly of casein micelles. However, stallion BSP showed higher affinity for the fraction (F1). These results further extend our view that the association of BSP proteins with milk proteins could be a general feature of the mechanism of mammalian sperm protection by milk to prevent detrimental effect of prolonged exposure of sperm to seminal plasma.

  5. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  6. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2014-01-01

    Full Text Available Cliques (maximal complete subnets in protein-protein interaction (PPI network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  7. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks.

    Science.gov (United States)

    Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee

    2010-07-01

    The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.

  8. Emergence of modularity and disassortativity in protein-protein interaction networks.

    Science.gov (United States)

    Wan, Xi; Cai, Shuiming; Zhou, Jin; Liu, Zengrong

    2010-12-01

    In this paper, we present a simple evolution model of protein-protein interaction networks by introducing a rule of small-preference duplication of a node, meaning that the probability of a node chosen to duplicate is inversely proportional to its degree, and subsequent divergence plus nonuniform heterodimerization based on some plausible mechanisms in biology. We show that our model cannot only reproduce scale-free connectivity and small-world pattern, but also exhibit hierarchical modularity and disassortativity. After comparing the features of our model with those of real protein-protein interaction networks, we believe that our model can provide relevant insights into the mechanism underlying the evolution of protein-protein interaction networks. © 2010 American Institute of Physics.

  9. In silico modeling of the yeast protein and protein family interaction network

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  10. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  11. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    Science.gov (United States)

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  12. Yeast Interacting Proteins Database: YNL152W, YMR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL152W INN1 Essential protein that associates with the contractile actomyosin ring... Bait description Essential protein that associates with the contractile actomyosin ring, required for ingre

  13. Yeast Interacting Proteins Database: YNL258C, YGL145W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL258C DSL1 Peripheral membrane protein required for Golgi-to-ER retrograde traffi...t description Peripheral membrane protein required for Golgi-to-ER retrograde traffic; component of the ER t

  14. Yeast Interacting Proteins Database: YNL216W, YLR453C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL216W RAP1 DNA-binding protein involved in either activation or repression of transcription, depending...NA-binding protein involved in either activation or repression of transcription, depending on binding site c

  15. Yeast Interacting Proteins Database: YOL006C, YMR233W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available fusion protein localizes to the cytoplasm, nucleus and nucleolus Rows with this prey as prey (1) Rows with t...on protein localizes to the cytoplasm, nucleus and nucleolus Rows with this prey

  16. Yeast Interacting Proteins Database: YKL002W, YFL034C-B [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available integral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthes...ntegral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthesi

  17. Yeast Interacting Proteins Database: YJR091C, YKL002W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available g of integral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly sy... integral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthe

  18. Yeast Interacting Proteins Database: YCL046W, YGL115W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YCL046W - Dubious open reading frame unlikely to encode a protein, based on availab...ading frame unlikely to encode a protein, based on available experimental and comparative sequence data; par

  19. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Lingyan; Li, Shitao

    2017-08-01

    The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus-host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV-host interactions and how these interactions contribute to host defense and viral pathogenesis.

  20. In vivo interactions between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA dependent polymerase VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  1. Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent polymerase, VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  2. Energetics of the protein-DNA-water interaction

    Directory of Open Access Journals (Sweden)

    Marabotti Anna

    2007-01-01

    Full Text Available Abstract Background To understand the energetics of the interaction between protein and DNA we analyzed 39 crystallographically characterized complexes with the HINT (Hydropathic INTeractions computational model. HINT is an empirical free energy force field based on solvent partitioning of small molecules between water and 1-octanol. Our previous studies on protein-ligand complexes demonstrated that free energy predictions were significantly improved by taking into account the energetic contribution of water molecules that form at least one hydrogen bond with each interacting species. Results An initial correlation between the calculated HINT scores and the experimentally determined binding free energies in the protein-DNA system exhibited a relatively poor r2 of 0.21 and standard error of ± 1.71 kcal mol-1. However, the inclusion of 261 waters that bridge protein and DNA improved the HINT score-free energy correlation to an r2 of 0.56 and standard error of ± 1.28 kcal mol-1. Analysis of the water role and energy contributions indicate that 46% of the bridging waters act as linkers between amino acids and nucleotide bases at the protein-DNA interface, while the remaining 54% are largely involved in screening unfavorable electrostatic contacts. Conclusion This study quantifies the key energetic role of bridging waters in protein-DNA associations. In addition, the relevant role of hydrophobic interactions and entropy in driving protein-DNA association is indicated by analyses of interaction character showing that, together, the favorable polar and unfavorable polar/hydrophobic-polar interactions (i.e., desolvation mostly cancel.

  3. MPact: the MIPS protein interaction resource on yeast.

    Science.gov (United States)

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  4. Prediction of thermodynamic instabilities of protein solutions from simple protein–protein interactions

    International Nuclear Information System (INIS)

    D’Agostino, Tommaso; Solana, José Ramón; Emanuele, Antonio

    2013-01-01

    Highlights: ► We propose a model of effective protein–protein interaction embedding solvent effects. ► A previous square-well model is enhanced by giving to the interaction a free energy character. ► The temperature dependence of the interaction is due to entropic effects of the solvent. ► The validity of the original SW model is extended to entropy driven phase transitions. ► We get good fits for lysozyme and haemoglobin spinodal data taken from literature. - Abstract: Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce a square well model of effective protein–protein interaction that embeds the solvent’s action. We modify an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an explicit free energy character, thus encompassing the statistically relevant configurations of solvent molecules around proteins. We choose protein solutions exhibiting demixing upon temperature decrease (lysozyme, enthalpy driven) and upon temperature increase (haemoglobin, entropy driven). We obtain satisfactory fits of spinodal curves for both the two proteins without adding any mean field term, thus extending the validity of the original model. Our results underline the solvent role in modulating or stretching the interaction potential

  5. An analysis pipeline for the inference of protein-protein interaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  6. A new protein-protein interaction sensor based on tripartite split-GFP association.

    Science.gov (United States)

    Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-10-04

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.

  7. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  8. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jillian L Blatti

    Full Text Available Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP and thioesterase (TE govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  9. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  10. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  11. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  12. Proteins that interact with GTP during sporulation of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitchell, C.; Vary, J.C.

    1989-01-01

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link [α- 32 P]GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either [α- 32 P]GTP or [γ- 32 P]GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms

  13. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  14. Milk proteins interact with goat Binder of SPerm (BSP) proteins and decrease their binding to sperm.

    Science.gov (United States)

    de Menezes, Erika Bezerra; van Tilburg, Mauricio; Plante, Geneviève; de Oliveira, Rodrigo V; Moura, Arlindo A; Manjunath, Puttaswamy

    2016-11-01

    Seminal plasma Binder of SPerm (BSP) proteins bind to sperm at ejaculation and promote capacitation. When in excess, however, BSP proteins damage the sperm membrane. It has been suggested that milk components of semen extenders associate with BSP proteins, potentially protecting sperm. Thus, this study was conducted to investigate if milk proteins interact with BSP proteins and reduce BSP binding to goat sperm. Using gel filtration chromatography, milk was incubated with goat seminal plasma proteins and loaded onto columns with and without calcium. Milk was also fractionated into parts containing mostly whey proteins or mostly caseins, incubated with seminal plasma proteins and subjected to gel filtration. Eluted fractions were evaluated by immunoblot using anti-goat BSP antibodies, confirming milk protein-BSP protein interactions. As determined by ELISA, milk proteins coated on polystyrene wells bound to increasing of goat BSP proteins. Far-western dot blots confirmed that BSP proteins bound to caseins and β-lactoglobulin in a concentration-dependent manner. Then, cauda epididymal sperm from five goats was incubated with seminal plasma; seminal plasma followed by milk; and milk followed by seminal plasma. Sperm membrane proteins were extracted and evaluated by immunoblotting. The pattern of BSP binding to sperm membrane proteins was reduced by 59.3 % when epididymal sperm were incubated with seminal plasma and then with skimmed milk (p  0.05). In conclusion, goat BSP proteins have an affinity for caseins and whey proteins. Milk reduces BSP binding to goat sperm, depending whether or not sperm had been previously exposed to seminal plasma. Such events may explain the protective effect of milk during goat sperm preservation.

  15. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  16. BioPlex Display: An Interactive Suite for Large-Scale AP-MS Protein-Protein Interaction Data.

    Science.gov (United States)

    Schweppe, Devin K; Huttlin, Edward L; Harper, J Wade; Gygi, Steven P

    2018-01-05

    The development of large-scale data sets requires a new means to display and disseminate research studies to large audiences. Knowledge of protein-protein interaction (PPI) networks has become a principle interest of many groups within the field of proteomics. At the confluence of technologies, such as cross-linking mass spectrometry, yeast two-hybrid, protein cofractionation, and affinity purification mass spectrometry (AP-MS), detection of PPIs can uncover novel biological inferences at a high-throughput. Thus new platforms to provide community access to large data sets are necessary. To this end, we have developed a web application that enables exploration and dissemination of the growing BioPlex interaction network. BioPlex is a large-scale interactome data set based on AP-MS of baits from the human ORFeome. The latest BioPlex data set release (BioPlex 2.0) contains 56 553 interactions from 5891 AP-MS experiments. To improve community access to this vast compendium of interactions, we developed BioPlex Display, which integrates individual protein querying, access to empirical data, and on-the-fly annotation of networks within an easy-to-use and mobile web application. BioPlex Display enables rapid acquisition of data from BioPlex and development of hypotheses based on protein interactions.

  17. Yeast Interacting Proteins Database: YLR347C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available gy-mediated degradation depending on growth conditions; interacts with Vid30p Rows with this prey as prey (4...r autophagy-mediated degradation depending on growth conditions; interacts with V

  18. Yeast Interacting Proteins Database: YNL189W, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available phagy-mediated degradation depending on growth conditions; interacts with Vid30p Rows with this prey as prey...ated or autophagy-mediated degradation depending on growth conditions; interacts

  19. Yeast Interacting Proteins Database: YML064C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p Rows with this pre...er proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid3

  20. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    International Nuclear Information System (INIS)

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-01-01

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein–protein

  1. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  2. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    2011-01-01

    and have significant effects on gene expression. RNA immunoprecipitation (RIP) is a powerful technique used to detect direct and indirect interactions between individual proteins and specific RNA molecules in vivo. Here, we describe RIP methods for both yeast and mammalian cells.......The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases...

  4. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains...... by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains are known, though comparatively few linear motifs have been discovered. Their short length...

  5. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  6. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    Science.gov (United States)

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  7. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  8. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  9. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  10. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  11. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  12. Dough and hearth bread characteristics influenced by protein composition, protein content, DATEM, and their interactions

    NARCIS (Netherlands)

    Aamodt, A.; Magnus, E.M.; Hollung, K.; Uhlen, A.K.; Færgestad, E.M.

    2005-01-01

    The effects of protein composition, protein content, diacetyl tartaric acid ester of monoglycerides (DATEM), and their interaction on dough and bread characteristics were studied by small- and pilot-scale hearth bread baking, dough rheological testing using the Kieffer extensibility rig, and size

  13. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  14. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  15. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    Science.gov (United States)

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Cold-set globular protein gels: Interactions, structure and rheology as a function of protein concentration.

    NARCIS (Netherlands)

    Alting, A.C.; Hamer, R.J.; Kruif, de C.G.

    2003-01-01

    We identified the contribution of covalent and noncovalent interactions to the scaling behavior of the structural and rheological properties in a cold gelling protein system. The system we studied consisted of two types of whey protein aggregates, equal in size but different in the amount of

  17. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...... in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1...

  18. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    Physics approaches focus on uncovering, modeling and quantitating the general principles governing the micro and macro universe. This has always been an important component of biological research, however recent advances in experimental techniques and the accumulation of unprecedented genome-scale experimental data produced by these novel technologies now allow for addressing fundamental questions on a large scale. These relate to molecular interactions, principles of bimolecular recognition, and mechanisms of signal propagation. The functioning of a cell requires a variety of intermolecular interactions including protein-protein, protein-DNA, protein-RNA, hormones, peptides, small molecules, lipids and more. Biomolecules work together to provide specific functions and perturbations in intermolecular communication channels often lead to cellular malfunction and disease. A full understanding of the interactome requires an in-depth grasp of the biophysical principles underlying individual interactions as well as their organization in cellular networks. Phenomena can be described at different levels of abstraction. Computational and systems biology strive to model cellular processes by integrating and analyzing complex data from multiple experimental sources using interdisciplinary tools. As a result, both the causal relationships between the variables and the general features of the system can be discovered, which even without knowing the details of the underlying mechanisms allow for putting forth hypotheses and predicting the behavior of the systems in response to perturbation. And here lies the strength of in silico models which provide control and predictive power. At the same time, the complexity of individual elements and molecules can be addressed by the fields of molecular biophysics, physical biology and structural biology, which focus on the underlying physico-chemical principles and may explain the molecular mechanisms of cellular function. In this issue

  19. The role of exon shuffling in shaping protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    França Gustavo S

    2010-12-01

    Full Text Available Abstract Background Physical protein-protein interaction (PPI is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains, self-interacting (able to interact with another copy of themselves and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

  20. Study of the interactions between riboflavin and protein

    International Nuclear Information System (INIS)

    Zhao Hongwei; Zhang Zhaoxia; Zhu Hongping; Ge Min; Miao Jinling; Wang Wenfeng; Yao Side

    2006-01-01

    Riboflavin (VB 2 ), a vitamin that is a natural constituent of living organisms, plays an important role in the process of metabolism and it is essential for normal cellular functions and growth. As an endogenous photosensitizer, riboflavin induces photooxidation damages to cells of skin and eye, causing inflammation, accelerated aging and mutation. The photodynamic actions of riboflavin on DNA have been studied extensively, however, its photodynamic actions on protein and enzyme are less studied due to the complex types and structures of proteins, and less attentions have been paid to photosensitive protein damages than DNA. In our lab, the interactions between riboflavin and serum albumin and lysozyme have been carried out by using transient absorption spectrometry, emission spectrometer analysis and electrophoresis techniques. It was found that stable state products and transient process of photosensitive damage to proteins were closely relative to concentration of riboflavin, time of irradiation and the atmosphere of the solutions. The results indicates that proteins can be photosensitive damaged by riboflavin irradiated by UV lights. Riboflavin can quench the intrinsic fluorescence of protein. Both dynamic and static quenching are simultaneous involved. The binding constants, the kinetics and spectroscopic properties of riboflavin interaction with albumin and lysozyme have also been investigated. Mechanisms of the photosensitive damages to proteins were discussed. The experiments also indicated that antioxidants such as melatonin and chlorogenic acid can reduce the damage of lysozyme effectively. (authors)

  1. Protein solubility and folding enhancement by interaction with RNA.

    Directory of Open Access Journals (Sweden)

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  2. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  3. Transcriptional robustness and protein interactions are associated in yeast

    Directory of Open Access Journals (Sweden)

    Conant Gavin C

    2011-05-01

    Full Text Available Abstract Background Robustness to insults, both external and internal, is a characteristic feature of life. One level of biological organization for which noise and robustness have been extensively studied is gene expression. Cells have a variety of mechanisms for buffering noise in gene expression, but it is not completely clear what rules govern whether or not a given gene uses such tools to maintain appropriate expression. Results Here, we show a general association between the degree to which yeast cells have evolved mechanisms to buffer changes in gene expression and whether they possess protein-protein interactions. We argue that this effect bears an affinity to epistasis, because yeast appears to have evolved regulatory mechanisms such that distant changes in gene copy number for a protein-protein interaction partner gene can alter a gene's expression. This association is not unexpected given recent work linking epistasis and the deleterious effects of changes in gene dosage (i.e., the dosage balance hypothesis. Using gene expression data from artificial aneuploid strains of bakers' yeast, we found that genes coding for proteins that physically interact with other proteins show less expression variation in response to aneuploidy than do other genes. This effect is even more pronounced for genes whose products interact with proteins encoded on aneuploid chromosomes. We further found that genes targeted by transcription factors encoded on aneuploid chromosomes were more likely to change in expression after aneuploidy. Conclusions We suggest that these observations can be best understood as resulting from the higher fitness cost of misexpression in epistatic genes and a commensurate greater regulatory control of them.

  4. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  5. Efficient extraction of protein-protein interactions from full-text articles.

    Science.gov (United States)

    Hakenberg, Jörg; Leaman, Robert; Vo, Nguyen Ha; Jonnalagadda, Siddhartha; Sullivan, Ryan; Miller, Christopher; Tari, Luis; Baral, Chitta; Gonzalez, Graciela

    2010-01-01

    Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions, and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that

  6. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    DEFF Research Database (Denmark)

    Andersen, Tonni Grube; Nintemann, Sebastian; Marek, Magdalena

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true-from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased se...

  7. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Directory of Open Access Journals (Sweden)

    Lin Yen-Han

    2007-07-01

    Full Text Available Abstract Background Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated. Results Gene Ontology (GO annotations were used to reduce false positive protein-protein interactions (PPI pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The 'strength', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the strength varies between two and ten-fold of randomly removing protein pairs from the datasets. Conclusion Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially

  9. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Boosting compound-protein interaction prediction by deep learning.

    Science.gov (United States)

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Connecting Protein Structure to Intermolecular Interactions: A Computer Modeling Laboratory

    Science.gov (United States)

    Abualia, Mohammed; Schroeder, Lianne; Garcia, Megan; Daubenmire, Patrick L.; Wink, Donald J.; Clark, Ginevra A.

    2016-01-01

    An understanding of protein folding relies on a solid foundation of a number of critical chemical concepts, such as molecular structure, intra-/intermolecular interactions, and relating structure to function. Recent reports show that students struggle on all levels to achieve these understandings and use them in meaningful ways. Further, several…

  12. Screening of cellular proteins that interact with the classical swine ...

    Indian Academy of Sciences (India)

    In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A's function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database ...

  13. Screening of cellular proteins that interact with the classical swine ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell. (SUVEC). Alignment ... development. The finding of ..... were unknown, the results of the BLAST against the human.

  14. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and ... to their role in stress signalling. Their role in transport of plant hormone auxin and mechanism of action in stress response shed new light on diverse role of.

  15. Protein and Drug Interactions in the Minor Groove of DNA

    Czech Academy of Sciences Publication Activity Database

    Morávek, Z.; Neidle, S.; Schneider, Bohdan

    2002-01-01

    Roč. 30, č. 5 (2002), s. 1182-1191 ISSN 0305-1048 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : protein * DNA * interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.051, year: 2002

  16. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  17. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak

    2017-09-08

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way to explore their contribution to a particular cellular phenotype in a given disease context. Cell-penetrating peptides can be synthetically constrained through various chemical modifications that stabilize a given structural fold with the potential to improve competitive binding to specific targets. Theileria-transformed leukocytes display high PKA activity, but PKAis an enzyme that plays key roles in multiple cellular processes; consequently genetic ablation of kinase activity gives rise to a myriad of confounding phenotypes. By contrast, ablation of a specific kinase-substrate interaction has the potential to give more refined information and we illustrate this here by describing how surgically ablating PKA interactions with BAD gives precise information on the type of glycolysis performed by Theileria-transformed leukocytes. In addition, we provide two other examples of how ablating specific protein-protein interactions in Theileria-infected leukocytes leads to precise phenotypes and argue that constrained penetrating peptides have great therapeutic potential to combat infectious diseases in general.

  18. Towards a better understanding of the specificity of protein-protein interaction

    Czech Academy of Sciences Publication Activity Database

    Kysilka, Jiří; Vondrášek, Jiří

    2012-01-01

    Roč. 25, č. 11 (2012), s. 604-615 ISSN 0952-3499 R&D Projects: GA ČR GAP208/10/0725; GA ČR GAP302/10/0427; GA MŠk(CZ) LH11020 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : protein-protein interaction * molecular recognition * x-ray structure analysis * empirical potentials * side chain-side chain interaction * interaction energy * bioinformatics Subject RIV: CE - Biochemistry Impact factor: 3.006, year: 2012

  19. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  20. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests.

    Directory of Open Access Journals (Sweden)

    Mile Sikić

    2009-01-01

    Full Text Available Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i a combination of sequence- and structure-derived parameters and (ii sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras-Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.

  1. Yeast Interacting Proteins Database: YOR117W, YJL184W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available c stress response, telomere uncapping and elongation, transcription; component of the EKC/KEOPS protein comp...n proposed to be involved in the modification of N-linked oligosaccharides, osmotic stress response, telomere uncap

  2. Yeast Interacting Proteins Database: YER081W, YDR105C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR105C TMS1 Vacuolar membrane protein of unknown function that is conserved in mammals; predicted to contai...tion that is conserved in mammals; predicted to contain eleven transmembrane heli

  3. Yeast Interacting Proteins Database: YKL002W, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available integral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthes... into lumenal vesicles of multivesicular bodies, and for delivery of newly synthesized vacuolar enzymes to t

  4. Yeast Interacting Proteins Database: YKL002W, YDL165W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available integral membrane proteins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthes...ins into lumenal vesicles of multivesicular bodies, and for delivery of newly synthesized vacuolar enzymes t

  5. Yeast Interacting Proteins Database: YLR447C, YDR277C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available uction pathway, required for repression of transcription by Rgt1p; interacts with Rgt1p and the Snf3p and Rgt2p glucose sensors...transduction pathway, required for repression of transcription by Rgt1p; interacts with Rgt1p and the Snf3p and Rgt2p glucose sensors

  6. Yeast Interacting Proteins Database: YMR125W, YPL178W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available so contains Sto1p, component of the spliceosomal commitment complex; interacts with Npl3p, possibly to packa...lso contains Sto1p, component of the spliceosomal commitment complex; interacts with Npl3p, possibly to pack

  7. Yeast Interacting Proteins Database: YDL239C, YGR268C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...sembly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spi

  8. Yeast Interacting Proteins Database: YDL239C, YPL255W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...ediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction

  9. Yeast Interacting Proteins Database: YDL239C, YOR324C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle pole

  10. Yeast Interacting Proteins Database: YDL239C, YDR148C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...mbly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spind

  11. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  12. Identification of in planta protein–protein interactions using IP-MS

    NARCIS (Netherlands)

    Jamge, Suraj; Angenent, Gerco; Bemer, Marian

    2018-01-01

    Gene regulation by transcription factors involves complex protein interaction networks, which include chromatin remodeling and modifying proteins as an integral part. Decoding these protein interactions is crucial for our understanding of chromatin-mediated gene regulation. Here, we describe a

  13. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    Science.gov (United States)

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  14. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  15. Computational prediction of protein-protein interactions in Leishmania predicted proteomes.

    Directory of Open Access Journals (Sweden)

    Antonio M Rezende

    Full Text Available The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks

  16. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  17. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    Science.gov (United States)

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  19. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    Science.gov (United States)

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  20. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  1. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  2. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  3. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  4. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  5. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  6. Kinome signaling through regulated protein-protein interactions in normal and cancer cells.

    Science.gov (United States)

    Pawson, Tony; Kofler, Michael

    2009-04-01

    The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.

  7. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  8. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  9. Yeast Interacting Proteins Database: YNR051C, YER151C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available that coregulates anterograde and retrograde transport between the endoplasmic reticulum and Golgi compartme...C UBP3 Ubiquitin-specific protease that interacts with Bre5p to co-regulate anterograde and retrograde...t coregulates anterograde and retrograde transport between the endoplasmic reticulum and Golgi compartments;...3 Prey description Ubiquitin-specific protease that interacts with Bre5p to co-regulate anterograde and retrograde

  10. Yeast Interacting Proteins Database: YLR377C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending...utophagy-mediated degradation depending on growth conditions; interacts with Vid30p Rows with this prey as p...d or autophagy-mediated degradation depending on growth conditions; interacts wit...me-mediated or autophagy-mediated degradation depending on growth conditions; int

  11. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  12. Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos

    2011-06-01

    Full Text Available Abstract Background Recent technological advances applied to biology such as yeast-two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of protein interaction networks. These interaction networks represent a rich, yet noisy, source of data that could be used to extract meaningful information, such as protein complexes. Several interaction network weighting schemes have been proposed so far in the literature in order to eliminate the noise inherent in interactome data. In this paper, we propose a novel weighting scheme and apply it to the S. cerevisiae interactome. Complex prediction rates are improved by up to 39%, depending on the clustering algorithm applied. Results We adopt a two step procedure. During the first step, by applying both novel and well established protein-protein interaction (PPI weighting methods, weights are introduced to the original interactome graph based on the confidence level that a given interaction is a true-positive one. The second step applies clustering using established algorithms in the field of graph theory, as well as two variations of Spectral clustering. The clustered interactome networks are also cross-validated against the confirmed protein complexes present in the MIPS database. Conclusions The results of our experimental work demonstrate that interactome graph weighting methods clearly improve the clustering results of several clustering algorithms. Moreover, our proposed weighting scheme outperforms other approaches of PPI graph weighting.

  13. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.

    Science.gov (United States)

    Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios

    2017-05-09

    Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  15. Can understanding the packing of side chains improve the design of protein-protein interactions?

    Science.gov (United States)

    Zhou, Alice; O'Hern, Corey; Regan, Lynne

    2011-03-01

    With the long-term goal to improve the design of protein-protein interactions, we have begun extensive computational studies to understand how side-chains of key residues of binding partners geometrically fit together at protein-peptide interfaces, e.g. the tetratrico-peptide repeat protein and its cognate peptide). We describe simple atomic-scale models of hydrophobic dipeptides, which include hard-core repulsion, bond length and angle constraints, and Van der Waals attraction. By completely enumerating all minimal energy structures in these systems, we are able to reproduce important features of the probability distributions of side chain dihedral angles of hydrophic residues in the protein data bank. These results are the crucial first step in developing computational models that can predict the side chain conformations of residues at protein-peptide interfaces. CSO acknowledges support from NSF grant no. CMMT-1006527.

  16. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    Directory of Open Access Journals (Sweden)

    Wan Li

    Full Text Available The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial. Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  17. Interaction between the enamel matrix proteins amelogenin and ameloblastin

    International Nuclear Information System (INIS)

    Ravindranath, Hanumanth H.; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M.H.

    2004-01-01

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [ 3 H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly

  18. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    Science.gov (United States)

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  19. Interaction between the enamel matrix proteins amelogenin and ameloblastin.

    Science.gov (United States)

    Ravindranath, Hanumanth H; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M H

    2004-10-22

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [(3)H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly.

  20. Fanconi Anemia Proteins and Their Interacting Partners: A Molecular Puzzle

    Science.gov (United States)

    Kaddar, Tagrid; Carreau, Madeleine

    2012-01-01

    In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle. PMID:22737580

  1. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Daniela Marasco

    2015-04-01

    Full Text Available Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.

  2. Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo

    Directory of Open Access Journals (Sweden)

    Baik L. Seong

    2011-03-01

    Full Text Available The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.

  3. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  4. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions.

    Science.gov (United States)

    Yamniuk, Aaron P; Newitt, John A; Doyle, Michael L; Arisaka, Fumio; Giannetti, Anthony M; Hensley, Preston; Myszka, David G; Schwarz, Fred P; Thomson, James A; Eisenstein, Edward

    2015-12-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.

  5. Positive Selection and Centrality in the Yeast and Fly Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Sandip Chakraborty

    2016-01-01

    Full Text Available Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those encoding highly connected proteins are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons tend to act at the periphery of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection encode significantly more connected and central proteins. These observations are not due to covariation of genes’ adaptability and centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection across protein-protein interaction networks varies from one species to another.

  6. Single-well monitoring of protein-protein interaction and phosphorylation-dephosphorylation events.

    Science.gov (United States)

    Arcand, Mathieu; Roby, Philippe; Bossé, Roger; Lipari, Francesco; Padrós, Jaime; Beaudet, Lucille; Marcil, Alexandre; Dahan, Sophie

    2010-04-20

    We combined oxygen channeling assays with two distinct chemiluminescent beads to detect simultaneously protein phosphorylation and interaction events that are usually monitored separately. This novel method was tested in the ERK1/2 MAP kinase pathway. It was first used to directly monitor dissociation of MAP kinase ERK2 from MEK1 upon phosphorylation and to evaluate MAP kinase phosphatase (MKP) selectivity and mechanism of action. In addition, MEK1 and ERK2 were probed with an ATP competitor and an allosteric MEK1 inhibitor, which generated distinct phosphorylation-interaction patterns. Simultaneous monitoring of protein-protein interactions and substrate phosphorylation can provide significant mechanistic insight into enzyme activity and small molecule action.

  7. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  8. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    Science.gov (United States)

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient......) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. CONCLUSIONS: The reported fully annotated interaction model serves as a platform for integrated systems biology studies...

  11. Dataset concerning GroEL chaperonin interaction with proteins

    Directory of Open Access Journals (Sweden)

    V.V. Marchenkov

    2016-03-01

    Full Text Available GroEL chaperonin is well-known to interact with a wide variety of polypeptide chains. Here we show the data related to our previous work (http://dx.doi.org/10.1016/j.pep.2015.11.020 [1], and concerning the interaction of GroEL with native (lysozyme, α-lactalbumin and denatured (lysozyme, α-lactalbumin and pepsin proteins in solution. The use of affinity chromatography on the base of denatured pepsin for GroEL purification from fluorescent impurities is represented as well.

  12. Interaction of molybdenum with blood serum proteins in vitro

    International Nuclear Information System (INIS)

    Bibr, B.; Kselikova, M.; Lener, J.

    1985-01-01

    The interaction of pentavalent and hexavalent 99 Mo compounds with rat and human serum was monitored in vitro by paper electrophoresis after incubation for one hour at 37 0 C. Hexavalent 99 Mo is not capable of interaction and, via sulfur ligands, forms unstable and unspecific bonds to the whole spectrum of serum proteins, in particular to albumin. Pentavalent 99 Mo binds strongly to alpha-2-macroglobulin in a ratio of 2 : 1; according to the nature of the ligand, it forms somewhat unstable bonds to albumin, beta-1-globulin and gamma-2-globulin. (author)

  13. Yeast Interacting Proteins Database: YDL239C, YHR184W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...e wall formation, thought to mediate assembly of a Don1p-containing structure at the leading edge of the pro

  14. Yeast Interacting Proteins Database: YDL239C, YPL124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...ore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading edge of the p

  15. Yeast Interacting Proteins Database: YDL239C, YAL028W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... to mediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via intera

  16. Yeast Interacting Proteins Database: YDL239C, YLR072W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... wall formation, thought to mediate assembly of a Don1p-containing structure at the leading edge of the pros

  17. Yeast Interacting Proteins Database: YDL239C, YBR072W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...ht to mediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via inte

  18. Protein-protein interaction site predictions with minimum covariance determinant and Mahalanobis distance.

    Science.gov (United States)

    Qiu, Zhijun; Zhou, Bo; Yuan, Jiangfeng

    2017-11-21

    Protein-protein interaction site (PPIS) prediction must deal with the diversity of interaction sites that limits their prediction accuracy. Use of proteins with unknown or unidentified interactions can also lead to missing interfaces. Such data errors are often brought into the training dataset. In response to these two problems, we used the minimum covariance determinant (MCD) method to refine the training data to build a predictor with better performance, utilizing its ability of removing outliers. In order to predict test data in practice, a method based on Mahalanobis distance was devised to select proper test data as input for the predictor. With leave-one-validation and independent test, after the Mahalanobis distance screening, our method achieved higher performance according to Matthews correlation coefficient (MCC), although only a part of test data could be predicted. These results indicate that data refinement is an efficient approach to improve protein-protein interaction site prediction. By further optimizing our method, it is hopeful to develop predictors of better performance and wide range of application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Automatic selection of reference taxa for protein-protein interaction prediction with phylogenetic profiling

    DEFF Research Database (Denmark)

    Simonsen, Martin; Maetschke, S.R.; Ragan, M.A.

    2012-01-01

    Motivation: Phylogenetic profiling methods can achieve good accuracy in predicting protein–protein interactions, especially in prokaryotes. Recent studies have shown that the choice of reference taxa (RT) is critical for accurate prediction, but with more than 2500 fully sequenced taxa publicly......: We present three novel methods for automating the selection of RT, using machine learning based on known protein–protein interaction networks. One of these methods in particular, Tree-Based Search, yields greatly improved prediction accuracies. We further show that different methods for constituting...... phylogenetic profiles often require very different RT sets to support high prediction accuracy....

  20. Protein-Lipid Interactions New Approaches and Emerging Concepts

    CERN Document Server

    Mateo, C. Reyes; Villalaín, José; González-Ros, José M

    2006-01-01

    Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of protein–lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid doma...

  1. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  2. InSilico Proteomics System: Integration and Application of Protein and Protein-Protein Interaction Data using Microsoft .NET

    Directory of Open Access Journals (Sweden)

    Straßer Wolfgang

    2006-12-01

    Full Text Available In the last decades, biological databases became the major knowledge resource for researchers in the field of molecular biology. The distribution of information among these databases is one of the major problems. An overview about the subject area of data access and representation of protein and protein-protein interaction data within public biological databases is described. For a comprehensive and consistent way of searching and analysing integrated protein and protein-protein interaction data, the InSilico Proteomics (ISP project has been initiated. Its three main objectives are (1 to provide an integrated knowledge pool for data investigation and global network analysis functions for a better understanding of a cell’s interactome, (2 employment of public data for plausibility analysis and validation of in-house experimental data and (3 testing the applicability of Microsoft’s .NET architecture for bioinformatics applications. Data integrated into the ISP database can be queried through the Web portal PRIMOS (PRotein Interaction and MOlecule Search which is freely available at http://biomis.fh-hagenberg.at/isp/primos.

  3. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  4. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  5. Visualization of protein interaction networks: problems and solutions

    Directory of Open Access Journals (Sweden)

    Agapito Giuseppe

    2013-01-01

    Full Text Available Abstract Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins and edges (interactions, the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i technology, i.e. availability/license of the software and supported OS (Operating System platforms; (ii interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the

  6. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    Science.gov (United States)

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  7. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    Directory of Open Access Journals (Sweden)

    Changchuan Yin

    Full Text Available Protein-protein interactions (PPIs play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA; however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40. The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI.

  8. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  9. Interaction of Hepatitis C virus proteins with pattern recognition receptors

    Directory of Open Access Journals (Sweden)

    Imran Muhammad

    2012-06-01

    Full Text Available Abstract Hepatitis C virus (HCV is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I as the receptors for intracellular viral double stranded RNA (dsRNA, and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C, non structural 3/4 A (NS3/4A and non structural 5A (NS5A have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.

  10. Peptide folding in the presence of interacting protein crowders

    Energy Technology Data Exchange (ETDEWEB)

    Bille, Anna, E-mail: anna.bille@thep.lu.se; Irbäck, Anders, E-mail: anders@thep.lu.se [Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund (Sweden); Mohanty, Sandipan, E-mail: s.mohanty@fz-juelich.de [Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-05-07

    Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.

  11. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  12. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  13. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  14. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    Science.gov (United States)

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  16. Bactericidal Permeability-Increasing Proteins Shape Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Fangmin Chen

    2017-04-01

    Full Text Available We characterized bactericidal permeability-increasing proteins (BPIs of the squid Euprymna scolopes, EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid’s symbiont, Vibrio fischeri, which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes, modulating interactions with the symbiont.

  17. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    Science.gov (United States)

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  18. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  19. Yeast Interacting Proteins Database: YOL069W, YIL144W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available complex (Ndc80p-Nuf2p-Spc24p-Spc25p); involved in chromosome segregation, spindle checkpoint activity and kinetochore clustering...vity, kinetochore assembly and clustering Rows with this prey as prey (2) Rows with this prey as bait (0) 12...-Nuf2p-Spc24p-Spc25p); involved in chromosome segregation, spindle checkpoint activity and kinetochore clustering...d coiled-coil protein involved in chromosome segregation, spindle checkpoint activity, kinetochore assembly and clustering

  20. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    Science.gov (United States)

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  1. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    Directory of Open Access Journals (Sweden)

    Fillipe L. R. do Carmo

    2018-04-01

    Full Text Available Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp, this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs, and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.

  2. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  3. Interactions between whey protein isolate and gum Arabic.

    Science.gov (United States)

    Klein, Miri; Aserin, Abraham; Ben Ishai, Paul; Garti, Nissim

    2010-09-01

    In this study we have attempted to understand the nature of "charge interactions" between two negatively charged biopolymers (whey protein isolate, WPI and gum Arabic, GA) and, consequently, why their mixture exhibits better interfacial activity. Surface tension (gamma(0)) measurements indicated that at ca. 1 wt.% of the biopolymer mixture (3:1 wt. ratio) the air/water surface is saturated. At 5 wt.% the gamma(0) of the mixture is lower than the calculated co-operative value. The zeta-potential measurements revealed that the isoelectric point of the WPI:GA 3:1 wt. ratio mixture is 3.8. The zeta-potential values up to pH 6 are below those calculated. Similarly, the electrical conductivities of the mixture are lower than those calculated. All these measurements indicate: (1) partial charge neutralization in spite of the fact that both biopolymers are negative or (2) partial charge-charge interactions between the two biopolymers. The thermal heating behavior of the frozen water in the aqueous mixture studied by DSC (heating cycle of the frozen sample) clearly indicates that the two biopolymers are interacting. We calculated the enthalpy, the free energy and the chemical potential of the interactions. We found that the interactions of the biopolymers are rather weak. They are likely derived from some local positively charged domains (pH 7) on the protein that neutralize some of the negatively charged GA. These interactions form weak charge adducts. These charge adducts are sufficient to improve its adsorption into the oil-water interface and enhance the emulsion stability. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  5. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Jørgensen, Trine Nygaard; Gether, Ulrik

    2010-01-01

    -synaptic neurons. This has led to the identification of a plethora of different kinases, receptors and scaffolding proteins that interact with DAT and hereby either modulate the catalytic activity of the transporter or regulate its trafficking and degradation. Several new tools for studying DAT regulation in live...

  6. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  7. PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    KAUST Repository

    Li, Chuanxi

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifi es and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At fi rst, IRO is applied in a binary classifi er to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the signifi cant performance of IRO on relation sentences classifi cation and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and Bioinfer, respectively, which are superior to most existing extraction methods. Copyright © 2014 Inderscience Enterprises Ltd.

  8. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Experimental investigation of interactions between proteins and carbon nanomaterials

    Science.gov (United States)

    Sengupta, Bishwambhar

    The global market for nanomaterials based products is forecasted to reach $1 trillion per annum per annum for 2015. Engineered nanomaterials (ENMs) exhibit unique physicochemical properties with potential to impact diverse aspects of society through applications in electronics, renewable energy, and medicine. While the research and proposed applications of ENMs continue to grow rapidly, the health and safety of ENMs still remains a major concern to the public as well as to policy makers and funding agencies. It is now widely accepted that focused efforts are needed for identifying the list of physicochemical descriptors of ENM before they can be evaluated for nanotoxicity and biological response. This task is surprisingly challenging, as many physicochemical properties of ENMs are closely inter related and cannot be varied independently (e.g. increasing the size of an ENM can introduce additional defects). For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities and defects. Furthermore, the inadvertent coating of proteins on ENM surface in any biological milieu results in the formation of the so-called "protein/bio-corona" which can in turn alter the fate of ENMs and their biological response. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene, and graphene oxide are widely used ENMs. It is now known that defects in CNMs play an important role not only in materials properties but also in the determination of how materials interact at the nano-bio interface. In this regard, this work investigates the influence of defect-induced hydrophilicity on the bio-corona formation using micro Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge transfer between them, inducing protein unfolding which enhances conformational entropy and

  10. Plasminogen and angiostatin interact with heat shock proteins.

    Science.gov (United States)

    Dudani, Anil K; Mehic, Jelica; Martyres, Anthony

    2007-06-01

    Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85-90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin's interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15-20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin's binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.

  11. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyung [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries several regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this

  12. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  13. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  14. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  15. Prediction and characterization of protein-protein interaction networks in swine

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-01-01

    Full Text Available Abstract Background Studying the large-scale protein-protein interaction (PPI network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. Results We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. Conclusion The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/.

  16. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  17. Molecular Analysis of AFP and HSA Interactions with PTEN Protein

    Directory of Open Access Journals (Sweden)

    Mingyue Zhu

    2015-01-01

    Full Text Available Human cytoplasmic alpha-fetoprotein (AFP has been classified as a member of the albuminoid gene family. The protein sequence of AFP has significant homology to that of human serum albumin (HSA, but its biological characteristics are vastly different from HSA. The AFP functions as a regulator in the phosphatidylinositol 3-kinase (PI3K/protein kinase B (AKT pathway, but HSA plays a key role as a transport protein. To probe their molecular mechanisms, we have applied colocalization, coimmunoprecipitation (co-IP, and molecular docking approaches to analyze the differences between AFP and HSA. The data from colocalization and co-IP displayed a strong interaction between AFP and PTEN (phosphatase and tensin homolog, demonstrating that AFP did bind to PTEN, but HSA did not. The molecular docking study further showed that the AFP domains I and III could contact with PTEN. In silicon substitutions of AFP binding site residues at position 490M/K and 105L/R corresponding to residues K490 and R105 in HSA resulted in steric clashes with PTEN residues R150 and K46, respectively. These steric clashes may explain the reason why HSA cannot bind to PTEN. Ultimately, the experimental results and the molecular modeling data from the interactions of AFP and HSA with PTEN will help us to identify targets for designing drugs and vaccines against human hepatocellular carcinoma.

  18. ASSESSING AND COMBINING RELIABILITY OF PROTEIN INTERACTION SOURCES

    Science.gov (United States)

    LEACH, SONIA; GABOW, AARON; HUNTER, LAWRENCE; GOLDBERG, DEBRA S.

    2008-01-01

    Integrating diverse sources of interaction information to create protein networks requires strategies sensitive to differences in accuracy and coverage of each source. Previous integration approaches calculate reliabilities of protein interaction information sources based on congruity to a designated ‘gold standard.’ In this paper, we provide a comparison of the two most popular existing approaches and propose a novel alternative for assessing reliabilities which does not require a gold standard. We identify a new method for combining the resultant reliabilities and compare it against an existing method. Further, we propose an extrinsic approach to evaluation of reliability estimates, considering their influence on the downstream tasks of inferring protein function and learning regulatory networks from expression data. Results using this evaluation method show 1) our method for reliability estimation is an attractive alternative to those requiring a gold standard and 2) the new method for combining reliabilities is less sensitive to noise in reliability assignments than the similar existing technique. PMID:17990508

  19. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  20. An ensemble self-training protein interaction article classifier.

    Science.gov (United States)

    Chen, Yifei; Hou, Ping; Manderick, Bernard

    2014-01-01

    Protein-protein interaction (PPI) is essential to understand the fundamental processes governing cell biology. The mining and curation of PPI knowledge are critical for analyzing proteomics data. Hence it is desired to classify articles PPI-related or not automatically. In order to build interaction article classification systems, an annotated corpus is needed. However, it is usually the case that only a small number of labeled articles can be obtained manually. Meanwhile, a large number of unlabeled articles are available. By combining ensemble learning and semi-supervised self-training, an ensemble self-training interaction classifier called EST_IACer is designed to classify PPI-related articles based on a small number of labeled articles and a large number of unlabeled articles. A biological background based feature weighting strategy is extended using the category information from both labeled and unlabeled data. Moreover, a heuristic constraint is put forward to select optimal instances from unlabeled data to improve the performance further. Experiment results show that the EST_IACer can classify the PPI related articles effectively and efficiently.

  1. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  2. GRIP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction

    Directory of Open Access Journals (Sweden)

    Zheng Huiru

    2009-01-01

    Full Text Available Abstract Background Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases and non-interacting proteins (negative cases are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results GRIP (Gold Reference dataset constructor from Information on Protein complexes is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets. GRIP is free to access at http://rosalind.infj.ulst.ac.uk/GRIP/.

  3. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.; Dimitrakopoulos, Christos M.; Likothanassis, Spiridon D.; Kleftogiannis, Dimitrios A.; Moschopoulos, Charalampos N.; Alexakos, Christos; Papadimitriou, Stergios; Mavroudi, Seferina P.

    2013-01-01

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about

  4. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    Science.gov (United States)

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  5. Protein-nanoparticle interactions the bio-nano interface

    CERN Document Server

    Rahman, Masoud; Tawil, Nancy; Yahia, L'Hocine; Mahmoudi, Morteza

    2013-01-01

    In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this bo...

  6. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  7. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    Science.gov (United States)

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  8. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  9. Predicting Protein-Protein Interactions Using BiGGER: Case Studies

    Directory of Open Access Journals (Sweden)

    Rui M. Almeida

    2016-08-01

    Full Text Available The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A in which no specific contact data is available; (Case Study B when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling on one of the partners is available; and (Case Study C when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.

  10. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    International Nuclear Information System (INIS)

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-01-01

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  11. Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.

    Science.gov (United States)

    Yim, Soorin; Yu, Hasun; Jang, Dongjin; Lee, Doheon

    2018-04-11

    Signaling pathways can be reconstructed by identifying 'effect types' (i.e. activation/inhibition) of protein-protein interactions (PPIs). Effect types are composed of 'directions' (i.e. upstream/downstream) and 'signs' (i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations between functional information of proteins. We used regulates, positively regulates, and negatively regulates relations in Gene Ontology (GO) to predict directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs and validated several highly confident effect types against literature. The annotated human PPIs are available in Additional file 2 to aid signaling pathway reconstruction and network biology research. We annotated effect types to PPIs by using regulates, positively regulates, and negatively regulates relations in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as protein-DNA interactions.

  12. Protein-protein interactions as a strategy towards protein-specific drug design: the example of ataxin-1.

    Directory of Open Access Journals (Sweden)

    Cesira de Chiara

    Full Text Available A main challenge for structural biologists is to understand the mechanisms that discriminate between molecular interactions and determine function. Here, we show how partner recognition of the AXH domain of the transcriptional co-regulator ataxin-1 is fine-tuned by a subtle balance between self- and hetero-associations. Ataxin-1 is the protein responsible for the hereditary spinocerebellar ataxia type 1, a disease linked to protein aggregation and transcriptional dysregulation. Expansion of a polyglutamine tract is essential for ataxin-1 aggregation, but the sequence-wise distant AXH domain plays an important aggravating role in the process. The AXH domain is also a key element for non-aberrant function as it intervenes in interactions with multiple protein partners. Previous data have shown that AXH is dimeric in solution and forms a dimer of dimers when crystallized. By solving the structure of a complex of AXH with a peptide from the interacting transcriptional repressor CIC, we show that the dimer interface of AXH is displaced by the new interaction and that, when blocked by the CIC peptide AXH aggregation and misfolding are impaired. This is a unique example in which palindromic self- and hetero-interactions within a sequence with chameleon properties discriminate the partner. We propose a drug design strategy for the treatment of SCA1 that is based on the information gained from the AXH/CIC complex.

  13. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  14. Update History of This Database - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Update History of This Database Date Update contents 201...0/03/29 Yeast Interacting Proteins Database English archive site is opened. 2000/12/4 Yeast Interacting Proteins Database...( http://itolab.cb.k.u-tokyo.ac.jp/Y2H/ ) is released. About This Database Database Description... Download License Update History of This Database Site Policy | Contact Us Update History of This Database... - Yeast Interacting Proteins Database | LSDB Archive ...

  15. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Directory of Open Access Journals (Sweden)

    Stefan M Ivanov

    Full Text Available An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  16. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Science.gov (United States)

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  17. Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords.

    Science.gov (United States)

    Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao

    2015-01-01

    For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as "bind" or "interact" plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction.

  18. Structure homology and interaction redundancy for discovering virus–host protein interactions

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-01-01

    Virus–host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication. PMID:24008843

  19. Structure homology and interaction redundancy for discovering virus-host protein interactions.

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-10-01

    Virus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication.

  20. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  1. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  2. Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Furuya Toshio

    2011-02-01

    Full Text Available Abstract Background The amount of data on protein-protein interactions (PPIs available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine. Results To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS. Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM. Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV proteins identified to date. Conclusions The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.

  3. DomPep--a general method for predicting modular domain-mediated protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.

  4. Efficient prediction of human protein-protein interactions at a global scale.

    Science.gov (United States)

    Schoenrock, Andrew; Samanfar, Bahram; Pitre, Sylvain; Hooshyar, Mohsen; Jin, Ke; Phillips, Charles A; Wang, Hui; Phanse, Sadhna; Omidi, Katayoun; Gui, Yuan; Alamgir, Md; Wong, Alex; Barrenäs, Fredrik; Babu, Mohan; Benson, Mikael; Langston, Michael A; Green, James R; Dehne, Frank; Golshani, Ashkan

    2014-12-10

    Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

  5. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  6. SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon

    2008-01-01

    Background Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. Description We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactio...

  7. Electrostatic similarities between protein and small molecule ligands facilitate the design of protein-protein interaction inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnout Voet

    Full Text Available One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs. We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.

  8. A lock-and-key model for protein–protein interactions

    OpenAIRE

    Morrison, Julie L.; Breitling, Rainer; Higham, Desmond J.; Gilbert, David R.

    2006-01-01

    Motivation: Protein–protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism’s proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at an intermediate level: It enables us to identify proteins which share biological interaction motifs,...

  9. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  10. BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.

    Science.gov (United States)

    Garcia-Garcia, Javier; Schleker, Sylvia; Klein-Seetharaman, Judith; Oliva, Baldo

    2012-07-01

    Protein-protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.

  11. A feature-based approach to modeling protein-protein interaction hot spots.

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  12. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    International Nuclear Information System (INIS)

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique

    2006-01-01

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm

  14. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Directory of Open Access Journals (Sweden)

    Sers Christine T

    2010-12-01

    Full Text Available Abstract Background While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. Results We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 and could confirm more than 73% of them based on evidence in the literature. Conclusions The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  15. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    Science.gov (United States)

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Graph theoretic analysis of protein interaction networks of eukaryotes

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2005-11-01

    Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.

  17. Studies on the interaction of lidocaine with plasma proteins

    International Nuclear Information System (INIS)

    Adotey, J.

    1985-01-01

    This study sought to quantitate lidocaine's interaction with alpha-1-acid glycoprotein (AAG), human serum albumin (HSA), and AAG in the presence of HSA, and to determine the extent of displacement of lidocaine from its binding site(s) by selected cardiovascular drugs (dipyridamole, disopyramide and quinidine). Since the limited experimental work reported in this area has involved the use of a single lidocaine concentration, this study involved the evaluation of a range of lidocaine concentrations. Lidocaine interaction with plasma proteins (AAG and HSA) was studied at 37 0 C using an isothermal equilibrium dialysis system and 14 C-lidocaine HCl. A dialysis membrane (M.W. cutoff 12,000 to 14,000) separated the two chambers of each dialysis cell. The extent of 14 C-lidocaine dialysis was studied with respect to both drug and protein concentrations. Aliquots of each chamber of each of the cells were subjected to liquid scintillation counting (LSC) analyses for 14 C-lidocaine. The ratio of bound to free (R/F) lidocaine was evaluated as a function of AAG concentration from the LSC data. Scatchard and/or Rosenthal analyses were employed to evaluate n and k values where appropriate. Linear and multiple linear regression analyses of the data were appropriately performed

  18. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    Science.gov (United States)

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  19. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  20. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Elise Delaforge

    2016-09-01

    Full Text Available Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  1. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  2. Study of the interactions between naphthoquinone and protein

    International Nuclear Information System (INIS)

    Zhang Zhaoxia; Zhao Hongwei; Zhu Hongping; Ge Min; Hao Shumei; Wang Wenfeng; Li Wenxin

    2006-01-01

    Quinones are found in probably all respiring animal and plant cells. They are widely used as anticancer, antibacterial or antimalarial drugs and as fungicides. Over the last several decades, much attention has been paid to quinone compounds since they play important roles as electron and hydrogen atom acceptors in both chemistry and biochemistry. It has been known that the reactive states for the photoreduction of quinones are triplets. As for the photochemistry of simple quinones, such as benzoquinones (BQ), anthraquinones (AQ) and naphthoquinone (NQ), a large number of studies on their photochemical properties and elementary photoreactions. However little research on the protein electron transfer of triplet naphthoquinones ( 3 NQ * ) in organic solvents has been reported using laser flash photolysis. We have studied interactions between 3 NQ * and lysozyme in a mixture solution of acetonitrile and H 2 O (3:1, v/v) using 355 nm laser flash photolysis technique combined with the sample being irradiated in steady-state. Electron transfer reaction between 3 NQ * and lysozyme was found, and the rate constant was determined. On the other hand, the results of electrophoresis suggested that protein can be damaged induced by NQ irradiated with UVA light. It was indicated that the mechanisms and products of oxidative damage were relative to the concentration of riboflavin, the time of irradiation and the ambience. Mechanisms of photosensitive damage of protein were proposed. (authors)

  3. PINK1-Interacting Proteins: Proteomic Analysis of Overexpressed PINK1

    Directory of Open Access Journals (Sweden)

    Aleksandar Rakovic

    2011-01-01

    Full Text Available Recent publications suggest that the Parkinson's disease- (PD- related PINK1/Parkin pathway promotes elimination of dysfunctional mitochondria by autophagy. We used tandem affinity purification (TAP, SDS-PAGE, and mass spectrometry as a first step towards identification of possible substrates for PINK1. The cellular abundance of selected identified interactors was investigated by Western blotting. Furthermore, one candidate gene was sequenced in 46 patients with atypical PD. In addition to two known binding partners (HSP90, CDC37, 12 proteins were identified using the TAP assay; four of which are mitochondrially localized (GRP75, HSP60, LRPPRC, and TUFM. Western blot analysis showed no differences in cellular abundance of these proteins comparing PINK1 mutant and control fibroblasts. When sequencing LRPPRC, four exonic synonymous changes and 20 polymorphisms in noncoding regions were detected. Our study provides a list of putative PINK1 binding partners, confirming previously described interactions, but also introducing novel mitochondrial proteins as potential components of the PINK1/Parkin mitophagy pathway.

  4. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  5. Codon Bias Patterns of E. coli's Interacting Proteins.

    Directory of Open Access Journals (Sweden)

    Maddalena Dilucca

    Full Text Available Synonymous codons, i.e., DNA nucleotide triplets coding for the same amino acid, are used differently across the variety of living organisms. The biological meaning of this phenomenon, known as codon usage bias, is still controversial. In order to shed light on this point, we propose a new codon bias index, CompAI, that is based on the competition between cognate and near-cognate tRNAs during translation, without being tuned to the usage bias of highly expressed genes. We perform a genome-wide evaluation of codon bias for E.coli, comparing CompAI with other widely used indices: tAI, CAI, and Nc. We show that CompAI and tAI capture similar information by being positively correlated with gene conservation, measured by the Evolutionary Retention Index (ERI, and essentiality, whereas, CAI and Nc appear to be less sensitive to evolutionary-functional parameters. Notably, the rate of variation of tAI and CompAI with ERI allows to obtain sets of genes that consistently belong to specific clusters of orthologous genes (COGs. We also investigate the correlation of codon bias at the genomic level with the network features of protein-protein interactions in E.coli. We find that the most densely connected communities of the network share a similar level of codon bias (as measured by CompAI and tAI. Conversely, a small difference in codon bias between two genes is, statistically, a prerequisite for the corresponding proteins to interact. Importantly, among all codon bias indices, CompAI turns out to have the most coherent distribution over the communities of the interactome, pointing to the significance of competition among cognate and near-cognate tRNAs for explaining codon usage adaptation. Notably, CompAI may potentially correlate with translation speed measurements, by accounting for the specific delay induced by wobble-pairing between codons and anticodons.

  6. Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Damiani, E.; Margreth, A.

    1990-01-01

    Minor protein components of triads and of sarcoplasmic reticulum (SR) terminal cisternae (TC), i.e. 47 and 37 kDa peptides and 31-30 kDa and 26-25 kDa peptide doublets, were identified from their ability to bind 125 I calsequestrin (CS) in the presence of EGTA. The CS-binding peptides are specifically associated with the junctional membrane of TC, since they could not be detected in junctional transverse tubules and in longitudinal SR fragments. The 31-30 kDa peptide doublet, exclusively, did not bind CS in the presence of Ca 2+ . Thus, different types of protein-protein interactions appear to be involved in selective binding of CS to junctional TC

  7. HippDB: a database of readily targeted helical protein-protein interactions.

    Science.gov (United States)

    Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S

    2013-11-01

    HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.

  8. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  9. Intracellular antibody capture: A molecular biology approach to inhibitors of protein-protein interactions.

    Science.gov (United States)

    Zhang, Jing; Rabbitts, Terence H

    2014-11-01

    Many proteins of interest in basic biology, translational research studies and for clinical targeting in diseases reside inside the cell and function by interacting with other macromolecules. Protein complexes control basic processes such as development and cell division but also abnormal cell growth when mutations occur such as found in cancer. Interfering with protein-protein interactions is an important aspiration in both basic and disease biology but small molecule inhibitors have been difficult and expensive to isolate. Recently, we have adapted molecular biology techniques to develop a simple set of protocols for isolation of high affinity antibody fragments (in the form of single VH domains) that function within the reducing environment of higher organism cells and can bind to their target molecules. The method called Intracellular Antibody Capture (IAC) has been used to develop inhibitory anti-RAS and anti-LMO2 single domains that have been used for target validation of these antigens in pre-clinical cancer models and illustrate the efficacy of the IAC approach to generation of drug surrogates. Future use of inhibitory VH antibody fragments as drugs in their own right (we term these macrodrugs to distinguish them from small molecule drugs) requires their delivery to target cells in vivo but they can also be templates for small molecule drug development that emulate the binding sites of the antibody fragments. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  11. Characterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase

    Directory of Open Access Journals (Sweden)

    Brandon W. Carr

    2014-06-01

    Full Text Available Zipper-interacting protein kinase (ZIPK is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.

  12. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  13. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.

    Science.gov (United States)

    Wang, Qinghua; Ross, Karen E; Huang, Hongzhan; Ren, Jia; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2017-01-01

    Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.

  14. Research Techniques Made Simple: Emerging Methods to Elucidate Protein Interactions through Spatial Proximity.

    Science.gov (United States)

    Che, Yonglu; Khavari, Paul A

    2017-12-01

    Interactions between proteins are essential for fundamental cellular processes, and the diversity of such interactions enables the vast variety of functions essential for life. A persistent goal in biological research is to develop assays that can faithfully capture different types of protein interactions to allow their study. A major step forward in this direction came with a family of methods that delineates spatial proximity of proteins as an indirect measure of protein-protein interaction. A variety of enzyme- and DNA ligation-based methods measure protein co-localization in space, capturing novel interactions that were previously too transient or low affinity to be identified. Here we review some of the methods that have been successfully used to measure spatially proximal protein-protein interactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    Science.gov (United States)

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  16. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries.

    Science.gov (United States)

    Balakrishna, Asha Manikkoth; Manimekalai, Malathy Sony Subramanian; Grüber, Gerhard

    2015-10-01

    The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  18. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.

    Science.gov (United States)

    Obreque-Slíer, Elías; Peña-Neira, Alvaro; López-Solís, Remigio

    2010-03-24

    Red wine astringency has been associated with interactions of tannins with salivary proteins. Tannins are active protein precipitants. Not much evidence exists demonstrating contribution of other wine components to astringency. We aimed to investigate an eventual role of ethanol both in astringency and salivary protein-enological tannin interactions. A trained sensory panel scored perceived astringency. Salivary protein-tannin interactions were assessed by observing both tannin-dependent changes in salivary protein diffusion on cellulose membranes and tannin-induced salivary protein precipitation. Proanthocyanidins and gallotannins in aqueous and hydroalcoholic solutions were assayed. A biphasic mode of diffusion on cellulose membranes displayed by salivary proteins was unaffected after dilution with water or enological concentrations of ethanol. At those concentrations ethanol was not astringent. In aqueous solution, tannins provoked both restriction of salivary protein diffusion, protein precipitation, and astringency. Those effects were exacerbated by 13% ethanol. In summary, enological concentrations of ethanol exacerbate astringency and salivary protein-tannin interactions.

  19. Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.

    Directory of Open Access Journals (Sweden)

    Swapnil R Chhabra

    Full Text Available Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  20. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  1. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The specificity of interactions between proteins and sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Barbara Mulloy

    2005-12-01

    Full Text Available Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS to its interaction with heparin cofactor II (HCII, and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS, in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them.Os polissacarídeos sulfatados são capazes de se ligar às proteínas com diferentes níveis de especificidade. São macromoléculas altamente ácidas que podem se ligar de forma inespecífica a qualquer domínio básico da superfície de uma proteína em soluções com baixa força iônica, contudo tais interações não parecem ser fisiologicamente significativas. Por outro lado, foram identificados vários sistemas nos quais componentes estruturais muito específicos dos polissacarídeos sulfatados conferem alta afinidade para algumas proteínas. O exemplo mais conhecido é o pentassacarídeo da heparina com alta afinidade pela antitrombina. Outros exemplos podem ser

  3. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela

    2017-10-07

    The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks

    Science.gov (United States)

    LAVALLÉE-ADAM, MATHIEU; COULOMBE, BENOIT; BLANCHETTE, MATHIEU

    2015-01-01

    High-throughput methods for identifying protein-protein interactions produce increasingly complex and intricate interaction networks. These networks are extremely rich in information, but extracting biologically meaningful hypotheses from them and representing them in a human-readable manner is challenging. We propose a method to identify Gene Ontology terms that are locally over-represented in a subnetwork of a given biological network. Specifically, we propose several methods to evaluate the degree of clustering of proteins associated to a particular GO term in both weighted and unweighted PPI networks, and describe efficient methods to estimate the statistical significance of the observed clustering. We show, using Monte Carlo simulations, that our best approximation methods accurately estimate the true p-value, for random scale-free graphs as well as for actual yeast and human networks. When applied to these two biological networks, our approach recovers many known complexes and pathways, but also suggests potential functions for many subnetworks. Online Supplementary Material is available at www.liebertonline.com. PMID:20377456

  5. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.

    Science.gov (United States)

    Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal

    2015-01-01

    Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.

  6. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    Science.gov (United States)

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    Science.gov (United States)

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    Science.gov (United States)

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  9. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...

  10. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Computational Approaches for Prediction of Pathogen-Host Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Esmaeil eNourani

    2015-02-01

    Full Text Available Infectious diseases are still among the major and prevalent health problems, mostly because of the drug resistance of novel variants of pathogens. Molecular interactions between pathogens and their hosts are the key part of the infection mechanisms. Novel antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough understanding of pathogen-host interaction (PHI systems. Existing databases, which contain experimentally verified PHI data, suffer from scarcity of reported interactions due to the technically challenging and time consuming process of experiments. This has motivated many researchers to address the problem by proposing computational approaches for analysis and prediction of PHIs. The computational methods primarily utilize sequence information, protein structure and known interactions. Classic machine learning techniques are used when there are sufficient known interactions to be used as training data. On the opposite case, transfer and multi task learning methods are preferred. Here, we present an overview of these computational approaches for PHI prediction, discussing their weakness and abilities, with future directions.

  12. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  13. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  14. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzi