WorldWideScience

Sample records for b-dependent transcriptomes including

  1. Tissue-Specific Floral Transcriptome Analysis of the Sexually Deceptive Orchid Chiloglottis trapeziformis Provides Insights into the Biosynthesis and Regulation of Its Unique UV-B Dependent Floral Volatile, Chiloglottone 1

    Directory of Open Access Journals (Sweden)

    Darren C. J. Wong

    2017-07-01

    Full Text Available The Australian sexually deceptive orchid, Chiloglottis trapeziformis, employs a unique UV-B-dependent floral volatile, chiloglottone 1, for specific male wasp pollinator attraction. Chiloglottone 1 and related variants (2,5-dialkylcyclohexane-1,3-diones, represent a unique class of specialized metabolites presumed to be the product of cyclization between two fatty acid (FA precursors. However, the genes involved in the biosynthesis of precursors, intermediates, and transcriptional regulation remains to be discovered. Chiloglottone 1 production occurs in the aggregation of calli (callus on the labellum under continuous UV-B light. Therefore, deep sequencing, transcriptome assembly, and differential expression (DE analysis were performed across different tissue types and UV-B treatments. Transcripts expressed in the callus and labellum (∼23,000 transcripts were highly specialized and enriched for a diversity of known and novel metabolic pathways. DE analysis between chiloglottone-emitting callus versus the remainder of the labellum showed strong coordinated induction of entire FA biosynthesis and β-oxidation pathways including genes encoding Ketoacyl-ACP Synthase, Acyl-CoA Oxidase, and Multifunctional Protein. Phylogenetic analysis revealed potential gene duplicates with tissue-specific differential regulation including two Acyl-ACP Thioesterase B and a Ketoacyl-ACP Synthase genes. UV-B treatment induced the activation of UVR8-mediated signaling and large-scale transcriptome changes in both tissues, however, neither FA biosynthesis/β-oxidation nor other lipid metabolic pathways showed clear indications of concerted DE. Gene co-expression network analysis identified three callus-specific modules enriched with various lipid metabolism categories. These networks also highlight promising candidates involved in the cyclization of chiloglottone 1 intermediates (e.g., Bet v I and dimeric α,β barrel proteins and orchestrating regulation of precursor

  2. Transcriptome

    Science.gov (United States)

    ... Also: Talking Glossary of Genetic Terms Definitions for genetic terms used on this page En Español: Transcriptoma Transcriptome What is a transcriptome? What can a transcriptome tell us? How can transcriptome data be used to explore gene function? What is ...

  3. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  4. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism

    NARCIS (Netherlands)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA

  5. Characterization of the Pratylenchus penetrans transcriptome including data mining of putative nematode genes involved in plant parasitism

    Science.gov (United States)

    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...

  6. A collection of annotated and harmonized human breast cancer transcriptome datasets, including immunologic classification [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jessica Roelands

    2018-02-01

    Full Text Available The increased application of high-throughput approaches in translational research has expanded the number of publicly available data repositories. Gathering additional valuable information contained in the datasets represents a crucial opportunity in the biomedical field. To facilitate and stimulate utilization of these datasets, we have recently developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB. In this note, we describe a curated compendium of 13 public datasets on human breast cancer, representing a total of 2142 transcriptome profiles. We classified the samples according to different immune based classification systems and integrated this information into the datasets. Annotated and harmonized datasets were uploaded to GXB. Study samples were categorized in different groups based on their immunologic tumor response profiles, intrinsic molecular subtypes and multiple clinical parameters. Ranked gene lists were generated based on relevant group comparisons. In this data note, we demonstrate the utility of GXB to evaluate the expression of a gene of interest, find differential gene expression between groups and investigate potential associations between variables with a specific focus on immunologic classification in breast cancer. This interactive resource is publicly available online at: http://breastcancer.gxbsidra.org/dm3/geneBrowser/list.

  7. Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia. Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.

  8. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis

    Directory of Open Access Journals (Sweden)

    Malik Assaf

    2012-11-01

    Full Text Available Abstract Background The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research. Results Using microarrays, transcript abundance was measured in brain and muscle tissues from Spalax and rat individuals exposed to acute and chronic hypoxia for varying durations. We found that Spalax global gene expression response to hypoxia differs from that of rat and is characterized by the activation of functional groups of genes that have not been strongly associated with the response to hypoxia in hypoxia sensitive mammals. Using functional enrichment analysis of Spalax hypoxia induced genes we found highly significant overrepresentation of groups of genes involved in anti apoptosis, cancer, embryonic/sexual development, epidermal growth factor receptor binding, coordinated suppression and activation of distinct groups of transcription factors and membrane receptors, in addition to angiogenic related processes. We also detected hypoxia induced increases of different critical Spalax hub gene transcripts, including antiangiogenic genes associated with cancer tolerance in Down syndrome human individuals. Conclusions This is the most comprehensive study of Spalax large scale gene expression response to hypoxia to date, and the first to use custom Spalax microarrays. Our work presents novel patterns that may underlie mechanisms with critical importance to the evolution of hypoxia tolerance, with special relevance to

  9. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller's organ, of the cattle tick, Rhipicephalus australis.

    Directory of Open Access Journals (Sweden)

    Sergio Munoz

    Full Text Available The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.

  10. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver.

  11. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs.

    Directory of Open Access Journals (Sweden)

    Ru Huang

    Full Text Available Imprinted macro non-protein-coding (nc RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.

  12. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome.

    Directory of Open Access Journals (Sweden)

    Shriram N Rajpathak

    Full Text Available Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s in the establishment of Turner syndrome phenotypes.

  13. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    Science.gov (United States)

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  14. Kinetics of recB-dependent repair: Relationship to post-UV inactivation of the prophage

    International Nuclear Information System (INIS)

    Trgovcevic, Z.; Petranovic, D.; Salaj-Smic, E.; Petranovic, M.

    1987-01-01

    By making use of the temperature-sensitive mutant recB270, we showed that the RecBCD enzyme is needed for repair between 1 and 4 h after UV exposure. recB-dependent prophage inactivation takes place in all dying cells during the same period of time. The kinetics of decrease in the yield of recombinants in phage-prophage crosses resemble those of prophage inactivation in UV-irradiated bacteria. This indicates that recombination processes (including site-specific recombination required for prophage excision) are blocked in cells destined to die. On the basis of our results, we suggest that a large fraction of damaged cells is rescued by the RecA-RecBCD recombination pathway. If repair is unsuccessful, RecA-RecBCD recombinaton intermediates persist in the irradiated cells leading to prophage inactivation. 27 refs.; 4 figs

  15. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  16. Establishing Substantial Equivalence: Transcriptomics

    Science.gov (United States)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  17. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as

  18. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    Science.gov (United States)

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  19. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  20. Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells

    International Nuclear Information System (INIS)

    Pereira, Renata M.S.; Calegari-Silva, Teresa Cristina; Hernandez, Maristela O.; Saliba, Alessandra M.; Redner, Paulo; Pessolani, Maria Cristina V.; Sarno, Euzenir N.; Sampaio, Elizabeth P.; Lopes, Ulisses G.

    2005-01-01

    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-κB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-κB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-κB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IκB-α degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-κB-driven transcription induced by TNF-α. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-κB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-κB activation in Schwann cells and thalidomide is able to modulate this activation

  1. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.

    Science.gov (United States)

    Tzika, Athanasia C; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C

    2015-07-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the "Reptilian Transcriptomes Database 2.0," which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  3. TCW: transcriptome computational workbench.

    Science.gov (United States)

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  4. TCW: transcriptome computational workbench.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    Full Text Available BACKGROUND: The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. METHODOLOGY: The Transcriptome Computational Workbench (TCW provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms. The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina or assembling long sequences (e.g. Sanger, 454, transcripts, annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. CONCLUSION: It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the

  5. Transcriptome Dynamics during Maize Endosperm Development.

    Directory of Open Access Journals (Sweden)

    Jianzhou Qu

    Full Text Available The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP. We found that more than 11,000 protein-coding genes underwent alternative splicing (AS events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs, were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.

  6. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF-κB-dependent

  7. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF-κB-dependent

  8. 20 CFR 655.736 - What are H-1B-dependent employers and willful violators?

    Science.gov (United States)

    2010-04-01

    ... Fashion Models, and Requirements for Employers Seeking To Employ Nonimmigrants on H-1b1 and E-3 Visas in... not include bona fide consultants and independent contractors. For purposes of this section, the...

  9. Sequencing and characterization of the guppy (Poecilia reticulata transcriptome

    Directory of Open Access Journals (Sweden)

    Rodd F Helen

    2011-04-01

    Full Text Available Abstract Background Next-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history. Results We generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs, and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in

  10. TLR-mediated NF-kB-dependent cytokine production is differently affected by HIV therapeutics

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Paludan, Søren Riis; Mogensen, Trine

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumonia and N. Meningococcus. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...

  11. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas; Vue, Zer; Voolstra, Christian R.; Medina, Mó nica; Moroz, Leonid L.

    2010-01-01

    developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms

  12. Transposable elements in the Anopheles funestus transcriptome.

    Science.gov (United States)

    Fernández-Medina, Rita D; Carareto, Claudia M A; Struchiner, Cláudio J; Ribeiro, José M C

    2017-06-01

    Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.

  13. TRAM (Transcriptome Mapper: database-driven creation and analysis of transcriptome maps from multiple sources

    Directory of Open Access Journals (Sweden)

    Danieli Gian

    2011-02-01

    Full Text Available Abstract Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays, implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile, useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene

  14. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    International Nuclear Information System (INIS)

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-01-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P 1 production (P 1 release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway

  15. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomohiro [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Sugiura, Hisatoshi, E-mail: sugiura@rm.med.tohoku.ac.jp [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan); Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Ichinose, Masakazu [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  16. Lymphotoxin β receptor activation promotes bladder cancer in a nuclear factor-κB-dependent manner.

    Science.gov (United States)

    Shen, Mo; Duan, Xiuzhi; Zhou, Ping; Zhou, Wu; Wu, Xiuling; Xu, Siqi; Chen, Yuhua; Tao, Zhihua

    2015-02-01

    Bladder cancer (BCa) is the most common tumor of the urinary system. Chronic inflammation in the papillary urothelial neoplasm of low malignant potential (PUNLMP)may contribute to carcinogenesis, including that of BCa, via poorly understood mechanisms. In this study, we show that the lymphotoxin β receptor (LTβR) is upregulated in BCa via activation of the canonical and non-canonical nuclear factor-κB (NF-κB) pathways. The mRNA expression of LTβR in 81 BCa, 10 chronic cystitis and 23 healthy bladder mucosa tissues was investigated by reverse transcription-fluorescent quantitative polymerase chain reaction (RT-FQ-PCR), and protein expression was studied in 73 BCa, 30 cystitis and 15 healthy paraffin-embedded tissue sections by immunohistochemistry. Both LTβR mRNA and protein were upregulated in BCa and cystitis compared to the healthy group (P<0.05). The mRNA level of the downstream NF-κB canonical pathway p65 gene and of the non-canonical pathway RelB gene were higher in the BCa and cystitis groups compared to the healthy one. The level of phosphorylated p65 (p-p65) protein of the canonical NF-κB pathway and that of p52, a protein of the non-canonical NF-κB pathway, were also higher in the BCa and cystitis group compared to the healthy group. The levels of these proteins significantly correlated to the pathological grade, clinical stage and lymph node metastasis of BCa patients (P<0.05). In addition, there was a positive correlation between LTβR and NF-κB pathway proteins. Thus, LTβR signaling may be involved in promoting BCa through the NF-κB pathway, and which may represent the molecular link between inflammation and BCa.

  17. Transcriptome profiling of Elettaria cardamomum (L. Maton (small cardamom

    Directory of Open Access Journals (Sweden)

    F. Nadiya

    2017-03-01

    Full Text Available Elettaria cardamomum (L. Maton, known as ‘queen of spices, is a perennial herbaceous monocot of the family Zingiberaceae, native to southern India. Cardamom is an economically valuable spice crop and used widely in culinary and medicinal purposes. In the present study, using Ion Proton RNA sequencing technology, we performed transcriptome sequencing and de novo transcriptome assembly of a wild and five cultivar genotypes of cardamom. RNA-seq generated a total of 22,811,983 (92 base and 24,889,197 (75 base raw reads accounting for approximately 8.21GB and 7.65GB of sequence data for wild and cultivar genotypes of cardamom respectively. The raw data were submitted to SRA database of NCBI under the accession numbers SRX1141272 (wild and SRX1141276 (cultivars. The raw reads were quality filtered and assembled using MIRA assembler resulted with 112,208 and 264,161contigs having N50 value 616 and 664 for wild and cultivar cardamom respectively. The assembled unigenes were functionally annotated using several databases including PlantCyc for pathway annotation. This work represents the first report on cardamom transcriptome sequencing. In order to generate a comprehensive reference transcriptome, we further assembled the raw reads of wild and cultivar genotypes which might enrich the plant transcriptome database and trigger advanced research in cardamom genomics.

  18. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    Science.gov (United States)

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

  19. Transcriptomic dissection of tongue squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Schwartz Joel L

    2008-02-01

    Full Text Available Abstract Background The head and neck/oral squamous cell carcinoma (HNOSCC is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Results Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1, and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5. The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. Conclusion In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.

  20. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  1. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  2. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    Science.gov (United States)

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  3. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  4. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  5. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  6. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Lagirand-Cantaloube, Julie; Laud, Karine; Lilienbaum, Alain; Tirode, Franck; Delattre, Olivier; Auclair, Christian; Kryszke, Marie-Helene

    2010-01-01

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  7. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome

    OpenAIRE

    Tang, Shaojun; Hemberg, Martin; Cansizoglu, Ertugrul; Belin, Stephane; Kosik, Kenneth; Kreiman, Gabriel; Steen, Hanno; Steen, Judith

    2016-01-01

    The ability to integrate 'omics' (i.e., transcriptomics and proteomics) is becoming increasingly important to the understanding of regulatory mechanisms. There are currently no tools available to identify differentially expressed genes (DEGs)across different 'omics'data types or multi-dimensional data including time courses. We present a model capable of simultaneously identifying DEGs from continuous and discrete transcriptomic, proteomic and integrated proteogenomic data. We show that...

  8. Transcriptome signature of the adult mouse choroid plexus

    Directory of Open Access Journals (Sweden)

    Marques Fernanda

    2011-01-01

    Full Text Available Abstract Background Although the gene expression profile of several tissues in humans and in rodent animal models has been explored, analysis of the complete choroid plexus (CP transcriptome is still lacking. A better characterization of the CP transcriptome can provide key insights into its functions as one of the barriers that separate the brain from the periphery and in the production of cerebrospinal fluid. Methods This work extends further what is known about the mouse CP transcriptome through a microarray analysis of CP tissue from normal mice under physiological conditions. Results We found that the genes most highly expressed are those implicated in energy metabolism (oxidative phosphorylation, glycolysis/gluconeogenesis and in ribosomal function, which is in agreement with the secretory nature of the CP. On the other hand, genes encoding for immune mediators are among those with lower expression in basal conditions. In addition, we found genes known to be relevant during brain development, and not previously identified to be expressed in the CP, including those encoding for various axonal guidance and angiogenesis molecules and for growth factors. Some of these are known to influence the neural stem cell niche in the subventricular zone, highlighting the involvement of the CP as a likely modulator of neurogenesis. Interestingly, our observations confirm that the CP transcriptome is unique, displaying low homology with that of other tissues. Of note, we describe here that the closest similarity is with the transcriptome of the endothelial cells of the blood-brain barrier. Conclusions Based on the data presented here, it will now be possible to further explore the function of particular proteins of the CP secretome in health and in disease.

  9. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression.

    Directory of Open Access Journals (Sweden)

    Eva-K Pauli

    2008-11-01

    Full Text Available The type I interferon (IFN system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1. Here we present data indicating that influenza A viruses not only suppress IFNbeta gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3 protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNalpha/beta, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1 was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5' triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kappaB-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.

  10. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  11. Strategic and Operational Plan for Integrating Transcriptomics ...

    Science.gov (United States)

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  12. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  13. Peroxidase gene discovery from the horseradish transcriptome.

    Science.gov (United States)

    Näätsaari, Laura; Krainer, Florian W; Schubert, Michael; Glieder, Anton; Thallinger, Gerhard G

    2014-03-24

    Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana. In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes. This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes.

  14. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Candice A Stafford-Banks

    Full Text Available Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande (the western flower thrips is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6 to known proteins, whereas a high percentage (61.24% of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the

  15. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  16. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.

    Directory of Open Access Journals (Sweden)

    Loren A Honaas

    Full Text Available Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1 proportion of reads mapping to an assembly 2 recovery of conserved, widely expressed genes, 3 N50 length statistics, and 4 the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.

  17. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  18. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures.

    Directory of Open Access Journals (Sweden)

    Moon Young Lee

    Full Text Available Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC, which serve as slow-wave electrical pacemakers for gastrointestinal (GI smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.

  19. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  20. An Atlas of annotations of Hydra vulgaris transcriptome.

    Science.gov (United States)

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  1. Histological chorioamnionitis shapes the neonatal transcriptomic immune response.

    Science.gov (United States)

    Weitkamp, Jörn-Hendrik; Guthrie, Scott O; Wong, Hector R; Moldawer, Lyle L; Baker, Henry V; Wynn, James L

    2016-07-01

    Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. Prospective, observational study. Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    Science.gov (United States)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.

  3. Transcriptome de la biopsie et transplantation rénale : prêt pour la transition clinique ?

    NARCIS (Netherlands)

    Bouatou, Yassine; Hadaya, Karine

    2017-01-01

    Kidney graft biopsy is the main diagnostic tool used in kidney transplantation to classify disease processes. Graft biopsies are performed at a predetermined time (protocol) or by indication. However, they bear limitations including the interobserver variability. Intragraft transcriptomics has taken

  4. Comparative transcriptomics in the Triticeae

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2009-06-01

    Full Text Available Abstract Background Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring. For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able

  5. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    Science.gov (United States)

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  6. Characterizing the transcriptome and molecular markers information ...

    Indian Academy of Sciences (India)

    2008). Analyses of the genetic structure .... The annotations and classifications for the transcriptome ... Based on the Pfam classification, the predic- ..... J. Lipid. Res. 33, 251–262. Eckert C. G., Samis K. E. and Lougheed S. C. 2008 Genetic vari-.

  7. The floral transcriptome of Eucalyptus grandis

    CSIR Research Space (South Africa)

    Vining, KJ

    2015-10-01

    Full Text Available As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages...

  8. Annotation of nerve cord transcriptome in earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Vasanthakumar Ponesakki

    2017-12-01

    Full Text Available In annelid worms, the nerve cord serves as a crucial organ to control the sensory and behavioral physiology. The inadequate genome resource of earthworms has prioritized the comprehensive analysis of their transcriptome dataset to monitor the genes express in the nerve cord and predict their role in the neurotransmission and sensory perception of the species. The present study focuses on identifying the potential transcripts and predicting their functional features by annotating the transcriptome dataset of nerve cord tissues prepared by Gong et al., 2010 from the earthworm Eisenia fetida. Totally 9762 transcripts were successfully annotated against the NCBI nr database using the BLASTX algorithm and among them 7680 transcripts were assigned to a total of 44,354 GO terms. The conserve domain analysis indicated the over representation of P-loop NTPase domain and calcium binding EF-hand domain. The COG functional annotation classified 5860 transcript sequences into 25 functional categories. Further, 4502 contig sequences were found to map with 124 KEGG pathways. The annotated contig dataset exhibited 22 crucial neuropeptides having considerable matches to the marine annelid Platynereis dumerilii, suggesting their possible role in neurotransmission and neuromodulation. In addition, 108 human stem cell marker homologs were identified including the crucial epigenetic regulators, transcriptional repressors and cell cycle regulators, which may contribute to the neuronal and segmental regeneration. The complete functional annotation of this nerve cord transcriptome can be further utilized to interpret genetic and molecular mechanisms associated with neuronal development, nervous system regeneration and nerve cord function.

  9. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3 removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease.

  10. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Massively parallel sequencing and analysis of the Necator americanus transcriptome.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    2010-05-01

    Full Text Available The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses.A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%, proteinase inhibitors (7.8% or calcium-binding EF-hand proteins (6.7%. Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%, oxidative phosphorylation (63% and/or proteases (60%; most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins or amino acid metabolism (e.g., asparagine t-RNA synthetase.This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human

  12. 3rd International Conference on Transcriptomics

    OpenAIRE

    John A Daniel

    2017-01-01

    Conference Series has been instrumental in conducting international Biochemistry meetings for seven years, and very excited to expand Europe, America and Asia Pacific continents. Previous meetings were held in major cities like Philadelphia, Orlando with success the meetings again scheduled in three continents. 3rd International Conference on Transcriptomics to be held during October 30 - November 01, 2017 at Bangkok, Thailand The Global Transcriptomics business sector to develop at a C...

  13. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  14. A transcriptome approach to ecdysozoan phylogeny.

    Science.gov (United States)

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts.

    Science.gov (United States)

    Chen, L; Luo, J; Li, J X; Li, J J; Wang, D Q; Tian, Y; Lu, L Z

    2015-06-01

    Excessive adiposity is a major problem in the duck industry, but its molecular mechanisms remain unknown. Genetic comparisons between domestic and wild animals have contributed to the exploration of genetic mechanisms responsible for many phenotypic traits. Significant differences in body fat mass have been detected between domestic and wild ducks. In this study, we used the Peking duck and Anas platyrhynchos as the domestic breed and wild counterpart respectively and performed a transcriptomic comparison of abdominal fat between the two breeds to comprehensively analyze the transcriptome basis of adiposity in ducks. We obtained approximately 350 million clean reads; assembled 61 250 transcripts, including 23 699 novel ones; and identified alternative 5' splice sites, alternative 3' splice sites, skipped exons and retained intron as the main alternative splicing events. A differential expression analysis between the two breeds showed that 753 genes exhibited differential expression. In Peking ducks, some lipid metabolism-related genes (IGF2, FABP5, BMP7, etc.) and oncogenes (RRM2, AURKA, CYR61, etc.) were upregulated, whereas genes related to tumor suppression and immunity (TNFRSF19, TNFAIP6, IGSF21, NCF1, etc.) were downregulated, suggesting adiposity might closely associate with tumorigenesis in ducks. Furthermore, 280 576 single-nucleotide variations were found differentiated between the two breeds, including 8641 non-synonymous ones, and some of the non-synonymous ones were found enriched in genes involved in lipid-associated and immune-associated pathways, suggesting abdominal fat of the duck undertakes both a metabolic function and immune-related function. These datasets enlarge our genetic information of ducks and provide valuable resources for analyzing mechanisms underlying adiposity in ducks. © 2015 Stichting International Foundation for Animal Genetics.

  16. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  17. Plant transcriptomics and responses to environmental stress: an ...

    Indian Academy of Sciences (India)

    3Centre for Environmental Research, Near East University, 33010, Lefkosha, Turkish Republic of the Northern Cyprus. 4Department of ...... Transcriptomic analysis of sense and antisense strands of .... 2008 Stem cell transcriptome profiling via.

  18. Blood transcriptomics: applications in toxicology

    Science.gov (United States)

    Joseph, Pius; Umbright, Christina; Sellamuthu, Rajendran

    2015-01-01

    The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article. PMID:23456664

  19. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α.

    LENUS (Irish Health Repository)

    Afonina, Inna S

    2011-10-21

    Granzyme B is a cytotoxic lymphocyte-derived protease that plays a central role in promoting apoptosis of virus-infected target cells, through direct proteolysis and activation of constituents of the cell death machinery. However, previous studies have also implicated granzymes A and B in the production of proinflammatory cytokines, via a mechanism that remains undefined. Here we show that IL-1α is a substrate for granzyme B and that proteolysis potently enhanced the biological activity of this cytokine in vitro as well as in vivo. Consistent with this, compared with full-length IL-1α, granzyme B-processed IL-1α exhibited more potent activity as an immunoadjuvant in vivo. Furthermore, proteolysis of IL-1α within the same region, by proteases such as calpain and elastase, was also found to enhance its biological potency. Thus, IL-1α processing by multiple immune-related proteases, including granzyme B, acts as a switch to enhance the proinflammatory properties of this cytokine.

  20. Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology.

    Science.gov (United States)

    Bernard, Christophe S; Bordi, Christophe; Termine, Elise; Filloux, Alain; de Bentzmann, Sophie

    2009-03-01

    Bacterial attachment to the substratum involves several cell surface organelles, including various types of pili. The Pseudomonas aeruginosa Tad machine assembles type IVb pili, which are required for adhesion to abiotic surfaces and to eukaryotic cells. Type IVb pili consist of a major subunit, the Flp pilin, processed by the FppA prepilin peptidase. In this study, we investigated the regulatory mechanism of the tad locus. We showed that the flp gene is expressed late in the stationary growth phase in aerobic conditions. We also showed that the tad locus was composed of five independent transcriptional units. We used transcriptional fusions to show that tad gene expression was positively controlled by the PprB response regulator. We subsequently showed that PprB bound to the promoter regions, directly controlling the expression of these genes. We then evaluated the contribution of two genes, tadF and rcpC, to type IVb pilus assembly. The deletion of these two genes had no effect on Flp production, pilus assembly, or Flp-mediated adhesion to abiotic surfaces in our conditions. However, our results suggest that the putative RcpC protein modifies the Flp pilin, thereby promoting Flp-dependent adhesion to eukaryotic cells.

  1. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  2. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  3. The utility of transcriptomics in fish conservation.

    Science.gov (United States)

    Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A

    2018-01-29

    There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.

  4. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    OpenAIRE

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome fo...

  5. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Sanz Libia

    2011-05-01

    Full Text Available Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27% were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements and class II (DNA transposons mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large

  6. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    Science.gov (United States)

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  7. Blood transcriptomics and metabolomics for personalized medicine.

    Science.gov (United States)

    Li, Shuzhao; Todor, Andrei; Luo, Ruiyan

    2016-01-01

    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

  8. The Human Transcriptome: An Unfinished Story

    Directory of Open Access Journals (Sweden)

    Mihaela Pertea

    2012-06-01

    Full Text Available Despite recent technological advances, the study of the human transcriptome is still in its early stages. Here we provide an overview of the complex human transcriptomic landscape, present the bioinformatics challenges posed by the vast quantities of transcriptomic data, and discuss some of the studies that have tried to determine how much of the human genome is transcribed. Recent evidence has suggested that more than 90% of the human genome is transcribed into RNA. However, this view has been strongly contested by groups of scientists who argued that many of the observed transcripts are simply the result of transcriptional noise. In this review, we conclude that the full extent of transcription remains an open question that will not be fully addressed until we decipher the complete range and biological diversity of the transcribed genomic sequences.

  9. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria.

    Science.gov (United States)

    Li, Liping; Tetu, Sasha G; Paulsen, Ian T; Hassan, Karl A

    2018-01-01

    The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.

  10. Transcriptome profiling of Finnsheep ovaries during out-of-season breeding period

    Directory of Open Access Journals (Sweden)

    Kisun Pokharel

    2015-03-01

    Full Text Available   Finnsheep is one of the most prolific sheep breeds in the world. We sequenced RNA-Seq libraries from the ovaries of Finnsheep ewes collected during out of season breeding period at about 30X sequence coverage. A total of 86 966 348 and 105 587 994 reads from two samples were mapped against latest available ovine reference genome (Oarv3.1. The transcriptome assembly revealed 14 870 known ovine genes, including the 15 candidate genes for fertility and out-of-season breeding. In this study we successfully used our bioinformatics pipeline to assemble the first ovarian transcriptome of Finnsheep.

  11. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome.

    Directory of Open Access Journals (Sweden)

    Cristian O Rohr

    Full Text Available Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.

  12. Transcriptomic Response of Chinese Yew (Taxus chinensis to Cold Stress

    Directory of Open Access Journals (Sweden)

    Xianghua Yu

    2017-04-01

    Full Text Available Taxus chinensis is a rare and endangered shrub, highly sensitive to temperature changes and widely known for its potential in cancer treatment. How gene expression of T. chinensis responds to low temperature is still unknown. To investigate cold response of the genus Taxus, we obtained the transcriptome profiles of T. chinensis grown under normal and low temperature (cold stress, 0°C conditions using Illumina Miseq sequencing. A transcriptome including 83,963 transcripts and 62,654 genes were assembled from 4.16 Gb of reads data. Comparative transcriptomic analysis identified 2,025 differently expressed (DE isoforms at p < 0.05, of which 1,437 were up-regulated by cold stress and 588 were down-regulated. Annotation of DE isoforms indicated that transcription factors (TFs in the MAPK signaling pathway and TF families of NAC, WRKY, bZIP, MYB, and ERF were transcriptionally activated. This might have been caused by the accumulation of secondary messengers, such as reactive oxygen species (ROS and Ca2+. While accumulation of ROS will have caused damages to cells, our results indicated that to adapt to low temperatures T. chinensis employed a series of mechanisms to minimize these damages. The mechanisms included: (i cold-enhanced expression of ROS deoxidant systems, such as peroxidase and phospholipid hydroperoxide glutathione peroxidase, to remove ROS. This was further confirmed by analyses showing increased activity of POD, SOD, and CAT under cold stress. (ii Activation of starch and sucrose metabolism, thiamine metabolism, and purine metabolism by cold-stress to produce metabolites which either protect cell organelles or lower the ROS content in cells. These processes are regulated by ROS signaling, as the “feedback” toward ROS accumulation.

  13. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  14. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  15. The head-regeneration transcriptome of the planarian Schmidtea mediterranea

    Science.gov (United States)

    2011-01-01

    Background Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. Results To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. Conclusions Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians. PMID:21846378

  16. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease

    NARCIS (Netherlands)

    Wes, Paul D; Holtman, Inge R; Boddeke, Erik W G M; Möller, Thomas; Eggen, Bart J L

    2015-01-01

    Genome-wide expression profiling technology has resulted in detailed transcriptome data for a wide range of tissues, conditions and diseases. In neuroscience, expression datasets were mostly generated using whole brain tissue samples, resulting in data from a mixture of cell types, including glial

  17. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    OpenAIRE

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes...

  18. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics

    NARCIS (Netherlands)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic Y; Jennings, Paul

    2015-01-01

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to

  19. Perspectives on the use of transcriptomics to advance biofuels

    Directory of Open Access Journals (Sweden)

    Siseon Lee

    2015-11-01

    Full Text Available As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.

  20. The draft genome and transcriptome of Cannabis sativa.

    Science.gov (United States)

    van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E

    2011-10-20

    Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

  1. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Chandra Kant

    Full Text Available A hallmark trait of chickpea (Cicer arietinum L., like other legumes, is the capability to convert atmospheric nitrogen (N2 into ammonia (NH3 in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO, Cluster of Orthologous Groups (COG and Kyoto Encyclopedia of Genes and Genomes (KEGG metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea.

  2. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea.

  3. The transcriptome of Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Roos David S

    2005-12-01

    Full Text Available Abstract Background Toxoplasma gondii gives rise to toxoplasmosis, among the most prevalent parasitic diseases of animals and man. Transformation of the tachzyoite stage into the latent bradyzoite-cyst form underlies chronic disease and leads to a lifetime risk of recrudescence in individuals whose immune system becomes compromised. Given the importance of tissue cyst formation, there has been intensive focus on the development of methods to study bradyzoite differentiation, although the molecular basis for the developmental switch is still largely unknown. Results We have used serial analysis of gene expression (SAGE to define the Toxoplasma gondii transcriptome of the intermediate-host life cycle that leads to the formation of the bradyzoite/tissue cyst. A broad view of gene expression is provided by >4-fold coverage from nine distinct libraries (~300,000 SAGE tags representing key developmental transitions in primary parasite populations and in laboratory strains representing the three canonical genotypes. SAGE tags, and their corresponding mRNAs, were analyzed with respect to abundance, uniqueness, and antisense/sense polarity and chromosome distribution and developmental specificity. Conclusion This study demonstrates that phenotypic transitions during parasite development were marked by unique stage-specific mRNAs that accounted for 18% of the total SAGE tags and varied from 1–5% of the tags in each developmental stage. We have also found that Toxoplasma mRNA pools have a unique parasite-specific composition with 1 in 5 transcripts encoding Apicomplexa-specific genes functioning in parasite invasion and transmission. Developmentally co-regulated genes were dispersed across all Toxoplasma chromosomes, as were tags representing each abundance class, and a variety of biochemical pathways indicating that trans-acting mechanisms likely control gene expression in this parasite. We observed distinct similarities in the specificity and

  4. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.

    Science.gov (United States)

    Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K

    2012-04-02

    Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.

  5. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  6. Scrimer: designing primers from transcriptome data

    Czech Academy of Sciences Publication Activity Database

    Mořkovský, Libor; Pačes, Jan; Rídl, Jakub; Reifová, R.

    2015-01-01

    Roč. 15, č. 6 (2015), s. 1415-1420 ISSN 1755-098X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : next-generation sequencing * primer design * SNaPshot * SNP genotyping * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.298, year: 2015

  7. Global daily dynamics of the pineal transcriptome

    DEFF Research Database (Denmark)

    Bustos, Diego M; Bailey, Michael J; Sugden, David

    2011-01-01

    Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance...

  8. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  9. The renal transcriptome in experimental hypertension

    NARCIS (Netherlands)

    Wesseling, S.

    2007-01-01

    The renal transcriptome in experimental hypertension The kidneys importantly determine blood pressure. Kidney dysfunction can result in hypertension, which in turn leads to renal damage. In primary hypertension the cause is unknown. The condition is polygenic, however, which genetic defects cause

  10. Transcriptome analysis of Anopheles stephensi embryo using ...

    Indian Academy of Sciences (India)

    Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage ...

  11. Brain transcriptome atlases : A computational perspective

    NARCIS (Netherlands)

    Mahfouz, A.M.E.T.A.; Huisman, S.M.H.; Lelieveldt, B.P.F.; Reinders, M.J.T.

    2017-01-01

    The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases

  12. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    Directory of Open Access Journals (Sweden)

    Xiaoshen Zhang

    2014-03-01

    Full Text Available Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx. About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.

  13. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis.

    Directory of Open Access Journals (Sweden)

    Robert W Chapman

    Full Text Available Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis, a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs and supervised machine learning, collective changes in the expression of a limited suite of genes (233 representing 90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold, with most individual transcripts making a small contribution (<1% to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.

  14. Addendum: Aird, S.D. et al. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins 2017, 9(6, 187

    Directory of Open Access Journals (Sweden)

    Steven D. Aird

    2018-04-01

    Full Text Available Following publication of this paper, Dr. Daniel Dashevsky discovered to our chagrin, that the transcriptomic datasets uploaded to the DNA Databank of Japan (DDBJ contained numerous complete 3FTx sequences that were not included in our paper.[...

  15. Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models

    International Nuclear Information System (INIS)

    Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.

    2008-01-01

    correspondence between mRNA and protein expression. The exceptions involve a few selected multi-protein complexes that require the stoichiometric expression of components for correct function. This finding has wide ramifications regarding the understanding of gene and protein expression including its control and evolution. It also shows that transcriptomic and proteomic expression analysis are complementary and non-redundant

  16. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  17. Similarities between Reproductive and Immune Pistil Transcriptomes of Arabidopsis Species.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; John-Arputharaj, Ajay; Pallmann, Maria; Dresselhaus, Thomas

    2017-07-01

    Independent lines of evidence suggest that members from ancient and polymorphic gene families such as defensins and receptor-like kinases mediate intercellular communication during both the immune response and reproduction. Here, we report a large-scale analysis to investigate the extent of overlap between these processes by comparing differentially expressed genes (DEGs) in the pistil transcriptomes of Arabidopsis thaliana and Arabidopsis halleri during self-pollination and interspecific pollination and during infection with Fusarium graminearum In both Arabidopsis species, the largest number of DEGs was identified in infected pistils, where genes encoding regulators of cell division and development were most frequently down-regulated. Comparison of DEGs between infection and various pollination conditions showed that up to 79% of down-regulated genes are shared between conditions and include especially defensin-like genes. Interspecific pollination of A. thaliana significantly up-regulated thionins and defensins. The significant overrepresentation of similar groups of DEGs in the transcriptomes of reproductive and immune responses of the pistil makes it a prime system in which to study the consequences of plant-pathogen interactions on fertility and the evolution of intercellular communication in pollination. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

    Science.gov (United States)

    Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel

    2013-08-19

    Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

  19. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  20. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

    Science.gov (United States)

    Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason

    2016-01-01

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558

  1. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  2. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  3. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa

    Directory of Open Access Journals (Sweden)

    Dalia Ponce

    2016-04-01

    Full Text Available Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.

  4. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    Science.gov (United States)

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  5. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

    Directory of Open Access Journals (Sweden)

    Stinus Lindgreen

    2014-10-01

    Full Text Available Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

  6. Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific.

    Science.gov (United States)

    Kenkel, Carly D; Bay, Line K

    2017-09-01

    Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92-102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460-72 405 contigs, representing 26 693-37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1-94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98-91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology. © The Authors 2017. Published by Oxford University Press.

  7. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment

    Science.gov (United States)

    Fang, Ling; Choudhary, Sanjeev; Zhao, Yingxin; Edeh, Chukwudi B; Yang, Chunying; Boldogh, Istvan; Brasier, Allan R.

    2014-01-01

    Ataxia-telangiectasia mutated (ATM), a member of the phosphatidylinositol 3 kinase-like kinase family, is a master regulator of the double strand DNA break-repair pathway after genotoxic stress. Here, we found ATM serves as an essential regulator of TNF-induced NF-kB pathway. We observed that TNF exposure of cells rapidly induced DNA double strand breaks and activates ATM. TNF-induced ROS promote nuclear IKKγ association with ubiquitin and its complex formation with ATM for nuclear export. Activated cytoplasmic ATM is involved in the selective recruitment of the E3-ubiquitin ligase β-TrCP to phospho-IκBα proteosomal degradation. Importantly, ATM binds and activates the catalytic subunit of protein kinase A (PKAc), ribosmal S6 kinase that controls RelA Ser 276 phosphorylation. In ATM knockdown cells, TNF-induced RelA Ser 276 phosphorylation is significantly decreased. We further observed decreased binding and recruitment of the transcriptional elongation complex containing cyclin dependent kinase-9 (CDK9; a kinase necessary for triggering transcriptional elongation) to promoters of NF-κB-dependent immediate-early cytokine genes, in ATM knockdown cells. We conclude that ATM is a nuclear damage-response signal modulator of TNF-induced NF-κB activation that plays a key scaffolding role in IκBα degradation and RelA Ser 276 phosphorylation. Our study provides a mechanistic explanation of decreased innate immune response associated with A-T mutation. PMID:24957606

  9. IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus.

    Science.gov (United States)

    Salvi, Valentina; Vermi, William; Cavani, Andrea; Lonardi, Silvia; Carbone, Teresa; Facchetti, Fabio; Bosisio, Daniela; Sozzani, Silvano

    2017-07-01

    Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB + pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-κB-dependent inflammation process in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Anitua, Eduardo; Pascual, Consuelo; Pérez-Gonzalez, Rocio; Orive, Gorka; Carro, Eva

    2015-04-10

    Parkinson's disease is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. Recent data showed that growth factors mediate neuroprotection in rodent models of Parkinson's disease, modulating pro-inflammatory processes. Based on our recent studies showing that plasma rich in growth factors (PRGF-Endoret) mediates neuroprotection as inflammatory moderator in Alzheimer's disease, in the present study we examined the effects of plasma rich in growth factors (PRGF-Endoret) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse as a translational therapeutic approach for Parkinson's disease. We found substantial neuroprotection by PRGF-Endoret in our model of Parkinson's disease, which resulted in diminished inflammatory responses and improved motor performance. Additionally, these effects were associated with robust reduction in nuclear transcription factor-κB (NF-κB) activation, and nitric oxide (NO), cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) expression in the substantia nigra. We propose that PRGF-Endoret can prevent dopaminergic degeneration via an NF-κB-dependent signaling process. As the clinical safety profile of PRGF-Endoret is already established, these data suggest that PRGF-Endoret provides a novel neuroprotective strategy for Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the TonB-dependent haem outer membrane transporter ShuA from Shigella dysenteriae

    International Nuclear Information System (INIS)

    Brillet, Karl; Meksem, Ahmed; Thompson, Andrew; Cobessi, David

    2009-01-01

    ShuA from S. dysenteriae was crystallized in several crystallization conditions containing detergents. Adding heavy atoms during crystallization strongly improved the crystal quality and the resolution limits. Diffraction data were collected at an energy remote from the Pb M absorption edges. As part of efforts towards understanding the crystallization of membrane proteins and membrane transport across the outer membrane of Gram-negative bacteria, the TonB-dependent haem outer membrane transporter ShuA of Shigella dysenteriae bound to heavy atoms was crystallized in several crystallization conditions using detergents. The insertion of a His 6 tag into an extracellular loop of ShuA, instead of downstream of the Escherichia coli peptide signal, allowed efficient targeting to the outer membrane and the rapid preparation of crystallizable protein. Crystals diffracting X-rays beyond 3.5 Å resolution were obtained by co-crystallizing ShuA with useful heavy atoms for phasing (Eu, Tb, Pb) by the MAD method at the synchrotron, and the SAD or SIRAS method at the Cu wavelength. The authors collected X-ray diffraction data at 2.3 Å resolution using one crystal of ShuA-Pb, and at 3.2 Å resolution at an energy remote from the Pb M absorption edges for phasing on PROXIMA-1 at SOLEIL

  12. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  13. Global meta-analysis of transcriptomics studies.

    Directory of Open Access Journals (Sweden)

    José Caldas

    Full Text Available Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy, based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.

  14. Transcriptome architecture across tissues in the pig

    Directory of Open Access Journals (Sweden)

    Folch Josep M

    2008-04-01

    Full Text Available Abstract Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes and between sexes (19 genes. The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome.

  15. Comparative Analysis of the Arabidopsis Pollen Transcriptome

    Czech Academy of Sciences Publication Activity Database

    Honys, David; Twell, D.

    2003-01-01

    Roč. 132, - (2003), s. 640ů652 ISSN 0032-0889 R&D Projects: GA AV ČR IAA5038207 Grant - others:Royal Society(GB) NATO Postdoctoral Fellowship (to D.H.) Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 113100003 Keywords : transcriptome profiling * Arabidopsis pollen * male gametophyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  16. 21-O-Angeloyltheasapogenol E3, a Novel Triterpenoid Saponin from the Seeds of Tea Plants, Inhibits Macrophage-Mediated Inflammatory Responses in a NF-κB-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Woo Seok Yang

    2014-01-01

    Full Text Available 21-O-Angeloyltheasapogenol E3 (ATS-E3 is a triterpenoid saponin recently isolated from the seeds of the tea tree Camellia sinensis (L. O. Kuntze. ATS-E3 has several beneficial properties including anti-inflammatory, antidiabetic, antiatherosclerotic, and anticancer effects. Unlike other phenolic compounds isolated from tea plants, there are no studies reporting the pharmacological action of ATS-E3. In this study, we therefore aimed to explore the cellular and molecular inhibitory activities of ATS-E3 in macrophage-mediated inflammatory responses. ATS-E3 remarkably diminished cellular responses of macrophages such as FITC-dextran-induced phagocytic uptake, sodium nitroprusside- (SNP- induced radical generation, and LPS-induced nitric oxide (NO production. Analysis of its molecular activity showed that this compound significantly suppressed the expression of inducible NO synthase (iNOS, nuclear translocation of nuclear factor- (NF- κB subunits (p50 and p65, phosphorylation of inhibitor of κB kinase (IKK, and the enzyme activity of AKT1. Taken together, the novel triterpenoid saponin compound ATS-E3 contributes to the beneficial effects of tea plants by exerting anti-inflammatory and antioxidative activities in an AKT/IKK/NF-κB-dependent manner.

  17. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fitzpatrick

    2009-11-01

    Full Text Available Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis.Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes, which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no

  18. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  19. Transcriptome Profiling of Pediatric Core Binding Factor AML.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Hsu

    Full Text Available The t(8;21 and Inv(16 translocations disrupt the normal function of core binding factors alpha (CBFA and beta (CBFB, respectively. These translocations represent two of the most common genomic abnormalities in acute myeloid leukemia (AML patients, occurring in approximately 25% pediatric and 15% of adult with this malignancy. Both translocations are associated with favorable clinical outcomes after intensive chemotherapy, and given the perceived mechanistic similarities, patients with these translocations are frequently referred to as having CBF-AML. It remains uncertain as to whether, collectively, these translocations are mechanistically the same or impact different pathways in subtle ways that have both biological and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq to investigate the similarities and differences in genes and pathways between these subtypes of pediatric AMLs. Diagnostic RNA from patients with t(8;21 (N = 17, Inv(16 (N = 14, and normal karyotype (NK, N = 33 were subjected to RNA-seq. Analyses compared the transcriptomes across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291 genes in t(8;21 and 474 genes in Inv(16 were differentially expressed relative to the NK controls, with 198 genes differentially expressed in both subtypes. The majority of these genes (175/198; binomial test p-value < 10(-30 are consistent in expression changes among the two subtypes suggesting the expression profiles are more similar between the CBF cohorts than in the NK cohort. Our analysis also revealed alternative splicing events (ASEs differentially expressed across subtypes, with 337 t(8;21-specific and 407 Inv(16-specific ASEs detected, the majority of which were acetylated proteins (p = 1.5 x 10(-51 and p = 1.8 x 10(-54 for the two subsets. In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients, including three fusions involving NUP98 in six

  20. Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages

    Directory of Open Access Journals (Sweden)

    Man-Li He

    2016-11-01

    Full Text Available Abstract Background Psoroptic mange is a chronic, refractory, contagious and infectious disease mainly caused by the mange mite Psoroptes ovis, which can infect horses, sheep, buffaloes, rabbits, other domestic animals, deer, wild camels, foxes, minks, lemurs, alpacas, elks and other wild animals. Features of the disease include intense pruritus and dermatitis, depilation and hyperkeratosis, which ultimately result in emaciation or death caused by secondary bacterial infections. The infestation is usually transmitted by close contact between animals. Psoroptic mange is widespread in the world. In this paper, the transcriptome of P. ovis is described following sequencing and analysis of transcripts from samples of larvae (i.e. the Pso_L group and nymphs and adults (i.e. the Pso_N_A group. The study describes differentially expressed genes (DEGs and genes encoding allergens, which help understanding the biology of P. ovis and lay foundations for the development of vaccine antigens and drug target screening. Methods The transcriptome of P. ovis was assembled and analyzed using bioinformatic tools. The unigenes of P. ovis from each developmental stage and the unigenes differentially between developmental stages were compared with allergen protein sequences contained in the allergen database website to predict potential allergens. Results We identified 38,836 unigenes, whose mean length was 825 bp. On the basis of sequence similarity with seven databases, a total of 17,366 unigenes were annotated. A total of 1,316 DEGs were identified, including 496 upregulated and 820 downregulated in the Pso_L group compared with the Pso_N_A group. We predicted 205 allergens genes in the two developmental stages similar to genes from other mites and ticks, of these, 14 were among the upregulated DEGs and 26 among the downregulated DEGs. Conclusion This study provides a reference transcriptome of P. ovis in absence of a reference genome. The analysis of DEGs and

  1. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    Science.gov (United States)

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  2. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    Directory of Open Access Journals (Sweden)

    Zhongying Qiu

    2016-07-01

    Full Text Available Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr, NCBI non-redundant nucleotide sequences (Nt, a manually-annotated and reviewed protein sequence database (Swiss-Prot, Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s, 36 unigenes encoding carboxylesterases (CarEs and 36 unigenes encoding glutathione S-transferases (GSTs in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome.

  3. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  4. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  5. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available BACKGROUND: The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS: Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5 with known proteins. We assigned Gene Ontology (GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS: Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that

  6. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages

    Directory of Open Access Journals (Sweden)

    Sergeenko Tatiana

    2008-06-01

    Full Text Available Abstract Background Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and ~10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. Results 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor

  7. CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress.

    Science.gov (United States)

    Álvarez, Ricardo; Neumann, German; Frávega, Jorge; Díaz, Fernando; Tejías, Cristóbal; Collao, Bernardo; Fuentes, Juan A; Paredes-Sabja, Daniel; Calderón, Iván L; Gil, Fernando

    2015-02-27

    It has been proposed that some antibiotics exert additional damage through reactive oxygen species (ROS) production. Since H₂S protects neurons and cardiac muscle from oxidative stress, it has been hypothesized that bacterial H₂S might, similarly, be a cellular protector against antibiotics. In Enterobacteriaceae, H₂S can be produced by the cysJIH pathway, which uses sulfate as the sulfur source. CysB, in turn, is a positive regulator of cysJIH. At present, the role of S. Typhimurium cysJIH operon in the protection to reactive oxygen species (ROS) induced by antimicrobial compounds remains to be elucidated. In this work, we evaluated the role of cysJIH and cysB in ROS accumulation, superoxide dismutase (SOD) activity, reduced thiol accumulation, and H₂S accumulation in S. Typhimurium, cultured in either sulfate or cysteine as the sole sulfur source. Furthermore, we assessed the effects of the addition of ceftriaxone (CEF) and menadione (MEN) in these same parameters. In sulfate as the sole sulfur source, we found that the cysJIH operon and the cysB gene were required to full growth in minimal media, independently on the addition of CEF or MEN. Most importantly, both cysJIH and cysB contributed to diminish ROS levels, increase the SOD activity, increase the reduced thiols, and increase the H₂S levels in presence of CEF or MEN. Moreover, the cysJIH operon exhibited a CysB-dependent upregulation in presence of these two antimicrobials compounds. On the other hand, when cysteine was used as the sole sulfur source, we found that cysJIH operon was completely negligible, were only cysB exhibited similar phenotypes than the described for sulfate as sulfur source. Unexpectedly, CysB downregulated cysJIH operon when cysteine was used instead of sulfate, suggesting a complex regulation of this system. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  9. Characterisation of the horse transcriptome from immunologically active tissues

    Directory of Open Access Journals (Sweden)

    Joanna Moreton

    2014-05-01

    Full Text Available The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.

  10. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  11. A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Vongsangnak, Wanwipa; Panagiotou, Gianni

    2008-01-01

    The full-genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger, and Aspergillus oryzae has opened possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are making available an Affymetrix GeneChip developed...... data identified 23 genes to be a conserved response across Aspergillus sp., including the xylose transcriptional activator XlnR. A promoter analysis of the up-regulated genes in all three species indicates the conserved XInR-binding site to be 5'-GGNTAAA-3'. The composition of the conserved gene......-set suggests that xylose acts as a molecule, indicating the presence of complex carbohydrates such as hemicellulose, and triggers an array of degrading enzymes. With this case example, we present a validated tool for transcriptome analysis of three Aspergillus species and a methodology for conducting cross...

  12. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previousl...

  13. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  14. Characterization of the cork oak transcriptome dynamics during acorn development.

    Science.gov (United States)

    Miguel, Andreia; de Vega-Bartol, José; Marum, Liliana; Chaves, Inês; Santo, Tatiana; Leitão, José; Varela, Maria Carolina; Miguel, Célia M

    2015-06-25

    Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. To our knowledge this work

  15. New seismograph includes filters

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-02

    The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.

  16. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...... of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change....

  17. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference. Keywords: Transcriptome, Growth fitness, Escherichia coli, Microarray

  18. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  19. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  20. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  1. The Characterization of the Phlebotomus papatasi Transcriptome

    Science.gov (United States)

    2013-04-01

    Le. infantum (Li: CAM68214.1), Le. major (Lm: XP_001683430.1), Homo sapiens (Hs: AAD17527.1) and Bo. mori (Bm: NP_001108470.1). The WAG substitution...blood meals in Ph. langeroni (Dillon, El Kordy 1997). Here we have identified 23 unique Ph. papatasi sequences with high identity (BLASTP, əe-50) to...Perkin SAH, Caler E, Bonaldo MF, Soares MB, El -Sayeed N, Aksoy S. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans

  2. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling

    Science.gov (United States)

    Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653

  3. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes

    OpenAIRE

    Kumar, Vikas; Kutschera, Verena E.; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    Background The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated...

  4. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  5. Comparative genomics and transcriptomics of trait-gene association

    Directory of Open Access Journals (Sweden)

    Pierlé Sebastián

    2012-11-01

    Full Text Available Abstract Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs. We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis.

  6. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.

    Directory of Open Access Journals (Sweden)

    Dianelys Gonzalez-Pena

    Full Text Available Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3 and cell adhesion molecule 3 (Cadm3 were over-expressed and coiled-coil domain containing 162 (Ccdc162 and titin-cap (Tcap were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9, interleukin 1 beta (Il1b and kynurenine 3-monooxygenase (Kmo were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1 and microtubule-actin crosslinking factor 1(Macf1. Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness

  7. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  8. Haematobia irritans dataset of raw sequence reads from Illumina-based transcriptome sequencing of specific tissues and life stages

    Science.gov (United States)

    Illumina HiSeq technology was used to sequence the transcriptome from various dissected tissues and life stages from the horn fly, Haematobia irritans. These samples include eggs (0, 2, 4, and 9 hours post-oviposition), adult fly gut, adult fly legs, adult fly malpighian tubule, adult fly ovary, adu...

  9. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  10. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    Science.gov (United States)

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  11. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    Full Text Available Abstract Background During HIV infection and/or antiretroviral therapy (ART, monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Results Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19 for the development of the abacavir hypersensitivity reaction were suggested. Conclusions Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV. Background Both macrophages and T lymphocyte subsets express the CD4 receptor and either the CXCR4 and/or the CCR5 coreceptor which confer susceptibility to infection with the Human Immunodeficiency Virus

  12. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    Science.gov (United States)

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  13. The Human Blood Metabolome-Transcriptome Interface

    Science.gov (United States)

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  14. The Human Blood Metabolome-Transcriptome Interface.

    Directory of Open Access Journals (Sweden)

    Jörg Bartel

    2015-06-01

    Full Text Available Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI. Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.

  15. Comparative Transcriptomics Among Four White Pine Species

    Directory of Open Access Journals (Sweden)

    Ethan A. G. Baker

    2018-05-01

    Full Text Available Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola, limber pine (Pinus flexilis, whitebark pine (Pinus albicaulis, and sugar pine (Pinus lambertiana was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated.

  16. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  17. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of micro......Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use......-type animals; only eight of these were also day/night expressed in the Crx-/- pineal gland. However, in the Crx-/- pineal gland 41 genes exhibited differential night/day expression that was not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also...... influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 up-regulation....

  18. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    Science.gov (United States)

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  19. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Arbeitman Michelle N

    2011-07-01

    Full Text Available Abstract Background Understanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene. The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues. Results Here we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of transformer that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors. Conclusions We identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform

  20. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  1. Colorectal cancer stages transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Tianyao Huo

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the second leading cause of cancer-related deaths in the United States. The purpose of this study was to evaluate the gene expression differences in different stages of CRC. Gene expression data on 433 CRC patient samples were obtained from The Cancer Genome Atlas (TCGA. Gene expression differences were evaluated across CRC stages using linear regression. Genes with p≤0.001 in expression differences were evaluated further in principal component analysis and genes with p≤0.0001 were evaluated further in gene set enrichment analysis. A total of 377 patients with gene expression data in 20,532 genes were included in the final analysis. The numbers of patients in stage I through IV were 59, 147, 116 and 55, respectively. NEK4 gene, which encodes for NIMA related kinase 4, was differentially expressed across the four stages of CRC. The stage I patients had the highest expression of NEK4 genes, while the stage IV patients had the lowest expressions (p = 9*10-6. Ten other genes (RNF34, HIST3H2BB, NUDT6, LRCh4, GLB1L, HIST2H4A, TMEM79, AMIGO2, C20orf135 and SPSB3 had p value of 0.0001 in the differential expression analysis. Principal component analysis indicated that the patients from the 4 clinical stages do not appear to have distinct gene expression pattern. Network-based and pathway-based gene set enrichment analyses showed that these 11 genes map to multiple pathways such as meiotic synapsis and packaging of telomere ends, etc. Ten of these 11 genes were linked to Gene Ontology terms such as nucleosome, DNA packaging complex and protein-DNA interactions. The protein complex-based gene set analysis showed that four genes were involved in H2AX complex II. This study identified a small number of genes that might be associated with clinical stages of CRC. Our analysis was not able to find a molecular basis for the current clinical staging for CRC based on the gene expression patterns.

  2. Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-05-01

    Full Text Available The strawberry is an important fruit worldwide; however, the development of the strawberry industry is limited by fungal disease. Anthracnose is caused by the pathogen Colletotrichum gloeosporioides and leads to large-scale losses in strawberry quality and production. However, the transcriptional response of strawberry to infection with C. gloeosporioides is poorly understood. In the present study, the strawberry leaf transcriptome of the ‘Yanli’ and ‘Benihoppe’ cultivars were deep sequenced via an RNA-seq analysis to study C. gloeosporioides resistance in strawberry. Among the sequences, differentially expressed genes were annotated with Gene Ontology terms and subjected to pathway enrichment analysis. Significant categories included defense, plant–pathogen interactions and flavonoid biosynthesis were identified. The comprehensive transcriptome data set provides molecular insight into C. gloeosporioides resistance genes in resistant and susceptible strawberry cultivars. Our findings can enhance breeding efforts in strawberry.

  3. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    Science.gov (United States)

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of the heart transcriptome of the white shark (Carcharodon carcharias).

    Science.gov (United States)

    Richards, Vincent P; Suzuki, Haruo; Stanhope, Michael J; Shivji, Mahmood S

    2013-10-11

    repeats). Detailed characterization of these microsatellites showed that ORFs with trinucleotide repeats, were significantly enriched for transcription regulatory roles and that trinucleotide frequency within ORFs was lower than for a wide range of taxonomic groups including other vertebrates. The white shark heart transcriptome represents a valuable resource for future elasmobranch functional and comparative genomic studies, as well as for population and other biological studies vital for effective conservation of this globally vulnerable species.

  5. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum transcriptome.

    Directory of Open Access Journals (Sweden)

    Silvan Oulion

    Full Text Available BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata, as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode. Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp. Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation

  6. Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    2015-01-01

    Full Text Available High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the “funnel-like” model and the “hourglass” model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.

  7. De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes.

    Directory of Open Access Journals (Sweden)

    Ingrid Garbus

    Full Text Available A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad. Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.

  8. Deep Sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant

    Directory of Open Access Journals (Sweden)

    Takanoi eHirano

    2012-06-01

    Full Text Available Porphyromonas gingivalis is a major etiological agent and chronic and aggressive forms of periodontal disease. The organism is an assacharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve noncoding RNAs were identified, including 11 small RNAs and one cobalamine riboswitch. Fifty seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.

  9. Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas.

    Directory of Open Access Journals (Sweden)

    Christopher DeBoever

    Full Text Available Primary central nervous system lymphomas (PCNSL have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV, JC polyomavirus (JCV, and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples.

  10. Remodeling of the Streptococcus agalactiae transcriptome in response to growth temperature.

    Directory of Open Access Journals (Sweden)

    Laurent Mereghetti

    Full Text Available BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes. A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research.

  11. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation.

    Science.gov (United States)

    Huang, Ming-Der; Wei, Fu-Jin; Wu, Cheng-Cheih; Hsing, Yue-Ie Caroline; Huang, Anthony H C

    2009-02-01

    The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.

  12. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    Science.gov (United States)

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  13. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes.

    Science.gov (United States)

    Wang, Xinjing; Dai, Zhiyuan; Wu, Xiaoli; Wang, Kai; Wang, Xipeng

    2016-04-10

    Tie2-expressing Monocytes (TEMs) were previously identified as a novel subset of monocytes and were believed to have prominent pro-angiogenesis activities in human tumors. While the molecular mechanism of the angiogenesis promoting capacity of TEMs remains unclear. RNA transcriptome pattern, including non-coding RNAs as microRNA (miRNA) and long non-coding RNA (lncRNA), plays important role in cell differentiation and functions. However, little is known about the transcriptome patterns of TEMs, including those non-coding RNAs. We explore the transcriptome of TEMs and the matched monocytes that do not express Tie2 (Tie2(-)monocytes) isolated from peripheral blood of healthy adults employing the Agilent Human miRNA(8*60K,Design ID: 046064)microarray and the Agilent lncRNA Gene Expression(4*180K, Design ID: 042818)microarray. A total of 141 mRNAs, 142 lncRNAs and 75 miRNAs were found dysregulated in TEMs compared to Tie2(-)monocytes. TEMs have the distinct RNA transcriptome patterns according to the Hierarchical clustering and then the gene expression patterns were confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Functional annotation by Gene Ontology (GO) analyses showed that the up-regulated mRNAs in TEMs were associated to blood vessel remodeling and positive regulation of epithelial cell proliferation, and the up-regulated insulin like growth factor 1(IGF1) mRNA was involved in both pathways. For functional analysis of those dysregulated non-coding RNAs, target genes of the miRNAs were predicted and cis/trans-regulation analysis of the lncRNAs were performed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    Science.gov (United States)

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  15. A Universal Genome Array and Transcriptome Atlas for Brachypodium Distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Mockler, Todd [Oregon State Univ., Corvallis, OR (United States)

    2017-04-17

    Brachypodium distachyon is the premier experimental model grass platform and is related to candidate feedstock crops for bioethanol production. Based on the DOE-JGI Brachypodium Bd21 genome sequence and annotation we designed a whole genome DNA microarray platform. The quality of this array platform is unprecedented due to the exceptional quality of the Brachypodium genome assembly and annotation and the stringent probe selection criteria employed in the design. We worked with members of the international community and the bioinformatics/design team at Affymetrix at all stages in the development of the array. We used the Brachypodium arrays to interrogate the transcriptomes of plants grown in a variety of environmental conditions including diurnal and circadian light/temperature conditions and under a variety of environmental conditions. We examined the transciptional responses of Brachypodium seedlings subjected to various abiotic stresses including heat, cold, salt, and high intensity light. We generated a gene expression atlas representing various organs and developmental stages. The results of these efforts including all microarray datasets are published and available at online public databases.

  16. A transcriptome anatomy of human colorectal cancers

    International Nuclear Information System (INIS)

    Lü, Bingjian; Xu, Jing; Lai, Maode; Zhang, Hao; Chen, Jian

    2006-01-01

    Accumulating databases in human genome research have enabled integrated genome-wide study on complicated diseases such as cancers. A practical approach is to mine a global transcriptome profile of disease from public database. New concepts of these diseases might emerge by landscaping this profile. In this study, we clustered human colorectal normal mucosa (N), inflammatory bowel disease (IBD), adenoma (A) and cancer (T) related expression sequence tags (EST) into UniGenes via an in-house GetUni software package and analyzed the transcriptome overview of these libraries by GOTree Machine (GOTM). Additionally, we downloaded UniGene based cDNA libraries of colon and analyzed them by Xprofiler to cross validate the efficiency of GetUni. Semi-quantitative RT-PCR was used to validate the expression of β-catenin and. 7 novel genes in colorectal cancers. The efficiency of GetUni was successfully validated by Xprofiler and RT-PCR. Genes in library N, IBD and A were all found in library T. A total of 14,879 genes were identified with 2,355 of them having at least 2 transcripts. Differences in gene enrichment among these libraries were statistically significant in 50 signal transduction pathways and Pfam protein domains by GOTM analysis P < 0.01 Hypergeometric Test). Genes in two metabolic pathways, ribosome and glycolysis, were more enriched in the expression profiles of A and IBD than in N and T. Seven transmembrane receptor superfamily genes were typically abundant in cancers. Colorectal cancers are genetically heterogeneous. Transcription variants are common in them. Aberrations of ribosome and glycolysis pathway might be early indicators of precursor lesions in colon cancers. The electronic gene expression profile could be used to highlight the integral molecular events in colorectal cancers

  17. Transcriptome sequences resolve deep relationships of the grape family.

    Science.gov (United States)

    Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong

    2013-01-01

    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  18. Transcriptome sequences resolve deep relationships of the grape family.

    Directory of Open Access Journals (Sweden)

    Jun Wen

    Full Text Available Previous phylogenetic studies of the grape family (Vitaceae yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  19. Illumina–based de novo transcriptome sequencing and analysis of ...

    Indian Academy of Sciences (India)

    Administrator

    2017-10-25

    Oct 25, 2017 ... (Shanghai, China) following manufacturer's protocols (Illumina, San .... suggests that pathways involved in musk production are expressed at a ..... Strickler S. R., Aureliano B. and Mueller L. A. 2012 Designing a transcriptome.

  20. Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa.

    Science.gov (United States)

    Kim, In-Woo; Markkandan, Kesavan; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yoo, Seungil; Park, Junhyung; Hwang, Jae Sam

    2016-11-28

    Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

  1. Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-06-01

    Full Text Available Next-generation technologies for determination of genomics and transcriptomics composition have a wide range of applications. Andrias davidianus, has become an endangered amphibian species of salamander endemic in China. However, there is a lack of the molecular information. In this study, we obtained the RNA-Seq data from a pool of A. davidianus tissue including spleen, liver, muscle, kidney, skin, testis, gut and heart using Illumina HiSeq 2500 platform. A total of 15,398,997,600 bp were obtained, corresponding to 102,659,984 raw reads. A total of 102,659,984 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 132,912 unigenes with an average length of 690 bp and N50 of 1263 bp. Unigenes were annotated through number of databases. These transcriptomic data of A. davidianus should open the door to molecular evolution studies based on the entire transcriptome or targeted genes of interest to sequence. The raw data in this study can be available in NCBI SRA database with accession number of SRP099564.

  2. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Andreas Dötsch

    Full Text Available In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS. By the use of rapid amplification of cDNA ends (5'-RACE we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms.

  3. Chapter 4 genomics, transcriptomics, and epigenomics in traumatic brain injury research.

    Science.gov (United States)

    Puccio, Ava M; Alexander, Sheila

    2015-01-01

    The long-term effects and significant impact of the full spectrum of traumatic brain injury (TBI) has received increased attention in recent years. Despite increased research efforts, there has been little movement toward improving outcomes for the survivors of TBI. TBI is a heterogeneous condition with a complex biological response, and significant variability in human recovery contributes to the difficulty in identifying therapeutics that improve outcomes. Personalized medicine, identifying the best course of treatment for a given individual based on individual characteristics, has great potential to improve recovery for TBI survivors. The advances in medical genetics and genomics over the past 20 years have increased our understanding of many biological processes. A substantial amount of research has focused on the genomic, transcriptomic, and epigenomic profiles in many health and disease states, including recovery from TBI. The focus of this review chapter is to describe the current state of the science in genomic, transcriptomic, and epigenomic research in the TBI population. There have been some advancements toward understanding the genomic, transcriptomic, and epigenomic processes in humans, but much of this work remains at the preclinical stage. This current evidence does improve our understanding of TBI recovery, but also serves as an excellent platform upon which to build further study toward improved outcomes for this population.

  4. Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi.

    Science.gov (United States)

    Valenzuela-Muñoz, Valentina; Sturm, Armin; Gallardo-Escárate, Cristian

    2015-04-09

    ATP-binding cassette (ABC) protein family encode for membrane proteins involved in the transport of various biomolecules through the cellular membrane. These proteins have been identified in all taxa and present important physiological functions, including the process of insecticide detoxification in arthropods. For that reason the ectoparasite Caligus rogercresseyi represents a model species for understanding the molecular underpinnings involved in insecticide drug resistance. llumina sequencing was performed using sea lice exposed to 2 and 3 ppb of deltamethrin and azamethiphos. Contigs obtained from de novo assembly were annotated by Blastx. RNA-Seq analysis was performed and validated by qPCR analysis. From the transcriptome database of C. rogercresseyi, 57 putative members of ABC protein sequences were identified and phylogenetically classified into the eight subfamilies described for ABC transporters in arthropods. Transcriptomic profiles for ABC proteins subfamilies were evaluated throughout C. rogercresseyi development. Moreover, RNA-Seq analysis was performed for adult male and female salmon lice exposed to the delousing drugs azamethiphos and deltamethrin. High transcript levels of the ABCB and ABCC subfamilies were evidenced. Furthermore, SNPs mining was carried out for the ABC proteins sequences, revealing pivotal genomic information. The present study gives a comprehensive transcriptome analysis of ABC proteins from C. rogercresseyi, providing relevant information about transporter roles during ontogeny and in relation to delousing drug responses in salmon lice. This genomic information represents a valuable tool for pest management in the Chilean salmon aquaculture industry.

  5. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  6. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung.

    Directory of Open Access Journals (Sweden)

    Weiling Zheng

    Full Text Available The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.

  7. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2017-12-08

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  8. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian; Cziesielski, Maha J.; Thomas, Ludivine; Michell, Craig; Esherick, Lisl Y.; Pringle, John R.; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  9. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Skin Color Differentiation in Red Tilapia.

    Science.gov (United States)

    Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun

    2016-08-11

    Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors.

  10. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

    Science.gov (United States)

    Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H

    2010-02-01

    The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.

  11. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  12. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  13. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2012-04-01

    Full Text Available Abstract Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99 and 4b (CLIP80459, and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence

  14. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance

  15. De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Neeraja Cherukupalli

    2016-08-01

    Full Text Available Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeqTM 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant nonredundant protein database, gene ontology and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts − using kyoto encyclopedia of genes and genomes database − revealed 5,606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6,767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs in 23,168 transcripts. Assembled sequences of transcriptome of A.paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analyses besides identification of key enzymes involved in the various pathways of secondary metabolism.

  16. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Elsa Góngora-Castillo

    Full Text Available The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs, includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin, hypertension (reserpine, ajmalicine, malaria (quinine, and as analgesics (7-hydroxymitragynine. Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource

  17. Development of Transcriptomic Resources for Interrogating the Biosynthesis of Monoterpene Indole Alkaloids in Medicinal Plant Species

    Science.gov (United States)

    Góngora-Castillo, Elsa; Childs, Kevin L.; Fedewa, Greg; Hamilton, John P.; Liscombe, David K.; Magallanes-Lundback, Maria; Mandadi, Kranthi K.; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; DellaPenna, Dean; McKnight, Thomas D.; O’Connor, Sarah; Buell, C. Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for

  18. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    Science.gov (United States)

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  19. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation

    Directory of Open Access Journals (Sweden)

    Rismani-Yazdi Hamid

    2012-09-01

    Full Text Available Abstract Background The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG biofuel precursor. Results After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases—presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and

  20. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    Science.gov (United States)

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels

  1. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Science.gov (United States)

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  2. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Directory of Open Access Journals (Sweden)

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  3. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  4. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    Science.gov (United States)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  5. The Transcriptome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector.

    Science.gov (United States)

    Inbar, Ehud; Hughitt, V Keith; Dillon, Laura A L; Ghosh, Kashinath; El-Sayed, Najib M; Sacks, David L

    2017-04-04

    The life cycle of the Leishmania parasite in the sand fly vector involves differentiation into several distinctive forms, each thought to represent an adaptation to specific microenvironments in the midgut of the fly. Based on transcriptome sequencing (RNA-Seq) results, we describe the first high-resolution analysis of the transcriptome dynamics of four distinct stages of Leishmania major as they develop in a natural vector, Phlebotomus duboscqi The early transformation from tissue amastigotes to procyclic promastigotes in the blood-fed midgut was accompanied by the greatest number of differentially expressed genes, including the downregulation of amastins, and upregulation of multiple cell surface proteins, sugar and amino acid transporters, and genes related to glucose metabolism and cell cycle progression. The global changes accompanying post-blood meal differentiation of procyclic promastigotes to the nectomonad and metacyclic stages were less extensive, though each displayed a unique signature. The transcriptome of nectomonads, which has not been studied previously, revealed changes consistent with cell cycle arrest and the upregulation of genes associated with starvation and stress, including autophagic pathways of protein recycling. Maturation to the infective, metacyclic stage was accompanied by changes suggesting preadaptation to the intracellular environment of the mammalian host, demonstrated by the amastigote-like profiles of surface proteins and metabolism-related genes. Finally, a direct comparison between sand fly-derived and culture-derived metacyclics revealed a reassuring similarity between the two forms, with the in vivo forms distinguished mainly by a stronger upregulation of transcripts associated with nutrient stress. IMPORTANCE The life cycle of Leishmania parasites in the sand fly vector includes their growth and development as morphologically distinct forms of extracellular promastigotes found within the different microenvironments of the

  6. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  7. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    OpenAIRE

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 di...

  8. Principle considerations for the use of transcriptomics in doping research.

    Science.gov (United States)

    Neuberger, Elmo W I; Moser, Dirk A; Simon, Perikles

    2011-10-01

    Over the course of the past decade, technical progress has enabled scientists to investigate genome-wide RNA expression using microarray platforms. This transcriptomic approach represents a promising tool for the discovery of basic gene expression patterns and for identification of cellular signalling pathways under various conditions. Since doping substances have been shown to influence mRNA expression, it has been suggested that these changes can be detected by screening the blood transcriptome. In this review, we critically discuss the potential but also the pitfalls of this application as a tool in doping research. Transcriptomic approaches were considered to potentially provide researchers with a unique gene expression signature or with a specific biomarker for various physiological and pathophysiological conditions. Since transcriptomic approaches are considerably prone to biological and technical confounding factors that act on study subjects or samples, very strict guidelines for the use of transcriptomics in human study subjects have been developed. Typical field conditions associated with doping controls limit the feasibility of following these strict guidelines as there are too many variables counteracting a standardized procedure. After almost a decade of research using transcriptomic tools, it still remains a matter of future technological progress to identify the ultimate biomarker using technologies and/or methodologies that are sufficiently robust against typical biological and technical bias and that are valid in a court of law. Copyright © 2011 John Wiley & Sons, Ltd.

  9. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    Science.gov (United States)

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  10. Transcriptome-wide patterns of divergence during allopatric evolution.

    Science.gov (United States)

    Pereira, Ricardo J; Barreto, Felipe S; Pierce, N Tessa; Carneiro, Miguel; Burton, Ronald S

    2016-04-01

    Recent studies have revealed repeated patterns of genomic divergence associated with species formation. Such patterns suggest that natural selection tends to target a set of available genes, but is also indicative that closely related taxa share evolutionary constraints that limit genetic variability. Studying patterns of genomic divergence among populations within the same species may shed light on the underlying evolutionary processes. Here, we examine transcriptome-wide divergence and polymorphism in the marine copepod Tigriopus californicus, a species where allopatric evolution has led to replicate sets of populations with varying degrees of divergence and hybrid incompatibility. Our analyses suggest that relatively small effective population sizes have resulted in an exponential decline of shared polymorphisms during population divergence and also facilitated the fixation of slightly deleterious mutations within allopatric populations. Five interpopulation comparisons at three different stages of divergence show that nonsynonymous mutations tend to accumulate in a specific set of proteins. These include proteins with central roles in cellular metabolism, such as those encoded in mtDNA, but also include an additional set of proteins that repeatedly show signatures of positive selection during allopatric divergence. Although our results are consistent with a contribution of nonadaptive processes, such as genetic drift and gene expression levels, generating repeatable patterns of genomic divergence in closely related taxa, they also indicate that adaptive evolution targeting a specific set of genes contributes to this pattern. Our results yield insights into the predictability of evolution at the gene level. © 2016 John Wiley & Sons Ltd.

  11. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.

    Directory of Open Access Journals (Sweden)

    Anna Durrans

    Full Text Available Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor "activated/reprogrammed" stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN, chemokine (C-C motif ligand 7 (CCL7 and thrombospondin 1 (TSP1 were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value.

  12. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii

    Directory of Open Access Journals (Sweden)

    Vaughn Roy

    2012-09-01

    Full Text Available Abstract Background The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. Methods Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. Results Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though

  13. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Directory of Open Access Journals (Sweden)

    Jouventin Pierre

    2010-05-01

    Full Text Available Abstract Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  14. comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinos, Billis [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); European Bioinformatics Inst., Hinxton, Cambridge (United Kingdom). European Molecular Biology Lab.; Aristotle Univ., Thessaloniki (Greece). Dept. of Genetics; Billini, Maria [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Max Planck Inst. for Terrestrial Microbiology, Marburg (Germany); Tripp, Harry J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Mavrommatis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Celgene Corp, San Francisco, CA (United States)

    2014-03-21

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5? enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application of stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response

  15. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  16. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    Science.gov (United States)

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in

  17. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  18. A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity.

    Science.gov (United States)

    Hobbs, Matthew; Pavasovic, Ana; King, Andrew G; Prentis, Peter J; Eldridge, Mark D B; Chen, Zhiliang; Colgan, Donald J; Polkinghorne, Adam; Wilkins, Marc R; Flanagan, Cheyne; Gillett, Amber; Hanger, Jon; Johnson, Rebecca N; Timms, Peter

    2014-09-11

    The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene.Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. This transcriptomic

  19. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  20. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  1. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    Science.gov (United States)

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  2. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature.

    Directory of Open Access Journals (Sweden)

    Vincent M Tutino

    Full Text Available Unruptured intracranial aneurysms (IAs are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs.Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts.Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (p<0.05, fold-change ≥2. This signature was able to separate patients with and without IAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5 and controls (n = 5, the 82 transcripts separated 9 of 10 patients into their respective groups.Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs.

  3. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature

    Science.gov (United States)

    Tutino, Vincent M.; Poppenberg, Kerry E.; Jiang, Kaiyu; Jarvis, James N.; Sun, Yijun; Sonig, Ashish; Siddiqui, Adnan H.; Snyder, Kenneth V.; Levy, Elad I.; Kolega, John

    2018-01-01

    Background Unruptured intracranial aneurysms (IAs) are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs. Methods Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts. Results Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (pIAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5) and controls (n = 5), the 82 transcripts separated 9 of 10 patients into their respective groups. Conclusion Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs. PMID:29342213

  4. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach Us

    Directory of Open Access Journals (Sweden)

    Hélène E. Hirbec

    2017-07-01

    Full Text Available Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS, Alzheimer disease (AD and Multiple sclerosis (MS. Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition

  5. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  6. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  7. Transcriptome States Reflect Imaging of Aging States.

    Science.gov (United States)

    Eckley, D Mark; Coletta, Christopher E; Orlov, Nikita V; Wilson, Mark A; Iser, Wendy; Bastian, Paul; Lehrmann, Elin; Zhang, Yonqing; Becker, Kevin G; Goldberg, Ilya G

    2018-06-14

    In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.

  8. Gingival tissue transcriptomes in experimental gingivitis

    Science.gov (United States)

    Jönsson, Daniel; Ramberg, Per; Demmer, Ryan T.; Kebschull, Moritz; Dahlén, Gunnar; Papapanou, Panos N.

    2012-01-01

    Aims We investigated the sequential gene expression in the gingiva during the induction and resolution of experimental gingivitis. Methods Twenty periodontally and systemically healthy non-smoking volunteers participated in a 3-week experimental gingivitis protocol, followed by debridement and 2-week regular plaque control. We recorded clinical indices and harvested gingival tissue samples from 4 interproximal palatal sites in half of the participants at baseline, Day 7, 14 and 21 (‘induction phase’), and at day 21, 25, 30 and 35 in the other half (‘resolution phase’). RNA was extracted, amplified, reversed transcribed, amplified, labeled and hybridized with Affymetrix Human Genome U133Plus2.0 microarrays. Paired t-tests compared gene expression changes between consecutive time points. Gene ontology analyses summarized the expression patterns into biologically relevant categories. Results The median gingival index was 0 at baseline, 2 at Day 21 and 1 at Day 35. Differential gene regulation peaked during the third week of induction and the first four days of resolution. Leukocyte transmigration, cell adhesion and antigen processing/presentation were the top differentially regulated pathways. Conclusions Transcriptomic studies enhance our understanding of the pathobiology of the reversible inflammatory gingival lesion and provide a detailed account of the dynamic tissue responses during induction and resolution of experimental gingivitis. PMID:21501207

  9. Analysis of the Citrullus colocynthis transcriptome during water deficit stress.

    Directory of Open Access Journals (Sweden)

    Zhuoyu Wang

    Full Text Available Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus, an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.

  10. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.

    Directory of Open Access Journals (Sweden)

    Xianwen Ren

    Full Text Available Next generation sequencing (NGS technologies have greatly changed the landscape of transcriptomic studies of non-model organisms. Since there is no reference genome available, de novo assembly methods play key roles in the analysis of these data sets. Because of the huge amount of data generated by NGS technologies for each run, many assemblers, e.g., ABySS, Velvet and Trinity, are developed based on a de Bruijn graph due to its time- and space-efficiency. However, most of these assemblers were developed initially for the Illumina/Solexa platform. The performance of these assemblers on 454 transcriptomic data is unknown. In this study, we evaluated and compared the relative performance of these de Bruijn graph based assemblers on both simulated and real 454 transcriptomic data. The results suggest that Trinity, the Illumina/Solexa-specialized transcriptomic assembler, performs the best among the multiple de Bruijn graph assemblers, comparable to or even outperforming the standard 454 assembler Newbler which is based on the overlap-layout-consensus algorithm. Our evaluation is expected to provide helpful guidance for researchers to choose assemblers when analyzing 454 transcriptomic data.

  11. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  12. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

    Directory of Open Access Journals (Sweden)

    Michael E Taveirne

    Full Text Available Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5' untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host.

  13. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  14. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB, Dendroctonus valens.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gu

    Full Text Available The red turpentine beetle (RTB, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae, is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing.We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP, six chemosensory proteins (CSP, four sensory neuron membrane proteins (SNMP, 22 odorant receptors (OR, four gustatory receptors (GR, three ionotropic receptors (IR, and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis.The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary

  15. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate.

    Directory of Open Access Journals (Sweden)

    Kun Hu

    Full Text Available Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate-treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate.The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes, 1,3-beta-D-glucan synthase complex (4 genes, carboxylic acid metabolic process (40 genes were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes, biosynthesis of secondary metabolites pathways (42 genes, fatty acid metabolism (13 genes, phenylalanine metabolism (7 genes, starch and sucrose metabolism pathway (12 genes. The qRT-PCR results were largely consistent with the RNA-Seq results.Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.

  16. The testes transcriptome derived from the New World Screwworm, Cochliomyia hominivorax TSA

    Science.gov (United States)

    In a collaboration with National Center for Genome Resources researchers, we sequenced and assembled the testes transcriptome derived from the Pacora, Panama, production plant strain of the New World Screwworm, Cochliomyia hominivorax. This transcriptome contains 4,149 unigenes and the Transcriptome...

  17. Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling

    DEFF Research Database (Denmark)

    Ewald, David Adrian; Noda, Shinji; Oliva, Margeaux

    2017-01-01

    , and a comparison of these models with the human AD transcriptomic fingerprint is lacking. We sought to evaluate the transcriptomic profiles of six common murine models and determine how they relate to human AD skin. Transcriptomic profiling was performed using microarrays and qRT-PCR on biopsies from NC/Nga, flaky...

  18. Investigation Of The Primary Transcriptome Of The Production Organism Pseudomonas Putida

    DEFF Research Database (Denmark)

    D'Arrigo, Isotta; Bojanovic, Klara; Long, Katherine

    2015-01-01

    Introduction: Pseudomonas putida is a nonpathogenic, Gram-negative bacterium and an excellent model organism for biotechnological applications. Due to its metabolic versatility, P. putida can grow in different environments including in extreme conditions. It has several genes to degrade xenobiotic....... putida KT2440 transcriptome, in the presence of citrate or glucose as sole carbon source. Results: A total of 7937 putative transcription start sites (TSSs) have been identified. 5’ RACE experiments have been performed to confirm putative TSSs, and 5’ UTR regions have been investigated for conservative......, our study has allowed for the investigation of several biological features of P. putida....

  19. De novo transcriptome assembly of shrimp Palaemon serratus

    Directory of Open Access Journals (Sweden)

    Alejandra Perina

    2017-03-01

    Full Text Available The shrimp Palaemon serratus is a coastal decapod crustacean with a high commercial value. It is harvested for human consumption. In this study, we used Illumina sequencing technology (HiSeq 2000 to sequence, assemble and annotate the transcriptome of P. serratus. RNA was isolated from muscle of adults individuals and, from a pool of larvae. A total number of 4 cDNA libraries were constructed, using the TruSeq RNA Sample Preparation Kit v2. The raw data in this study was deposited in NCBI SRA database with study accession number of SRP090769. The obtained data were subjected to de novo transcriptome assembly using Trinity software, and coding regions were predicted by TransDecoder. We used Blastp and Sma3s to annotate the identified proteins. The transcriptome data could provide some insight into the understanding of genes involved in the larval development and metamorphosis.

  20. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids, proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  1. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health

    Science.gov (United States)

    Christie, Andrew E.; Sommer, Stephanie A.; Cieslak, Matthew C.; Hartline, Daniel K.; Lenz, Petra H.

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne‘ohe Bay, Oahu, Hawai‘i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length “giant” proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  2. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data.

    Directory of Open Access Journals (Sweden)

    Daniel Ramsköld

    2009-12-01

    Full Text Available The parts of the genome transcribed by a cell or tissue reflect the biological processes and functions it carries out. We characterized the features of mammalian tissue transcriptomes at the gene level through analysis of RNA deep sequencing (RNA-Seq data across human and mouse tissues and cell lines. We observed that roughly 8,000 protein-coding genes were ubiquitously expressed, contributing to around 75% of all mRNAs by message copy number in most tissues. These mRNAs encoded proteins that were often intracellular, and tended to be involved in metabolism, transcription, RNA processing or translation. In contrast, genes for secreted or plasma membrane proteins were generally expressed in only a subset of tissues. The distribution of expression levels was broad but fairly continuous: no support was found for the concept of distinct expression classes of genes. Expression estimates that included reads mapping to coding exons only correlated better with qRT-PCR data than estimates which also included 3' untranslated regions (UTRs. Muscle and liver had the least complex transcriptomes, in that they expressed predominantly ubiquitous genes and a large fraction of the transcripts came from a few highly expressed genes, whereas brain, kidney and testis expressed more complex transcriptomes with the vast majority of genes expressed and relatively small contributions from the most expressed genes. mRNAs expressed in brain had unusually long 3'UTRs, and mean 3'UTR length was higher for genes involved in development, morphogenesis and signal transduction, suggesting added complexity of UTR-based regulation for these genes. Our results support a model in which variable exterior components feed into a large, densely connected core composed of ubiquitously expressed intracellular proteins.

  3. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Directory of Open Access Journals (Sweden)

    Cornman R

    2012-06-01

    Full Text Available Abstract Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.

  4. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Science.gov (United States)

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  5. KrillDB: A de novo transcriptome database for the Antarctic krill (Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Gabriele Sales

    Full Text Available Antarctic krill (Euphausia superba is a key species in the Southern Ocean with an estimated biomass between 100 and 500 million tonnes. Changes in krill population viability would have catastrophic effect on the Antarctic ecosystem. One looming threat due to elevated levels of anthropogenic atmospheric carbon dioxide (CO2 is ocean acidification (lowering of sea water pH by CO2 dissolving into the oceans. The genetics of Antarctic krill has long been of scientific interest for both for the analysis of population structure and analysis of functional genetics. However, the genetic resources available for the species are relatively modest. We have developed the most advanced genetic database on Euphausia superba, KrillDB, which includes comprehensive data sets of former and present transcriptome projects. In particular, we have built a de novo transcriptome assembly using more than 360 million Illumina sequence reads generated from larval krill including individuals subjected to different CO2 levels. The database gives access to: 1 the full list of assembled genes and transcripts; 2 their level of similarity to transcripts and proteins from other species; 3 the predicted protein domains contained within each transcript; 4 their predicted GO terms; 5 the level of expression of each transcript in the different larval stages and CO2 treatments. All references to external entities (sequences, domains, GO terms are equipped with a link to the appropriate source database. Moreover, the software implements a full-text search engine that makes it possible to submit free-form queries. KrillDB represents the first large-scale attempt at classifying and annotating the full krill transcriptome. For this reason, we believe it will constitute a cornerstone of future approaches devoted to physiological and molecular study of this key species in the Southern Ocean food web.

  6. De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica.

    Science.gov (United States)

    Zhang, Xiao-Xuan; Cong, Wei; Elsheikha, Hany M; Liu, Guo-Hua; Ma, Jian-Gang; Huang, Wei-Yi; Zhao, Quan; Zhu, Xing-Quan

    2017-07-01

    Fasciola gigantica is regarded as the major liver fluke causing fasciolosis in livestock in tropical countries. Despite the significant economic and public health impacts of F. gigantica there are few studies on the pathogenesis of this parasite and our understanding is further limited by the lack of genome and transcriptome information. In this study, de novo Illumina RNA sequencing (RNA-seq) was performed to obtain a comprehensive transcriptome profile of the juvenile (42days post infection) and adult stages of F. gigantica. A total of 49,720 unigenes were produced from juvenile and adult stages of F. gigantica, with an average length of 1286 nucleotides (nt) and N50 of 2076nt. A total of 27,862 (56.03%) unigenes were annotated by BLAST similarity searches against the NCBI non-redundant protein database. Because F. gigantica needs to feed and/or digest host tissues, some proteases (including cysteine proteases and aspartic proteases), which play a role in the degradation of host tissues (protein), have been paid more attention in the present study. A total of 6511 distinct genes were found differentially expressed between juveniles and adults, of which 3993 genes were up-regulated and 2518 genes were down-regulated in adults versus juveniles, respectively. Moreover, stage-specific differentially expressed genes were identified in juvenile (17,009) and adult (6517) F. gigantica. The significantly divergent pathways of differentially expressed genes included cAMP signaling pathway (226; 4.12%), proteoglycans in cancer (256; 4.67%) and focal adhesion (199; 3.63%). The transcription pattern also revealed two egg-laying-associated pathways: cGMP-PKG signaling pathway and TGF-β signaling pathway. This study provides the first comparative transcriptomic data concerning juvenile and adult stages of F. gigantica that will be of great value for future research efforts into understanding parasite pathogenesis and developing vaccines against this important parasite

  7. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    Science.gov (United States)

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest

  8. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  9. Transcriptome analysis of a petal anthocyanin polymorphism in the arctic mustard, Parrya nudicaulis.

    Directory of Open Access Journals (Sweden)

    Timothy Butler

    Full Text Available Angiosperms are renown for their diversity of flower colors. Often considered adaptations to pollinators, the most common underlying pigments, anthocyanins, are also involved in plants' stress response. Although the anthocyanin biosynthetic pathway is well characterized across many angiosperms and is composed of a few candidate genes, the consequences of blocking this pathway and producing white flowers has not been investigated at the transcriptome scale. We take a transcriptome-wide approach to compare expression differences between purple and white petal buds in the arctic mustard, Parrya nudicaulis, to determine which genes' expression are consistently correlated with flower color. Using mRNA-Seq and de novo transcriptome assembly, we assembled an average of 722 bp per gene (49.81% coding sequence based on the A. thaliana homolog for 12,795 genes from the petal buds of a pair of purple and white samples. Our results correlate strongly with qRT-PCR analysis of nine candidate genes in the anthocyanin biosynthetic pathway where chalcone synthase has the greatest difference in expression between color morphs (P/W = ∼7×. Among the most consistently differentially expressed genes between purple and white samples, we found 3× more genes with higher expression in white petals than in purple petals. These include four unknown genes, two drought-response genes (CDSP32, ERD5, a cold-response gene (GR-RBP2, and a pathogen defense gene (DND1. Gene ontology analysis of the top 2% of genes with greater expression in white relative to purple petals revealed enrichment in genes associated with stress responses including cold, drought and pathogen defense. Unlike the uniform downregulation of chalcone synthase that may be directly involved in the loss of petal anthocyanins, the variable expression of several genes with greater expression in white petals suggest that the physiological and ecological consequences of having white petals may be

  10. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  11. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus.

    Directory of Open Access Journals (Sweden)

    Bethany A Stahl

    Full Text Available Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual, and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment.

  12. Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease.

    Science.gov (United States)

    Anway, Matthew D; Skinner, Michael K

    2008-04-01

    The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.

  13. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies.

    Science.gov (United States)

    Méplan, Catherine; Johnson, Ian T; Polley, Abigael C J; Cockell, Simon; Bradburn, David M; Commane, Daniel M; Arasaradnam, Ramesh P; Mulholland, Francis; Zupanic, Anze; Mathers, John C; Hesketh, John

    2016-08-01

    Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. © The Author(s).

  14. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison.

    Science.gov (United States)

    Terrasson, Emmanuel; Buitink, Julia; Righetti, Karima; Ly Vu, Benoit; Pelletier, Sandra; Zinsmeister, Julia; Lalanne, David; Leprince, Olivier

    2013-01-01

    Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.

  15. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Science.gov (United States)

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei

    OpenAIRE

    Yi Gao; Jiankai Wei; Jianbo Yuan; Xiaojun Zhang; Fuhua Li; Jianhai Xiang

    2017-01-01

    Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology...

  17. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  18. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    Science.gov (United States)

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Transcriptome analyses provide insights into the difference of alkaloids biosynthesis in the Chinese goldthread (Coptis chinensis Franch. from different biotopes

    Directory of Open Access Journals (Sweden)

    Hanting Chen

    2017-05-01

    Full Text Available Coptis chinensis Franch., the Chinese goldthread (‘Weilian’ in Chinese, one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%. Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

  20. Transcriptome analyses provide insights into the difference of alkaloids biosynthesis in the Chinese goldthread (Coptis chinensis Franch.) from different biotopes.

    Science.gov (United States)

    Chen, Hanting; Deng, Cao; Nie, Hu; Fan, Gang; He, Yang

    2017-01-01

    Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

  1. Population Dynamics and Transcriptomic Responses of Chorthippus albonemus (Orthoptera: Acrididae to Herbivore Grazing Intensity

    Directory of Open Access Journals (Sweden)

    Xinghu Qin

    2017-11-01

    Full Text Available Livestock grazing can trigger outbreaks of insect pests in steppe ecosystems of Inner Mongolia in China. However, the physiological responses of the grasshopper Chorthippus albonemus to grazing are not well-understood. Here we investigated the effects of sheep grazing on the population dynamics and transcriptomic response of C. albonemus. We collected the insects three times (about 20 days apart in 1.33-ha plots in which there were no grazing, light grazing, moderate grazing, heavy grazing, or overgrazing. Our results showed that continuous grazing significantly decreased plant biomass and influenced plant succession. Total insect species diversity significantly declined along the grazing intensity gradient and over time. Results of the first two collections of C. albonemus indicated that moderate grazing significantly increased the abundance of C. albonemus. However, abundance was significantly decreased in plots that were overgrazed, possibly because of food stress and environmental pressures. Under moderate grazing, betA and CHDH genes were significantly upregulated in C. albonemus. In response to higher grazing intensity, upregulated genes included those involved in serine-type peptidase activity, anatomical structure development, and sensory organ development; downregulated genes included those involved in the structural constituents of the ribosome and ribosome processes. Genes strongly upregulated in response to heavy grazing pressure included adaptive genes such as those encoding ankyrin repeat domain-containing protein and HSP. These findings improve our understanding of the role of the transcriptome in C. albonemus population response to livestock grazing and may provide useful targets for grasshopper control.

  2. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell

    Science.gov (United States)

    2009-01-01

    Background Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. Results The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only ≤ 50% of transcripts estimated to be common between the two phases. The major functional category of transcripts differentiating haploids included signal transduction and motility genes. Diploid-specific transcripts included Ca2+, H+, and HCO3- pumps. Potential factors differentiating the transcriptomes included haploid-specific Myb transcription factor homologs and an unusual diploid-specific histone H4 homolog. Conclusions This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined. PMID:19832986

  3. Identification and analysis of common bean (Phaseolus vulgaris L. transcriptomes by massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Thimmapuram Jyothi

    2011-10-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt. These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC end sequences, and a total of 21% of the unigenes (12,724 including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs and transcription factors were also identified in this study. Conclusions This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and

  4. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought

    Directory of Open Access Journals (Sweden)

    Ranjan Alok

    2012-11-01

    Full Text Available Abstract Background Root length and its architecture govern the adaptability of plants to various stress conditions, including drought stress. Genetic variations in root growth, length, and architecture are genotypes dependent. In this study, we compared the drought-induced transcriptome of four genotypes of Gossypium herbaceum that differed in their drought tolerance adaptability. Three different methodologies, namely, microarray, pyrosequencing, and qRT–PCR, were used for transcriptome analysis and validation. Results The variations in root length and growth were found among four genotypes of G.herbaceum when exposed to mannitol-induced osmotic stress. Under osmotic stress, the drought tolerant genotypes Vagad and GujCot-21 showed a longer root length than did by drought sensitive RAHS-14 and RAHS-IPS-187. Further, the gene expression patterns in the root tissue of all genotypes were analyzed. We obtained a total of 794 differentially expressed genes by microarray and 104928 high-quality reads representing 53195 unigenes from the root transcriptome. The Vagad and GujCot-21 respond to water stress by inducing various genes and pathways such as response to stresses, response to water deprivation, and flavonoid pathways. Some key regulatory genes involved in abiotic stress such as AP2 EREBP, MYB, WRKY, ERF, ERD9, and LEA were highly expressed in Vagad and GujCot-21. The genes RHD3, NAP1, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in Vagad and GujCot-21. The genes related to peroxidases, transporters, cell wall-modifying enzymes, and compatible solutes (amino acids, amino sugars, betaine, sugars, or sugar alcohols were also highly expressed in Vagad and Gujcot-21. Conclusion Our analysis highlights changes in the expression pattern of genes and depicts a small but highly specific set of drought responsive genes induced in response to drought stress. Some of these

  5. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    Full Text Available Abstract Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and

  6. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    Science.gov (United States)

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M

  7. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.

    Directory of Open Access Journals (Sweden)

    Stephen W Hartley

    Full Text Available The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001 on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction. Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX or decentralization (DCN of the superior cervical ganglia (SCG, which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35% following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell

  8. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  9. Transcriptome Analysis in Sheepgrass (Leymus chinensis). A Dominant Perennial Grass of the Eurasian Steppe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangyan [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing; Huang, Xin [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing; Yang, Xiaohan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Gongshe [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing

    2013-07-04

    BACKGROUND: Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. RESULTS: The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. CONCLUSIONS: This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  10. Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach

    Science.gov (United States)

    Zhao, Qin; Zou, Jun; Meng, Jinling; Mei, Shiyong; Wang, Jianbo

    2013-01-01

    Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassica rapa , Brassica carinata , and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B . rapa , were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B . carinata , several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  11. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-09-01

    Full Text Available Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB and acidic TSB (aTSB. The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.

  12. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach.

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    Full Text Available Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  13. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    Science.gov (United States)

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide

  14. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella.

    Directory of Open Access Journals (Sweden)

    Qingsheng Lin

    Full Text Available BACKGROUND: The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella's resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. PRINCIPAL FINDINGS: To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp, which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated were gradient differentially expressed among the susceptible strain (SS and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA, moderate resistance (LZA and high resistance strains (HZA. A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. CONCLUSIONS: The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data

  15. Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe.

    Science.gov (United States)

    Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe

    2013-01-01

    Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  16. Analyzing AbrB-Knockout Effects through Genome and Transcriptome Sequencing of Bacillus licheniformis DW2

    Science.gov (United States)

    Shu, Cheng-Cheng; Wang, Dong; Guo, Jing; Song, Jia-Ming; Chen, Shou-Wen; Chen, Ling-Ling; Gao, Jun-Xiang

    2018-01-01

    As an industrial bacterium, Bacillus licheniformis DW2 produces bacitracin which is an important antibiotic for many pathogenic microorganisms. Our previous study showed AbrB-knockout could significantly increase the production of bacitracin. Accordingly, it was meaningful to understand its genome features, expression differences between wild and AbrB-knockout (ΔAbrB) strains, and the regulation of bacitracin biosynthesis. Here, we sequenced, de novo assembled and annotated its genome, and also sequenced the transcriptomes in three growth phases. The genome of DW2 contained a DNA molecule of 4,468,952 bp with 45.93% GC content and 4,717 protein coding genes. The transcriptome reads were mapped to the assembled genome, and obtained 4,102∼4,536 expressed genes from different samples. We investigated transcription changes in B. licheniformis DW2 and showed that ΔAbrB caused hundreds of genes up-regulation and down-regulation in different growth phases. We identified a complete bacitracin synthetase gene cluster, including the location and length of bacABC, bcrABC, and bacT, as well as their arrangement. The gene cluster bcrABC were significantly up-regulated in ΔAbrB strain, which supported the hypothesis in previous study of bcrABC transporting bacitracin out of the cell to avoid self-intoxication, and was consistent with the previous experimental result that ΔAbrB could yield more bacitracin. This study provided a high quality reference genome for B. licheniformis DW2, and the transcriptome data depicted global alterations across two strains and three phases offered an understanding of AbrB regulation and bacitracin biosynthesis through gene expression. PMID:29599755

  17. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  18. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Park Kyung-Do

    2012-09-01

    Full Text Available Abstract Background Thoroughbred horses are the most expensive domestic animals, and their running ability and knowledge about their muscle-related diseases are important in animal genetics. While the horse reference genome is available, there has been no large-scale functional annotation of the genome using expressed genes derived from transcriptomes. Results We present a large-scale analysis of whole transcriptome data. We sequenced the whole mRNA from the blood and muscle tissues of six thoroughbred horses before and after exercise. By comparing current genome annotations, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87% annotated genes. More than 60% (20,428 of the unigene clusters did not match any current equine gene model. We also identified 189,973 single nucleotide variations (SNVs from the sequences aligned against the horse reference genome. Most SNVs (171,558 SNVs; 90.31% were novel when compared with over 1.1 million equine SNPs from two SNP databases. Using differential expression analysis, we further identified a number of exercise-regulated genes: 62 up-regulated and 80 down-regulated genes in the blood, and 878 up-regulated and 285 down-regulated genes in the muscle. Six of 28 previously-known exercise-related genes were over-expressed in the muscle after exercise. Among the differentially expressed genes, there were 91 transcription factor-encoding genes, which included 56 functionally unknown transcription factor candidates that are probably associated with an early regulatory exercise mechanism. In addition, we found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. Conclusion The first sequencing-based horse transcriptome data, extensive analyses results, deferentially expressed genes before and after exercise, and candidate genes that are related to the exercise are provided in this

  19. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Science.gov (United States)

    Fonseca, Fernando Campos de Assis; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Souza Júnior, José Dijair Antonino; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima

    2015-01-01

    Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  20. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Directory of Open Access Journals (Sweden)

    Fernando Campos de Assis Fonseca

    Full Text Available Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus, a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB transcriptome, a number of aminopeptidase N (APN cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  1. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.

    Science.gov (United States)

    Portune, Kevin J; Voolstra, Christian R; Medina, Mónica; Szmant, Alina M

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L..

    Directory of Open Access Journals (Sweden)

    Jing An

    Full Text Available BACKGROUND: Goosegrass (Eleusine indica L., a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. RESULTS: The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. CONCLUSION: This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass.

  3. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.).

    Science.gov (United States)

    An, Jing; Shen, Xuefeng; Ma, Qibin; Yang, Cunyi; Liu, Simin; Chen, Yong

    2014-01-01

    Goosegrass (Eleusine indica L.), a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass.

  4. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp, 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  5. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum.

    Science.gov (United States)

    Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G

    2016-01-01

    Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into Ca

  6. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  7. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 h post-fertilization in 28 °C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 h post-fertilization at 28 °C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30 °C and 31.5 °C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28 °C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. © 2010 Elsevier B.V. All rights reserved.

  8. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation.

    Science.gov (United States)

    Hara, Yuichiro; Tatsumi, Kaori; Yoshida, Michio; Kajikawa, Eriko; Kiyonari, Hiroshi; Kuraku, Shigehiro

    2015-11-18

    RNA-seq enables gene expression profiling in selected spatiotemporal windows and yields massive sequence information with relatively low cost and time investment, even for non-model species. However, there remains a large room for optimizing its workflow, in order to take full advantage of continuously developing sequencing capacity. Transcriptome sequencing for three embryonic stages of Madagascar ground gecko (Paroedura picta) was performed with the Illumina platform. The output reads were assembled de novo for reconstructing transcript sequences. In order to evaluate the completeness of transcriptome assemblies, we prepared a reference gene set consisting of vertebrate one-to-one orthologs. To take advantage of increased read length of >150 nt, we demonstrated shortened RNA fragmentation time, which resulted in a dramatic shift of insert size distribution. To evaluate products of multiple de novo assembly runs incorporating reads with different RNA sources, read lengths, and insert sizes, we introduce a new reference gene set, core vertebrate genes (CVG), consisting of 233 genes that are shared as one-to-one orthologs by all vertebrate genomes examined (29 species)., The completeness assessment performed by the computational pipelines CEGMA and BUSCO referring to CVG, demonstrated higher accuracy and resolution than with the gene set previously established for this purpose. As a result of the assessment with CVG, we have derived the most comprehensive transcript sequence set of the Madagascar ground gecko by means of assembling individual libraries followed by clustering the assembled sequences based on their overall similarities. Our results provide several insights into optimizing de novo RNA-seq workflow, including the coordination between library insert size and read length, which manifested in improved connectivity of assemblies. The approach and assembly assessment with CVG demonstrated here would be applicable to transcriptome analysis of other species as

  9. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq.

    Science.gov (United States)

    Park, Kyung-Do; Park, Jongsun; Ko, Junsu; Kim, Byung Chul; Kim, Heui-Soo; Ahn, Kung; Do, Kyoung-Tag; Choi, Hansol; Kim, Hak-Min; Song, Sanghoon; Lee, Sunghoon; Jho, Sungwoong; Kong, Hong-Sik; Yang, Young Mok; Jhun, Byung-Hak; Kim, Chulhong; Kim, Tae-Hyung; Hwang, Seungwoo; Bhak, Jong; Lee, Hak-Kyo; Cho, Byung-Wook

    2012-09-12

    Thoroughbred horses are the most expensive domestic animals, and their running ability and knowledge about their muscle-related diseases are important in animal genetics. While the horse reference genome is available, there has been no large-scale functional annotation of the genome using expressed genes derived from transcriptomes. We present a large-scale analysis of whole transcriptome data. We sequenced the whole mRNA from the blood and muscle tissues of six thoroughbred horses before and after exercise. By comparing current genome annotations, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) of the unigene clusters did not match any current equine gene model. We also identified 189,973 single nucleotide variations (SNVs) from the sequences aligned against the horse reference genome. Most SNVs (171,558 SNVs; 90.31%) were novel when compared with over 1.1 million equine SNPs from two SNP databases. Using differential expression analysis, we further identified a number of exercise-regulated genes: 62 up-regulated and 80 down-regulated genes in the blood, and 878 up-regulated and 285 down-regulated genes in the muscle. Six of 28 previously-known exercise-related genes were over-expressed in the muscle after exercise. Among the differentially expressed genes, there were 91 transcription factor-encoding genes, which included 56 functionally unknown transcription factor candidates that are probably associated with an early regulatory exercise mechanism. In addition, we found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. The first sequencing-based horse transcriptome data, extensive analyses results, deferentially expressed genes before and after exercise, and candidate genes that are related to the exercise are provided in this study.

  10. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    Science.gov (United States)

    Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435

  11. Workflow and web application for annotating NCBI BioProject transcriptome data.

    Science.gov (United States)

    Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A; Barrero, Luz S; Landsman, David; Mariño-Ramírez, Leonardo

    2017-01-01

    The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. URL: http://www.ncbi.nlm.nih.gov/projects/physalis/. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  12. Functional annotation of the human retinal pigment epithelium transcriptome

    Directory of Open Access Journals (Sweden)

    Gorgels Theo GMF

    2009-04-01

    Full Text Available Abstract Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE, the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years were laser dissected and used for 22k microarray studies (Agilent technologies. Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194 expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776 genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194 of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the

  13. Transcriptome profiling of citrus fruit response to huanglongbing disease.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Huanglongbing (HLB or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production.

  14. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2016-09-01

    Full Text Available Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts' immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines.This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS, respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18 or activated (e.g. miR155-5p in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including 'Transforming Growth Factor Beta (TGFβ signaling', 'Production of Nitric Oxide in Macrophages', 'Toll-like Receptor (TLRs Signaling', 'Death Receptor Signaling' and 'IL17 Signaling'. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed.In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq. This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines.

  15. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  16. Transcriptome Characterization and Functional Marker Development in Sorghum Sudanense.

    Directory of Open Access Journals (Sweden)

    Jieqin Li

    Full Text Available Sudangrass, Sorghum sudanense, is an important forage in warm regions. But little is known about its genome. In this study, the transcriptomes of sudangrass S722 and sorghum Tx623B were sequenced by Illumina sequencing. More than 4Gb bases were sequenced for each library. For Tx623B and S722, 88.79% and 83.88% reads, respectively were matched to the Sorghum bicolor genome. A total of 2,397 differentially expressed genes (DEGs were detected by RNA-Seq between the two libraries, including 849 up-regulated genes and 1,548 down-regulated genes. These DEGs could be divided into three groups by annotation analysis. A total of 44,495 single nucleotide polymorphisms (SNPs were discovered by aligning S722 reads to the sorghum reference genome. Of these SNPs, 61.37% were transition, and this value did not differ much between different chromosomes. In addition, 16,928 insertion and deletion (indel loci were identified between the two genomes. A total of 5,344 indel markers were designed, 15 of which were selected to construct the genetic map derived from the cross of Tx623A and Sa. It was indicated that the indel markers were useful and versatile between sorghum and sudangrass. Comparison of synonymous base substitutions (Ks and non-synonymous base substitutions (Ka between the two libraries showed that 95% orthologous pairs exhibited Ka/Ks<1.0, indicating that these genes were influenced by purifying selection. The results from this study provide important information for molecular genetic research and a rich resource for marker development in sudangrass and other Sorghum species.

  17. MicroRNA transcriptome profiles during swine skeletal muscle development

    Directory of Open Access Journals (Sweden)

    Sonstegard Tad S

    2009-02-01

    Full Text Available Abstract Background MicroRNA (miR are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.

  18. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  19. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  20. Transcriptome Profiling in Human Diseases: New Advances and Perspectives

    Directory of Open Access Journals (Sweden)

    Amelia Casamassimi

    2017-07-01

    Full Text Available In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements and TCGA (The Cancer Genome Atlas, to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.

  1. A pathology atlas of the human cancer transcriptome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Zhang, Xi-Cheng; Lee, Sunjae

    2017-01-01

    Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes o...

  2. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon

    2015-01-01

    . muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified...

  3. Minor class splicing shapes the zebrafish transcriptome during development

    DEFF Research Database (Denmark)

    Markmiller, Sebastian; Cloonan, Nicole; Lardelli, Rea M

    2014-01-01

    known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we...

  4. Transcriptomes of the desiccation- tolerant resurrection plant Craterostigma plantagineum

    DEFF Research Database (Denmark)

    Rodriguez, M. C.; Edsgard, Stefan Daniel; Hussain, S. S.

    2010-01-01

    the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture...

  5. Illumina-based de novo transcriptome sequencing and analysis

    Indian Academy of Sciences (India)

    In the present study, we used Illumina HiSeq technology to perform de novo assembly of heart and musk gland transcriptomes from the Chinese forest musk deer. A total of 239,383 transcripts and 176,450 unigenes were obtained, of which 37,329 unigenes were matched to known sequences in the NCBI nonredundant ...

  6. Transcriptome of the Antarctic brooding gastropod mollusc Margarella antarctica.

    Science.gov (United States)

    Clark, Melody S; Thorne, Michael A S

    2015-12-01

    454 RNA-Seq transcriptome data were generated from foot tissue of the Antarctic brooding gastropod mollusc Margarella antarctica. A total of 6195 contigs were assembled de novo, providing a useful resource for researchers with an interest in Antarctic marine species, phylogenetics and mollusc biology, especially shell production. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Transcriptome dynamics-based operon prediction in prokaryotes.

    Science.gov (United States)

    Fortino, Vittorio; Smolander, Olli-Pekka; Auvinen, Petri; Tagliaferri, Roberto; Greco, Dario

    2014-05-16

    Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available.

  8. De novo transcriptome assembly of heavy metal tolerant Silene dioica

    Czech Academy of Sciences Publication Activity Database

    Čegan, R.; Hudzieczek, V.; Hobza, Roman

    2017-01-01

    Roč. 11, MAR (2017), s. 118-119 ISSN 2213-5960 Institutional support: RVO:61389030 Keywords : genome * Silene dioica * RNA-Seq * Transcriptome * Heavy metal tolerance * Sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany

  9. Transcriptome of barley under three different heavy metal stress reaction

    Czech Academy of Sciences Publication Activity Database

    Kintlová, Martina; Blavet, Nicolas; Cegan, R.; Hobza, Roman

    2017-01-01

    Roč. 13, SEP (2017), s. 15-17 ISSN 2213-5960 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : plants * Barley * RNA-Seq * Transcriptome * Heavy metal * Copper * Zinc * Cadmium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany

  10. Transcriptome Profiling in Human Diseases: New Advances and Perspectives.

    Science.gov (United States)

    Casamassimi, Amelia; Federico, Antonio; Rienzo, Monica; Esposito, Sabrina; Ciccodicola, Alfredo

    2017-07-29

    In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements) and TCGA (The Cancer Genome Atlas), to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.

  11. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  12. Construction of an EST-SSR-based interspecific transcriptome ...

    Indian Academy of Sciences (India)

    Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton. CHUANXIANG LIU, DAOJUN YUAN and ZHONGXU LIN. ∗. National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan),. Huazhong Agricultural University, Wuhan ...

  13. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.

    Science.gov (United States)

    Lima, Leandro; Sinaimeri, Blerina; Sacomoto, Gustavo; Lopez-Maestre, Helene; Marchet, Camille; Miele, Vincent; Sagot, Marie-France; Lacroix, Vincent

    2017-01-01

    The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when

  14. A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications

    Science.gov (United States)

    Young, Neil D.; Jex, Aaron R.; Cantacessi, Cinzia; Hall, Ross S.; Campbell, Bronwyn E.; Spithill, Terence W.; Tangkawattana, Sirikachorn; Tangkawattana, Prasarn; Laha, Thewarach; Gasser, Robin B.

    2011-01-01

    Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite. PMID:21408104

  15. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica--biological and biotechnological implications.

    Directory of Open Access Journals (Sweden)

    Neil D Young

    Full Text Available Fasciola gigantica (Digenea is an important foodborne trematode that causes liver fluke disease (fascioliasis in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin, defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite.

  16. Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly.

    Science.gov (United States)

    Kono, Nobuaki; Nakamura, Hiroyuki; Ito, Yusuke; Tomita, Masaru; Arakawa, Kazuharu

    2016-05-01

    With advances in high-throughput sequencing technologies, de novo transcriptome sequencing and assembly has become a cost-effective method to obtain comprehensive genetic information of a species of interest, especially in nonmodel species with large genomes such as spiders. However, high-quality RNA is essential for successful sequencing, and sample preservation conditions require careful consideration for the effective storage of field-collected samples. To this end, we report a streamlined feasibility study of various storage conditions and their effects on de novo transcriptome assembly results. The storage parameters considered include temperatures ranging from room temperature to -80°C; preservatives, including ethanol, RNAlater, TRIzol and RNAlater-ICE; and sample submersion states. As a result, intact RNA was extracted and assembly was successful when samples were preserved at low temperatures regardless of the type of preservative used. The assemblies as well as the gene expression profiles were shown to be robust to RNA degradation, when 30 million 150-bp paired-end reads are obtained. The parameters for sample storage, RNA extraction, library preparation, sequencing and in silico assembly considered in this work provide a guideline for the study of field-collected samples of spiders. © 2015 John Wiley & Sons Ltd.

  17. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Science.gov (United States)

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  18. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.).

    Science.gov (United States)

    Kamenetsky, Rina; Faigenboim, Adi; Shemesh Mayer, Einat; Ben Michael, Tomer; Gershberg, Chen; Kimhi, Sagie; Esquira, Itzhak; Rohkin Shalom, Sarit; Eshel, Dani; Rabinowitch, Haim D; Sherman, Amir

    2015-01-22

    Garlic is cultivated and consumed worldwide as a popular condiment and green vegetable with medicinal and neutraceutical properties. Garlic cultivars do not produce seeds, and therefore, this plant has not been the subject of either classical breeding or genetic studies. However, recent achievements in fertility restoration in a number of genotypes have led to flowering and seed production, thus enabling genetic studies and breeding in garlic. A transcriptome catalogue of fertile garlic was produced from multiplexed gene libraries, using RNA collected from various plant organs, including inflorescences and flowers. Over 32 million 250-bp paired-end reads were assembled into an extensive transcriptome of 240,000 contigs. An abundant transcriptome assembled separately from 102,000 highly expressed contigs was annotated and analyzed for gene ontology and metabolic pathways. Organ-specific analysis showed significant variation of gene expression between plant organs, with the highest number of specific reads in inflorescences and flowers. Analysis of the enriched biological processes and molecular functions revealed characteristic patterns for stress response, flower development and photosynthetic activity. Orthologues of key flowering genes were differentially expressed, not only in reproductive tissues, but also in leaves and bulbs, suggesting their role in flower-signal transduction and the bulbing process. More than 100 variants and isoforms of enzymes involved in organosulfur metabolism were differentially expressed and had organ-specific patterns. In addition to plant genes, viral RNA of at least four garlic viruses was detected, mostly in the roots and cloves, whereas only 1-4% of the reads were found in the foliage leaves. The de novo transcriptome of fertile garlic represents a new resource for research and breeding of this important crop, as well as for the development of effective molecular markers for useful traits, including fertility and seed production

  19. De novo transcriptome assembly of the calanoid copepod Neocalanus flemingeri: A new resource for emergence from diapause.

    Science.gov (United States)

    Roncalli, Vittoria; Cieslak, Matthew C; Sommer, Stephanie A; Hopcroft, Russell R; Lenz, Petra H

    2018-02-01

    Copepods, small planktonic crustaceans, are key links between primary producers and upper trophic levels, including many economically important fishes. In the subarctic North Pacific, the life cycle of copepods like Neocalanus flemingeri includes an ontogenetic migration to depth followed by a period of diapause (a type of dormancy) characterized by arrested development and low metabolic activity. The end of diapause is marked by the production of the first brood of eggs. Recent temperature anomalies in the North Pacific have raised concerns about potential negative effects on N. flemingeri. Since diapause is a developmental program, its progress can be tracked using through global gene expression. Thus, a reference transcriptome was developed as a first step towards physiological profiling of diapausing females using high-throughput Illumina sequencing. The de novo transcriptome, the first for this species was designed to investigate the diapause period. RNA-Seq reads were obtained for dormant to reproductive N. flemingeri females. A high quality de novo transcriptome was obtained by first assembling reads from each individual using Trinity software followed by clustering with CAP3 Assembly Program. This assembly consisted of 140,841transcripts (contigs). Bench-marking universal single-copy orthologs analysis identified 85% of core eukaryotic genes, with 79% predicted to be complete. Comparison with other calanoid transcriptomes confirmed its quality and degree of completeness. Trinity assembly of reads originating from multiple individuals led to fragmentation. Thus, the workflow applied here differed from the one recommended by Trinity, but was required to obtain a good assembly. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Directory of Open Access Journals (Sweden)

    Liu Edison

    2007-06-01

    Full Text Available Abstract Background Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET approach to investigate the melanoma transcriptome and characterize the global pathway aberrations. Methods GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo. Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes. Results Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg++, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain

  1. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  2. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    Science.gov (United States)

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the

  3. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  4. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis

    Science.gov (United States)

    Vukmirovic, Milica; Kaminski, Naftali

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung. PMID:29670881

  5. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  6. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  7. Transcriptome profiling in imipenem-selected Acinetobacter baumannii.

    Science.gov (United States)

    Chang, Kai-Chih; Kuo, Han-Yueh; Tang, Chuan Yi; Chang, Cheng-Wei; Lu, Chia-Wei; Liu, Chih-Chin; Lin, Huei-Ru; Chen, Kuan-Hsueh; Liou, Ming-Li

    2014-09-26

    Carbapenem-resistance in Acinetobacter baumannii has gradually become a global challenge. To identify the genes involved in carbapenem resistance in A. baumannii, the transcriptomic responses of the completely sequenced strain ATCC 17978 selected with 0.5 mg/L (IPM-2 m) and 2 mg/L (IPM-8 m) imipenem were investigated using RNA-sequencing to identify differences in the gene expression patterns. A total of 88 and 68 genes were differentially expressed in response to IPM-2 m and IPM-8 m selection, respectively. Among the expressed genes, 50 genes were highly expressed in IPM-2 m, 30 genes were highly expressed in IPM-8 m, and 38 genes were expressed common in both strains. Six groups of genes were simultaneously expressed in IPM-2 m and IPM-8 m mutants. The three gene groups involved in DNA recombination were up-regulated, including recombinase, transposase and DNA repair, and beta-lactamase OXA-95 and homologous recombination. The remaining gene groups involved in biofilm formation were down-regulated, including quorum sensing, secretion systems, and the csu operon. The antibiotic resistance determinants, including RND efflux transporters and multidrug resistance pumps, were over-expressed in response to IPM-2 m selection, followed by a decrease in response to IPM-8 m selection. Among the genes over-expressed in both strains, blaOXA-95, previously clustered with the blaOXA-51-like family, showed 14-fold (IPM-2 m) to 330-fold (IPM-8 m) over-expression. The expression of blaOXA-95 in IPM-2 m and IPM-8 m cells was positively correlated with the rate of imipenem hydrolysis, as demonstrated through Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, suggesting that blaOXA-95 plays a critical role in conferring carbapenem resistance. In addition, A. baumannii shows an inverse relationship between carbapenem resistance and biofilm production. Gene recombination and blaOXA-95 play critical roles in carbapenem resistance in A. baumannii. Taken together, the results of

  8. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  9. Detection of G-Quadruplex Structures Formed by G-Rich Sequences from Rice Genome and Transcriptome Using Combined Probes.

    Science.gov (United States)

    Chang, Tianjun; Li, Weiguo; Ding, Zhan; Cheng, Shaofei; Liang, Kun; Liu, Xiangjun; Bing, Tao; Shangguan, Dihua

    2017-08-01

    Putative G-quadruplex (G4) forming sequences (PQS) are highly prevalent in the genome and transcriptome of various organisms and are considered as potential regulation elements in many biological processes by forming G4 structures. The formation of G4 structures highly depends on the sequences and the environment. In most cases, it is difficult to predict G4 formation by PQS, especially PQS containing G2 tracts. Therefore, the experimental identification of G4 formation is essential in the study of G4-related biological functions. Herein, we report a rapid and simple method for the detection of G4 structures by using a pair of complementary reporters, hemin and BMSP. This method was applied to detect G4 structures formed by PQS (DNA and RNA) searched in the genome and transcriptome of Oryza sativa. Unlike most of the reported G4 probes that only recognize part of G4 structures, the proposed method based on combined probes positively responded to almost all G4 conformations, including parallel, antiparallel, and mixed/hybrid G4, but did not respond to non-G4 sequences. This method shows potential for high-throughput identification of G4 structures in genome and transcriptome. Furthermore, BMSP was observed to drive some PQS to form more stable G4 structures or induce the G4 formation of some PQS that cannot form G4 in normal physiological conditions, which may provide a powerful molecular tool for gene regulation.

  10. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids

    Science.gov (United States)

    Jayakumar, Vasanthan; Damodaran, Anand C.; Rao, Sudha Narayana; Katta, Mohan A. V. S. K.; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C.

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa. PMID:23468859

  11. Transcriptomic and functional resources for the small hive beetle Aethina tumida, a worldwide parasite of honey bees

    Directory of Open Access Journals (Sweden)

    Matthew R. Tarver

    2016-09-01

    Full Text Available The small hive beetle (SHB, Aethina tumida, is a major pest of managed honey bee (Apis mellifera colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestations. This parasite has spread from a sub-Saharan Africa to three continents, leading to immense management and regulatory costs. We performed a transcriptomic analysis involving deep sequencing of multiple life stages and both sexes of this species. The assembled transcriptome appears to be nearly complete, as judged by conserved insect orthologs and the ability to find plausible homologs for 11,952 proteins described from the genome of the red flour beetle. Expressed genes include each of the major metabolic, developmental and sensory groups, along with genes for proteins involved with immune defenses and insecticide resistance. We also present a total of 23,085 high-quality SNP's for the assembled contigs. We highlight potential differences between this beetle and its honey bee hosts, and suggest mechanisms of future research into the biology and control of this species. SNP resources will allow functional genetic analyses and analyses of dispersal for this invasive pest. All resources are posted as Supplemental Tables at https://data.nal.usda.gov/dataset/data-transcriptomic-and-functional-resources-small-hive-beetle-aethina-tumida-worldwide, and at NCBI under Bioproject PRJNA256171.

  12. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    Science.gov (United States)

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  13. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  14. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  15. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  16. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  17. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration.

    Science.gov (United States)

    Liu, Lei; Fu, Yuanyuan; Zhu, Fang; Mu, Changkao; Li, Ronghua; Song, Weiwei; Shi, Ce; Ye, Yangfang; Wang, Chunlin

    2018-06-05

    The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transcriptome Analysis of Two Vicia sativa Subspecies: Mining Molecular Markers to Enhance Genomic Resources for Vetch Improvement

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kim

    2015-11-01

    Full Text Available The vetch (Vicia sativa is one of the most important annual forage legumes globally due to its multiple uses and high nutritional content. Despite these agronomical benefits, many drawbacks, including cyano-alanine toxin, has reduced the agronomic value of vetch varieties. Here, we used 454 technology to sequence the two V. sativa subspecies (ssp. sativa and ssp. nigra to enrich functional information and genetic marker resources for the vetch research community. A total of 86,532 and 47,103 reads produced 35,202 and 18,808 unigenes with average lengths of 735 and 601 bp for V. sativa sativa and V. sativa nigra, respectively. Gene Ontology annotations and the cluster of orthologous gene classes were used to annotate the function of the Vicia transcriptomes. The Vicia transcriptome sequences were then mined for simple sequence repeat (SSR and single nucleotide polymorphism (SNP markers. About 13% and 3% of the Vicia unigenes contained the putative SSR and SNP sequences, respectively. Among those SSRs, 100 were chosen for the validation and the polymorphism test using the Vicia germplasm set. Thus, our approach takes advantage of the utility of transcriptomic data to expedite a vetch breeding program.

  19. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    Science.gov (United States)

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.

  20. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    Science.gov (United States)

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  1. Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group buds during the dormancy by RNA-Seq

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2012-12-01

    Full Text Available Abstract Background Bud dormancy is a critical developmental process that allows perennial plants to survive unfavorable environmental conditions. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms regulating bud dormancy in this species are unknown. Because genomic information for pear is currently unavailable, transcriptome and digital gene expression data for this species would be valuable resources to better understand the molecular and biological mechanisms regulating its bud dormancy. Results We performed de novo transcriptome assembly and digital gene expression (DGE profiling analyses of ‘Suli’ pear (Pyrus pyrifolia white pear group using the Illumina RNA-seq system. RNA-Seq generated approximately 100 M high-quality reads that were assembled into 69,393 unigenes (mean length = 853 bp, including 14,531 clusters and 34,194 singletons. A total of 51,448 (74.1% unigenes were annotated using public protein databases with a cut-off E-value above 10-5. We mainly compared gene expression levels at four time-points during bud dormancy. Between Nov. 15 and Dec. 15, Dec. 15 and Jan. 15, and Jan. 15 and Feb. 15, 1,978, 1,024, and 3,468 genes were differentially expressed, respectively. Hierarchical clustering analysis arranged 190 significantly differentially-expressed genes into seven groups. Seven genes were randomly selected to confirm their expression levels using quantitative real-time PCR. Conclusions The new transcriptomes offer comprehensive sequence and DGE profiling data for a dynamic view of transcriptomic variation during bud dormancy in pear. These data provided a basis for future studies of metabolism during bud dormancy in non-model but economically-important perennial species.

  2. Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd. genotypes of different stone cells contents.

    Directory of Open Access Journals (Sweden)

    Jinyun Zhang

    Full Text Available Stone cell content is thought to be one of the key determinants for fruit quality in pears. However, the molecular mechanism of stone cell development remains poorly understood. In this study, we found that the stone cell clusters (SCCs distribution and area in 'Dangshan Su' (with abundant stone cells were higher as compared to 'Lianglizaosu' (low stone cell content bud sport of 'Dangshan Su' based on the histochemical staining, and the correlations of lignin content with stone cell content and SCC area was significant. The fruits of 'Dangshan Su' and 'Lianglizaosu' at three different developmental stages (23 and 55 days after flowering and mature were sampled for comparative transcriptome analysis to explore the metabolic pathways associated with stone cell development. A total of 42444 unigenes were obtained from two varieties, among which 7203 differentially expressed genes (DEGs were identified by comparison of the six transcriptomes. Specifically, many DEGs associated with lignin biosynthesis were identified, including coumaroylquinate 3-monooxygenase (C3H, shikimate O-hydroxycinnamoyltransferase (HCT, ferulate 5-hydroxylase (F5H, cinnamyl alcohol dehydrogenase (CAD and peroxidase (POD, as well as genes related to carbon metabolism, such as sorbitol dehydrogenase-like (SDH-like and ATP-dependent 6-phosphofructokinase (ATP-PFK. At the peak of the stone cell content (55 days after flowering, the expression level of these genes in 'Dangshan Su' was significantly increased compared with 'Lianglizaosu', indicating that these genes were closely related to stone cell development. We validated the transcriptional levels of 33 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR analysis. The results were consistent with the transcriptome analysis, indicating the reliability of transcriptome data. In addition, subcellular localization analysis of three DEGs in lignin synthesis (PbC3H, PbF5H and PbPOD revealed that these proteins are

  3. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms.

    Directory of Open Access Journals (Sweden)

    Kristian Meier

    Full Text Available Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction

  4. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice

    Directory of Open Access Journals (Sweden)

    Kamatsuki Kaori

    2011-01-01

    Full Text Available Abstract Background Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. Results A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. Conclusions Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.

  5. Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle.

    Science.gov (United States)

    Grala, T M; Kay, J K; Phyn, C V C; Bionaz, M; Walker, C G; Rius, A G; Snell, R G; Roche, J R

    2013-12-01

    The objective of this study was to investigate if a reduced milking frequency altered the effect of dietary energy restriction on the hepatic transcriptome of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) were milked twice daily (2×) from calving until 34 ± 6 days in milk (mean ± SD). Cows were then allocated to one of four treatments in a 2 × 2 factorial arrangement. Treatments consisted of two milking frequencies [2× or once daily (1×)] and two feeding levels for 3 wk: adequately fed (AF) or underfed (UF, 60% of AF). Liver tissue was biopsied from 12 cows per treatment after 3 wk of treatment, and the hepatic transcriptome was profiled with an Agilent 4 × 44k bovine microarray. Over 2,900 genes were differentially expressed in response to the energy restriction; however, no effects resulted from changes to milking frequency. This may indicate that after 3 wk of 1× milking, any changes to the liver transcriptome that may have occurred earlier have returned to normal. After 3 wk of energy restriction, gene expression patterns indicate that glucose-sparing pathways were activated, and gluconeogenesis was increased in UF cows. Genes involved in hepatic stress were upregulated in response to the energy restriction indicative of the pressure energy restriction places on liver function. Other pathways upregulated included "cytoskeletal remodeling," indicating that a 3 wk energy restriction resulted in molecular changes to assist tissue remodeling. Overall, 1× milking does not modify the hepatic transcriptome changes that occur in response to an energy restriction.

  6. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing.

    Directory of Open Access Journals (Sweden)

    Fanna Kong

    Full Text Available BACKGROUND: The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data. PRINCIPAL FINDINGS: Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41% unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG. We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl- channels, and H+ pumping. CONCLUSIONS: Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to

  7. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  8. Transcriptome Profiling of Louisiana iris Root and Identification of Genes Involved in Lead-Stress Response

    Directory of Open Access Journals (Sweden)

    Songqing Tian

    2015-11-01

    Full Text Available Louisiana iris is tolerant to and accumulates the heavy metal lead (Pb. However, there is limited knowledge of the molecular mechanisms behind this feature. We describe the transcriptome of Louisiana iris using Illumina sequencing technology. The root transcriptome of Louisiana iris under control and Pb-stress conditions was sequenced. Overall, 525,498 transcripts representing 313,958 unigenes were assembled using the clean raw reads. Among them, 43,015 unigenes were annotated and their functions classified using the euKaryotic Orthologous Groups (KOG database. They were divided into 25 molecular families. In the Gene Ontology (GO database, 50,174 unigenes were categorized into three GO trees (molecular function, cellular component and biological process. After analysis of differentially expressed genes, some Pb-stress-related genes were selected, including biosynthesis genes of chelating compounds, metal transporters, transcription factors and antioxidant-related genes. This study not only lays a foundation for further studies on differential genes under Pb stress, but also facilitates the molecular breeding of Louisiana iris.

  9. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    Science.gov (United States)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  10. The comprehensive liver transcriptome of two cattle breeds with different intramuscular fat content.

    Science.gov (United States)

    Wang, Xi; Zhang, Yuanqing; Zhang, Xizhong; Wang, Dongcai; Jin, Guang; Li, Bo; Xu, Fang; Cheng, Jing; Zhang, Feng; Wu, Sujun; Rui, Su; He, Jiang; Zhang, Ronghua; Liu, Wenzhong

    2017-08-26

    Intramuscular fat (IMF) content is an important determinant factor of meat quality in cattle. There is significant difference in IMF content between Jinnan and Simmental cattle. Here, to identify candidate genes and networks associated with IMF deposition, we deeply explored the transcriptome architecture of liver in these two cattle breeds. We sequenced the liver transcriptome of five Jinnan and three Simmental cattle, yielding about 413.9 million sequencing reads. 124 differentially expressed genes (DEGs) were detected, of which 53 were up-regulated and 71 were down-regulated in Jinnan cattle. 1282 potentially novel genes were also identified. Gene ontology analysis revealed these DEGs (including CYP21A2, PC, ACACB, APOA1, and FADS2) were significantly enriched in lipid biosynthetic process, regulation of cholesterol esterification, reverse cholesterol transport, and regulation of lipoprotein lipase activity. Genes involved in pyruvate metabolism pathway were also significantly overrepresented. Moreover, we identified an interaction network which related to lipid metabolism, which might be contributed to the IMF deposition in cattle. We concluded that the DEGs involved in the regulation of lipid metabolism could play an important role in IMF deposition. Overall, we proposed a new panel of candidate genes and interaction networks that can be associated with IMF deposition and used as biomarkers in cattle breeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    Science.gov (United States)

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Transcriptome Analysis of Drought-Tolerant CAM plants Agave deserti and Agave tequilana

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen M.; Martin, Jeffrey A.; Simpson, June; Wang, Zhong; Visel, Axel

    2013-03-25

    Agaves are succulent monocotyledonous plants native to hot and arid environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis) and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, we use RNA-seq data to gain insights into biological functions along the A. deserti juvenile leaf proximal-distal axis. Our work presents a foundation for further investigation of agave biology and their improvement for bioenergy development.

  13. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Science.gov (United States)

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  14. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

    Science.gov (United States)

    Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F

    2017-10-01

    Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    2011-09-01

    Full Text Available West Nile (WNV, dengue (DENV and yellow fever (YFV viruses are (reemerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥ 5-fold differentially up-regulated (DUR and 202 genes that were ≥ 10-fold differentially down-regulated (DDR during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.

  16. A generic Transcriptomics Reporting Framework (TRF) for 'omics data processing and analysis.

    Science.gov (United States)

    Gant, Timothy W; Sauer, Ursula G; Zhang, Shu-Dong; Chorley, Brian N; Hackermüller, Jörg; Perdichizzi, Stefania; Tollefsen, Knut E; van Ravenzwaay, Ben; Yauk, Carole; Tong, Weida; Poole, Alan

    2017-12-01

    A generic Transcriptomics Reporting Framework (TRF) is presented that lists parameters that should be reported in 'omics studies used in a regulatory context. The TRF encompasses the processes from transcriptome profiling from data generation to a processed list of differentially expressed genes (DEGs) ready for interpretation. Included within the TRF is a reference baseline analysis (RBA) that encompasses raw data selection; data normalisation; recognition of outliers; and statistical analysis. The TRF itself does not dictate the methodology for data processing, but deals with what should be reported. Its principles are also applicable to sequencing data and other 'omics. In contrast, the RBA specifies a simple data processing and analysis methodology that is designed to provide a comparison point for other approaches and is exemplified here by a case study. By providing transparency on the steps applied during 'omics data processing and analysis, the TRF will increase confidence processing of 'omics data, and regulatory use. Applicability of the TRF is ensured by its simplicity and generality. The TRF can be applied to all types of regulatory 'omics studies, and it can be executed using different commonly available software tools. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. De Novo Assembly and Characterization of Sophora japonica Transcriptome Using RNA-seq

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2014-01-01

    Full Text Available Sophora japonica Linn (Chinese Scholar Tree is a shrub species belonging to the subfamily Faboideae of the pea family Fabaceae. In this study, RNA sequencing of S. japonica transcriptome was performed to produce large expression datasets for functional genomic analysis. Approximate 86.1 million high-quality clean reads were generated and assembled de novo into 143010 unique transcripts and 57614 unigenes. The average length of unigenes was 901 bps with an N50 of 545 bps. Four public databases, including the NCBI nonredundant protein (NR, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG, and the Cluster of Orthologous Groups (COG, were used to annotate unigenes through NCBI BLAST procedure. A total of 27541 of 57614 unigenes (47.8% were annotated for gene descriptions, conserved protein domains, or gene ontology. Moreover, an interaction network of unigenes in S. japonica was predicted based on known protein-protein interactions of putative orthologs of well-studied plant genomes. The transcriptome data of S. japonica reported here represents first genome-scale investigation of gene expressions in Faboideae plants. We expect that our study will provide a useful resource for further studies on gene expression, genomics, functional genomics, and protein-protein interaction in S. japonica.

  18. EcoBrowser: a web-based tool for visualizing transcriptome data of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2011-10-01

    Full Text Available Abstract Background Escherichia coli has been extensively studied as a prokaryotic model organism whose whole genome was determined in 1997. However, it is difficult to identify all the gene products involved in diverse functions by using whole genome sequencesalone. The high-resolution transcriptome mapping using tiling arrays has proved effective to improve the annotation of transcript units and discover new transcripts of ncRNAs. While abundant tiling array data have been generated, the lack of appropriate visualization tools to accommodate and integrate multiple sources of data has emerged. Findings EcoBrowser is a web-based tool for visualizing genome annotations and transcriptome data of E. coli. Important tiling array data of E. coli from different experimental platforms are collected and processed for query. An AJAX based genome browser is embedded for visualization. Thus, genome annotations can be compared with transcript profiling and genome occupancy profiling from independent experiments, which will be helpful in discovering new transcripts including novel mRNAs and ncRNAs, generating a detailed description of the transcription unit architecture, further providing clues for investigation of prokaryotic transcriptional regulation that has proved to be far more complex than previously thought. Conclusions With the help of EcoBrowser, users can get a systemic view both from the vertical and parallel sides, as well as inspirations for the design of new experiments which will expand our understanding of the regulation mechanism.

  19. Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Asker Noomi

    2009-07-01

    Full Text Available Abstract Background The teleost Zoarces viviparus (eelpout lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. Results In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.

  20. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  1. Insights into the Melipona scutellaris (Hymenoptera, Apidae, Meliponini) fat body transcriptome.

    Science.gov (United States)

    de Sousa, Cristina Soares; Serrão, José Eduardo; Bonetti, Ana Maria; Amaral, Isabel Marques Rodrigues; Kerr, Warwick Estevam; Maranhão, Andréa Queiroz; Ueira-Vieira, Carlos

    2013-07-01

    The insect fat body is a multifunctional organ analogous to the vertebrate liver. The fat body is involved in the metabolism of juvenile hormone, regulation of environmental stress, production of immunity regulator-like proteins in cells and protein storage. However, very little is known about the molecular mechanisms involved in fat body physiology in stingless bees. In this study, we analyzed the transcriptome of the fat body from the stingless bee Melipona scutellaris. In silico analysis of a set of cDNA library sequences yielded 1728 expressed sequence tags (ESTs) and 997 high-quality sequences that were assembled into 29 contigs and 117 singlets. The BLAST X tool showed that 86% of the ESTs shared similarity with Apis mellifera (honeybee) genes. The M. scutellaris fat body ESTs encoded proteins with roles in numerous physiological processes, including anti-oxidation, phosphorylation, metabolism, detoxification, transmembrane transport, intracellular transport, cell proliferation, protein hydrolysis and protein synthesis. This is the first report to describe a transcriptomic analysis of specific organs of M. scutellaris. Our findings provide new insights into the physiological role of the fat body in stingless bees.

  2. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Jasmin H Bavarva

    Full Text Available Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold and NPAS3 (down-regulated by -2.73 fold; both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold and alternative splicing of NEAT1 (lncRNA that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.

  3. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  4. Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production.

    Science.gov (United States)

    Onda, Yoshihiko; Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Seymour, Roger S; Umekawa, Yui; Pirintsos, Stergios Arg; Shinozaki, Kazuo; Ito, Kikukatsu

    2015-03-04

    Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-D-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants.

  5. Strain Variation in the Transcriptome of the Dengue Fever Vector, Aedes aegypti.

    Science.gov (United States)

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Studies of transcriptome dynamics provide a basis for understanding functional elements of the genome and the complexity of gene regulation. The dengue vector mosquito, Aedes aegypti, exhibits great adaptability to diverse ecological conditions, is phenotypically polymorphic, and shows variation in vectorial capacity to arboviruses. Previous genome sequencing showed richness in repetitive DNA and transposable elements that can contribute to genome plasticity. Population genetic studies revealed a varying degree of worldwide genetic polymorphism. However, the extent of functional genetic polymorphism across strains is unknown. The transcriptomes of three Ae. aegypti strains, Chetumal (CTM), Rexville D-Puerto Rico (Rex-D) and Liverpool (LVP), were compared. CTM is more susceptible than Rex- D to infection by dengue virus serotype 2. A total of 4188 transcripts exhibit either no or small variation (<2-fold) among sugar-fed samples of the three strains and between sugar- and blood-fed samples within each strain, corresponding most likely to genes encoding products necessary for vital functions. Transcripts enriched in blood-fed mosquitoes encode proteins associated with catalytic activities, molecular transport, metabolism of lipids, carbohydrates and amino acids, and functions related to blood digestion and the progression of the gonotropic cycle. Significant qualitative and quantitative differences were found in individual transcripts among strains including differential representation of paralogous gene products. The majority of immunity-associated transcripts decreased in accumulation after a bloodmeal and the results are discussed in relation to the different susceptibility of CTM and Rex-D mosquitoes to DENV2 infection.

  6. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  7. Transcriptomic dissection of sexual differences in Bemisia tabaci, an invasive agricultural pest worldwide.

    Science.gov (United States)

    Xie, Wen; Guo, Litao; Jiao, Xiaoguo; Yang, Nina; Yang, Xin; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2014-02-14

    Sex difference involving chromosomes and gene expression has been extensively documented. In this study, the gender difference in the sweetpotato whitefly Bemisia tabaci was investigated using Illumina-based transcriptomic analysis. Gender-based RNAseq data produced 27 Gb reads, and subsequent de novo assembly generated 93,948 transcripts with a N50 of 1,853 bp. A total of 1,351 differentially expressed genes were identified between male and female B. tabaci, and majority of them were female-biased. Pathway and GO enrichment experiments exhibited a gender-specific expression, including enriched translation in females, and enhanced structural constituent of cuticle in male whiteflies. In addition, a putative transformer2 gene (tra2) was cloned, and the structural feature and expression profile of tra2 were investigated. Sexually dimorphic transcriptome is an uncharted territory for the agricultural insect pests. Molecular understanding of sex determination in B. tabaci, an emerging invasive insect pest worldwide, will provide potential molecular target(s) for genetic pest control alternatives.

  8. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal

    Science.gov (United States)

    Seim, Inge; Ma, Siming; Zhou, Xuming; Gerashchenko, Maxim V.; Lee, Sang-Goo; Suydam, Robert; George, John C.; Bickham, John W.; Gladyshev, Vadim N.

    2014-01-01

    Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases. PMID:25411232

  9. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  10. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  11. Identification of Genes Involved in Chemoreception in Plutella xyllostella by Antennal Transcriptome Analysis.

    Science.gov (United States)

    Yang, Shiyong; Cao, Depan; Wang, Guirong; Liu, Yang

    2017-09-20

    Perception of environmental and habitat cues is of significance for insect survival and reproduction. Odor detection in insects is mediated by a number of proteins in antennae such as odorant receptors (ORs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), sensory neuron membrane proteins (SNMPs) and odorant degrading enzymes. In this study, we sequenced and assembled the adult male and female antennal transcriptomes of a destructive agricultural pest, the diamondback moth Plutella xyllostella. In these transcriptomes, we identified transcripts belonging to 6 chemoreception gene families related to ordor detection, including 54 ORs, 16 IRs, 7 gustatory receptors (GRs), 15 CSPs, 24 OBPs and 2 SNMPs. Semi-quantitative reverse transcription PCR analysis of expression patterns indicated that some of these ORs and IRs have clear sex-biased and tissue-specific expression patterns. Our results lay the foundation for future characterization of the functions of these P. xyllostella chemosensory receptors at the molecular level and development of novel semiochemicals for integrated control of this agricultural pest.

  12. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).

    Science.gov (United States)

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-09-22

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work.

  13. Improving transcriptome assembly through error correction of high-throughput sequence reads

    Directory of Open Access Journals (Sweden)

    Matthew D. MacManes

    2013-07-01

    Full Text Available The study of functional genomics, particularly in non-model organisms, has been dramatically improved over the last few years by the use of transcriptomes and RNAseq. While these studies are potentially extremely powerful, a computationally intensive procedure, the de novo construction of a reference transcriptome must be completed as a prerequisite to further analyses. The accurate reference is critically important as all downstream steps, including estimating transcript abundance are critically dependent on the construction of an accurate reference. Though a substantial amount of research has been done on assembly, only recently have the pre-assembly procedures been studied in detail. Specifically, several stand-alone error correction modules have been reported on and, while they have shown to be effective in reducing errors at the level of sequencing reads, how error correction impacts assembly accuracy is largely unknown. Here, we show via use of a simulated and empiric dataset, that applying error correction to sequencing reads has significant positive effects on assembly accuracy, and should be applied to all datasets. A complete collection of commands which will allow for the production of Reptile corrected reads is available at https://github.com/macmanes/error_correction/tree/master/scripts and as File S1.

  14. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  15. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  16. Development and validation of an Haemophilus influenzae supragenome hybridization (SGH array for transcriptomic analyses.

    Directory of Open Access Journals (Sweden)

    Benjamin A Janto

    Full Text Available We previously carried out the design and testing of a custom-built Haemophilus influenzae supragenome hybridization (SGH array that contains probe sequences to 2,890 gene clusters identified by whole genome sequencing of 24 strains of H. influenzae. The array was originally designed as a tool to interrogate the gene content of large numbers of clinical isolates without the need for sequencing, however, the data obtained is quantitative and is thus suitable for transcriptomic analyses. In the current study RNA was extracted from H. influenzae strain CZ4126/02 (which was not included in the design of the array converted to cDNA, and labelled and hybridized to the SGH arrays to assess the quality and reproducibility of data obtained from these custom-designed chips to serve as a tool for transcriptomics. Three types of experimental replicates were analyzed with all showing very high degrees of correlation, thus validating both the array and the methods used for RNA profiling. A custom filtering pipeline for two-condition unpaired data using five metrics was developed to minimize variability within replicates and to maximize the identification of the most significant true transcriptional differences between two samples. These methods can be extended to transcriptional analysis of other bacterial species utilizing supragenome-based arrays.

  17. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane  P.  G.; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A.; Guo, Wenbin; Spensley, Mark; Entizne, Juan Carlos; Lewandowska, Dominika; ten  Have, Sara; Frei  dit  Frey, Nicolas; Hirt, Heribert; James, Allan B.; Nimmo, Hugh G.; Barta, Andrea; Kalyna, Maria; Brown, John  W.  S.

    2017-01-01

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  18. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    Science.gov (United States)

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  19. Pyrosequencing of Haliotis diversicolor transcriptomes: insights into early developmental molluscan gene expression.

    Directory of Open Access Journals (Sweden)

    Zi-Xia Huang

    Full Text Available BACKGROUND: The abalone Haliotis diversicolor is a good model for study of the settlement and metamorphosis, which are widespread marine ecological phenomena. However, information on the global gene backgrounds and gene expression profiles for the early development of abalones is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this study, eight non-normalized and multiplex barcode-labeled transcriptomes were sequenced using a 454 GS system to cover the early developmental stages of the abalone H. diversicolor. The assembly generated 35,415 unigenes, of which 7,566 were assigned GO terms. A global gene expression profile containing 636 scaffolds/contigs was constructed and was proven reliable using qPCR evaluation. It indicated that there may be existing dramatic phase transitions. Bioprocesses were proposed, including the 'lock system' in mature eggs, the collagen shells of the trochophore larvae and the development of chambered extracellular matrix (ECM structures within the earliest postlarvae. CONCLUSION: This study globally details the first 454 sequencing data for larval stages of H. diversicolor. A basic analysis of the larval transcriptomes and cluster of the gene expression profile indicates that each stage possesses a batch of specific genes that are indispensable during embryonic development, especially during the two-cell, trochophore and early postlarval stages. These data will provide a fundamental resource for future physiological works on abalones, revealing the mechanisms of settlement and metamorphosis at the molecular level.

  20. Human Transcriptome and Chromatin Modifications: An ENCODE Perspective

    Directory of Open Access Journals (Sweden)

    Li Shen

    2013-06-01

    Full Text Available A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE, recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.

  1. Transcriptome dynamics of the microRNA inhibition response

    DEFF Research Database (Denmark)

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto

    2015-01-01

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show...... validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods...... of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies....

  2. Transcriptome profiling of Curcuma longa L. cv. Suvarna

    Directory of Open Access Journals (Sweden)

    Ambika Sahoo

    2016-12-01

    Full Text Available Turmeric is an economically valued crop, because of its utility in the food, pharmaceutical industries and Ayurvedic medicine, attracts the attention in many areas of research work. In the present study, we executed resequencing through transcriptome assembly of the turmeric cultivar Suvarna (CL_Suv_10. Resequencing of Suvarna variety has generated 5 Gbases raw data with 75 bp paired-end sequence. The raw data has been submitted to SRA database of NCBI with accession number SRR4042181. Reads were assembled using Cufflinks-2.2.1 tool which ended up with 42994 numbers of transcripts. The length of transcripts ranged from 83 to15565, with a N50 value 1216 and median transcript length 773. The transcripts were annotated through number of databases. For the first time transcriptome profiling of cultivar Suvarna has been done, which could help towards identification of single nucleotide polymorphisms (SNPs between Suvarna and other turmeric cultivars for its authentic identification.

  3. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    Science.gov (United States)

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel

    Directory of Open Access Journals (Sweden)

    Pujolar Jose

    2012-09-01

    Full Text Available Abstract Background Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy and low pollution (lake Bolsena, Italy environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. Results To this end, we first (i updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0, and (ii developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A, phase II (glutathione-S-transferase and oxidative stress (glutathione peroxidase. In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Conclusions Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.

  5. Identification of myogenic regulatory genes in the muscle transcriptome of beltfish (Trichiurus lepturus: A major commercial marine fish species with robust swimming ability

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2016-06-01

    Full Text Available The beltfish (Trichiurus lepturus is considered as one of the most economically important marine fish in East Asia. It is a top predator with a robust swimming ability that is a good model to study muscle physiology in fish. In the present study, we used Illumina sequencing technology (NextSeq500 to sequence, assemble and annotate the muscle transcriptome of juvenile beltfish. A total of 57,509,280 clean reads (deposited in NCBI SRA database with accession number of SRX1674471 were obtained from RNA sequencing and 26,811 unigenes (with N50 of 1033 bp were obtained after de novo assembling with Trinity software. BLASTX against NR, GO, KEGG and eggNOG databases show 100%, 49%, 31% and 96% annotation rate, respectively. By mining beltfish muscle transcriptome, several key genes which play essential role on regulating myogenesis, including pax3, pax7, myf5, myoD, mrf4/myf6, myogenin and myostatin were identified with a low expression level. The muscle transcriptome of beltfish can provide some insight into the understanding of genome-wide transcriptome profile of teleost muscle tissue and give useful information to study myogenesis in juvenile/adult fish.

  6. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Pascal, Laura E; Liu, Alvin Y; Vêncio, Ricardo ZN; Page, Laura S; Liebeskind, Emily S; Shadle, Christina P; Troisch, Pamela; Marzolf, Bruz; True, Lawrence D; Hood, Leroy E

    2009-01-01

    Prostate cancer cells in primary tumors have been typed CD10 - /CD13 - /CD24 hi /CD26 + /CD38 lo /CD44 - /CD104 - . This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26 + cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  7. Transcriptome complexity in cardiac development and diseases--an expanding universe between genome and phenome.

    Science.gov (United States)

    Gao, Chen; Wang, Yibin

    2014-01-01

    With the advancement of transcriptome profiling by micro-arrays and high-throughput RNA-sequencing, transcriptome complexity and its dynamics are revealed at different levels in cardiovascular development and diseases. In this review, we will highlight the recent progress in our knowledge of cardiovascular transcriptome complexity contributed by RNA splicing, RNA editing and noncoding RNAs. The emerging importance of many of these previously under-explored aspects of gene regulation in cardiovascular development and pathology will be discussed.

  8. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Christensen, Rikke Elgaard; Pedersen, Sara Hougaard

    2017-01-01

    The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved...... in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis...... was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox...

  9. The use of open source bioinformatics tools to dissect transcriptomic data.

    Science.gov (United States)

    Nitsche, Benjamin M; Ram, Arthur F J; Meyer, Vera

    2012-01-01

    Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.

  10. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Sumedha S Gunewardena

    Full Text Available During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth to maturity (60-days after birth. Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2 RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  11. Establishment and analysis of a reference transcriptome for Spodoptera frugiperda.

    Science.gov (United States)

    Legeai, Fabrice; Gimenez, Sylvie; Duvic, Bernard; Escoubas, Jean-Michel; Gosselin Grenet, Anne-Sophie; Blanc, Florence; Cousserans, François; Séninet, Imène; Bretaudeau, Anthony; Mutuel, Doriane; Girard, Pierre-Alain; Monsempes, Christelle; Magdelenat, Ghislaine; Hilliou, Frédérique; Feyereisen, René; Ogliastro, Mylène; Volkoff, Anne-Nathalie; Jacquin-Joly, Emmanuelle; d'Alençon, Emmanuelle; Nègre, Nicolas; Fournier, Philippe

    2014-08-23

    Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.

  12. Transcriptome Analysis of the Response of Burmese Python to Digestion

    OpenAIRE

    Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J.; Schierup, Mikkel Heide; Wang, Tobias

    2017-01-01

    Abstract Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of...

  13. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    Science.gov (United States)

    Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-01-01

    The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and

  14. Transcriptome profiling of male gametophyte development in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Bokvaj, Pavel; Hafidh, Said; Honys, David

    2015-01-01

    Roč. 3, MAR (2015), s. 106-111 ISSN 2213-5960 R&D Projects: GA ČR(CZ) GAP501/11/1462; GA ČR(CZ) GAP305/12/2611; GA MŠk(CZ) LD14109; GA ČR(CZ) GA13-06943S; GA MŠk(CZ) LD13049 Institutional support: RVO:61389030 Keywords : Pollen development transcriptome * Tobacco * Reproduction Subject RIV: EB - Genetics ; Molecular Biology

  15. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    Directory of Open Access Journals (Sweden)

    Xuhang Wu

    Full Text Available BACKGROUND: The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a total of 31,282 unigenes (mean length 920 bp using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam. We identified 26,110 (83.47% unigenes and inferred 20,896 (66.8% coding sequences (CDS. Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. CONCLUSIONS/SIGNIFICANCE: This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of

  16. Comparing de novo assemblers for 454 transcriptome data.

    Science.gov (United States)

    Kumar, Sujai; Blaxter, Mark L

    2010-10-16

    Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible

  17. Comparing de novo assemblers for 454 transcriptome data

    Directory of Open Access Journals (Sweden)

    Blaxter Mark L

    2010-10-01

    Full Text Available Abstract Background Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Results Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects, which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Conclusions Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies

  18. Transcriptome analysis of the Asian honey bee Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Zi Long Wang

    Full Text Available BACKGROUND: The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE analysis. RESULTS: Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG with a cut-off E-value of 10(-5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. CONCLUSIONS: Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes.

  19. A comparative transcriptomic approach to understanding the formation of cork.

    Science.gov (United States)

    Boher, Pau; Soler, Marçal; Sánchez, Anna; Hoede, Claire; Noirot, Céline; Paiva, Jorge Almiro Pinto; Serra, Olga; Figueras, Mercè

    2018-01-01

    The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.

  20. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Pradhan, Seema; Bandhiwal, Nitesh; Shah, Niraj; Kant, Chandra; Gaur, Rashmi; Bhatia, Sabhyata

    2014-01-01

    Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  1. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  2. Transcriptome analysis of the response of Burmese python to digestion.

    Science.gov (United States)

    Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J; Schierup, Mikkel Heide; Wang, Tobias

    2017-08-01

    Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. © The Authors 2017. Published by Oxford University Press.

  3. Genetic Dissection of the Spaceflight Transcriptome Responses in Plants: are some responses unnecessary?

    Data.gov (United States)

    National Aeronautics and Space Administration — Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural...

  4. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  5. Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-02-01

    Full Text Available Dinoflagellates are essential components in marine ecosystems, and they possess two dissimilar flagella to facilitate movement. Dinoflagellates are major components of marine food webs and of extreme importance in balancing the ecosystem energy flux in oceans. They have been reported to be the primary cause of harmful algae bloom (HABs events around the world, causing seafood poisoning and therefore having a direct impact on human health. Interestingly, dinoflagellates in the genus Symbiodinium are major components of coral reef foundations. Knowledge regarding their genes and genome organization is currently limited due to their large genome size and other genetic and cytological characteristics that hinder whole genome sequencing of dinoflagellates. Transcriptomic approaches and genetic analyses have been employed to unravel the physiological and metabolic characteristics of dinoflagellates and their complexity. In this review, we summarize the current knowledge and findings from transcriptomic studies to understand the cell growth, effects on environmental stress, toxin biosynthesis, dynamic of HABs, phylogeny and endosymbiosis of dinoflagellates. With the advancement of high throughput sequencing technologies and lower cost of sequencing, transcriptomic approaches will likely deepen our understanding in other aspects of dinoflagellates’ molecular biology such as gene functional analysis, systems biology and development of model organisms.

  6. De novo transcriptome assembly of mangosteen (Garcinia mangostana L. fruit

    Directory of Open Access Journals (Sweden)

    Deden Derajat Matra

    2016-12-01

    Full Text Available Garcinia mangostana L. (Mangosteen, of the family Clusiaceae, is one of the economically important tropical fruits in Indonesia. In the present study, we performed de novo transcriptomic analysis of Garcinia mangostana L. through RNA-Seq technology. We obtained the raw data from 12 libraries through Ion Proton System. Clean reads of 191,735,809 were obtained from 307,634,890 raw reads. The raw data obtained in this study can be accessible in DDBJ database with accession number of DRA005014 with bioproject accession number of PRJDB5091. We obtained 268,851 transcripts as well as 155,850 unigenes, having N50 value of 555 and 433 bp, respectively. Transcript/unigene length ranged from 201 to 5916 bp. The unigenes were annotated with two main databases from NCBI and UniProtKB, respectively having annotated-sequences of 73,287 and 73,107, respectively. These transcriptomic data will be beneficial for studying transcriptome of Garcinia mangostana L.

  7. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

    Directory of Open Access Journals (Sweden)

    Panpan Yang

    2017-08-01

    Full Text Available Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs. Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

  9. DOGMA: domain-based transcriptome and proteome quality assessment.

    Science.gov (United States)

    Dohmen, Elias; Kremer, Lukas P M; Bornberg-Bauer, Erich; Kemena, Carsten

    2016-09-01

    Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. De novo transcriptome assembly of two contrasting pumpkin cultivars

    Directory of Open Access Journals (Sweden)

    Aliki Xanthopoulou

    2016-03-01

    Full Text Available Cucurbita pepo (squash, pumpkin, gourd, a worldwide-cultivated vegetable of American origin, is extremely variable in fruit characteristics. However, the information associated with genes and genetic markers for pumpkin is very limited. In order to identify new genes and to develop genetic markers, we performed a transcriptome analysis (RNA-Seq of two contrasting pumpkin cultivars. Leaves and female flowers of cultivars, ‘Big Moose’ with large round fruits and ‘Munchkin’ with small round fruits, were harvested for total RNA extraction. We obtained a total of 6 GB (Big Moose; http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3056882 and 5 GB (Munchkin; http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3056883 sequence data (NCBI SRA database SRX1502732 and SRX1502735, respectively, which correspond to 18,055,786 and 14,824,292 150-base reads. After quality assessment, the clean sequences where 17,995,932 and 14,774,486 respectively. The numbers of total transcripts for ‘Big Moose’ and ‘Munchkin’ were 84,727 and 68,051, respectively. TransDecoder identified possible coding regions in assembled transcripts. This study provides transcriptome data for two contrasting pumpkin cultivars, which might be useful for genetic marker development and comparative transcriptome analyses. Keywords: RNA-Seq, Pumpkin, Contrasting cultivars, Cucurbita pepo

  11. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  12. [SSR loci information analysis in transcriptome of Andrographis paniculata].

    Science.gov (United States)

    Li, Jun-Ren; Chen, Xiu-Zhen; Tang, Xiao-Ting; He, Rui; Zhan, Ruo-Ting

    2018-06-01

    To study the SSR loci information and develop molecular markers, a total of 43 683 Unigenes in transcriptome of Andrographis paniculata were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MicroSAtellite software, SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 14 135 SSR loci were found in the transcriptome of A. paniculata, which distributed in 9 973 Unigenes with a distribution frequency of 32.36%. Di-nucleotide and Tri-nucleotide repeat were the main types, accounted for 75.54% of all SSRs. The repeat motifs of AT/AT and CCG/CGG were the predominant repeat types of Di-nucleotide and Tri-nucleotide, respectively. A total of 4 740 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. Ten pairs of primers in 20 pairs of randomly picked primers produced fragments with expected molecular size. The gene function of Unigenes containing SSR were mostly related to the basic metabolism function of A. paniculata. The SSR markers in transcriptome of A. paniculata show rich type, strong specificity and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding. Copyright© by the Chinese Pharmaceutical Association.

  13. De novo transcriptome assembly of a sour cherry cultivar, Schattenmorelle

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2015-12-01

    Full Text Available Sour cherry (Prunus cerasus in the genus Prunus in the family Rosaceae is one of the most popular stone fruit trees worldwide. Of known sour cherry cultivars, the Schattenmorelle is a famous old sour cherry with a high amount of fruit production. The Schattenmorelle was selected before 1650 and described in the 1800s. This cultivar was named after gardens of the Chateau de Moreille in which the cultivar was initially found. In order to identify new genes and to develop genetic markers for sour cherry, we performed a transcriptome analysis of a sour cherry. We selected the cultivar Schattenmorelle, which is among commercially important cultivars in Europe and North America. We obtained 2.05 GB raw data from the Schattenmorelle (NCBI accession number: SRX1187170. De novo transcriptome assembly using Trinity identified 61,053 transcripts in which N50 was 611 bp. Next, we identified 25,585 protein coding sequences using TransDecoder. The identified proteins were blasted against NCBI's non-redundant database for annotation. Based on blast search, we taxonomically classified the obtained sequences. As a result, we provide the transcriptome of sour cherry cultivar Schattenmorelle using next generation sequencing.

  14. The Transcriptomic Responses of Pinus massoniana to Drought Stress

    Directory of Open Access Journals (Sweden)

    Mingfeng Du

    2018-06-01

    Full Text Available Masson pine (Pinus massoniana is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO categories (oxidation-reduction and metabolism and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways (plant hormone signal transduction and metabolic pathways were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs associated with circadian rhythms (HY5 and LHY, signal transduction (ERF, and defense responses (WRKY were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS, abscisic acid (ABA responses (NCED, PYL, PP2C and SnRK, and reactive oxygen species (ROS scavenging (GPX, GST and GSR. These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine.

  15. Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus.

    Science.gov (United States)

    Berdan, Emma L; Finck, Jonas; Johnston, Paul R; Waurick, Isabelle; Mazzoni, Camila J; Mayer, Frieder

    2017-01-01

    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development.

  16. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  17. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  18. Whole transcriptome organisation in the dehydrated supraoptic nucleus

    Directory of Open Access Journals (Sweden)

    C.C.T. Hindmarch

    2013-12-01

    Full Text Available The supraoptic nucleus (SON is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration.

  19. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  20. Coevolutionary genetic variation in the legume-rhizobium transcriptome.

    Science.gov (United States)

    Heath, Katy D; Burke, Patricia V; Stinchcombe, John R

    2012-10-01

    Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change. © 2012 Blackwell Publishing Ltd.

  1. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    Science.gov (United States)

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent

  2. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    Mycosphaerella fijiensis, causative agent of the black Sigatoka disease of banana, is considered the most economically damaging banana disease. Despite its importance, the genetics of pathogenicity are poorly understood. Previous studies have characterized polyketide pathways with possible roles in pathogenicity. To identify additional candidate pathogenicity genes, we compared the transcriptome of this fungus during the necrotrophic phase of infection with that during saprophytic growth in medium. Transcriptome analysis was conducted, and the functions of differentially expressed genes were predicted by identifying conserved domains, Gene Ontology (GO) annotation and GO enrichment analysis, Carbohydrate-Active EnZymes (CAZy) annotation, and identification of genes encoding effector-like proteins. The analysis showed that genes commonly involved in secondary metabolism have higher expression in infected leaf tissue, including genes encoding cytochrome P450s, short-chain dehydrogenases, and oxidoreductases in the 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily. Other pathogenicity-related genes with higher expression in infected leaf tissue include genes encoding salicylate hydroxylase-like proteins, hydrophobic surface binding proteins, CFEM domain-containing proteins, and genes encoding secreted cysteine-rich proteins characteristic of effectors. More genes encoding amino acid transporters, oligopeptide transporters, peptidases, proteases, proteinases, sugar transporters, and proteins containing Domain of Unknown Function (DUF) 3328 had higher expression in infected leaf tissue, while more genes encoding inhibitors of peptidases and proteinases had higher expression in medium. Sixteen gene clusters with higher expression in leaf tissue were identified including clusters for the synthesis of a non-ribosomal peptide. A cluster encoding a novel fusicoccane was also identified. Two putative dispensable scaffolds were identified with a large proportion of

  3. Infertility diagnosis has a significant impact on the transcriptome of developing blastocysts.

    Science.gov (United States)

    McCallie, Blair R; Parks, Jason C; Griffin, Darren K; Schoolcraft, William B; Katz-Jaffe, Mandy G

    2017-08-01

    , which included mechanistic target of rapamycin (mTOR) and adipocytokine signaling. RT-qPCR validation confirmed differential gene expression for the following genes: BCL2 like 10 (BCL2L10), heat shock protein family A member 1A (HSPA1A), heat shock protein family A member 1B (HSPA1B), activating transcription factor 3 (ATF3), fibroblast growth factor 9 (FGF9), left-right determination factor 1 (LEFTY1), left-right determination factor 2 (LEFTY2), growth differentiation factor 15 (GDF15), inhibin beta A subunit (INHBA), adherins junctions associated protein 1 (AJAP1), cadherin 9 (CDH9) and laminin subunit alpha 4 (LAMA4) (P 2-fold). Not available due to participant privacy. Blastocyst samples for microarray analysis required pooling. While this allows for an overall average in each infertility etiology group and can reduce noise from sample-to-sample variation, it cannot give a detailed analysis of each blastocyst within the group. Underlying patient infertility diagnosis has an impact on the blastocyst transcriptome, modifying gene expression associated with developmental competence and implantation potential. No conflict of interest or outside funding provided. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email:journals.permissions@oup.com

  4. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  5. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.

    Science.gov (United States)

    Feldmesser, Ester; Rosenwasser, Shilo; Vardi, Assaf; Ben-Dor, Shifra

    2014-02-22

    The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated. Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and

  6. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Wen Xie

    Full Text Available BACKGROUND: Bemisia tabaci (Gennadius is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45% unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the