WorldWideScience

Sample records for b-cell-mediated protection induced

  1. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response.

    Science.gov (United States)

    Förster, Michael; Farrington, Kyo; Petrov, Jessica C; Belle, Jad I; Mindt, Barbara C; Witalis, Mariko; Duerr, Claudia U; Fritz, Jörg H; Nijnik, Anastasia

    2017-03-01

    MYSM1 is a chromatin-binding histone deubiquitinase. MYSM1 mutations in humans result in lymphopenia whereas loss of Mysm1 in mice causes severe hematopoietic abnormalities, including an early arrest in B cell development. However, it remains unknown whether MYSM1 is required at later checkpoints in B cell development or for B cell-mediated immune responses. We analyzed conditional mouse models Mysm1(fl/fl)Tg.mb1-cre, Mysm1(fl/fl)Tg.CD19-cre, and Mysm1(fl/fl)Tg.CD21-cre with inactivation of Mysm1 at prepro-B, pre-B, and follicular B cell stages of development. We show that loss of Mysm1 at the prepro-B cell stage in Mysm1(fl/fl)Tg.mb1-cre mice results in impaired B cell differentiation, with an ∼2-fold reduction in B cell numbers in the lymphoid organs. Mysm1(fl/fl)Tg.mb1-cre B cells also showed increased expression of activation markers and impaired survival and proliferation. In contrast, Mysm1 was largely dispensable from the pre-B cell stage onward, with Mysm1(fl/fl)Tg.CD19-cre and Mysm1(fl/fl)Tg.CD21-cre mice showing no alterations in B cell numbers and largely normal responses to stimulation. MYSM1, therefore, has an essential role in B cell lineage specification but is dispensable at later stages of development. Importantly, MYSM1 activity at the prepro-B cell stage of development is important for the normal programming of B cell responses to stimulation once they complete their maturation process.

  2. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis.

    Science.gov (United States)

    Pavlasova, Gabriela; Borsky, Marek; Seda, Vaclav; Cerna, Katerina; Osickova, Jitka; Doubek, Michael; Mayer, Jiri; Calogero, Raffaele; Trbusek, Martin; Pospisilova, Sarka; Davids, Matthew S; Kipps, Thomas J; Brown, Jennifer R; Mraz, Marek

    2016-09-22

    Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of neoplastic B cells from the lymphoid tissues into the blood, which makes them potentially ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzumab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells (HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates CD20 (MS4A1) expression in vivo. We observed that CLL cells that have recently exited the lymph node microenvironment and moved into the peripheral blood (CXCR4(dim)CD5(bright) subpopulation) have higher cell surface levels of CD20 than the cells circulating in the bloodstream for a longer time (CXCR4(bright)CD5(dim) cells). We found that CD20 is directly upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1α, CXCL12) produced by stromal cells, and BTK-inhibitor ibrutinib and CXCR4-inhibitor plerixafor block SDF-1α-mediated CD20 upregulation. Ibrutinib also downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed mechanistic explanation of CD20 expression regulation in the context of chemokine signaling and microenvironmental interactions, which may have important implications for microenvironment-targeting therapies.

  3. Inducible HSP70 Protects Radiation-Induced Salivary Gland Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Lee, Su-Jae; Bae, Sang-Woo; Lee, Yun-Sil [Korea Institute of Radiological Medical Sciences, Seoul (Korea, Republic of); Kim, Sung-Ho [Chonnam National University, Gwangju (Korea, Republic of)

    2006-07-01

    Irradiation (IR) delivered to the head and neck is a common treatment for malignancies. Salivary glands in the irradiation field are severely damaged, and consequently this resulted in marked salivary hypofunction. While the exact mechanism of salivary gland damage remains enigmatic, fluid secreting acinar cells are lost, and saliva output is dramatically reduced. Previously we have reported that inducible heat shock protein 70 (HSP70i) induced radioresistance in vitro. Moreover, HSP70i localized to salivary glands by gene transfer has great potential for the treatment of salivary gland. Herein, we investigated whether HSP70 can use as radio protective molecules for radiation-induced salivary gland damage in vivo.

  4. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  5. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Science.gov (United States)

    Huerta-Yepez, Sara; Medina-Campos, Omar Noel; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Torres, Ismael; Tapia, Edilia; Pedraza-Chaverri, José

    2013-01-01

    Sulforaphane (SFN), an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM) is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity) and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress. PMID:23662110

  6. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2013-01-01

    Full Text Available Sulforaphane (SFN, an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress.

  7. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer.

    Science.gov (United States)

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko; Gonzalez, Frank J

    2014-12-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR-dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor κ-light-chain-enhancer of activated B cells-mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events.

  8. Protective effect of silymarin against chemical-induced cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Bibi Marjan Razavi

    2016-09-01

    Full Text Available Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity.

  9. Dietary sodium protects fish against copper-induced olfactory impairment.

    Science.gov (United States)

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  10. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    Science.gov (United States)

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  11. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  12. Exercise protects against methamphetamine-induced aberrant neurogenesis

    Science.gov (United States)

    Park, Minseon; Levine, Harry; Toborek, Michal

    2016-01-01

    While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus. PMID:27677455

  13. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Blanca Humanes

    2015-01-01

    Full Text Available Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs. Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  14. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity.

    Science.gov (United States)

    Humanes, Blanca; Jado, Juan Carlos; Camaño, Sonia; López-Parra, Virginia; Torres, Ana María; Álvarez-Sala, Luís Antonio; Cercenado, Emilia; Tejedor, Alberto; Lázaro, Alberto

    2015-01-01

    Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs). Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  15. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Peter Rose; Choon Nam Ong; Matt Whiteman

    2005-01-01

    AIM: To evaluate the antioxidant and phase Ⅱ detoxification enzyme inducing ability of green leaf vegetables consumed in Asia.METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and ironascorbate induced lipid peroxidation assay. Induce of phase Ⅱ detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCI mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay.RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCI mediated cytotoxicity. In addition, evaluation of the phase Ⅱ enzyme inducing ability of each extract,as assessed by quinone reductase and glutathioneS-transferase activities, showed significant variation between the vegetables analyzed.CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase Ⅱ detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage.

  16. PROTECTIVE EFFECT OF GREEN TEA FROM PAF-INDUCED NEUROTOXITY

    Institute of Scientific and Technical Information of China (English)

    Han Enji; Hah Xuefei; Joseph Rajiv

    2000-01-01

    Objective The protective effect of chinese green tea from PAF-induced neurotoxity was investigated Method LaN1 ( neuroblastoma cell line) was used as neuron. Lactate dehydrogenase (LDH) -release was an indicator of cell death. Cytoplasmic calcium was measured with Aequouin-loaded method. Results When applied to LaN1 cells, green tea in concentration 2mg/ml or stronger obviously damaged cells. If lower concentration (0. 5mg/ml and l.Omg/ml) of green tea were applied, green tea inhibited the elevation of intracellular calcium and reduced the cytotoxity induced by PAF in neurons. Conclusion PAF plays an important role in brain injury and stroke, the protective effect of green tea could be a basis to explore weather green tea or its derivative may have preventive and therapeutic potential for neuronal injury.

  17. Protective Role of Lycopene Against Diethylnitrosamine Induced Experimental Hepatocarcinogenesis

    OpenAIRE

    Inas Z.A. Abdallah and Hala A.H. Khattab

    2004-01-01

    Lycopene was considered as a major carotenoid in the human diet for only the last few centuries. Recently lycopene has been found to possess chemoprotective effect against gastrointestinal tract, urinary bladder, prostate and breast cancers. In the present study, the protective effect of lycopene, the natural extract from tomato pomace against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) formation in rats was investigated. Four groups of male albino rats at the age of 6 wee...

  18. Deferiprone protects the isolated atria from cardiotoxicity induced by doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Ling-jie XU; Liang JIN; Hong PAN; Ao-zhen ZHANG; Gang WEI; Ping-ping LI; Wei-yue LU

    2006-01-01

    Aim: To investigate the effects of deferiprone on doxorubicin-induced cardiotoxicity and determine its protection on cardiac contractility in vivo at tissue level. Methods: Spontaneously-beating isolated atria from rats were pretreated with deferiprone for 10 min at 1.2 mmol/L or 0.3 mmol/L, respectively before co-incubation with doxorubicin (DOX) at 0.03 mmol/L for 60 min. Contractility (dF/dt) was assessed every 10 min during the incubation. After that, the tissues around the sinuatrial nodes were fixed for ultrastructural study; succinate dehydrogenase (SDH) and Cu, Zn superoxide dismutase (Cu, Zn-SOD) activity, as well as malondialdehyde (MDA) level of the atria were assayed. Results: Treatment with DOX alone resulted in a 49.34% reduction of the contractility, mitochondria swelling, disruption of mitochondrial crista and decreased electron density of the matrices. Conversely, with the presence of deferiprone, the negative inotropic effect and lesions in the cardiac mitochondria structure induced by DOX were attenuated. Cu, Zn-SOD activity increased by 12.97%-12.11%, the MDA level decreased by 29.12%-39.82% and succinate dehydrogenase (SDH) activity was ameliorated by 25.15%-34.76%. Conclusion : Deferiprone can efficiently preserve cardiac contractility. Moreover, the results of this study indicate that deferiprone is able to protect mitochondrial function and structure form damage induced by DOX. This cardiac protective potential of deferiprone could be due to its defense capability against oxidative damage.

  19. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity.

    Science.gov (United States)

    Youn, Cha Kyung; Kim, Jun; Jo, Eu-Ri; Oh, Jeonghyun; Do, Nam Yong; Cho, Sung Il

    2016-11-18

    One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.

  20. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity

    Directory of Open Access Journals (Sweden)

    Cha Kyung Youn

    2016-11-01

    Full Text Available One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1. Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.

  1. Suramin protects from cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Dupre, Tess V; Doll, Mark A; Shah, Parag P; Sharp, Cierra N; Kiefer, Alex; Scherzer, Michael T; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G; Beverly, Levi J; Siskind, Leah J

    2016-02-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer.

  2. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  3. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox.

    Directory of Open Access Journals (Sweden)

    Melanie Kremer

    Full Text Available Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.

  4. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Cotrim, Ana P. [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yoshikawa, Masanobu [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa (Japan); Sunshine, Abraham N.; Zheng Changyu [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Baum, Bruce J., E-mail: bbaum@dir.nidcr.nih.gov [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  5. Protective Function of STAT3 in CVB3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available The transcription factor signal transducer and activator of transcription 3 (STAT3 is an important mediator of the inflammatory process. We investigated the role of STAT3 in viral myocarditis and its possible role in the development to dilated cardiomyopathy. We used STAT3-deficent mice with a cardiomyocyte-restricted knockout and induced a viral myocarditis using Coxsackievirus B3 (CVB3 which induced a severe inflammation during the acute phase of the viral myocarditis. A complete virus clearance and an attenuated inflammation were examined in both groups WT and STAT3 KO mice 4 weeks after infection, but the cardiac function in STAT3 KO mice was significantly decreased in contrast to the infected WT mice. Interestingly, an increased expression of collagen I was detected in STAT3 KO mice compared to WT mice 4 weeks after CVB3 infection. Furthermore, the matrix degradation was reduced in STAT3 KO mice which might be an explanation for the observed matrix deposition. Consequently, we here demonstrate the protective function of STAT3 in CVB3-induced myocarditis. Since the cardiomyocyte-restricted knockout leads to an increased fibrosis, it can be assumed that STAT3 signalling in cardiomyocytes protects the heart against increased fibrosis through paracrine effects.

  6. Diazinon-Induced Ovarian Toxicity and Protection by Vitamins E

    Directory of Open Access Journals (Sweden)

    Zinat Sargazi

    2014-09-01

    Full Text Available Background: DZN (diazinon is an organophosphate insecticide that had been used in agriculture and for domestic and veterinary use for several years and caused many negative effects on plants and animal species, especially on human. The aim of present study was to evaluate the effects of DZN on MDA (malondialdehyde and GSH (glutathione levels in female rat reproductive tissue (ovary and to assess the protective role of vitamin E. Methods: A total of 30 adult female Wistar rats were divided into five groups: control group (without any intervention, sham group (received only pure corn oil, as solvent, experimental group 1 (DZN+corn oil, 60 mg/kg, experimental group 2 (vitamin E, 200 mg/kg, and experimental group 3 (DZN+vitamin E, the same dosage. All drugs were injected intraperitoneally, except vitamin E which was administrated by gavage. The animals were scarified after two weeks and MDA as a marker of lipid peroxidation and GSH content were measured in ovarian tissue. Results: DZN reduced GSH content and increased MDA level in ovary compared with the control group (P<0.001. Vitamin E plus DZN increased GSH content but decreased DZN-induced MDA elevation in rat ovarian tissue. Conclusion: Oxidative stress contributes to DZN-induced ovarian toxicity. The results of this study suggested that vitamin E may have a protective effect on DZN-induced ovarian toxicity.

  7. Bile-acid-induced cell injury and protection

    Institute of Scientific and Technical Information of China (English)

    Maria J Perez; Oscar Briz

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-Nmethylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.

  8. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity.

    Science.gov (United States)

    Pizarro, Marcela; Troncoso, Rodrigo; Martínez, Gonzalo J; Chiong, Mario; Castro, Pablo F; Lavandero, Sergio

    2016-08-31

    Doxorubicin (Doxo) is one of the most effective anti-neoplastic agents but its cardiotoxicity has been an important clinical limitation. The major mechanism of Doxo-induced cardiotoxicity is associated to its oxidative capacity. However, other processes are also involved with significant consequences for the cardiomyocyte. In recent years, a number of studies have investigated the role of autophagy on Doxo-induced cardiotoxicity but to date it is not clear how Doxo alters that process and its consequence on cardiomyocytes viability. Here we investigated the effect of Doxo 1uM for 24h of stimulation on cultured neonatal rat cardiomyocytes. We showed that Doxo inhibits basal autophagy. This inhibition is due to both Akt/mTOR signaling pathway activation and Beclin 1 level decrease. To assess the role of autophagy on Doxo-induced cardiomyocyte death, we evaluated the effects 3-methyladenine (3-MA), bafilomycin A1 (BafA), siRNA Beclin 1 (siBeclin 1) and rapamycin (Rapa) on cell viability. Inhibition of autophagy with 3-MA, BafA and siBeclin 1 increased lactate dehydrogenase (LDH) release but, when autophagy was induced by Rapa, Doxo-induced cardiomyocyte death was decreased. These results suggest that Doxo inhibits basal autophagy and contributes to cardiomyocyte death. Activation of autophagy could be used as a strategy to protect the heart against Doxo toxicity.

  9. HSP25 Protects Radiation-Induced Salivary Gland Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae June; Lee, Yoon Jin; Kwon, Hee Choong; Lee, Su Jae; Bae, Sang Woo; Lee, Yun Sil [Korea Institute of Radiological Medical Sciences, Seoul (Korea, Republic of); Kim, Sung Ho [Chonnam National Univ., Gwangju (Korea, Republic of)

    2005-07-01

    Irradiation (IR) is a central treatment modality administered for head and neck malignancies. A significant consequence of this IR treatment is irreversible damage to salivary gland in the IR field. While the exact mechanism of salivary gland damage remains enigmatic, fluid secreting acinar cells are lost, and saliva output is dramatically reduced. Previously we have reported that heat shock protein 25 (HSP25) induced radioresistance in vitro. HSP25 interferes negatively with apoptosis through several pathways which involve its direct interaction with cytochrome c, protein kinase c delta or Akt. And localized gene transfer to salivary glands has great potential for the treatment of salivary gland. Herein, we investigated whether HSP25 can use as radio protective molecules for radiation-induced salivary gland damage in vivo.

  10. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  11. Lupeol Protects Against Cerulein-Induced Acute Pancreatitis in Mice.

    Science.gov (United States)

    Kim, Min-Jun; Bae, Gi-Sang; Choi, Sun Bok; Jo, Il-Joo; Kim, Dong-Goo; Shin, Joon-Yeon; Lee, Sung-Kon; Kim, Myoung-Jin; Song, Ho-Joon; Park, Sung-Joo

    2015-10-01

    Lupeol is a triterpenoid commonly found in fruits and vegetables and is known to exhibit a wide range of biological activities, including antiinflammatory and anti-cancer effects. However, the effects of lupeol on acute pancreatitis specifically have not been well characterized. Here, we investigated the effects of lupeol on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced via an intraperitoneal injection of cerulein (50 µg/kg). In the lupeol treatment group, lupeol was administered intraperitoneally (10, 25, or 50 mg/kg) 1 h before the first cerulein injection. Blood samples were taken to determine serum cytokine and amylase levels. The pancreas was rapidly removed for morphological examination and used in the myeloperoxidase assay, trypsin activity assay, and real-time reverse transcription polymerase chain reaction. In addition, we isolated pancreatic acinar cells using a collagenase method to examine the acinar cell viability. Lupeol administration significantly attenuated the severity of pancreatitis, as was shown by reduced pancreatic edema, and neutrophil infiltration. In addition, lupeol inhibited elevation of digestive enzymes and cytokine levels, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6. Furthermore, lupeol inhibited the cerulein-induced acinar cell death. In conclusion, these results suggest that lupeol exhibits protective effects on cerulein-induced acute pancreatitis.

  12. Quercitrin protects skin from UVB-induced oxidative damage.

    Science.gov (United States)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.

  13. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  14. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    Science.gov (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  15. Nrf2 protects against furosemide-induced hepatotoxicity.

    Science.gov (United States)

    Qu, Qiang; Liu, Jie; Zhou, Hong-Hao; Klaassen, Curtis D

    2014-10-01

    Furosemide is a diuretic drug, but its reactive intermediates lead to acute liver injury in mice. Given the essential role of Nrf2 as a cellular defense regulator, we investigated whether Nrf2 would protect against furosemide-induced liver injury using the Nrf2 "gene-dose response" mouse model (Nrf2-null with Nrf2 knock-out, wild-type with normal expression of Nrf2, Keap1-KD with enhanced Nrf2 activation and Keap1-HKO mice with maximum Nrf2 activation). Twenty-four hours after furosemide administration (250mg/kg, i.p.), serum ALT activities and histopathological analysis indicated severe hepatotoxicity in Nrf2-null and WT mice, but significantly less in the Nrf2-overexpressing Keap1-KD and Keap1-HKO mice. Furosemide increased the mRNA of genes involved in the acute phase response (hemeoxygenase-1 and metallothionein-1), ER stress (C/Ebp-homologous protein and Growth arrest and DNA-damage-inducible protein), inflammatory cytokine (interleukin 1 beta), chemokines (macrophage inflammatory protein 2 and mouse keratinocyte-derived chemokine), as well as apoptosis (early growth response factor and BCL2-associated X protein) in livers of Nrf2-null and wild-type mice, but these genes increased less in mice with more Nrf2. The two genotypes of over-expressed Nrf2 mice had increased expression of the Nrf2 target genes Gclm, Gclc and Nqo1 prior to furosemide administration, and the expressions of these genes were increased further after furosemide administration. Thus, our findings provide strong evidence that over-expression of Nrf2 in Keap1-KD and Keap1-HKO mice and the increases in mRNA of a number of genes involved in anti-oxidative stress, anti-inflammation, anti-ER stress and anti-apoptosis protect against furosemide-induced hepatotoxicity.

  16. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  17. Doxorubicin-induced cardiotoxicity in mice; protection by silymarin

    Directory of Open Access Journals (Sweden)

    Heba Abdelnasser Aniss a, Ashraf El Metwally Said b, Ibrahim Helmy El Sayed c, Camelia AdLy

    2012-07-01

    Full Text Available Background: despite its vast utility in clinical oncology, the use of doxorubicin is limited by a potentially fatal cardiomyopathy and congestive heart failure. Free radical formation and antioxidants depletion are mechanisms proposed for this cardiomyopathy. The aim of this study is to compare the potential antioxidative protective effect of silymarin on doxorubicin-induced cardiotoxicity in experimental mice. Materials and methods: four groups (ten animals in each group of experimental mice were used as follows: Group 1, mice received only saline (intraperitoneally and served as a negative control group; Group 2, mice received doxorubicin (intraperitoneally, 5 mg/kg body weight in three equal injections over a period of two weeks for a cumulative dose of 15 mg/kg body weight; Group 3, mice orally administrated silymarin (200 mg/day/kg body weight respectively, through an intragastric feeding tube over a period of three weeks; Group 4, mice treated orally with silymarin plus intraperitoneally doxorubicin administration with the same protocol of groups 3 and 4. Serum lactate dehydrogenase (LDH, creatine phosphokinase (CPK, aspartate aminotransferase (ASAT, alanine aminotransferase (ALAT, malondialdehyde (MDA, total nitric oxide (NO, cardiac reduced glutathione (GSH, superoxide dismutase (SOD, glutathione peroxidase (GPx and catalase (CAT were measured in all tested groups. Results: doxorubicin elevated the activities of LDH, CPK, AST, ALT, MDA and NO in the cardiac tissue. Cardiac antioxidant enzymes activities SOD and CAT also increased while GPx activity was decreased. Pre-co-treatment with silymarin prevented the changes induced by doxorubicin administration. These findings demonstrate the cardio-protective effect of silymarin on cardiac antioxidant status during doxorubicin induced cardiac damage in mice. Conclusion: silymarin could be recommended for further investigation as potentially new indication for clinical application.

  18. Protective Role of Lycopene Against Diethylnitrosamine Induced Experimental Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Inas Z.A. Abdallah and Hala A.H. Khattab

    2004-09-01

    Full Text Available Lycopene was considered as a major carotenoid in the human diet for only the last few centuries. Recently lycopene has been found to possess chemoprotective effect against gastrointestinal tract, urinary bladder, prostate and breast cancers. In the present study, the protective effect of lycopene, the natural extract from tomato pomace against diethylnitrosamine (DEN-induced hepatocellular carcinoma (HCC formation in rats was investigated. Four groups of male albino rats at the age of 6 weeks were studied: 1 control (C, 2 DEN, i.p. injected 5 times with doses of 200 mg/kg b.w., one dose every two days. 3 Lycopene, orally given 0.12 mg/rat/day. 4 Lycopene + DEN, the treatment with lycopene started 7 days before DEN injection and continued till the end of the experimental period. Rats in group 2 and 4 were treated with Phenobarbital (PB at a dose of 500 ppm in the drinking water as a tumor promoter. PB treatment started with the first injection of DEN and continued till the end of the experimental period. The results indicated that DEN caused HCC nodules as evidenced by a remarkable significant increase in -L-fucosidase and metal oproteinases (MMPs enzyme activity in both serum and cytosol. Increased activity of these enzymes is a marker for both preneoplastic and carcinoma lesions. Administration of lycopene prior to DEN injection protected rats from DEN-induced HCC as evidenced by a significant descent in -L-fucosidase and MMPs enzymes activity in both serum and cytosol. The histological investigation of liver tissue confirmed these results. DEN group showed proliferated hyperplastic and anaplastic hepatocellular nodules surrounded with thin layer of fibroblastic cells, desmoplasia and inflammatory cells infiltrations, focal hepatic haemorrhages and necrosis. Meanwhile, lycopene + DEN group showed no histopathological changes. These results indicate that lycopene effectively inhibits DEN-induced hepatocarcinogenesis in rats.

  19. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4 and integrin beta-4 (ITGB4, which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  20. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    Science.gov (United States)

    Li, Li; Hu, Yizhou; Ylivinkka, Irene; Li, Huini; Chen, Ping; Keski-Oja, Jorma; Hyytiäinen, Marko

    2013-01-01

    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  1. Graphene coatings for protection against microbiologically induced corrosion

    Science.gov (United States)

    Krishnamurthy, Ajay

    Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of

  2. Gut Microbiota Mediates Protection Against Enteropathy Induced by Indomethacin

    Science.gov (United States)

    Xiao, Xue; Nakatsu, Geicho; Jin, Ye; Wong, Sunny; Yu, Jun; Lau, James Y. W.

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) can cause significant small bowel injuries. The role of gut microbiota in this NSAID-induced enteropathy is poorly understood. We studied the dynamic changes in gut microbiota following indomethacin administration in mice, and investigated the effects of these adaptive changes on subsequent NSAID-induced enteropathy. The changes in gut microbiota were studied using 16S rRNA sequencing, and the effects of such changes were investigated using antibiotics and a faecal transplantation model. After indomethacin treatment, significant adaptive changes in gut microbiota were observed, including increased abundance of Firmicutes and decreased abundance in that of Bacteroidetes. Depletion of gut microbiota with antibiotics led to a higher mortality (P = 0.0021) in mice compared to controls. Mice pre-transplanted with adaptively changed microbiota showed less small bowel injury and lower levels of pro-inflammatory cytokines when exposed to indomethacin. In summary, this study identifies adaptive changes in the gut microbiota upon indomethacin administration, which can in turn ameliorate further NSAID-induced injury. The heightened mortality with antibiotic depletion of the adaptively changed microbiota suggests its important role in protecting against such injury. This study provides insight for future efforts to target the microbiota as a therapeutic strategy. PMID:28067296

  3. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  4. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  5. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism.

    Directory of Open Access Journals (Sweden)

    Mayumi Nakahara

    Full Text Available INTRODUCTION: Recent studies have shown that histones, the chief protein component of chromatin, are released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury, and act as major mediators of the death of an organism. This study was designed to elucidate the cellular and molecular basis of histone-induced lethality and to assess the protective effects of recombinant thrombomodulin (rTM. rTM has been approved for the treatment of disseminated intravascular coagulation (DIC in Japan, and is currently undergoing a phase III clinical trial in the United States. METHODS: Histone H3 levels in plasma of healthy volunteers and patients with sepsis and DIC were measured using enzyme-linked immunosorbent assay. Male C57BL/6 mice were injected intravenously with purified histones, and pathological examinations were performed. The protective effects of rTM against histone toxicity were analyzed both in vitro and in mice. RESULTS: Histone H3 was not detectable in plasma of healthy volunteers, but significant levels were observed in patients with sepsis and DIC. These levels were higher in non-survivors than in survivors. Extracellular histones triggered platelet aggregation, leading to thrombotic occlusion of pulmonary capillaries and subsequent right-sided heart failure in mice. These mice displayed symptoms of DIC, including thrombocytopenia, prolonged prothrombin time, decreased fibrinogen, fibrin deposition in capillaries, and bleeding. Platelet depletion protected mice from histone-induced death in the first 30 minutes, suggesting that vessel occlusion by platelet-rich thrombi might be responsible for death during the early phase. Furthermore, rTM bound to extracellular histones, suppressed histone-induced platelet aggregation, thrombotic occlusion of pulmonary capillaries, and dilatation of the right ventricle, and rescued mice from lethal thromboembolism. CONCLUSIONS: Extracellular histones cause massive

  6. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.

    Science.gov (United States)

    Vilela, Luciano R; Gobira, Pedro H; Viana, Thercia G; Medeiros, Daniel C; Ferreira-Vieira, Talita H; Doria, Juliana G; Rodrigues, Flávia; Aguiar, Daniele C; Pereira, Grace S; Massessini, André R; Ribeiro, Fabíola M; de Oliveira, Antonio Carlos P; Moraes, Marcio F D; Moreira, Fabricio A

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.

  7. Alpha-linolenic acid protects against gentamicin induced toxicity

    Directory of Open Access Journals (Sweden)

    Priyadarshini M

    2012-11-01

    Full Text Available Medha Priyadarshini, Mohammad Aatif, Bilqees BanoDepartment of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, IndiaBackground: Recent studies indicate that reactive oxygen species are the major culprits behind the renal damage induced by gentamicin, an aminoglycoside antibiotic used to treat serious and life threatening Gram-negative infections. Experimental evidence suggests a protective role of alpha-linolenic acid supplementation against oxidative stress. The aim of the present study was to investigate the possible beneficial role of alpha-linolenic acid against gentamicin induced renal distress.Methods: Male Wistar rats were divided into three groups of eight rats each, with the first group serving as a control. The other groups were treated intraperitoneally with gentamicin 100 mg/kg body weight per day for 10 days ± alpha-linolenic acid and vitamin E (each given as 250 mg/kg body weight per day. Concentrations of creatinine, urea, cholesterol, inorganic phosphate in serum, malondialdehyde and total sulfhydryl levels, and glutathione-S-transferase, superoxide dismutase, and catalase activity in kidney tissues were determined.Results: Administration of gentamicin to rats induced marked renal failure, characterized by a profound increase in serum creatinine, urea, and cholesterol concentrations, accompanied by significant lowering of renal alkaline phosphatase and acid phosphatase activity, an increase in malondialdehyde, a decline in total sulfhydryl levels, and lowered superoxide dismutase, catalase, and glutathione-S-transferase activity. Cotreatment with alpha-linolenic acid produced amelioration in these biochemical indices of nephrotoxicity in serum as well as in tissue. Further histopathological and human studies are necessary to demonstrate the beneficial effects of alpha-linolenic acid in renal disease.Conclusion: Alpha-linolenic acid may represent a nontoxic and effective intervention strategy in

  8. Protection against cisplatin-induced nephrotoxicity by recombinant human erythropoietin.

    Science.gov (United States)

    Yalcin, Suayib; Müftüoğlu, Sevda; Cetin, Eren; Sarer, Banu; Yildirim, Berna Akkuş; Zeybek, Dilara; Orhan, Bülent

    2003-01-01

    Cisplatin (CDDP) is a potent nephrotoxin, and nephrotoxicity is its most important dose-limiting toxicity. In this study, we aimed to investigate the role of recombinant human erythropoietin (rhEPO) in the protection of cisplatin-induced nephrotoxicity and compare its efficacy with the cell-protective agent amifostine. All experiments were conducted on female Wistar albino rats. Animals were randomly assigned to four groups, each including six rats. Group A received only CDDP, group B received CDDP plus rhEPO, group C received CDDP plus amifostine, and group D received only rhEPO. At the end of 7 wk, hemoglobin (Hgb), hematocrite (Htc), blood urea nitrogen (BUN), and creatinine (Cr) levels were determined and kidneys of the rats were removed. The weights of the kidneys were measured and sent for histopathological examination. Proximal tubules from four areas of the kidney (outer cortex, inner cortex, the medullary ray, and outer stripe of outer medulla [OSOM]) were evaluated. There were statistically significant differences among the groups in terms of tubular scores, including overall renal tubular score, cortex, inner cortex, OSOM, and medullary ray tubular scores, and Htc levels. Group A rats had the worse tubular scores in all categories when compared to group D rats. When the results of groups B and C were compared, there were no differences in terms of BUN, Cr levels, and tubular scores, but the Htc level was significantly higher in group B. Group B rats had better overall and OSOM tubular scores when compared to group A. Group C also had better overall and OSOM tubular scores compared to group A. The present study showed for the first time that rhEPO plays an important role in the prevention of cisplatin-induced nephrotoxicity and it is as effective as amifostine.

  9. Platelets protect lung from injury induced by systemic inflammatory response

    Science.gov (United States)

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  10. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  11. Protective effect of wild ginseng cambial meristematic cells on d-galactosamine-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Seok-Joo Kim

    2015-10-01

    Conclusion: Our findings suggest that wild ginseng CMCs protects liver against GalN-induced inflammation by suppressing proinflammatory mediators and enhancing production of anti-inflammatory mediators.

  12. 14-3-3 Protects against stress-induced apoptosis

    Science.gov (United States)

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  13. Minocycline protection of neomycin induced hearing loss in gerbils.

    Science.gov (United States)

    Robinson, Alan M; Vujanovic, Irena; Richter, Claus-Peter

    2015-01-01

    This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline.

  14. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  15. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    Science.gov (United States)

    Liu, Yu; He, Xiao-Qin; Huang, Xin; Ding, Lu; Xu, Lin; Shen, Yu-Ting; Zhang, Fei; Zhu, Mao-Bi; Xu, Bai-Hui; Qi, Zhong-Quan; Wang, Hai-Long

    2013-01-01

    Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  16. Curcumin protects against interleukin-6-induced rapid Ca2+ influx in rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Qinying Deng; Tao Huang; Hongmei Tang; Xingming Zhong; Sujian Xia; Xiangcai Wei; Jun Dong

    2011-01-01

    The current study sought to investigate the potential protective action of curcumin against interleukin-6-induced injury in rat hippocampal neurons. The results revealed that interleukin-6 induced typical cellular injury, such as the swelling of cell bodies and increased Ca2+ concentration. After administration of curcumin, interleukin-6-induced neurons recovered to a normal state, and the fluorescence intensity of Ca2+ gradually returned to normal. These findings suggest that curcumin exerts a protective effect on hippocampal neurons of rats. In addition, our results suggest that the protective effect of curcumin involves prevention of the rapid Ca2+ influx induced by interleukin-6, which maintains Ca2+ homeostasis.

  17. The protective effects of trace elements against side effects induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinimehr, Seyed Jaial [Dept. of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-06-15

    Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

  18. Protective potential of Tamarindus indica against gentamicin-induced nephrotoxicity.

    Science.gov (United States)

    Ullah, Naveed; Azam Khan, Mir; Khan, Taous; Ahmad, Waqar

    2014-01-13

    Abstract Context: Gentamicin is an antibiotic that is effective against Gram-negative microorganisms. However, its clinical applications are often limited due to nephrotoxic effects. Objective: This study investigated the protective effects of aqueous-ethanol extract of Tamarindus indica L. (Leguminosae) fruits against gentamicin-induced renal toxicity. Materials and methods: A daily dose of 200 mg/kg of 70% aqueous-ethanol extract derived from T. indica was employed in male rabbits as a co-therapy with gentamicin (80 mg/kg) for a period of three weeks. Serum and urinary renal function parameters and histological assessments were carried out and compared with one way analysis of variance (Graphpad prism version 5.00, Graphpad Software, San Diego, CA). Results: The results showed that gentamicin-treated animals had significantly elevated blood urea nitrogen (54.1 ± 2.6 mg/dl), serum creatinine (4.0 ± 0.1 mg/dl), serum uric acid (2.3 ± 0.1 mg/dl) and urinary protein excretion (3.8 ± 0.3 mg/dl) with a fall in body weight (10 ± 1%), creatinine clearance (0.7 ± 0.09 ml/min), serum potassium (3.4 ± 0.1 mEq/l), serum calcium (7.6 ± 0.2 mg/dl), urinary volume (126 ± 9 ml/24 h) and urinary lactate dehydrogenase secretion (103.1 ± 4.2 U/l). However, animals treated by co-therapy with gentamicin and T. indica had significantly improved renal structure and function. Discussion and conclusion: Co-therapy of 200 mg/kg/d of T. indica for a period of three weeks successfully prevented functional and morphological derangements caused by gentamicin as assessed by different renal function parameters and histological examinations.

  19. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice : Influence of the route of vaccine administration

    NARCIS (Netherlands)

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Gostick, Emma; Price, David A.; Huckriede, Anke; Wilschut, Jan

    2013-01-01

    Background Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal

  20. Protective effects of honokiol against methylglyoxal-induced osteoblast damage.

    Science.gov (United States)

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2016-01-25

    Honokiol is an active compound isolated from Magnolia officinalis that has been used without notable side effects in traditional medicine. We investigated the effects of honokiol against methylglyoxal (MG)-induced cytotoxicity in MC3T3-E1 osteoblast cells and the possible molecular mechanism(s) involved. The results showed that honokiol alleviated MG-induced cell death and the production of intracellular ROS, mitochondrial superoxide, cardiolipin peroxidation, and inflammatory cytokines. MG induction of the soluble receptor for advanced glycation end product (AGE) was reduced by pretreatment with honokiol. Furthermore, honokiol increased the levels of Nrf2 and increased the levels of glutathione and the activity of glyoxalase I. Pretreatment with honokiol prior to MG exposure reduced MG-induced mitochondrial dysfunction and alleviated MG-induced reduction of nitric oxide and PGC1α levels, suggesting that honokiol may induce mitochondrial biogenesis. It was concluded that honokiol could be useful in the attenuation of MG-induced cell damage.

  1. Suspended animation inducer hydrogen sulfide is protective in an in vivo model of ventilator-induced lung injury

    NARCIS (Netherlands)

    Aslami, H.; Heinen, A.; Roelofs, J.J.T.H.; Zuurbier, C.J.; Schultz, M.J.; Juffermans, N.P.

    2010-01-01

    Acute lung injury is characterized by an exaggerated inflammatory response and a high metabolic demand. Mechanical ventilation can contribute to lung injury, resulting in ventilator-induced lung injury (VILI). A suspended-animation-like state induced by hydrogen sulfide (H2S) protects against hypoxi

  2. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2009-06-01

    Full Text Available Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  3. Protective and curative effects of Cocos nucifera inflorescence on alloxan-induced pancreatic cytotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Raveendran S Renjith

    2012-01-01

    Conclusion: The results obtained in the study indicate the protective and curative effects of CnI on alloxan-induced pancreatic cytotoxicity, which is mediated through the regulation of carbohydrate metabolic enzyme activities and islets cell repair.

  4. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  5. Protective Effects of Fluticasone on Allergen-Induced Airway Responses and Sputum Inflammatory Markers

    Directory of Open Access Journals (Sweden)

    Krishnan Parameswaran

    2000-01-01

    Full Text Available BACKGROUND: A direct comparison of the protective effects of single and regular doses of inhaled glucocorticoid on allergen-induced asthmatic responses and inflammation has not been made.

  6. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats

    OpenAIRE

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-01-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3,...

  7. Protective role of apigenin in cisplatin-induced renal injury.

    Science.gov (United States)

    He, Xuexiu; Li, Chunmei; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Shi, Mingyu; Yang, Zhengtao; Fu, Yunhe

    2016-10-15

    This study aimed to investigate the effects and molecular mechanisms of the effects of apigenin on cisplatin (CP)-induced kidney injury in mice. Apigenin was intraperitoneally administered for 3 consecutive days before CP treatment. We found that apigenin pretreatment significantly attenuated the damage to the kidneys and decreased the levels of serum creatinine, blood urea nitrogen (BUN), glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), which were increased by CP. Apigenin significantly decreased the levels of TNF-α, IL-1β and TGFβ in the kidneys. Additionally, apigenin inhibited the activations of CYP2E1, phospho-NF-κB p65 and phospho-P38 MAPK in CP-induced renal injury. These results suggest that the renoprotective effects of apigenin may be related to the suppressions of oxidative stress and inflammation in CP-induced renal injury in mice.

  8. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Science.gov (United States)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  9. Radioadaptive response for protection against radiation-induced teratogenesis.

    Science.gov (United States)

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  10. Recombinant Human Prolactin Protects against Irradiation Induced Myelosuppression

    Institute of Scientific and Technical Information of China (English)

    Weici Zhang; Rui Sun; Jianhua Zhang; Jian Zhang; Zhigang Tian

    2005-01-01

    Prolactin is a multifunctional hormone that exerts many separate functions and acts as an important connection between the endocrine and immune systems. There are increasing researches implicating the role of prolactin in hematopoiesis. Enhanced erythropoiesis in pregnant women and direct erythropoietic effects in vitro of plasma either from pregnant or lactating mice have been reported. Furthermore, regression of erythroblastic leukemia has been observed in a significant number of rats after hypophysectomy. In this study, the effects of recombinant human prolactin (rhPRL) on hematopoiesis were assessed in irradiated mice. Mice were treated with rhPRL for five consecutive days after exposure to a lethal dose or a sub-dose irradiation. Prolonged survival rate and increased erythropoiesis were observed in the irradiation-induced myelosuppressive mice. It was concluded that rhPRL might act on erythropoiesis and could be a potential candidate for the treatment of irradiation-induced myelosuppresion in clinic. Cellular & Molecular Immunology.

  11. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  12. Cerebrolysin protects against rotenone-induced oxidative stress and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abdel-Salam OME

    2014-05-01

    Full Text Available Omar ME Abdel-Salam,1 Nadia A Mohammed,2 Eman R Youness,2 Yasser A Khadrawy,3 Enayat A Omara,4 Amany A Sleem51Department of Toxicology and Narcotics, 2Department of Medical Biochemistry, 3Department of Physiology, 4Department of Pathology, 5Department of Pharmacology, National Research Centre, Dokki, Cairo, EgyptAbstract: We investigated the effect of cerebrolysin, a peptide mixture used for promoting memory and recovery from cerebral stroke, on the development of oxidative stress and nigrostriatal cell injury induced by rotenone administration in rats. Rotenone 1.5 mg/kg was given subcutaneously three times weekly either alone or in combination with cerebrolysin at 21.5, 43, or 86 mg/kg. Rats were euthanized 14 days after starting the rotenone injection. Lipid peroxidation (malondialdehyde, reduced glutathione (GSH, nitric oxide (nitrite concentrations, paraoxonase 1 (PON1, and acetylcholinesterase (AChE activities – as well as the monocyte chemoattractant protein-1 (MCP-1 and the antiapoptotic protein Bcl-2 – were measured in the brain. Histopathology, tyrosine hydroxylase, inducible nitric oxide synthase (iNOS, tumor necrosis factor-α (TNF-α, and cleaved caspase-3 immunohistochemistry were also performed. Rotenone caused a significantly elevated oxidative stress and proinflammatory response in the different brain regions. Malondialdehyde and nitric oxide concentrations were significantly increased, while GSH markedly decreased in the cerebral cortex, striatum, hippocampus, and in the rest of the brain. PON1 and AChE activities significantly decreased with respect to the control levels after rotenone application. Striatal Bcl-2 was significantly decreased while MCP-1 increased following rotenone injection. Rotenone caused prominent iNOS, TNF-α, and caspase-3 immunostaining in the striatum and resulted in markedly decreased tyrosine hydroxylase immunoreactivity in the substantia nigra and striatum. Cerebrolysin coadministered with

  13. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection.

    Science.gov (United States)

    Guy, Bruno; Jackson, Nicholas

    2016-01-01

    Dengue virus (DENV) is a human pathogen with a large impact on public health. Although no vaccine against DENV is currently licensed, a recombinant vaccine - chimeric yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) - has shown efficacy against symptomatic dengue disease in two recent Phase III clinical trials. Safety observations were also recently reported for these trials. In this Opinion article, we review the data from recent vaccine clinical trials and discuss the putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.

  14. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  15. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  16. Protective actions of vitamin D in UVB induced skin cancer.

    Science.gov (United States)

    Bikle, Daniel D

    2012-12-01

    Non-melanoma skin cancers (NMSC) are the most common type of cancer, occurring at a rate of over 1 million per year in the United States. Although their metastatic potential is generally low, they can and do metastasize, especially in the immune compromised host, and their surgical treatment is often quite disfiguring. Ultraviolet radiation (UVR) as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVR is also required for vitamin D synthesis in the skin. Based on our own data and that reported in the literature, we hypothesize that the vitamin D produced in the skin serves to suppress UVR epidermal tumor formation. In this review we will first discuss the evidence supporting the conclusion that the vitamin D receptor (VDR), with or without its ligand 1,25-dihydroxyvitamin D, limits the propensity for cancer formation following UVR. We will then explore three potential mechanisms for this protection: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).

  17. Protective effect of bacoside-A against morphine-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    T Sumathi

    2011-01-01

    Full Text Available In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation and membrane bound ATP-ases(Na + /K + ATPase. Ca 2+ and Mg 2+ ATPases activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  18. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.

    Science.gov (United States)

    Sumathi, T; Nathiya, V C; Sakthikumar, M

    2011-07-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  19. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  20. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Directory of Open Access Journals (Sweden)

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  1. Resveratrol Protects Rabbits Against Cholesterol Diet-Induced Hyperlipidaemia.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Mohammed, A; Ayo, J O

    2016-08-30

    The excessive consumption of high cholesterol diet has been associated with an increased incidence oflipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim ofthese experiments was to investigate the protective effect of resveratrol co-administered with cholesterol diet inducedhyperlipidaemia in rabbits. Thirty rabbits divided into six groups of five animal (group= 5) each: group 1 = normal control,group 2 = cholesterol diet/high fat diet group only (HFD), group 3 = resveratrol 200 mg/kg (R200), group 4 = resveratrol400 mg/kg (R400), group 5 = HFD + R200 and group 6 = HFD + R400. The normal group was fed with standard animalfeeds only; while the HFD groups were fed with standard animal feeds + cholesterol diet (10% Groundnut oil, 20%Groundnut mill and 2% cholesterol). Resveratrol-treated rabbits received resveratrol suspended in 10 g/Lcarboxymethylcellulose (CMC) and the control group received the vehicle only, CMC. The preparations were administeredfor 8 weeks of experimental protocol. At the end of the study period, the animals were sacrificed. Blood and plasma sampleswere collected. Serum evaluation of lipid profile such as total cholesterol (TC), triacylglycerol (Tg), low density lipoproteincholesterol (LDP-c) and high density lipoprotein cholesterol (HDL-c) were also assessed. The results obtained showsignificant (P < 0.05) decrease in total cholesterol (TC), Low density lipoprotein cholesterol (LDP-c), total triacylglyceroland an increase in high density lipoprotein cholesterol (HDL-c) in resveratrol treated groups compared to HFD group only.In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrationsand might be beneficial in treatment of hyperlipidemia and atherosclerosis.

  2. Growth factors have a protective effect on neomycin-induced hair cell loss.

    Science.gov (United States)

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  3. Hinokitiol protects primary neuron cells against prion peptide-induced toxicity via autophagy flux regulated by hypoxia inducing factor-1.

    Science.gov (United States)

    Moon, Ji-Hong; Lee, Ju-Hee; Lee, You-Jin; Park, Sang-Youel

    2016-05-24

    Prion diseases are fatal neurodegenerative disorders that are derived from structural changes of the native PrPc. Recent studies indicated that hinokitiol induced autophagy known to major function that keeps cells alive under stressful conditions. We investigated whether hinokitiol induces autophagy and attenuates PrP (106-126)-induced neurotoxicity. We observed increase of LC3-II protein level, GFP-LC3 puncta by hinokitiol in neuronal cells. Addition to, electron microscopy showed that hinokitiol enhanced autophagic vacuoles in neuronal cells. We demonstrated that hinokitiol protects against PrP (106-126)-induced neurotoxicity via autophagy by using autophagy inhibitor, wortmannin and 3MA, and ATG5 small interfering RNA (siRNA). We checked hinokitiol activated the hypoxia-inducible factor-1α (HIF-1α) and identified that hinokitiol-induced HIF-1α regulated autophagy. Taken together, this study is the first report demonstrating that hinokitiol protected against prion protein-induced neurotoxicity via autophagy regulated by HIF-1α. We suggest that hinokitiol is a possible therapeutic strategy in neuronal disorders including prion disease.

  4. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    OpenAIRE

    Yao Xin-Sheng; Yao Nan; Lan Fang; Tsoi Bun; He Rong-Rong; Kurihara Hiroshi

    2011-01-01

    Abstract Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS)-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse) into the footpad in the...

  5. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    OpenAIRE

    He, Rong-rong; Tsoi, Bun; Lan, Fang; Yao, Nan; Yao, Xin-Sheng; Kurihara, Hiroshi

    2011-01-01

    Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS)-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse) into the footpad in the model an...

  6. Gardenia jasminoides protects against cerulein-induced acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Won-Seok Jung; Rae-Kil Park; Jong-Suk Kim; Eun-Cheol Kim; Sung-Yeon Hwang; Sung-Joo Park; Ho-Joon Song; Young-Seok Chae; Do-Yun Kim; Sang-Wan Seo; Hee-Je Park; Gi-Sang Bae; Tae-Hyeon Kim; Hyo-Jeong Oh; Ki-Jung Yun

    2008-01-01

    AIM: To investigate the effect of Gardenia jasminoides (G3) on cerulein-induced acute pancreatitis (AP) in mice. METHODS: C57BL/6 mice weighing 18-20 g were divided into three groups. (1) Normal saline-treated group, (2) treatment with GJ at a dose of 0.1 g/kg, (3) treatment with GJ at a dose of 1 g/kg. GJ was administered orally (η = 6 per group) for 1 wk. Three hours later, the mice were given an intraperitoneal injection of cerulein (50 ug/kg), a stable cholecystokinin (CCK) analogue, every hour for a total of 6h as described previously. The mice were sacrificed at 6 h after completion of cerulein injections. Blood samples were obtained to determine serum amylase, lipase and cytokine levels. The pancreas was rapidly removed for morphologic examination and scoring. A portion of pancreas was stored at -70℃ and prepared for the measurement of tissue myeloperoxidase (MPO) activity, an indicator of neutrophil sequestration, and for reverse-transcriptase PCR (RT-PCR) and real-time PCR measurements. RESULTS: Treatment with GJ decreased significantly.

  7. Quercetin protection against ciprofloxacin induced liver damage in rats.

    Science.gov (United States)

    Taslidere, E; Dogan, Z; Elbe, H; Vardi, N; Cetin, A; Turkoz, Y

    2016-01-01

    Ciprofloxacin is a common, broad spectrum antibacterial agent; however, evidence is accumulating that ciprofloxacin may cause liver damage. Quercetin is a free radical scavenger and antioxidant. We investigated histological changes in hepatic tissue of rats caused by ciprofloxacin and the effects of quercetin on these changes using histochemical and biochemical methods. We divided 28 adult female Wistar albino rats into four equal groups: control, quercetin treated, ciprofloxacin treated, and ciprofloxacin + quercetin treated. At the end of the experiment, liver samples were processed for light microscopic examination and biochemical measurements. Sections were prepared and stained with hematoxylin and eosin, and a histopathologic damage score was calculated. The sections from the control group appeared normal. Hemorrhage, inflammatory cell infiltration and intracellular vacuolization were observed in the ciprofloxacin group. The histopathological findings were reduced in the group treated with quercetin. Significant differences were found between the control and ciprofloxacin groups, and between the ciprofloxacin and ciprofloxacin + quercetin groups. Quercetin administration reduced liver injury caused by ciprofloxacin in rats. We suggest that quercetin may be useful for preventing ciprofloxacin induced liver damage.

  8. Acetaminophen protects against iron-induced cardiac damage in gerbils.

    Science.gov (United States)

    Walker, Ernest M; Epling, Christopher P; Parris, Cordel; Cansino, Silvestre; Ghosh, Protip; Desai, Devashish H; Morrison, Ryan G; Wright, Gary L; Wehner, Paulette; Mangiarua, Elsa I; Walker, Sandra M; Blough, Eric R

    2007-01-01

    There are few effective agents that safely remove excess iron from iron-overloaded individuals. Our goal was to evaluate the iron-removing effectiveness of acetaminophen given ip or orally in the gerbil iron-overload model. Male gerbils were divided into 5 groups: saline controls, iron-overloaded controls, iron-overloaded treated with ip acetaminophen, iron-overloaded treated with oral acetaminophen, and iron-overloaded treated with ipdeferoxamine. Iron dextran was injected iptwice/wk for 8 wk. Acetaminophen and deferoxamine treatments were given on Mondays, Wednesdays, and Fridays during the same 8 wk and continued for 4 wk after completion of iron-overloading. Echocardiograms were performed after completion of the iron-overloading and drug treatments. Liver and cardiac iron contents were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Iron-overloaded controls had 232-fold and 16-fold increases in liver and cardiac iron content, respectively, compared to saline controls. In iron-overloaded controls, echocardiography showed cardiac hypertrophy, right and left ventricular distension, significant reduction in left ventricular ejection fraction (-22%), and fractional shortening (-31%) during systole. Treatments with acetaminophen (ip or oral) or deferoxamine (ip) were equally effective in reducing cardiac iron content and in preventing cardiac structural and functional changes. Both agents also significantly reduced excess hepatic iron content, although acetaminophen was less effective than deferoxamine. The results suggest that acetaminophen may be useful for treatment of iron-induced pathology.

  9. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  10. High Throughput Screening Identifies a Novel Compound Protecting Cardiomyocytes from Doxorubicin-Induced Damage

    Directory of Open Access Journals (Sweden)

    Szabolcs Gergely

    2015-01-01

    Full Text Available Antracyclines are effective antitumor agents. One of the most commonly used antracyclines is doxorubicin, which can be successfully used to treat a diverse spectrum of tumors. Application of these drugs is limited by their cardiotoxic effect, which is determined by a lifetime cumulative dose. We set out to identify by high throughput screening cardioprotective compounds protecting cardiomyocytes from doxorubicin-induced injury. Ten thousand compounds of ChemBridge’s DIVERSet compound library were screened to identify compounds that can protect H9C2 rat cardiomyocytes against doxorubicin-induced cell death. The most effective compound proved protective in doxorubicin-treated primary rat cardiomyocytes and was further characterized to demonstrate that it significantly decreased doxorubicin-induced apoptotic and necrotic cell death and inhibited doxorubicin-induced activation of JNK MAP kinase without having considerable radical scavenging effect or interfering with the antitumor effect of doxorubicin. In fact the compound identified as 3-[2-(4-ethylphenyl-2-oxoethyl]-1,2-dimethyl-1H-3,1-benzimidazol-3-ium bromide was toxic to all tumor cell lines tested even without doxorubicine treatment. This benzimidazole compound may lead, through further optimalization, to the development of a drug candidate protecting the heart from doxorubicin-induced injury.

  11. Antioxidant protection from HIV-1 gp120-induced neuroglial toxicity

    Directory of Open Access Journals (Sweden)

    Walsh Kimberley A

    2004-05-01

    Full Text Available Abstract Background The pathogenesis of HIV-1 glycoprotein 120 (gp120 associated neuroglial toxicity remains unresolved, but oxidative injury has been widely implicated as a contributing factor. In previous studies, exposure of primary human central nervous system tissue cultures to gp120 led to a simplification of neuronal dendritic elements as well as astrocytic hypertrophy and hyperplasia; neuropathological features of HIV-1-associated dementia. Gp120 and proinflammatory cytokines upregulate inducible nitric oxide synthase (iNOS, an important source of nitric oxide (NO and nitrosative stress. Because ascorbate scavenges reactive nitrogen and oxygen species, we studied the effect of ascorbate supplementation on iNOS expression as well as the neuronal and glial structural changes associated with gp120 exposure. Methods Human CNS cultures were derived from 16–18 week gestation post-mortem fetal brain. Cultures were incubated with 400 μM ascorbate-2-O-phosphate (Asc-p or vehicle for 18 hours then exposed to 1 nM gp120 for 24 hours. The expression of iNOS and neuronal (MAP2 and astrocytic (GFAP structural proteins was examined by immunohistochemistry and immunofluorescence using confocal scanning laser microscopy (CSLM. Results Following gp120 exposure iNOS was markedly upregulated from undetectable levels at baseline. Double label CSLM studies revealed astrocytes to be the prime source of iNOS with rare neurons expressing iNOS. This upregulation was attenuated by the preincubation with Asc-p, which raised the intracellular concentration of ascorbate. Astrocytic hypertrophy and neuronal injury caused by gp120 were also prevented by preincubation with ascorbate. Conclusions Ascorbate supplementation prevents the deleterious upregulation of iNOS and associated neuronal and astrocytic protein expression and structural changes caused by gp120 in human brain cell cultures.

  12. Sulindac induces apoptosis and protects against colon carcinoma in mice

    Institute of Scientific and Technical Information of China (English)

    Bao-Cun Sun; Xiu-Lan Zhao; Shi-Wu Zhang; Yi-Xin Liu; Lan Wang; Xin Wang

    2005-01-01

    AIM: To study the effect of sulindac on colon cancer induction in mice.METHODS: The chemo-preventive action of 80 ppm sulindac fed during initiation and post-initiation and 100 ppm sulindac fed during progressive stages of induction of colon carcinogenesis in mice was investigated using 1,2-dimethylhydrazine (DMH). Using the terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL)technique and PCNA immunohistochemical staining, we observed the apoptotic and proliferative cell density changes at different carcinogenic stages and the effect of sulindac on these two phenomena.RESULTS: Dietary sulindac significantly inhibited the incidence of colonic neoplasmas in mice. Compared with the control group, feeding sulindac during initiation and post-initiation stages inhibited the incidence by 46.7-50.4%,and feeding sulindac during progressive stages inhibited the incidence by 41.1%. Animals that were fed sulindac showed less serious pathological changes than those that were fed the control diet (P<0.01, H= 33.35). There was no difference in the density of proliferating cells among those groups which were or were not fed sulindac. In the same period, feeding sulindac resulted in a higher density of apoptotic cells than feeding control diet. CONCLUSION: Sulindac has an anti-carcinogenic function in mice. Its effect on preventing colon carcinogenesis is better than its effect on treating established tumors. By inducing apoptosis, sulindac inhibited the development of colon cancer and delayed canceration. Sulindac has no effect on proliferation. The anti-carcinogenic properties of sulindac are most effective in the moderate and severe stages of dysplasia and canceration.

  13. Protective effect of Cardiospermum halicacabum leaf extract on glycoprotein components on STZ-induced hyperglycemic rats

    Institute of Scientific and Technical Information of China (English)

    Chinnadurai Veeramani; Khalid S Al-Numair; Mohammed A Alsaif; Govindasamy Chandramohan; Nouf S Al-Numair; Kodukkur Viswanathan Pugalendi

    2012-01-01

    Objective: To investigate the protective role of Cardiospermum halicacabum (C. halicacabum) leaf extract on glycoprotein metabolism in streptozotocin (STZ)-induced diabetic rats. Methods:Diabetes was induced in male albino Wistar rats by intraperitonial administration of STZ. TheC. halicacabum leaf extract (CHE) was administered orally to normal and STZ-diabetic rats for 45 days. The effects of C. halicacabum leaf extract (CHE) on plasma and tissue glycoproteins (hexose, hexosamine, fucose and sialic acid) were determined. Results: The levels of plasma and tissues glycoproteins containing hexose, hexosamine and fucose were significantly increased in STZ-induced diabetic rats. In addition, the level of sialic acid significantly increased in plasma and liver while decreased in kidney of STZ-induced diabetic rats. After administration of CHE to diabetic rats, the metabolic alteration of glycoprotein reverted towards normal levels.Conclusions:The present study indicates that the CHE possesses a protective effect on abnormal glycoprotein metabolism in addition to its antihyperglycemic activity.

  14. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The potential cytotoxicity of cadmium selenide (CdSe quantum dots (QDs presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM increased cell viability in response to CdSe QDs (20 μM from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h, followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  15. Hsp72 overexpression protects from APAP and MCD induced liver injury via attenuation of JNK signalling

    OpenAIRE

    Levada, Kateryna

    2016-01-01

    Hsp72 is a classic, stress-inducible heat shock protein. It protects the organism from variety of diseases and stress situations. Because of its established cytoprotective function and stress-inducible expression Hsp72 plays an important role in different human disorders. However, its hepatic function remains largely unknown due to a lack of a suitable transgenic model. To study the hepatic function of Hsp72, I analyzed its expression in patients with liver disease and in newly generated tran...

  16. Protective effect of stem bark of Ceiba pentandra linn. against paracetamol-induced hepatotoxicity in rats

    OpenAIRE

    Bairwa, Nirmal K.; Sethiya, Neeraj K.; Mishra, S. H.

    2010-01-01

    The present study reports protective activity of ethyl acetate fraction of methanol extract of stem bark of Ceiba pentandra against paracetamol-induced liver damage in rats. The ethyl acetate fraction (400 mg/kg) was administered orally to the rats with hepatotoxicity induced by paracetamol (3 gm/kg). Silymarin (100 mg/kg) was used as positive control. High performance thin layer chromatography (HPTLC) fingerprinting of ethyl acetate fraction revealed presence of its major chemical constituen...

  17. The mechanism of mesna in protection from cisplatin-induced ovarian damage in female rats

    OpenAIRE

    Li, Xiaohuan; Yang, Shu; Lv,Xiangyang; Sun, Haimei; Weng, Jing; Liang, Yuanjing; Zhou, Deshan

    2013-01-01

    Objective Cisplatin is a widely used chemotherapeutic agent in the treatment of cancers in clinic; but it often induces adverse effects on ovarian functions such as reduced fertility and premature menopause. Mesna could attenuate the cisplatin-induced ovarian damages; however, the underlying mechanism is still unknown. This study aimed to figure out the underlying mechanism of the protection of mesna for ovaries against cisplatin therapy in cancers. Methods We performed female adult Sprague-D...

  18. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    OpenAIRE

    Dilek Pandir; Betul Unal; Hatice Bas

    2016-01-01

    Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ)-induced diabetic rat kidney. At the end of the experimental period (28 days), we found that lycopene markedly decreased the malondialdehide (MDA) levels in the kidney, urea, uric aci...

  19. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  20. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence.

    Science.gov (United States)

    Ghosh, Asish K; Rai, Rahul; Park, Kitae E; Eren, Mesut; Miyata, Toshio; Wilsbacher, Lisa D; Vaughan, Douglas E

    2016-11-08

    Doxorubicin, an anthracycline antibiotic, is a commonly used anticancer drug. In spite of its widespread usage, its therapeutic effect is limited by its cardiotoxicity. On the cellular level, Doxorubicin-induced cardiotoxicity manifests as stress induced premature senescence. Previously, we demonstrated that plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of serine proteases, is an important biomarker and regulator of cellular senescence and aging. Here, we tested the hypothesis that pharmacological inhibition of cellular PAI-1 protects against stress- and aging-induced cellular senescence and delineated the molecular basis of protective action of PAI-1 inhibition. Results show that TM5441, a potent small molecule inhibitor of PAI-1, effectively prevents Doxorubicin-induced senescence in cardiomyocytes, fibroblasts and endothelial cells. TM5441 exerts its inhibitory effect on Doxorubicin-induced cellular senescence by decreasing reactive oxygen species generation, induction of antioxidants like catalase and suppression of stress-induced senescence cadre p53, p21, p16, PAI-1 and IGFBP3. Importantly, TM5441 also reduces replicative senescence of fibroblasts. Together these results for the first time demonstrate the efficacy of PAI-1 inhibitor in prevention of Doxorubicin-induced and replicative senescence in normal cells. Thus PAI-1 inhibitor may form an important adjuvant component of chemotherapy regimens, limiting not only Doxorubicin-induced cardiac senescence but also ameliorating the prothrombotic profile.

  1. Protective immunity against Leishmania major induced by Leishmania tropica infection of BALB/c mice.

    Science.gov (United States)

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2011-02-01

    Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4(+) lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4(-) lymphocyte up to one month post-challenge suggesting that CD4(-) lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.

  2. EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2015-01-01

    Full Text Available Background. Parkinson’s disease (PD is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−-epigallocatechin-3-gallate (EGCG against 6-hydroxydopamine- (6-OHDA- induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using 55Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry. Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p<0.05 increased divalent metal transporter-1 (DMT1 and hepcidin and decreased ferroportin 1 (Fpn1 level, whereas pretreatment with EGCG counteracted the effects. The increased 55Fe (by 96%, p<0.01 cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p<0.05, supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p<0.0001 TH+ cell count (~3-fold and neurite length (~12-fold compared to 6-OHDA alone in primary mesencephalic neurons. Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels.

  3. Protective Role of Aerobic Exercise Against Cisplatin-Induced Nephrotoxicity in Rats

    OpenAIRE

    Zeynali; Nematbakhsh; Mojtahedi; Poorshahnazari; Talebi; Pezeshki; Mazaheri; Moslemi

    2015-01-01

    Background Cisplatin (CP) is a chemotherapy drug and nephrotoxicity is considered as its major side effect. Aerobic exercise is well known as an approach to reduce the side effects of many drugs. Objectives This study was designed to determine the protective role of aerobic exercise against CP-induced nephrotoxicity. Materials and Methods Thirty male Wistar rats were randomly divid...

  4. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, ten H.H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport curre

  5. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure.

    Science.gov (United States)

    Li, Xuan; Yin, Daqiang; Yin, Jiaoyang; Chen, Qiqing; Wang, Rui

    2014-10-01

    The antagonism between selenium (Se) and mercury (Hg) has been widely recognized, however, the protective role of Se against methylmercury (MeHg) induced immunotoxicity and the underlying mechanism is still unclear. In the current study, MeHg exposure (0.01 mM via drinking water) significantly inhibited the lymphoproliferation and NK cells functions of the female Balb/c mice, while dietary Se supplementation (as Se-rich yeast) partly or fully recovered the observed immunotoxicity, indicating the protective role of Se against MeHg-induced immune suppression in mice. Besides, MeHg exposure promoted the generation of the reactive oxygen species (ROS), reduced the levels of nonenzymic and enzymic antioxidants in target organs, while dietary Se administration significantly diminished the MeHg-induced oxidative stress and subsequent cellular dysfunctions (lipid peroxidation and protein oxidation). Two possible mechanisms of Se's protective effects were further revealed. Firstly, the reduction of mercury concentrations (less than 25%, modulated by Se supplementation) in the target organs might contribute, but not fully explain the alleviated immune suppression. Secondly and more importantly, Se could help to maintain/or elevate the activities of several key antioxidants, therefore protect the immune cells against MeHg-induced oxidative damage.

  6. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-06-28

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation.

  7. Recombinant proteins from Gallibacterium anatis induces partial protection against heterologous challenge in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Skjerning, Ragnhild Bager; Flachs, Esben M.

    2016-01-01

    after challenge. All birds were euthanized and subjected to a post mortem procedure including scoring of lesions and sampling for bacterial growth. Moreover, ELISA assays were used to quantify antigen-specific IgG titers in serum. The results showed that all three proteins induced protection against...

  8. Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Issam Salouege

    2014-01-01

    Conclusion: We have evaluated the protective effect of trimetazidine on an animal model of doxorubicin-induced cardiotoxicity and hepatotoxicity. The evaluation of these effects were assessed by several means; tissular distribution of doxorubicin, histological examination, assessment of liver function, and EF LV by scintigraphy that characterizes the originality of this study.

  9. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  10. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...... chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For TH1 type responses, antigen...

  11. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  12. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  13. Different immunization routes induce protection against Aeromonas salmonicida through different immune mechanisms in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Raida, Martin Kristian

    in fish immunology and vaccinology, resulting in the development of both oral, immersion and injectable vaccine strategies over time. Applying mineral oil adjuvants, injectable vaccines inducing high levels of protection in salmon (Salmo salar) rose to prominence in the 1990’s. In general injectable......, adjuvanted vaccines have been shown to induce long-lasting increases in specific antibody levels. In general the majority of the published work concerning vaccination against A. salmonicida has been conducted on salmon. Using injectable oil-adjuvanted vaccines, we have previously shown that the induced level...

  14. Venezuelan equine encephalitis replicon particles can induce rapid protection against foot-and-mouth disease virus.

    Science.gov (United States)

    Diaz-San Segundo, Fayna; Dias, Camila C A; Moraes, Mauro P; Weiss, Marcelo; Perez-Martin, Eva; Owens, Gary; Custer, Max; Kamrud, Kurt; de los Santos, Teresa; Grubman, Marvin J

    2013-05-01

    We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFN-α) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Furthermore, mice pretreated with either 10(7) or 10(8) infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN-α. By 6 h after treatment several genes were upregulated, and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN-α and VRP-GFP, is directly involved in protection against FMDV.

  15. UV-blocking spectacle lens protects against UV-induced decline of visual performance

    Science.gov (United States)

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh

    2015-01-01

    Purpose Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Methods Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. Results In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. Conclusions The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined. PMID:26283865

  16. Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway.

    Science.gov (United States)

    Liang, Xinyu; Zhang, Ting; Shi, Linying; Kang, Chao; Wan, Jing; Zhou, Yong; Zhu, Jundong; Mi, Mantian

    2015-01-01

    Diabetic angiopathy is a major diabetes-specific complication that often begins with endothelial dysfunction induced by hyperglycemia; however, the pathological mechanisms of this progression remain unclear. Ampelopsin is a natural flavonol that has strong antioxidant activity, but little information is available regarding its antidiabetic effect. This study focused on the effect of ampelopsin on hyperglycemia-induced oxidative damage and the underlying mechanism of this effect in human umbilical vein endothelial cells (HUVECs). We found that hyperglycemia impaired autophagy in HUVECs through the inhibition of AMP-activated protein kinase (AMPK), which directly led to endothelial cell damage. Ampelopsin significantly attenuated the detrimental effect of hyperglycemia-induced cell dysfunction in a concentration-dependent manner in HUVECs. Ampelopsin significantly upregulated LC3-II, Beclin1, and Atg5 protein levels but downregulated p62 protein levels in HUVECs. Transmission electron microscopy and confocal microscopy indicated that ampelopsin notably induced autophagosomes and LC3-II dots, respectively. Additionally, the autophagy-specific inhibitor 3-MA, as well as Atg5 and Beclin1 siRNA pretreatment, markedly attenuated ampelopsin-induced autophagy, which subsequently abolished the protective effect of ampelopsin against hyperglycemia in HUVECs. Moreover, ampelopsin also increased AMPK activity and inhibited mTOR (mammalian target of rapamycin) complex activation. Ampelopsin-induced autophagy was attenuated by the AMPK antagonist compound C but strengthened by the AMPK agonist AICAR (5-minoimidazole-4-carboxamide ribonucleotide). Furthermore, AMPK siRNA transfection eliminated ampelopsin's alleviation of cell injury induced by hyperglycemia. The protective effect of ampelopsin against hyperglycemia-induced cell damage, which functions by targeting autophagy via AMPK activation, makes it a promising pharmacological treatment for type-2 diabetes.

  17. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice.

    Directory of Open Access Journals (Sweden)

    Kim M Gerecke

    Full Text Available Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF, have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/- with strain-matched wild-type (WT mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.

  18. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage.

    Science.gov (United States)

    Sedlák, Erik; Fabian, Marian; Robinson, Neal C; Musatov, Andrej

    2010-11-30

    An excess of ferricytochrome c protects purified mitochondrial cytochrome c oxidase and bound cardiolipin from hydrogen peroxide-induced oxidative modification. All of the peroxide-induced changes within cytochrome c oxidase, such as oxidation of Trp(19,IV) and Trp(48,VIIc), partial dissociation of subunits VIa and VIIa, and generation of cardiolipin hydroperoxide, no longer take place in the presence of ferricytochrome c. Furthermore, ferricytochrome c suppresses the yield of H(2)O(2)-induced free radical detectable by electron paramagnetic resonance spectroscopy within cytochrome c oxidase. These protective effects are based on two mechanisms. The first involves the peroxidase/catalase-like activity of ferricytochrome c, which results in the decomposition of H(2)O(2), with the apparent bimolecular rate constant of 5.1±1.0M(-1)s(-1). Although this value is lower than the rate constant of a specialized peroxidase, the activity is sufficient to eliminate H(2)O(2)-induced damage to cytochrome c oxidase in the presence of an excess of ferricytochrome c. The second mechanism involves ferricytochrome c-induced quenching of free radicals generated within cytochrome c oxidase. These results suggest that ferricytochrome c may have an important role in protection of cytochrome c oxidase and consequently the mitochondrion against oxidative damage.

  19. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

    Science.gov (United States)

    Zhang, Zi-feng; Fan, Shao-hua; Zheng, Yuan-lin; Lu, Jun; Wu, Dong-mei; Shan, Qun; Hu, Bin

    2009-09-01

    Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.

  20. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  1. Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1beta cytotoxicity.

    Science.gov (United States)

    Shimabukuro, M; Koyama, K; Lee, Y; Unger, R H

    1997-01-01

    Interleukin 1beta (IL-1beta)-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of insulin-dependent diabetes mellitus. These cytotoxic effects may be mediated by nitric oxide (NO). Since long-chain fatty acids (FFA), like IL-1beta, upregulate inducible nitric oxide synthase and enhance NO generation in islets, it seemed possible that islets might be protected from IL-1beta-induced damage by lowering their lipid content. We found that IL-1beta-induced NO production varied directly and islet cell viability inversely with islet triglyceride (TG) content. Fat-laden islets of obese rats were most vulnerable to IL-1beta, while moderately fat-depleted islets of food-restricted normal rats were less vulnerable than those of free-feeding normal rats. Severely lipopenic islets of rats made chronically hyperleptinemic by adenoviral leptin gene transfer resisted IL-1beta cytotoxicity even at 300 pg/ml, the maximal concentration. Troglitazone lowered islet TG in cultured islets from both normal rats and obese, leptin-resistant rats and reduced NO production and enhanced cell survival. We conclude that measures that lower islet TG content protect against IL-1beta-induced NO production and cytotoxicity. Leptin or troglitazone could provide in vivo protection against insulin-dependent diabetes mellitus. PMID:9312173

  2. Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats.

    Science.gov (United States)

    Ko, Je-Won; Lee, In-Chul; Park, Sung-Hyuk; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Jong-Choon

    2014-12-01

    We investigated the protective effects of pine bark extract (pycnogenol®, PYC) against cisplatin-induced hepatotoxicity and oxidative stress in rats. Twenty-four male rats were divided into the following four groups: (1) vehicle control, (2) cisplatin (7.5 mg/kg), (3) cisplatin & PYC 10 (10 mg/kg/day), and (4) cisplatin & PYC 20 (20 mg/kg/day). A single intraperitoneal injection of cisplatin induced hepatotoxicity, as evidenced by an increase in serum aminotransferase and histopathological alterations, including degeneration/necrosis of hepatocytes, vacuolation, and sinusoidal dilation. In addition, an increase in the malondialdehyde (MDA) concentration and a decrease in the reduced glutathione (GSH) content and catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) activities were observed in the cisplatin-treated rat hepatic tissues. In contrast, PYC treatment effectively prevented cisplatin-induced hepatotoxicity, including the elevation of aminotransferase and histopathological lesions, in a dosedependent manner. Moreover, PYC treatment also induced antioxidant activity by decreasing MDA level and increasing GSH content and SOD and GST activities in liver tissues. These results indicate that PYC has a protective effect against acute hepatotoxicity induced by cisplatin in rats, and that the protective effects of PYC may be due to inhibiting lipid peroxidation and increasing antioxidant activity.

  3. Protective effect of hemin against cadmium-induced testicular damage in rats.

    Science.gov (United States)

    Fouad, Amr A; Qureshi, Habib A; Al-Sultan, Ali Ibrahim; Yacoubi, Mohamed T; Ali, Abdellah Abusrie

    2009-03-29

    The protective effect of hemin, the heme oxygenase-1 inducer, was investigated in rats with cadmium induced-testicular injury, in which oxidative stress and inflammation play a major role. Testicular damage was induced by a single i.p. injection of cadmium chloride (2mg/kg). Hemin was given for three consecutive days (40 micromol/kg/day, s.c.), starting 1 day before cadmium administration. Hemin treatment significantly increased serum testosterone level that was reduced by cadmium. Hemin compensated deficits in the antioxidant defense mechanisms (reduced glutathione, and catalase and superoxide dismutase activities), and suppressed lipid peroxidation in testicular tissue resulted from cadmium administration. Also, hemin attenuated the cadmium-induced elevations in testicular tumor necrosis factor-alpha and nitric oxide levels, and caspase-3 activity. Additionally, hemin ameliorated cadmium-induced testicular tissue damage observed by light and electron microscopic examinations. The protective effect afforded by hemin was abolished by prior administration of zinc protoporphyrin-IX, the heme oxygenase-1 inhibitor. It was concluded that hemin, through its antioxidant, anti-inflammatory and antiapoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of cadmium.

  4. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    Directory of Open Access Journals (Sweden)

    Aicha Fassi Fihri

    2016-06-01

    Full Text Available Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily; group 2: received oral lead acetate (2 g/kg.b.wt/daily; group 3: treated with oral honey (1g /kg.b.wt/daily and oral lead (2 g/kg.b.wt/daily, and group 4: received oral honey (1 g/kg.b.wt/daily. Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Results: Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. Conclusion: It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects.

  5. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    Science.gov (United States)

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-01-01

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS. PMID:25230212

  6. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    Directory of Open Access Journals (Sweden)

    Jun Myoung Park

    2014-09-01

    Full Text Available Oxidative stress induced by reactive oxygen species (ROS is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs. Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS.

  7. Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Yin, Hong; Pan, Xingchang; Song, Zhixiu; Wang, Shaokang; Yang, Ligang; Sun, Guiju

    2014-01-29

    Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB)-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L) for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  8. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  9. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice.

    Directory of Open Access Journals (Sweden)

    Hao Pan

    Full Text Available Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP, water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1 also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.

  10. Prevention of γ-radiation induced cellular genotoxicity by tempol: protection of hematopoietic system.

    Science.gov (United States)

    Ramachandran, Lakshmy; Nair, Cherupally Krishnan Krishnan

    2012-09-01

    Tempol (TPL) under in vitro conditions reduced the extent of gamma radiation induced membrane lipid peroxidation and disappearance of covalently closed circular form of plasmid pBR322. TPL protected cellular DNA from radiation-induced damage in various tissues under ex vivo and in vivo conditions as evidenced by comet assay. TPL also prevented radiation induced micronuclei formation (in peripheral blood leucocytes) and chromosomal aberrations (in bone marrow cells) in whole body irradiated mice. TPL enhanced the rate of repair of cellular DNA (blood leucocytes and bone marrow cells) damage when administered immediately after radiation exposure as revealed from the increased Cellular DNA Repair Index (CRI). The studies thus provided compelling evidence to reveal the effectiveness of TPL to protect hematopoietic system from radiation injury.

  11. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage.

    Science.gov (United States)

    Wu, Nan-Lin; Fang, Jia-You; Chen, Marcelo; Wu, Chia-Jung; Huang, Chieh-Chen; Hung, Chi-Feng

    2011-08-10

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid occurring in various plants and foods such as propolis and honey, reportedly opposes inflammation and carcinogenesis, but has rarely been applied in skin care. This study, therefore, aimed to explore the roles of chrysin in protection against UV-induced damage in HaCaT keratinocytes. Results showed that chrysin can attenuate apoptosis, reactive oxygen species (ROS) production, and cyclooxygenase 2 (COX-2) expression induced by UVB and UVA. Chrysin predominantly reversed the down-regulation of aquaporin 3 (AQP-3) by UVB. It predominantly reversed JNK activation and also mildly inhibited p38 activation triggered by UVA and UVB. Animal studies revealed that chrysin's topical application demonstrated efficient percutaneous absorption and no skin irritation. Overall, results demonstrated significant benefits of chrysin on the protection of keratinocytes against UVA- and UVB-induced injuries and suggested its potential use in skin photoprotection.

  12. β-carotene protects rats against bronchitis induced by cigarette smoking

    Institute of Scientific and Technical Information of China (English)

    庞宝森; 王辰; 翁心植; 唐小奈; 张红玉; 牛淑洁; 毛燕玲; 辛平; 黄秀霞; 张海燕; 祝锦

    2003-01-01

    Objective To investigate the protective effects of β-carotene in rats against the development of chronic bronchitis induced by cigarette smoking. Results Long-term cigarette smoking caused an obvious increase in the amount of IL-6, IL-8 and LPO and a sharp decrease in the levels of NO and SOD in smoking animals compared to controls. β-carotene intake reversed all the changes induced by smoking and alleviated the pathological changes caused by chronic bronchitis. Conclusions Quantitative oral intake of β-carotene had protective effects against chronic bronchitis induced by long-term cigarette smoking, which was associated with the increased production of NO, the clearance of some oxidative free radicals (OFR) and the alleviation of chronic inflammation.

  13. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  14. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Science.gov (United States)

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  15. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway.

    Science.gov (United States)

    Kim, Namoh; Min, Woo-Kie; Park, Min Hee; Lee, Jong Kil; Jin, Hee Kyung; Bae, Jae-Sung

    2016-05-01

    Cisplatin is a platinum-based chemotherapeutic drug for treating various types of cancers. However, the use of cisplatin is limited by its negative effect on normal tissues, particularly nephrotoxicity. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and apoptosis are involved in the adverse effect induced by cisplatin treatment. Several studies have suggested that neuropeptide Y (NPY) is involved in neuroprotection as well as restoration of bone marrow dysfunction from chemotherapy induced nerve injury. However, the role of NPY in chemotherapy- induced nephrotoxicity has not been studied. Here, we show that NPY rescues renal dysfunction by reducing the expression of pro-apoptotic proteins in cisplatin induced nephrotoxicity through Y1 receptor, suggesting that NPY can protect kidney against cisplatin nephrotoxicity as a possible useful agent to prevent and treat cisplatin-induced nephrotoxicity. [BMB Reports 2016; 49(5): 288-292].

  16. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    Science.gov (United States)

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  17. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway

    Science.gov (United States)

    Kim, Namoh; Min, Woo-Kie; Park, Min Hee; Lee, Jong Kil; Jin, Hee Kyung; Bae, Jae-sung

    2016-01-01

    Cisplatin is a platinum-based chemotherapeutic drug for treating various types of cancers. However, the use of cisplatin is limited by its negative effect on normal tissues, particularly nephrotoxicity. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and apoptosis are involved in the adverse effect induced by cisplatin treatment. Several studies have suggested that neuropeptide Y (NPY) is involved in neuroprotection as well as restoration of bone marrow dysfunction from chemotherapy induced nerve injury. However, the role of NPY in chemotherapy-induced nephrotoxicity has not been studied. Here, we show that NPY rescues renal dysfunction by reducing the expression of pro-apoptotic proteins in cisplatin induced nephrotoxicity through Y1 receptor, suggesting that NPY can protect kidney against cisplatin nephrotoxicity as a possible useful agent to prevent and treat cisplatin-induced nephrotoxicity. [BMB Reports 2016; 49(5): 288-292] PMID:26728272

  18. Protective effect of NAC against malathion-induced oxidative stress in freshly isolated rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Sara Mostafalou

    2012-06-01

    Full Text Available Purpose: Induction of oxidative stress by Organophosphate compounds (OPs has been previously reported. In the present work, the mechanism of protective effects of N-acetylcysteine as a glutathion (GSH prodrug against malathion–induced cell toxicity was investigated. In this work, freshly isolated rat hepatocytes were used to determine the effect of NAC on malathion-induced cytotoxicity, formation of reactive oxygen species (ROS and mitochondrial dysfunction. Methods: Rat hepatocytes were isolated using collagenase perfusion and then cell viability, mitchondrial membrane potential (MMP and ROS formation were determined using trypan blue exclusion, Rhodamine 123 fluorescence and fluorogenic probe, 2', 7' -dichlorofluorescin diacetate (DCFH-DA, respectively. Results: Despite the protective effect of NAC on malathion-induced cell toxicity and MMP dysfunction, its efficacy against ROS formation was not adequate to completely protect the cells. Conclusion: Cytotoxic effects of malathion regardless of its cholinergic feature, is started with gradual free radical production but, the main factor that causes cell death, is mitochondrial dysfunction, so that reduction of ROS formation alone is not sufficient for cell survival, and the maintenance of mitochondrial integrity through different mechanisms is the most ameliorative factor specially at high levels of cell damage, as NAC seemed to protect cells with various fashions apart from ROS scavenging in concentrations higher than malathion’s LC50.

  19. Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase.

    Science.gov (United States)

    Wang, Feng; Yin, Jianyong; Lu, Zeyuan; Zhang, Guangyuan; Li, Junhui; Xing, Tao; Zhuang, Shougang; Wang, Niansong

    2016-07-01

    Clinical trials shows that remote ischemic preconditioning (IPC) can protect against contrast induced nephropathy (CIN) in risky patients, however, the exact mechanism is unclear. In this study, we explored whether renalase, an amine oxidase that has been previously shown to mediate reno-protection by local IPC, would also mediate the same effect elicited by remote IPC in animal model. Limb IPC was performed for 24h followed by induction of CIN. Our results indicated that limb IPC prevented renal function decline, attenuated tubular damage and reduced oxidative stress and inflammation in the kidney. All those beneficial effects were abolished by silencing of renalase with siRNA. This suggests that similar to local IPC, renalase is also critically involved in limb IPC-elicited reno-protection. Mechanistic studies showed that limb IPC increased TNFα levels in the muscle and blood, and up-regulated renalase and phosphorylated IκBα expression in the kidney. Pretreatment with TNFα antagonist or NF-κB inhibitor, largely blocked renalase expression. Besides, TNFα preconditioning increased expression of renal renalase in vivo and in vitro, and attenuated H2O2 induced apoptosis in renal tubular cells. Collectively, our results suggest that limb IPC-induced reno-protection in CIN is dependent on increased renalase expression via activation of the TNFα/NF-κB pathway.

  20. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  1. Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-07-01

    Full Text Available Clinical trials shows that remote ischemic preconditioning (IPC can protect against contrast induced nephropathy (CIN in risky patients, however, the exact mechanism is unclear. In this study, we explored whether renalase, an amine oxidase that has been previously shown to mediate reno-protection by local IPC, would also mediate the same effect elicited by remote IPC in animal model. Limb IPC was performed for 24 h followed by induction of CIN. Our results indicated that limb IPC prevented renal function decline, attenuated tubular damage and reduced oxidative stress and inflammation in the kidney. All those beneficial effects were abolished by silencing of renalase with siRNA. This suggests that similar to local IPC, renalase is also critically involved in limb IPC-elicited reno-protection. Mechanistic studies showed that limb IPC increased TNFα levels in the muscle and blood, and up-regulated renalase and phosphorylated IκBα expression in the kidney. Pretreatment with TNFα antagonist or NF-κB inhibitor, largely blocked renalase expression. Besides, TNFα preconditioning increased expression of renal renalase in vivo and in vitro, and attenuated H2O2 induced apoptosis in renal tubular cells. Collectively, our results suggest that limb IPC-induced reno-protection in CIN is dependent on increased renalase expression via activation of the TNFα/NF-κB pathway.

  2. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    Science.gov (United States)

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  3. Evaluation the protective effect of diphenhydramine against acute toxicity induced by levamisole in male mice

    Directory of Open Access Journals (Sweden)

    M.Y. Matti

    2015-06-01

    Full Text Available The aim of this study was to evaluate the protective effect of different doses of diphenhydramine against acute toxicosis with Levamisole. The Mechanism of levamisole induced acute toxicity and that of protective effect of diphenhydramine against Levamisole toxicosis also examined on the level of cholinesterase (ChE activity. Subcutanous injection of 100mg/kg levamisole in male mice with induced cholinergic over stimulation and death in 100% of animals. The Toxicosis was not related to the significantly decreased in plasma, red blood cells and brain ChE activity. Injection low dose of diphenhydramin 2.5mg/kg S.C. 15 min before levamisole produced protective effect against acute toxicity with levamisole. Significantly decreased the severity of toxicosis and increased survival rates to 100%. Diphenhydramine at low dose alone or with acute dose of levamisole did not Produced Significantly inhibition in ChE activity.The data suggested that the toxic effect of Levamisole was not related to inhibition of ChE. The low dose of diphenhydramine protected mice from Levamisole toxicity. The antidoatal effect of diphenhydramine not at the level of protection from ChE inhibition. There was no adverse interaction between two drugs.

  4. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.

  5. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Hai Nguyen Thanh; Hue Pham Thi Minh; Tuan Anh Le; Huong Duong Thi Ly; Tung Nguyen Huu; Loi Vu Duc; Thu Dang Kim; Tung Bui Thanh

    2015-01-01

    To investigated the protective potential of ethanol extracts of Scutellaria baicalensis (S. baicalensis ) against lipopolysaccharide (LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS (5 mg/kg of body weight, intraperitoneal injection). Both protein and mRNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. Cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS significantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice. Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.

  6. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Hai; Nguyen; Thanh; Hue; Pham; Thi; Minh; Tuan; Anh; Le; Huong; Duong; Thi; Ly; Tung; Nguyen; Huu; Loi; Vu; Duc; Thu; Dang; Kim; Tung; Bui; Thanh

    2015-01-01

    Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis(S. baicalensis) against lipopolysaccharide(LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS(5 mg/kg of body weight, intraperitoneal injection). Both protein and m RNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. C yclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS signifi cantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice.Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.

  7. Protective effects of Emblica officinalis (Amla) on metal-induced lipid peroxidation in human erythrocytes.

    Science.gov (United States)

    Krishnamoorthy, Vijay Kumar; Rather, Irfan Ahmad

    2016-05-01

    The protective potential of Emblica officinalis (amla) was investigated on metal-induced lipid per oxidation in human erythrocytes. Increases in the levels of MDA and catalase activity were assessed as lipid per oxidation. In addition, glutathione peroxidase (GPX), glutathione (GSH), and ascorbic acid levels were assessed as antioxidant indices. Preliminary investigation of the extract exhibited a significant reduction in lipid per oxidation and an increase in antioxidant abilities, such as a decrease in MDA, GPx and GSH (Pamla extract (Pamla extract has significant protective potential against lipid per oxidation.

  8. Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl2-Induced Acute Renal Failure

    Directory of Open Access Journals (Sweden)

    Dan Gao

    2016-03-01

    Full Text Available Mercury (Hg causes severe nephrotoxicity in subjects with excess exposure. This work attempted to identify whether a natural medicine—rhubarb—has protective effects against mercuric chloride (HgCl2-induced acute renal failure (ARF, and which of its components contributed most to the treatment. Total rhubarb extract (TR were separated to the total anthraquinones (TA, the total tannins (TT and remaining component extract (RC. Each extract was orally pre-administered to rats for five successive days followed by HgCl2 injection to induce kidney injury. Subsequently, renal histopathology and biochemical examinations were performed in vitro to evaluate the protective effects. Pharmacological studies showed that TR and TA, but not TT or RC manifested significant protection activity against HgCl2-induced ARF. There were also significant declines of serum creatine, urea nitrogen values and increases of total protein albumin levels in TR and TA treated groups compared to HgCl2 alone (p < 0.05. At last, the major components in TA extract were further identified as anthraquinones by liquid chromatography coupled mass spectroscopy. This study thus provides observational evidences that rhubarb could ameliorate HgCl2-induced ARF and its anthraquinones in particular are the effective components responsible for this activity in rhubarb extract.

  9. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available Trimetazidine, a piperazine derivative used as an anti-anginal agent, improves myocardial glucose utilization through inhibition of fatty acid metabolism. The present study was designed to investigate whether trimetazidine has the protective effects against smoking-induced left ventricular remodeling in rats. In this study, Wistar rats were randomly divided into 3 groups: smoking group (exposed to cigarette smoke, trimetazidine group (exposed to cigarette smoke and treated with trimetazidine, and control group. The echocardiographic and morphometric data indicated that trimetazidine has protective effects against smoking-induced left ventricular remodeling. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and glutathione peroxidase in the supernatant of left ventricular tissue. Cardiomyocyte apoptotic rate was determined by flow cytometry with Annexin V/PI staining. Gene expression and serum levels of inflammatory markers, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, were deteced by quantitative real-time PCR and enzyme-linked immunosorbent assay. Our results suggested that trimetazidine could significantly reduce smoking-induced oxidative stress, apoptosis, and inflammation. In conclusion, our study demonstrates that trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.

  10. Protective effects of caffeic acid phenethyl ester against acute radiation-induced hepatic injury in rats.

    Science.gov (United States)

    Chu, JianJun; Zhang, Xiaojun; Jin, Liugen; Chen, Junliang; Du, Bin; Pang, Qingfeng

    2015-03-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. The current study was intended to evaluate the protective effect of CAPE against the acute radiation-induced liver damage in rats. Male Sprague-Dawley rats were intraperitoneally administered with CAPE (30 mg/kg) for 3 consecutive days before exposing them to a single dose of 30 Gy of β-ray irradiation to upper abdomen. We found that pretreatment with CAPE significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase and increased the activity of superoxide dismutase and glutathione. Histological evaluation further confirmed the protection of CAPE against radiation-induced hepatotoxicity. TUNEL assay showed that CAPE pretreatment inhibited hepatocyte apoptosis. Moreover, CAPE inhibited the nuclear transport of NF-κB p65 subunit, decreased the level of tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthase. Taken together, these results suggest that pretreatment with CAPE offers protection against radiation-induced hepatic injury.

  11. Protective effect of Phyllanthus fraternus against bromobenzene-induced mitochondrial dysfunction in rat kidney

    Institute of Scientific and Technical Information of China (English)

    Vadde Ramakrishna; Sriram Gopi; Oruganti H.Setty

    2012-01-01

    Phyllanthus fraternus (PF) (Euphorbiaceae) is used in ancient Indian traditional phytomedicine to treat various human diseases including hepatic and renal disorders.The present study was designed to investigate the protective effect of PF aqueous extract against bromobenzene-induced mitochondrial dysfunction in rat kidney,compared with vitamin E used as positive control.Male Wistar rats divided into six (A-F) groups and the experimental animals were administered bromobenzene with or without prior administration of PF extract or vitamin E.Animals were sacrificed and the kidneys obtained for studying mitochondrial function and histopathology.Administration of bromobenzene caused significant changes,including decrease in the mitochondrial respiration and P/O ratios,an increase in lipid peroxidation and protein oxidation,and a decrease in the activities of antioxidant enzymes (catalase,superoxide dismutase,glutathione reductase,and glutathione peroxidase) in mitochondria with significant histopathological changes in the kidney.However,prior administration of the PF extract showed significant protection against bromobenzene induced renal damage by reversing all above parameters.Mitochondrial dysfunction induced by bromobenzene was protected much better with the PF extract than with vitamin E.These results suggested that the Phyllanthus fraternus extract is an efficient armament against nephrotoxicity induced by bromobenzene.

  12. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    Directory of Open Access Journals (Sweden)

    Yao Xin-Sheng

    2011-10-01

    Full Text Available Abstract Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse into the footpad in the model and lutein groups on day 5 after the last drug administration. Eyes of the mice were collected 24 hours after the LPS injection for the detection of indicators using commercial kits and reverse transcription-polymerase chain reaction. Results LPS-induced uveitis was confirmed by significant pathological damage and increased the nitric oxide level in eye tissue of BALB/C mice 24 hours after the footpad injection. The elevated nitric oxide level was significantly reduced by oral administration of lutein (125 and 500 mg/kg/d for five days before LPS injection. Moreover, lutein decreased the malondialdehyde content, increased the oxygen radical absorbance capacity level, glutathione, the vitamin C contents and total superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Lutein further increased expressions of copper-zinc SOD, manganese SOD and GPx mRNA. Conclusion The antioxidant properties of lutein contribute to the protection against LPS-induced uveitis, partially through the intervention of inflammation process.

  13. Protective Effects of Quercetin Against HgCl₂-Induced Nephrotoxicity in Sprague-Dawley Rats.

    Science.gov (United States)

    Shin, Yu Jin; Kim, Jeong Jun; Kim, Ye Ji; Kim, Won Hee; Park, Eun Young; Kim, In Young; Shin, Han-Seung; Kim, Kyeong Seok; Lee, Eui-Kyung; Chung, Kyu Hyuck; Lee, Byung Mu; Kim, Hyung Sik

    2015-05-01

    Mercury is a well-known environmental pollutant that can cause nephropathic diseases, including acute kidney injury (AKI). Although quercetin (QC), a natural flavonoid, has been reported to have medicinal properties, its potential protective effects against mercury-induced AKI have not been evaluated. In this study, the protective effect of QC against mercury-induced AKI was investigated using biochemical parameters, new protein-based urinary biomarkers, and a histopathological approach. A 250 mg/kg dose of QC was administered orally to Sprague-Dawley male rats for 3 days before administration of mercury chloride (HgCl2). All animals were sacrificed at 24 h after HgCl2 treatment, and biomarkers associated with nephrotoxicity were measured. Our data showed that QC absolutely prevented HgCl2-induced AKI, as indicated by biochemical parameters such as blood urea nitrogen (BUN) and serum creatinine (sCr). In particular, QC markedly decreased the accumulation of Hg in the kidney. Urinary excretion of protein-based biomarkers, including clusterin, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), tissue inhibitor of metalloproteinases 1 (TIMP-1), and vascular endothelial growth factor (VEGF) in response to HgCl2 administration were significantly decreased by QC pretreatment relative to that in the HgCl2-treated group. Furthermore, urinary excretion of metallothionein and Hg were significantly elevated by QC pretreatment. Histopathological examination indicated that QC protected against HgCl2-induced proximal tubular damage in the kidney. A TUNEL assay indicated that QC pretreatment significantly reduced apoptotic cell death in the kidney. The administration of QC provided significant protective effects against mercury-induced AKI.

  14. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    Science.gov (United States)

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  15. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    Science.gov (United States)

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production.

  16. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  17. Protective Effects of Manassantin A against Ethanol-Induced Gastric Injury in Rats.

    Science.gov (United States)

    Song, Ji-Won; Seo, Chang-Seob; Kim, Tae-In; Moon, Og-Sung; Won, Young-Suk; Son, Hwa-Young; Son, Jong-Keun; Kwon, Hyo-Jung

    2016-01-01

    Manassantin A, a neolignan isolated from Saururus chinensis, is a major phytochemical compound that has various biological activities, including anti-inflammatory, neuroleptic, and human acyl-CoA : cholesterol acyltransferase (ACAT) inhibitory activities. In this study, we investigated the protective effects of manassantin A against ethanol-induced acute gastric injury in rats. Gastric injury was induced by intragastric administration of 5 mL/kg body weight of absolute ethanol to each rat. The positive control group and the manassantin A group were given oral doses of omeprazole (20 mg/kg) or manassantin A (15 mg/kg), respectively, 1 h prior to the administration of absolute ethanol. Our examinations revealed that manassantin A pretreatment reduced ethanol-induced hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Manassantin A pretreatment also attenuated the increased lipid peroxidation associated with ethanol-induced acute gastric lesions, increased the mucosal glutathione (GSH) content, and enhanced the activities of antioxidant enzymes. The levels of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were clearly decreased in the manassantin A-pretreated group. In addition, manassantin A pretreatment enhanced the levels of cyclooxygenase (COX)-1, COX-2, and prostaglandin E2 (PGE2) and reduced the inducible nitric oxide synthase (iNOS) overproduction and nuclear factor kappa B (NF-κB) phosphorylation. Collectively, these results indicate that manassantin A protects the gastric mucosa from ethanol-induced acute gastric injury, and suggest that these protective effects might be associated with COX/PGE2 stimulation, inhibition of iNOS production and NF-κB activation, and improvements in the antioxidant and anti-inflammatory status.

  18. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    Science.gov (United States)

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.

  19. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist.

    Science.gov (United States)

    Kaminski, Rafal M; Banerjee, Madhumita; Rogawski, Michael A

    2004-06-01

    Although the mechanism of action of topiramate is not fully understood, its anticonvulsant properties may result, at least in part, from an interaction with AMPA/kainate receptors. We have recently shown that topiramate selectively inhibits postsynaptic responses mediated by GluR5 kainate receptors. To determine if this action of topiramate is relevant to the anticonvulsant effects of the drug in vivo, we determined the protective activity of topiramate against seizures induced by intravenous infusion of various ionotropic glutamate receptor agonists in mice. Topiramate (25-100 mg/kg, i.p.) produced a dose-dependent elevation in the threshold for clonic seizures induced by infusion of ATPA, a selective agonist of GluR5 kainate receptors. Topiramate was less effective in protecting against clonic seizures induced by kainate, a mixed agonist of AMPA and kainate receptors. Topiramate did not affect clonic seizures induced by AMPA or NMDA. In contrast, the thresholds for tonic seizures induced by higher doses of these various glutamate receptor agonists were all elevated by topiramate. Unlike topiramate, carbamazepine elevated the threshold for AMPA- but not ATPA-induced clonic seizures. Our results are consistent with the possibility that the effects of topiramate on clonic seizure activity are due to functional blockade of GluR5 kainate receptors. Protection from tonic seizures may be mediated by other actions of the drug. Together with our in vitro cellular electrophysiological results, the present observations strongly support a unique mechanism of action of topiramate, which involves GluR5 kainate receptors.

  20. Procyanidins from grape seeds protect against phorbol ester-induced oxidative cellular and genotoxic damage

    Institute of Scientific and Technical Information of China (English)

    Yin LU; Wan-zhou ZHAO; Zai CHANG; Wen-xing CHEN; Lin LI

    2004-01-01

    AIM: To evaluate the inhibitory effects of Vitis vinifera procyanidins (PAs) on carcinogen-induced oxidative stress.METHODS: The single cell gel electrophoresis technique (comet assay) was employed to detect DNA damage induced by the carcinogen phorbol-12-myristate-13-acetate (PMA). The release of hydrogen peroxidase from polymorphonuclear leukocytes (PMNs) was assayed by the horseradish peroxidase-mediated oxidation of phenol red. The microplate assay was used to detect the presence of oxidative products by means of 2',7'-dichlorofiuorescindiacetate (DCFH-DA). The superoxide dismutase (SOD) activity of liver mitochondria was assayed, based on the ability of SOD to inhibit the generation of superoxidate anions by the xanthine-xanthine oxidase system. The malondialdehyde (MDA) level was determined by the thiobarbimric acid (TBA) assay. RESULTS: DNA of NIH3T3 cells was significantly damaged after addition of PMA. The length of the comet tail was observed ,while in normal cells the comet tail could not be observed. PAs showed significant protective effects on carcinogen PMA-induced DNA damage. Through assessment of DCFH-DA oxidation, PAs were shown to inhibit the PMA-induced release of hydrogen peroxide by PMNs, and to inhibit respiratory burst activity in NIH3T3 mouse fibroblasts. Ex vivo study showed that serum from rats administered with PAs displayed similar effects in a dose-dependent manner. In addition, PAs suppressed liver mitochondrial lipid peroxidation induced by PMA. PAs protected the activity of SOD and decreased the level of MDA in liver mitochondria damaged by PMA. CONCLUSION: Dietary PAs from grape seeds protect against carcinogen-induced oxidative cellular and genotoxic damage.

  1. Novel synthetic protective compound, KR-22335, against cisplatin-induced auditory cell death.

    Science.gov (United States)

    Shin, Yoo Seob; Song, Suk Jin; Kang, Sungun; Hwang, Hye Sook; Jung, Young-Sik; Kim, Chul-Ho

    2014-02-01

    Cisplatin [cis-diammine-dichloroplatinum (II)] is a widely used chemotherapeutic agent, and one of its most severe side effects is ototoxicity. In the course of developing a new protective agent against cisplatin-induced ototoxicity, we have been interested in a novel synthetic compound, 3-Amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR-22335). We evaluated the effectiveness of KR-22335 as an otoprotective agent against cisplatin-induced toxicity. The otoprotective effect of KR-22335 against cisplatin was tested in vitro in cochlear organs of Corti-derived cell lines, HEI-OC1, and in vivo in a zebrafish (Danio rerio) model. Cisplatin-induced apoptosis, cell cycle arrest and an increase in intracellular reactive oxygen species (ROS) generation were demonstrated in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced apoptosis and mitochondrial injury in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced activation of JNK, p-38, caspase-3 and PARP in HEI-OC1 cells. Scanning and transmission electron micrographs showed that KR-22335 prevented cisplatin-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. Tissue TUNEL of neuromasts in zebrafish demonstrated that KR-22335 blocked cisplatin-induced TUNEL positive hair cells in neuromasts. The results of this study suggest that KR-22335 may prevent ototoxicity caused by the administration of cisplatin through the inhibition of mitochondrial dysfunction and suppression of ROS generation. KR-22335 may be considered as a potential candidate for protective agents against cisplatin-induced ototoxicity.

  2. Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes

    Science.gov (United States)

    Pascual-Figal, Domingo; Fernández-Belda, Francisco; Lax, Antonio

    2017-01-01

    The primary cardiotoxic action of doxorubicin when used as antitumor drug is attributed to the generation of reactive oxygen species (ROS) therefore effective cardioprotection therapies are needed. In this sense, the antianginal drug nicorandil has been shown to be effective in cardioprotection from ischemic conditions but the underlying molecular mechanism to cope with doxorubicin-induced ROS is unclear. Our in vitro study using the HL-1 cardiomyocyte cell line derived from mouse atria reveals that the endogenous nitric oxide (NO) production was stimulated by nicorandil and arrested by NO synthase inhibition. Moreover, while the NO synthase activity was inhibited by doxorubicin-induced ROS, the NO synthase inhibition did not affect doxorubicin-induced ROS. The inhibition of NO synthase activity by doxorubicin was totally prevented by preincubation with nicorandil. Nicorandil also concentration-dependently (10 to 100 μM) decreased doxorubicin-induced ROS and the effect was antagonized by 5-hydroxydecanoate. The inhibition profile of doxorubicin-induced ROS by nicorandil was unaltered when an L-arginine derivative or a protein kinase G inhibitor was present. Preincubation with pinacidil mimicked the effect of nicorandil and the protection was eliminated by glibenclamide. Quantitative colocalization of fluorescence indicated that the mitochondrion was the target organelle of nicorandil and the observed response was a decrease in the mitochondrial inner membrane potential. Interference with H+ movement across the mitochondrial inner membrane, leading to depolarization, also protected from doxorubicin-induced ROS. The data indicate that activation of the mitochondrial ATP-sensitive K+ channel by nicorandil causing mitochondrial depolarization, without participation of the NO donor activity, was responsible for inhibition of the mitochondrial NADPH oxidase that is the main contributor to ROS production in cardiomyocytes. Impairment of the cytosolic Ca2+ signal induced

  3. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  4. Protective effect of Juglans nigra on sodium arsenite-induced toxicity in rats

    Directory of Open Access Journals (Sweden)

    Solomon E Owumi

    2013-01-01

    Full Text Available Background: Consumption of arsenic contaminated water has been implicated in metalloid-induced carcinogenesis. Dietary intake of certain plant products with chemoprotective properties may protect against the onset of diseases and promote maintenance of health. Objectives: We investigated the outcome of black walnut Juglans nigra (JN consumption on sodium arsenite (SA-induced toxicity in rats. Materials and Methods: Wister albino rats were treated as follows: Control, SA only (positive control (2.5 mg/kg body weight, JN only (100 mg/kg weight, and JN+SA coadministered. After 5 weeks animals were sacrificed whole blood, femur, liver and testis harvested were assessed for hepatic transaminases and clastogenicity. Histology of the liver, sperm morphology and quality were also assessed. Data were analyzed (ANOVA and expressed as means ±SD. Results: SA treatment elevated hepatic transaminases level in serum (P < 0.05, induced histological changes in liver: fibroplasia and periportal hepatocytes infiltration by mononuclear cells. These changes were ameliorated by JN (P < 0.05 coadministration. SA induced micronuclei formation (P < 0.05. Again JN decreased (P < 0.05 micronuclei formation by 50%. Sperm count and motility decreased (P < 0.05 in all groups compared to control. Conclusion: JN showed no protection against arsenite effect on sperm quality. Hepatoprotective and anticlastogenic effects were apparent suggesting a chemopreventive potential active against arsenite genotoxicity and chromosomal instability which have implication for metalloid-induced carcinogenesis.

  5. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation.

    Science.gov (United States)

    Periasamy, Ramyaa; Kalal, Iravathy Goud; Krishnaswamy, Rajashree; Viswanadha, VijayaPadma

    2016-07-01

    Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 855-865, 2016.

  6. Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Afzal Sheikh; Zahangir Alam Saud; Khaled Hossain; Fouzia Yeasmin; Smita Agarwal; Mashiur Rahman; Khairul Islam; Ekhtear Hossain; Shakhawoat Hossain; Md Rezaul Karim; Farjana Nikkon

    2014-01-01

    Objective: To evaluate the protective role of leaves of Moringa oleifera (M. oleifera) Lam. against arsenic-induced toxicity in mice.Methods:non-treated control group while, the second, third, and fourth groups were treated with M.oleifera leaves (50 mg/kg body weight per day), sodium arsenite (10 mg/kg body weight per day) and sodium arsenite plus M. oleifera leaves, respectively. Serum indices related to cardiac, liver and renal functions were analyzed to evaluate the protective effect of Moringa leaves on arsenic-induced effects in mice.Results:Swiss albino male mice were divided into four groups. The first group was used as induced elevation of triglyceride, glucose, urea and the activities of alkaline phospatase, aspartate aminotransferase and alanine aminotransferase in serum. M. oleifera leaves also prevented the arsenic-induced perturbation of serum butyryl cholinesterase activity, total cholesterol and high density lipoprotein cholesterol.Conclusions:The results indicate that the leaves of M. oleifera may be useful in reducing the It revealed that food supplementation of M. oleifera leaves abrogated the arsenic-effects of arsenic-induced toxicity.

  7. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    Science.gov (United States)

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.

  8. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available Doxorubicin (Dox is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p. administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p. for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.

  9. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro.

    Science.gov (United States)

    Sun, Jing; Sun, Guibo; Meng, Xiangbao; Wang, Hongwei; Luo, Yun; Qin, Meng; Ma, Bo; Wang, Min; Cai, Dayong; Guo, Peng; Sun, Xiaobo

    2013-01-01

    Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.

  10. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  11. Carbon tetrachloride-induced hepatotoxicity: Protective effect of 'Rocket' Eruca sativa L. in rats.

    Science.gov (United States)

    Alqasoumi, Saleh

    2010-01-01

    The hepatoprotective and antioxidant effect of an ethanolic extract of 'Rocket' Eruca sativa L. (EER), on liver injury induced by carbon tetrachloride (CCl(4)) was investigated. Wistar albino rats were administered 250 and 500 mg/kg body weight extract orally for 10 consecutive days. Marker enzymes GOT, GPT, ALP, GGT and bilirubin were estimated in serum. Whereas, non-protein sulfhydryl (NP-SH), total protein (TP) and malondialdehyde (MDA) were estimated in liver tissue as markers for oxidative stress. Histopathological assessment was also done on liver tissue. CCl(4) induced liver poisoning in all treated animals was evident by elevated serum GOT, GPT, ALP, GGT and bilirubin levels. Induction of oxidative stress in the liver tissue by CCl(4) was evidenced by a fall in the levels of NP-SH and TP; and an increased level of MDA concentration. EER administration for 10 days prevented the CCl(4) induced hepatic injury and oxidative stress. Furthermore, the extract also reduced the pentobarbital-induced prolongation of sleeping time in mice. The ability of rocket extract to protect the liver toxicity in rats was further confirmed by histological findings in the liver tissue. In conclusion, it was observed that Eruca sativa L. extract protects the liver against CCl(4) induced hepatic injury through its potent antioxidant activity in rats.

  12. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  13. Protective effects of escin against indomethacin-induced gastric ulcer in mice.

    Science.gov (United States)

    Wang, Tian; Zhao, Shanshan; Wang, Yucun; Yang, Yujiao; Yao, Le; Chu, Liuxiang; Du, Hanhan; Fu, Fenghua

    2014-12-01

    Escin, a natural mixture of triterpenoid saponin isolated from the seed of the horse chestnut, is reported to have a potent antiulcer activity against ethanol-induced gastric mucosal lesions. This study investigated the possible mechanisms underlying the gastroprotective effect of escin against indomethacin-induced gastric ulcer in mice. Gastric ulceration was induced by a single intragastric administration of indomethacin (18 mg/kg). The mice underwent intragastric treatment with escin at doses of 0.45, 0.9 or 1.8 mg/kg. Gastric lesion was estimated morphometrically and histopathologically 6 h after the indomethacin administration. The antioxidative parameters in gastric mucosa were measured. Moreover, the activity of myeloperoxidase and the contents of TNF-α, P-selectin and VCAM-1 in gastric tissues were determined. The results showed that escin protected gastric tissues against indomethacin-induced gastropathy as demonstrated from a reduction in the ulcer index and an attenuation of histopathologic changes. Escin caused significant reductions of the contents of malondialdehyde, TNF-α, P-selectin, VCAM-1 and myeloperoxidase activity. The altered activities of superoxide dismutase, catalase and glutathione peroxidase in the stomach tissues were also ameliorated by escin treatment. The present study demonstrated that escin had a protective effect against indomethacin-induced gastric ulcer in mice, not only by virtue of its antioxidant potential, but also due to its anti-inflammatory effect.

  14. Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Gao, Jie; Han, Yu-Lu; Jin, Zheng-Yu; Xu, Xue-Ming; Zha, Xue-Qiang; Chen, Han-Qing; Yin, Yan-Yan

    2015-06-25

    In this study, a novel water-soluble polysaccharide fraction with molecular weight of 6479.1kDa was isolated from the fruits of Opuntia dillenii Haw., which consisted of rhamnose, xylose, mannose and glucose in the molar ratio of 14.99:1.14:1.00:6.47. The protective effect of O. dillenii Haw. fruits polysaccharide (ODFP) against oxidative damage in streptozotocin (STZ)-induced diabetic rats was investigated. The results showed that oral administration of ODFP significantly decreased food intake, water intake, urine production, organ weights and blood glucose level, and increased body weight in STZ-induced diabetic rats. ODFP also significantly increased the activities of SOD, GPx and CAT, and decreased malondialdehyde level in serum, liver, kidney, and pancreas in STZ-induced diabetic rats. Moreover, histopathological examination showed that ODFP could markedly improve the structure integrity of pancreatic islet tissue in STZ-induced diabetic rats. These results suggest that ODFP have hypoglycemic and antioxidant properties and can protect rats from STZ-induced oxidative damage.

  15. Phloroglucinol Protects INS-1 Pancreatic β-cells Against Glucotoxicity-Induced Apoptosis.

    Science.gov (United States)

    Park, Mi Hwa; Han, Ji Sook

    2015-11-01

    Decreasing numbers, and impaired function, of pancreatic β-cells are key factors in the development of type 2 diabetes. This study was designed to investigate whether phloroglucinol protected pancreatic β-cells against glucotoxicity-induced apoptosis using a rat insulinoma cell line (INS-1). High glucose treatment (30 mM) induced INS-1 cell death; however, the level of glucose-induced apoptosis was significantly reduced in cells treated with 100-μM phloroglucinol. Treatment with 10-100-μM phloroglucinol increased cell viability and decreased intracellular levels of reactive oxygen species, nitric oxide, and lipid peroxidation dose-dependently in INS-1 cells pretreated with high glucose. Furthermore, phloroglucinol treatment markedly reduced the protein expression of Bax, cytochrome c, and caspase 9, while increasing anti-apoptotic Bcl-2 protein expression. Cell death type was examined using annexin V/propidium iodide staining, revealing that phloroglucinol markedly reduced high glucose-induced apoptosis. These results demonstrated that phloroglucinol could be useful as a potential therapeutic agent for the protection of pancreatic β-cells against glucose-induced apoptosis.

  16. Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress.

    Science.gov (United States)

    Tao, Kai; Wang, Bao; Feng, Dayun; Zhang, Wei; Lu, Fangfang; Lai, Juan; Huang, Lu; Nie, Tiejian; Yang, Qian

    2016-02-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti-oxidative stress properties and protects against DA neuronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)-induced cytotoxicity by attenuating ER stress. Furthermore, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results suggest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.

  17. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    Science.gov (United States)

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  18. Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats

    OpenAIRE

    Ko, Je-Won; Lee,In-Chul; Park, Sung-Hyuk; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Jong-Choon

    2014-01-01

    We investigated the protective effects of pine bark extract (pycnogenol®, PYC) against cisplatin-induced hepatotoxicity and oxidative stress in rats. Twenty-four male rats were divided into the following four groups: (1) vehicle control, (2) cisplatin (7.5 mg/kg), (3) cisplatin & PYC 10 (10 mg/kg/day), and (4) cisplatin & PYC 20 (20 mg/kg/day). A single intraperitoneal injection of cisplatin induced hepatotoxicity, as evidenced by an increase in serum aminotransferase and histopathological al...

  19. Molecular Mechanism of Bovine Trabecular Meshwork Cells Apoptosis Induced by Dexamethasone and Protection by Pilocarpine

    Institute of Scientific and Technical Information of China (English)

    Yajuan Gu; Shujun Zeng; Pengxin Qiu; Yuping Wu; Dawei Peng; Guangmei Yan

    2005-01-01

    Purpose: To study the molecular mechanism of trabecular meshwork cells apoptosis induced by dexamethasone and the protection of pilocarpine.Methods: Determining mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR), protein expression with Western blots and the percentage of apoptotic cells with fluorescent microscopy.Results: Dexamethasone up-regulated Fas proteins and affected Bax, caspase-8 and caspase-9 proteins in an action of first decrease then increase. Pre-treatment with pilocarpine decreased the four proteins expression, which were increased by dexamethasone. Pilocarpine self could decrease pro-apoptotic factors Bax, caspase-8 and caspase-9 proteins expression.Conclusion: Fas/FasL pathway participated in apoptotic process induced by dexamethasone in trabecular meshwork cells and the process was probably related with both caspase-8 and caspase-9 pathways. Pilocarpine protected the cells against apoptosis through down-regulating Fas, Bax, caspase-8 and caspase-9 proteins expression.

  20. Decursin Mediated Protection on Cisplatin-induced Nephrotoxicity in SD Rats and BDF1 Mice

    Institute of Scientific and Technical Information of China (English)

    Jiang Cheng-zhe; Han Ilhyun; Choung Seyoung

    2012-01-01

    Tisplatin is one of the valuable icancer agents against several types of neoplasm. However, nephrotoxicity is the major adverse effect representing in cisplatin therapy. In this study, the animal tests detecting protective effects of a natural compound, Decursin, on cisplatin-induced nephrotoxicity were examined by using in vivo model. Pretreatment Decursin 10, 20 and 40 mg · kg^-1 at 48, 24 and 6 h, and administration of a single dose of Cisplatin 5.2 mg · kg^-1. Nephrotoxicity was evaluated by serum BUN and creatinine examination. There was significant difference in body weights, serum BUN and creatinine levels of the normal group. Based on the new understanding of the protective mechanisms of cisplatin-induced nephrotocivity, new strategies can be developed to prevent renal injury or to enhance recovery after cisplatin treatment.

  1. Protective effect of Hibiscus sabdariffa Linn. calyx extract on tetracycline induced testicular toxicity in mice

    Directory of Open Access Journals (Sweden)

    Nawaphat Taweebot

    2010-07-01

    Full Text Available Aqueous Hibiscus sabdariffa Linn. (Malvaceae calyx extract (HSE was evaluated for theprotective effect against testicular toxicity induced by tetracycline dose of 20 mg/100 gBW for 14 daysin mice. The extract doses of 20, 50 and 100 mg/100 gBW used in pretreatment by oral administrationfor 4 days and subsequent co-treatment with tetracycline for 14 days had the protective effectexhibiting significantly increasing quality of seminal fluid including an increase in total sperm count,percentage of mobile sperms and viable sperms when compared to the tetracycline treated group (p H. Sabdariffa. calyx extract may be used as protective agent againsttetracycline-induced reproductive toxicity in mice.

  2. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage.

    Science.gov (United States)

    Jamialahmadi, Khadijeh; Arasteh, Omid; Matbou Riahi, Maryam; Mehri, Soghra; Riahi-Zanjani, Bamdad; Karimi, Gholamreza

    2014-07-01

    Glucosamine (GlcN) is an important precursor in the biochemical synthesis of glycosylated proteins and lipids in human body. It gains importance because of its contribution to human health and its multiple biological and therapeutic effects. In this study, the in vitro oxidative hemolysis of rat erythrocyte was used as a model to study the potential protective effect of glucosamine hydrochloride against free radical-induced damage of biological membranes. Glucosamine hydrochloride exhibited dose-dependent DPPH antioxidant activity. Oxidative hemolysis and lipid/protein peroxidation of erythrocytes induced by a water-soluble free radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) were significantly suppressed by GlcN in a time and dose dependent manner. GlcN also prevented the depletion of cytosolic antioxidant glutathione (GSH) in erythrocytes. These results indicated that glucosamine hydrochloride efficiently protected erythrocytes against free radicals and it could be recommended as a pharmaceutical supplement to alleviate oxidative stress.

  3. UV-B-induced Oxidative Damage and Protective Role of Exopolysaccharides in Desert Cyanobacterium Microcoleus vaginatus

    Institute of Scientific and Technical Information of China (English)

    Lan-Zhou Chen; Gao-Hong Wang; Song Hong; An Liu; Cheng Li; Yong-Ding Liu

    2009-01-01

    UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.

  4. Antioxidant Protective Effect of Honey in Cigarette Smoke-Induced Testicular Damage in Rats

    Directory of Open Access Journals (Sweden)

    Kuttulebbai Nainamohamed Salam Sirajudeen

    2011-08-01

    Full Text Available Cigarette smoke (CS can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily and honey supplementation (1.2 g/kg daily were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS and glutathione peroxidase (GPx activity, as well as reduced total antioxidant status (TAS and activities of superoxide dismutase (SOD and catalase (CAT. However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.

  5. Minocycline protects the apoptosis of PC12 cells induced by 1-methyl-4-phenylpyridinium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To explore the protective effect of minocycline on the apoptosis of cellular parkinsonism models induced by MPP+ . Methods: Using PC12 cells as the apoptotic model of dopaminergic neurons, MC and MPP+ were added into the culture medium of PC12 cells, and using MTT to assay the cell viability and metabolic state; The cells apoptosis was assayed by electrophoresis method and using flow cytometry FACS to assay the apoptosis ratio. Results: Added the MPP+ to get the concentration of 10μmol/L, the cellular parkinsonism model of apoptosis had been prepared. The pre-treatment of MC (100 μmol/L) could significantly increase the PC12 cell viability. The apoptosis ratio of MC + MPP+ group was significantly lower than that of MPP+ group, but was still significantly higher than that of control group. Conclusion: MC may protect the cell apoptosis induced by MPP+ to some extent.

  6. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice.

    Science.gov (United States)

    Badillo-Godinez, O; Gutierrez-Xicotencatl, L; Plett-Torres, T; Pedroza-Saavedra, A; Gonzalez-Jaimes, A; Chihu-Amparan, L; Maldonado-Gama, M; Espino-Solis, G; Bonifaz, L C; Esquivel-Guadarrama, F

    2015-08-20

    Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.

  7. Protective role of food supplement Spirulina fusiformis in chemical induced hepatotoxicity: A Bromobenzene model in rats

    Directory of Open Access Journals (Sweden)

    Evan Prince Sabina

    2014-03-01

    Full Text Available The present study evaluated the efficacy of Spirulina fusiformis in protecting against chemical induced hepatotoxicity in rats using Bromobenzene as the candidate toxin. A single oral dose of bromobenzene (BB (10mmol/kg b.w. resulted in significant (p< 0.05 decrease in antioxidant levels (catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidese, total reduced glutathione and total protein, and significant (p< 0.05 increase in the levels of serum bilirubin, liver enzymes (alanine transaminase, aspartate transaminase and alkaline phosphatase indicating the induction of hepatotoxicity. Spirulina fusiformis (400 mg/kg b.w was orally administered for 8 days prior to the administration of BB and was seen to protect the above parameters from significant changes upon challenge with bromobenzene. This was also confirmed by the histological examination of liver tissues after sacrifice. The protective effect of Spirulina fusiformis was comparable to that of the standard hepatoprotective drug sylimarin.

  8. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  9. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Pedersen, Ida Just; Skjerning, Ragnhild Bager

    2016-01-01

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have...... previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe...... degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis...

  10. Dietary squid ink polysaccharide induces goblet cells to protect small intestine from chemotherapy induced injury.

    Science.gov (United States)

    Zuo, Tao; Cao, Lu; Xue, Changhu; Tang, Qing-Juan

    2015-03-01

    Gastrointestinal mucositis induced by chemotherapy is associated with alterations of intestinal barrier function due to the potential damage induced by anti-cancer drugs on the epithelial cells. Goblet cells, an important epithelial lining in the intestine, contribute to innate immunity by secreting mucin glycoproteins. Employing a mouse model of chemotherapy induced intestinal mucosal immunity injury by cyclophosphamide, we demonstrated for the first time that polysaccharide from the ink of Ommastrephes bartramii (OBP) enhanced Cyto18, which is a mucin expression in goblet cells. The up-regulation of mucins by OBP relied on the augmented quantity of goblet cells, but not on the changes in the ultrastructure of endoplasmic reticulum (ER). Our results may have important implications for enhanced immunopotentiation function of functional OBP on intestinal mucosal immunity against intestinal disorders involving inflammation and infection.

  11. Protective effect of root extract of Operculina turpethum linn. Against paracetamol-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Suresh Kumar S

    2006-01-01

    Full Text Available The ethanolic extract obtained from roots of Operculina turpethum (Convolvulaceae were evaluated for hepatoprotective activity in rats by inducing liver damage by paracetamol. The ethanol extract at an oral dose of 200 mg/kg exhibited a significant protective effect by lowering serum levels of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, alkaline phosphatase and total bilirubin. These biochemical observations were supplemented by histopathological examination of liver sections. Silymarin was used as positive control.

  12. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis.

    OpenAIRE

    1995-01-01

    Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is the world's leading cause of death in humans from a single infectious agent. A safe and effective vaccine against this scourge is urgently needed. This study demonstrates that immunization with the 30-kDa major secretory protein, alone or in combination with other abundant extracellular proteins of M. tuberculosis, induces strong cell-mediated immune responses and substantial protective immunity against aerosol ...

  13. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    OpenAIRE

    Hai Nguyen Thanh; Hue Pham Thi Minh; Tuan Anh Le; Huong Duong Thi Ly; Tung Nguyen Huu; Loi Vu Duc; Thu Dang Kim; Tung Bui Thanh

    2015-01-01

    Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis (S. baicalensis) against lipopolysaccharide (LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS (5 mg/kg of body weight, intraperitoneal injection). Both protein ...

  14. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    Science.gov (United States)

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  15. Ipomoea aquatica Extract Shows Protective Action Against Thioacetamide-Induced Hepatotoxicity

    OpenAIRE

    Hadi, A. Hamid A.; Siddig Ibrahim Abdelwahab; Suzy Munir Salama; Salim Said Alkiyumi; Mahmood Ameen Abdullah; Ahmed Salim Alrashdi

    2012-01-01

    In the Indian system of traditional medicine (Ayurveda) it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA)-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD) rats were orally fed with ...

  16. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    OpenAIRE

    Elizabeth Huerta-García; Angélica Montiél-Dávalos; Ernesto Alfaro-Moreno; Gisela Gutiérrez-Iglesias; Rebeca López-Marure

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture...

  17. Protection of melatonin against damage of sperm mito-chondrial function induced by reactive oxygen species

    Institute of Scientific and Technical Information of China (English)

    Xue-JunShang; Yu-FengHuang; Zhang-QunYe; XiaoYu; Wan-JiaGu

    2004-01-01

    Aim: To study the mitochondrial function damage of sperm in-duced by reactive oxygen species (ROS) and the protection of melatonin (MLT) against the damage. Methods: Normal function spermatozoa were selected from semen samples by Percoll gradi-ent centrifugation technique. The ROS generated by the hypoxan-thine xanthine oxidase system was incubated with the normal sper-matozoa in the presence or absence of MLT (6 retool/L) for 30 and 60 minutes.

  18. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    Science.gov (United States)

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  19. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Pan-shi Yan; Shu Tang; Hai-feng Zhang; Yuan-yuan Guo; Zhi-wen Zeng; Qiang Wen

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of dia-betes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF signiifcantly attenuated the levels of reactive oxygen species (ROS) and malondialde-hyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 sig-naling pathways.

  20. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice.

    Science.gov (United States)

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-28

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention.

  1. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats.

    Science.gov (United States)

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-03-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.

  2. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    Science.gov (United States)

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.

  3. Satkara (Citrus macroptera Fruit Protects against Acetaminophen-Induced Hepatorenal Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Sudip Paul

    2016-01-01

    Full Text Available Although Citrus macroptera (Rutaceae, an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation.

  4. Alcohol-induced oxidative stress in rat liver microsomes: Protective effect of Emblica officinalis.

    Science.gov (United States)

    Reddy, Vaddi Damodara; Padmavathi, Pannuru; Hymavathi, Reddyvari; Maturu, Paramahamsa; Varadacharyulu, N Ch

    2014-06-01

    The protective effect of Emblica officinalis fruit extract (EFE) against alcohol-induced oxidative damage in liver microsomes was investigated in rats. EFE (250mg/kg b.wt/day) and alcohol (5g/kg b.wt/day, 20%, w/v) were administered orally to animals for 60 days. Alcohol administration significantly increased lipid peroxidation, protein carbonyls with decreased sulfhydryl groups in microsomes, which were significantly restored to normal levels in EFE and alcohol co-administered rats. Alcohol administration also markedly decreased the levels of reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in the liver microsomes, which were prevented with EFE administration. Further, alcohol administration significantly increased the activities of cytochrome P-450, Na(+)/K(+) and Mg(2+) ATPases and also membrane fluidity. But, administration of EFE along with alcohol restored the all above enzyme activities and membrane fluidity to normal level. Thus, EFE showed protective effects against alcohol-induced oxidative damage by possibly reducing the rate of lipid peroxidation and restoring the various membrane bound and antioxidant enzyme activities to normal levels, and also by protecting the membrane integrity in rat liver microsomes. In conclusion, the polyphenolic compounds including flavonoid and tannoid compounds present in EFE might be playing a major role against alcohol-induced oxidative stress in rats.

  5. Protective Effect of Tetrandrine on Sodium Taurocholate-Induced Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Xian-lin Wu

    2015-01-01

    Full Text Available Tet is a type of alkaloid extracted from Stephania tetrandra, and it has recently been demonstrated that Tet can protect against inflammation and free radical injury and inhibit the release of inflammatory mediators. The present study was designed to observe the protective effect of Tet on sodium taurocholate-induced severe acute pancreatitis (SAP. The rat model of SAP was induced by retrograde bile duct injection of sodium taurocholate and then treated with Verapamil and Tet. The results showed that Tet can reduce NF-κB activation in pancreas issue, inhibit the SAP cascade, and improve SAP through inducing pancreas acinar cell apoptosis and stabilizing intracellular calcium in the pancreas, thus mitigating the damage to the pancreas. Our study revealed that Tet may reduce systemic inflammatory response syndrome (SIRS and multiple organ dysfunction syndromes (MODS to protect against damage, and these roles may be mediated through the NF-κB pathway to improve the proinflammatory/anti-inflammatory imbalance.

  6. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  7. Resveratrol, a Natural Antioxidant, Has a Protective Effect on Liver Injury Induced by Inorganic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2014-01-01

    Full Text Available Resveratrol (Rev can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3 is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.

  8. Advances in induced resistance by natural compounds: towards new options for woody crop protection

    Directory of Open Access Journals (Sweden)

    Eugenio Llorens

    Full Text Available ABSTRACT: The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.

  9. Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS is an important trigger of sepsis. We have demonstrated that berberine (Ber protects against lethality induced by LPS, which is enhanced by yohimbine (Y pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS-induced lethality remain unclear. The present study confirmed that simultaneously administered Y also enhanced protection of Ber against LPS-induced lethality. Ber or/and Y attenuated liver injury, but not renal injury in LPS-challenged mice. Ber or/and Y all inhibited LPS-stimulated IκBα, JNK and ERK phosphorylation, NF-κB activation as well as TNF-α production. Ber also increased IL-10 production in LPS-challenged mice, which was enhanced by Y. Furthermore, Ber or/and Y all suppressed LPS-induced IRF3, TyK2 and STAT1 phosphorylation, as well as IFN-β and IP-10 mRNA expression in spleen of mice at 1 h after LPS challenge. Especially, Y enhanced the inhibitory effect of Ber on LPS-induced IP-10 mRNA expression. In vitro experiments further demonstrated that Y significantly enhanced the inhibitory effect of Ber on TNF-α production in LPS-treated peritoneal macrophages, Ber combined with Y promoted LPS-induced IL-10 production and LPS-stimulated IκBα, JNK, ERK and IRF3 phosphorylation and NF-κB activation were also suppressed by Ber or/and Y pretreatment in peritoneal macrophages. Taken together, these results demonstrate that Y enhances the protection of Ber against LPS-induced lethality in mice via attenuating liver injury, upregulating IL-10 production and suppressing IκBα, JNK, ERK and IRF3 phosphorylation. Ber combined with Y may be an effective immunomodulator agent for the prevention of sepsis.

  10. Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury

    Institute of Scientific and Technical Information of China (English)

    Weihong Yang; Ling Li; Ruxun Huang; Zhong Pei; Songjie Liao; Jinsheng Zeng

    2012-01-01

    Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation -induced hypoxia inducible factor-1α expression. In this study, we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression. MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner. Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α. Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression; however, DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA. These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway.

  11. Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    Full Text Available Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ-induced neurotoxicity in Alzheimer's disease (AD, and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG, the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ(1-42-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 µM Aβ(1-42 resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS, decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ(1-42 exposure. All these effects induced by Aβ(1-42 were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ(1-42-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ(1-42-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ(1-42-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ(1-42-induced AD mice, indicating that DG exerted potential beneficial effects on AD.

  12. HEME OXYGENASE-1 UPREGULATED BY MELATONIN: POTENTIAL PROTECTION AGAINST BURN-INDUCED OXIDATIVE GASTRIC MUCOSAL INJURY.

    Directory of Open Access Journals (Sweden)

    Minka Hristova

    2015-05-01

    Full Text Available Melatonin is indoleamine hormone derived from L-tryptophan. Due to its lipophilic nature, it is accessible to every cell. Melatonin has immunomodulatory and antioxidant activities thus protecting tissue injury. Heat shock proteins such as HSP32 known as heme oxygenase-1 (HO-1 possesses antioxidant, anti-inflammatory, and vasodilatory properties and plays an important role in the protecting of tissues from several stresses. The aim of study is to investigate the expression of HO-1 in gastric mucosa and its connection with oxidative stress and melatonin mediated protection after thermal injury. On rats back, under anesthesia, third degree burn was applied involving 30% of total body surface area (TBSA. Melatonin (10 mg per kg body mass was injected i.p. immediately and 12 hours after thermal skin injury. We used tissue malondialdehyde (MDA, lipid peroxidation product, as a marker of oxidative stress. Gastric mucosa histopathology were observed on light microscopy and light immunohistochemistry investigating the HO-1 too. Results: The levels of MDA in gastric mucosa were elevated (p< 0.05. The HO-1 expression was significantly increased in rats with trauma. Melatonin inhibited elevation in lipid peroxidation product and augmented the increase in expression of HO-1 in the gastric mucosa. In conclusion, our data suggest that HO-1 induction following burn injury is an adaptive response protecting gastric mucosal against further oxidative damage. Melatonin increased the antioxidant capacity and restricted burn-induced oxidative damage in gastric mucosa and thus could be used therapeutically in organ protection.

  13. The possible protective effect of melatonin on streptozotocin induced experimental diabetes

    Directory of Open Access Journals (Sweden)

    Hakan Yüzüak

    2014-12-01

    Full Text Available Objective: This experimental study aims to investigate the protective effect of melatonin on the enzymes’, which regulate glucose metabolism in liver tissue. Methods: In this experimental study, four-month-old male Wistar albino rats were used. The rats were divided into 4 groups as 7 rats in each group. Rats were grouped as control group, diabetic group, melatonin protecting group, as well as melatonin treatment group. Before the streptozotocin implementation to melatonin protecting group (seven days ago everyday at 18.00 melatonin was implemented for seven days. On the other hand melatonin was implemented to melatonin treatment group after streptozotocin implementation everyday at 18.00 for seven days. Only a single dose of streptozotocin was implemented to diabetic group. Control group had no intervention throughout the study. In the end of the experiment, blood was taken and rats were sacrificed. Before the sacrifice process rats’ fasting blood pressure was measured. Hexokinases, pyruvate kinase, glucose-6-phosphatase, fructose - 1,6-bisphosphatase, glucose -6 phosphate dehydrogenase levels were measured in the liver samples. Results: Between control and experimental groups of rats, there are statistically significant differences between control and experimental groups for all parameters. Melatonin protecting group levels of investigated parameters were more close to that of control groups’ values and results are statistically significant. Moreover, melatonin treatment group showed a protective effect. However it is not effective as melatonin protecting group. Conclusion: It can be suggested that melatonin shows protective effect on enzymes related to glucose metabolism in the liver tissue in a model of streptozotocin-induced experimental diabetes. J Clin Exp Invest 2014; 5 (4: 592-598

  14. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death

    Science.gov (United States)

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-01-01

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photoreceptors and 200 μM H2O2-induced apoptosis of RPE cells. 200 μM H2O2-induced generation of reactive oxygen species (ROS) and light-induced generation of malondialdehyde (MDA) were suppressed by alpha-mangostin. Alpha-mangostin stimulation resulted in an increase of superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity and glutathione (GSH) content both in vivo and vitro. Furthermore, the mechanism of retinal protection against oxidative stress by alpha-mangostin involves accumulation and the nuclear translocation of the NF-E2-related factor (Nrf2) along with up-regulation the expression of heme oxygenas-1 (HO-1). Meanwhile, alpha-mangostin can activate the expression of PKC-δ and down-regulate the expression of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, P38. The results suggest that alpha-mangostin could be a new approach to suspend the onset and development of AMD. PMID:26888416

  15. Ischemic conditioning protects from axoglial alterations of the optic pathway induced by experimental diabetes in rats.

    Directory of Open Access Journals (Sweden)

    Diego C Fernandez

    Full Text Available Diabetic retinopathy is a leading cause of blindness. Visual function disorders have been demonstrated in diabetics even before the onset of retinopathy. At early stages of experimental diabetes, axoglial alterations occur at the distal portion of the optic nerve. Although ischemic conditioning can protect neurons and synaptic terminals against ischemic damage, there is no information on its ability to protect axons. We analyzed the effect of ischemic conditioning on the early axoglial alterations in the distal portion of the optic nerve induced by experimental diabetes. Diabetes was induced in Wistar rats by an intraperitoneal injection of streptozotocin. Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 days after streptozotocin injection and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. The application of ischemia pulses prevented a deficit in the anterograde transport from the retina to the superior colliculus, as well as an increase in astrocyte reactivity, ultraestructural myelin alterations, and altered morphology of oligodendrocyte lineage in the optic nerve distal portion at early stages of experimental diabetes. Ischemia tolerance prevented a significant decrease of retinal glutamine synthetase activity induced by diabetes. These results suggest that early vision loss in diabetes could be abated by ischemic conditioning which preserved axonal function and structure.

  16. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity.

  17. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    Science.gov (United States)

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  18. The protective effect of trimetazidine against cisplatin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Sherbeeny, Nagla A; Attia, Ghalia M

    2016-07-01

    Nephrotoxicity is a dose-limiting side effect of cisplatin (CSP). The study investigated the possible protective role of trimetazidine (TMZ) against CSP-induced nephrotoxicity in rats. Rats were divided into four groups; control, TMZ, CSP, and CSP + TMZ. The CSP group showed significant deterioration in kidney function with structural changes in the form of interstitial hemorrhage, glomeruli shrinkage and peritublar capillary congestion, tubular cells vacuolation, pyknosis, shedding and necrosis, and inflammatory cell infiltrates, all indicating renal damage. CSP also caused a significant increase in the lipid peroxidation marker malondialdehyde (MDA) levels, renal nuclear factor kappa B (NF-κB) DNA-binding activity and protein expression, and tumor necrosis factor alpha (TNF-α) and IL-6 levels. Treatment with TMZ before and after CSP injection produced significant improvement of kidney function and histopathology. TMZ treatment also significantly attenuated CSP-induced oxidative stress and suppressed elevated levels of TNF-α and IL-6 and NF-κB expression and its DNA-binding activity caused by CSP administration. TMZ has a protective effect against CSP-induced nephrotoxicity mediated by reduction of oxidative stress and attenuation of CSP-induced inflammation.

  19. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury

    Science.gov (United States)

    Chaaban, Hala; Keshari, Ravi S.; Silasi-Mansat, Robert; Popescu, Narcis I.; Mehta-D’Souza, Padmaja; Lim, Yow-Pin

    2015-01-01

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma. PMID:25631771

  20. The Protective Effect of Resveratrol on Concanavalin-A-Induced Acute Hepatic Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yingqun Zhou

    2015-01-01

    Full Text Available Pharmacologic Relevance. Resveratrol, an antioxidant derived from grapes, has been reported to modulate the inflammatory process. In this study, we investigated the effects of resveratrol and its mechanism of protection on concanavalin-A- (ConA- induced liver injury in mice. Materials and Methods. Acute autoimmune hepatitis was induced by ConA (20 mg/kg in Balb/C mice; mice were treated with resveratrol (10, 20, and 30 mg/kg daily by oral gavage for fourteen days prior to a single intravenous injection of ConA. Eight hours after injection, histologic grading, proinflammatory cytokine levels, and hedgehog pathway activity were determined. Results. After ConA injection, the cytokines IL-2, IL-6, and TNF-α were increased, and Sonic hedgehog (Shh, Glioblastoma- (Gli- 1, and Patched (Ptc levels significantly increased. Pretreatment with resveratrol ameliorated the pathologic effects of ConA-induced autoimmune hepatitis and significantly inhibited IL-2, IL-6, TNF-α, Shh, Gli-1, and Ptc. The effects of resveratrol on the hedgehog pathway were studied by western blotting and immunohistochemistry. Resveratrol decreased Shh expression, possibly by inhibiting Shh expression in order to reduce Gli-1 and Ptc expression. Conclusion. Resveratrol protects against ConA-induced autoimmune hepatitis by decreasing cytokines expression in mice. The decreases seen in Gli-1 and Ptc may correlate with the amelioration of hedgehog pathway activity.

  1. Protective effect of δ-amyrone against ethanol-induced gastric ulcer in mice.

    Science.gov (United States)

    Li, Weifeng; Yao, Huan; Niu, Xiaofeng; Wang, Yu; Zhang, Hailin; Li, Huani; Mu, Qingli

    2015-06-01

    The purpose of this study is to examine the protective effect of δ-amyrone on ethanol-induced gastric ulcer in mice. The mice intragastric administration 75% (0.5 mL/100g) ethanol was pretreated with δ-amyrone (4 and 8 mg/kg) and cimetidine (100 mg/kg) or vehicles in different experimental groups for a continuous three-day, and animals were euthanized 3h after ethanol ingestion. The gastric lesions were significantly attenuated by δ-amyrone (4 and 8 mg/kg) as compared to the ulcer control group. Pre-treatment with δ-amyrone prevented the myeloperoxidase (MPO) activity, production of nitric oxide (NO) in serum, expression of inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB) p65 protein expression. Analysis of cytokines in gastric tissue and serum of ethanol-induced mice showed the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were decreased by δ-amyrone in response to NF-κB p65. These results suggested that δ-amyrone exerts its protective effect on experimental gastric ulcer by inhibiting NF-κB signaling pathways, which subsequently reduces overproduction of the inducible enzymes iNOS and suppresses the release of the inflammatory factors TNF-α, IL-6 and NO. Thus, δ-amyrone shows promise as a therapeutic agent in experimental gastric ulcer.

  2. Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity.

    Science.gov (United States)

    Chen, Wei; Xu, Yang; Zhang, Lingxia; Su, Hongming; Zheng, Xiaodong

    2016-12-01

    Ethyl Carbamate (EC) was detected in many fermented foods. Previous studies indicated that frequent exposure to ethyl carbamate may increase the risk to suffer from cancers. Blackberry is rich in polyphenols and possesses potent antioxidant activity. This study aims to investigate the protective effect of blackberry homogenates produced before (BH) and after in vitro simulated gastrointestinal digestion (BD) on EC-induced toxicity in Caco-2 cells. Our results showed that blackberry homogenates after digestion (BD) was more effective than that before digestion (BH) in ameliorating EC-induced toxicity in Caco-2 cells. Further investigation revealed that BD remarkably attenuated EC-induced toxicity through restoring mitochondrial function, inhibiting glutathione depletion and decreasing overproduction of intracellular reactive oxygen species. Additionally, LC-MS result implied that the better protective capacity of BD may be related to the increased content of two anthocyanins (cyanidin-3-glucoside and cyanidin-3-dioxalyglucoside). Overall, the present study may give implication to prevent EC-induced health problem.

  3. Protective Effect of Vitamins E and C on Endosulfan-Induced Reproductive Toxicity in Male Rats

    Directory of Open Access Journals (Sweden)

    Hussain Kargar

    2012-09-01

    Full Text Available Background: The role of oxidative stress in endosulfan-induced reproductive toxicity has been implicated. This study was performed to evaluate the possible protective effect of vitamins E and C, against endosulfan-induced reproductive toxicity in rats.Methods: Fifty adult male Sprague–Dawley rats were randomly divided into five groups (n=10 each. The groups included a control receiving vehicle, a group treated with endosulfan (10 mg/kg/day alone, and three endosulfan-treated group receiving vitamin C (20 mg/kg/day, vitamin E (200 mg/kg/day, or vitamine C+vitamin E at the same doses. After 10 days of treatment, sperm parameters, plasma lactate dehydrogenase (LDH, plasma testosterone and malondialdehyde (MDA levels in the testis were determined. Results: Oral administration of endosulfan caused a reduction in the sperm motility, viability, daily sperm production (DSP and increased the number of sperm with abnormal chromatin condensation. Endosulfan administration increased testis MDA and plasma LDH. Supplementation of vitamin C and vitamin E to endosulfan-treated rats reduced the toxic effect of endosulfan on sperm parameters and lipid peroxidation in the testis. Vitamin E was more protective than vitamin C in reducing the adverse effects of the endosulfan.Conclusion: The findings data suggest that administration of vitamins C and E ameliorated the endosulfan-induced oxidative stress and sperm toxicity in rat. The effect of vitamin E in preventing endosulfan-induced sperm toxicity was superior to that of vitamin C.

  4. Hydrogen sulfide protects against cognitive impairment induced by hepatic ischemia and reperfusion via attenuating neuroinflammation.

    Science.gov (United States)

    Tu, Faping; Li, Jingdong; Wang, Ji; Li, Qiang; Chu, Weihua

    2016-03-01

    Previously, hepatic ischemia followed by reperfusion (hepatic I/R) has been found to cause cognitive impairment. Hydrogen sulfide (H2S) attenuates hepatectomy induced cognitive deficits and also protects against cognitive dysfunction induced by neurodegenerative diseases. In this study, we aim to determine whether sodium hydrosulfide (NaHS), a H2S donor, could alleviate hepatic I/R-induced cognitive impairment and the underlying mechanisms. Rats were injected intraperitoneally with NaHS (5 mg/kg/d) for 11 days. A segmental hepatic I/R model was established on the fourth day. Cognitive function, proinflammatory cytokines levels, and hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) expression was analyzed. We found hepatic I/R increased proinflammatory cytokines levels in serum and hippocampus, up-regulated Iba1 expression, leading to cognitive impairment in rats. However, treatment with NaHS alleviated hepatic I/R induced these neuroinflammatory changes and effectively improved cognitive function. Thus, NaHS appears to protect against cognitive impairment in rats undergoing hepatic I/R by attenuating neuroinflammation in the hippocampus.

  5. Mechanism of testicular protection of carvedilol in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Maggie M Ramzy

    2014-01-01

    Full Text Available Aims: Male sub-fertility and infertility are major complications of diabetes mellitus. The non-selective β-blocker carvedilol has been reported to have favorable effects on some of the diabetic complications based on its antioxidant and anti-apoptotic effects. This study aims to evaluate the possible testicular protective effect of carvedilol in streptozotocin (STZ-induced diabetic rat model and its possible mechanisms. Materials and Methods: Diabetes was induced by a single i.p. dose of 65 mg/kg of STZ. In parallel groups of diabetic rats, carvedilol in low and high doses (1 and 10 mg/kg/day orally were administered for 4 weeks. Oxidative stress markers as reduced glutathione (GSH and the product of lipid peroxidation; malondialdehyde (MDA were evaluated in testicular homogenate. The level of expression of the apoptotic marker; caspase 3, was assessed using western blot, followed by densitometric analysis. Results: Induction of diabetes caused distortion of histological normal testicular structure, with decrease (P < 0.05 in GSH and increase (P < 0.05 in MDA, as well as induction of caspase 3 expression. Carvedilol in low or high doses reverted diabetes-induced histological damage, restored antioxidant activity and ameliorated caspase 3 expression. Conclusion: Carvedilol confers testicular protection against diabetes-induced damage through antioxidant and anti-apoptotic mechanisms.

  6. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats.

    Science.gov (United States)

    Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Acaroz, Damla Arslan; Akbel, Erten; Cigerci, Ibrahim Hakki

    2014-08-01

    The aim of the present study was to evaluate the possible protective effect of boron (B) on cyclophosphamide (CYC) induced oxidative stress in rats. Totally, thirty Wistar albino male rats were fed standard rodent diet and divided into 5 equal groups: physiological saline was given intraperitoneally (i.p.) to the control group (vehicle treated), to the second group only 75 mg kg(-1) CYC was given i.p. on the 14th d, and boron was administered (5, 10, and 20 mg kg(-1), i.p.) to the other groups for 14 d and CYC (75 mg kg(-1), i.p.) on the 14th d. CYC caused increase of malondialdehyde and decrease of glutathione levels, decrease of superoxide dismutase activities in erythrocyte and tissues, decrease of erythrocyte, heart, lung, and brain catalase, and plasma antioxidant activities. Also, CYC treatment caused to DNA damage in mononuclear leukocytes. Moreover, B exhibited protective action against the CYC-induced histopathological changes in tissues. However, treatment of B decreased severity of CYC-induced lipid peroxidation and genotoxicity on tissues. In conclusion, B has ameliorative effects against CYC-induced lipid peroxidation and genotoxicity by enhancing antioxidant defence mechanism in rat.

  7. Protective effects of 2,4-dihydroxybenzophenone against acetaminophen-induced hepatotoxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Yue-Ying He; Bao-Xu Zhang; Feng-Lan Jia

    2011-01-01

    AIM: To examine the effects of 2,4-dihydroxybenzophenone (BP-1), a benzophenone derivative used as an ultraviolet light absorbent, on acetaminophen (APAP)- induced hepatotoxicity in C57BL/6J mice. METHODS: Mice were administered orally with BP-1 at doses of 200, 400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP (350 mg/kg body weight) was given subcutaneously. Twenty four hours after APAP intoxication, the serum enzyme including serum alaine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) were measured and liver histopathologic changes were examined. RESULTS: BP-1 administration dramatically reduced serum ALT, AST and LDH levels. Liver histopathological examination showed that BP-1 administration antagonized APAP-induced liver pathological damage in a dose-dependent manner. Further tests showed that APAP-induced hepatic lipid peroxidation was reduced significantly by BP-1 pretreatment, and glutathione depletion was ameliorated obviously. CONCLUSION: BP-1 can effectively protect C57BL/6J mice from APAP-induced hepatotoxicity, and reduction of oxidative stress might be part of the protection mechanism.

  8. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  9. Protective effects of sodium molybdate on carbon tetrachloride-induced hepatotoxicity in rats.

    Science.gov (United States)

    Eidi, Akram; Eidi, Maryam; Al-Ebrahim, Mahsa; Rohani, Ali Haeri; Mortazavi, Pejman

    2011-01-01

    Molybdenum is an essential trace micronutrient element that plays an important role in animal and plant physiology. Molybdenum is a constituent of at least three mammalian metalloflavoproteins: xanthine oxidase, aldehyde oxidase and sulphite oxidase. In the present study, the hepatoprotective potential of sodium molybdate was investigated against carbon tetrachloride (CCl(4))-induced liver damage in rats. Administration of CCl(4) increased the serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase levels in rats and reduced levels of the antioxidant enzymes superoxide dismutase and catalase in the liver. Treatment with sodium molybdate significantly attenuated these changes to nearly undetectable levels. The histopathological changes induced by CCl(4) were also significantly attenuated by sodium molybdate treatment. Therefore, the results of this study suggest that sodium molybdate can protect the liver against CCl(4)-induced oxidative damage in rats, and this hepatoprotective effect might be attributable to its modulation of detoxification enzymes and/or its antioxidant and free radical scavenger effects.

  10. Protective role of erdosteine on vancomycin-induced oxidative stress in rat liver.

    Science.gov (United States)

    Sahin, Mehmet; Cam, Hakan; Olgar, Seref; Tunc, Sevket Ercan; Arslan, Cagatay; Uz, Efkan; Yilmaz, H Ramazan

    2006-10-01

    Drug-induced liver toxicity is a common cause of liver injury. This study was designed to elucidate whether high dose vancomycin (VCM) induces oxidative stress in liver and to investigate the protective effects of erdosteine, an expectorant agent. Twenty-two young Wistar rats were divided into three groups as follows: control group, VCM, and VCM plus erdosteine. VCM was administered intraperitoneally in the dosage of 200 mg/kg twice daily for 7 days. Erdosteine was administered orally administered once a day at a dose of 10 mg/kg body weight. The activities of antioxidant enzymes such as superoxide dismutase and catalase as well as the concentration of malondialdehyde, as an indicator of lipid peroxidation, were measured to evaluate oxidative stress in homogenates of the liver. VCM administration increased malondialdehyde levels (p Erdosteine co-administration with VCM injections caused significantly decreased malondialdehyde levels (p erdosteine may prevent VCM-induced oxidative changes in liver by reducing reactive oxygen species.

  11. Protective effects of Ginkgo biloba extract on 6-hydroxydopamine-induced apoptosis in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Yanbo Cheng; Jiale Yin; Qian Lu; Xingshun Xu; Xiaoxing Yin

    2011-01-01

    The present study analyzed the protective effects of Ginkgo biloba extract against 6-hydroxydopamine-induced PC12 cell apoptosis in a model of Parkinson's disease. The results showed that Ginkgo biloba extract had a potent cytoprotective action and inhibited apoptosis of PC12 cells induced by 6-hydroxydopamine. Ginkgo biloba extract decreased the ratio of Bax to Bcl-2 and markedly inhibited the activation of p53 and caspase-3. These experimental findings indicate that Ginkgo biloba extract may significantly reduce the effects of oxidative stress induced by 6-hydroxydopamine in PC12 cells and suppress cell apoptosis. The potential effects of Ginkgo biloba extract might be greater than those of levodopa in the treatment of Parkinson's disease.

  12. Protective Effects of N-Acetylcysteine in Concanavalin A-Induced Hepatitis in Mice

    Directory of Open Access Journals (Sweden)

    Chengfen Wang

    2015-01-01

    Full Text Available This study was designed to study the protective effects and mechanisms of N-acetylcysteine (NAC in concanavalin A-induced hepatitis in mice. In this study, pretreatment with NAC ameliorated the histopathological changes and suppressed inflammatory cytokines in ConA-induced hepatitis. The expression of IL-2, IL-6, TNF-α, and IFN-γ was significantly reduced in the NAC-treated groups. NAC activated PI3K/Akt pathway and inhibited the activation of NF-κB. Additionally, NAC reduced autophagosome formation, as assessed by detecting the expression of LC3 and Beclin 1. Our results demonstrate that NAC can alleviate ConA-induced hepatitis by regulating the PI3K/Akt pathway and reducing the late stages of autophagy. Our results described a new pharmaceutical to provide more effective therapies for immune hepatitis.

  13. Protective effect of stem bark of Ceiba pentandra linn. against paracetamol-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Nirmal K Bairwa

    2010-01-01

    Full Text Available The present study reports protective activity of ethyl acetate fraction of methanol extract of stem bark of Ceiba pentandra against paracetamol-induced liver damage in rats. The ethyl acetate fraction (400 mg/kg was administered orally to the rats with hepatotoxicity induced by paracetamol (3 gm/kg. Silymarin (100 mg/kg was used as positive control. High performance thin layer chromatography (HPTLC fingerprinting of ethyl acetate fraction revealed presence of its major chemical constituents. A significant (P < 0.05 reduction in serum enzymes GOT (ALT, aspartate aminotransferase (AST, GPT alkaline phosphatase (ALP, total bilirubin content and histopathological screening in the rats treated gave indication that ethyl acetate fraction of methanolic extract of Ceiba pentandra possesses hepatoprotective potential against paracetamol-induced hepatotoxicity in rats.

  14. Protective Effect of Troxerutin on Nickel-Induced Testicular Toxicity in Wistar Rats.

    Science.gov (United States)

    Elangovan, Perumal; Jalaludeen, Abdulkadhar Mohamed; Ramakrishnan, Ramalingam; Pari, Leelavinothan

    2016-01-01

    Nickel (Ni)-induced oxidative damage is a serious problem that leads to reproductive system failure through testicular damage. The present investigation was carried out to determine the effect of troxerutin (Txn) on testicular toxicity induced by Ni in experimental rat testes. The oral administration of Txn (100 mg/kg body weight [bw]) showed a significant (p glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), reduced glutathione, ascorbate, total sulphydryl groups, and testis-organ weight. Subsequently, the administration of Txn also significantly reduced the accumulation of Ni, lipid peroxidation products, and protein carbonyl levels in Txn-treated animals. Testicular protection in the experimental animals by Txn is further substantiated by a remarkable reduction of Ni, which was revealed through testicular tissue histopathology. These studies suggest that Txn could prevent oxidative damage and testicular toxicity induced by Ni in experimental animals.

  15. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  16. Genetic and histopathological alterations induced by cypermethrin in rat kidney and liver: Protection by sesame oil.

    Science.gov (United States)

    Soliman, Mohamed Mohamed; Attia, Hossam F; El-Ella, Ghada A Abou

    2015-12-01

    Pesticides are widespread synthesized substances used for public health protection and agricultural programs. However, they cause environmental pollution and health hazards. This study aimed to examine the protective effects of sesame oil (SO) on the genetic alterations induced by cypermethrin (CYP) in the liver and kidney of Wistar rats. Male rats were divided into four groups, each containing 10 rats: the control group received vehicle, SO group (5 mL/kg b.w), CYP group (12 mg/kg b.w), and protective group received SO (5 mL/kg b.w) plus CYP (12 mg/kg b.w). Biochemical analysis showed an increase in albumin, urea, creatinine, GPT, GOT, and lipid profiles in the CYP group. Co-administration of SO with CYP normalized such biochemical changes. CYP administration decreased both the activity and mRNA expression of the examined antioxidants. SO co-administration recovered CYP, downregulating the expression of glutathione-S-transferase (GST), catalase, and superoxide dismutase. Additionally, SO co-administration with CYP counteracted the CYP- altering the expression of renal interleukins (IL-1 and IL-6), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), anigotensinogen (AGT), AGT receptors (AT1), and genes of hepatic glucose and fatty acids metabolism. CYP induced degenerative changes in the kidney and liver histology which are ameliorated by SO. In conclusion, SO has a protective effect against alterations and pathological changes induced by CYP in the liver and kidney at genetic and histological levels.

  17. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Qing [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Tao, Li [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Zhi-Hui; Liu, Xiao-Qian [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Xu, Yuan-Bao [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Hua [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Li, Jun, E-mail: lijun@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China)

    2013-01-15

    hepatic NF-κB activation and ERK and JNK phosphorylation. ► PBA effectively protects against CCl{sub 4}-induced HSC activation and hepatic fibrosis. ► ER stress is involved in CCl{sub 4}-induced hepatic inflammation and fibrogenesis.

  18. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    Science.gov (United States)

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  19. Protective effect of serum thymic factor, FTS, on cephaloridine-induced nephrotoxicity in rats.

    Science.gov (United States)

    Kohda, Yuka; Matsunaga, Yoshiko; Yonogi, Katsuya; Kawai, Yoshiko; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to increase superoxide disumutase (SOD) levels in senescence-accelerated mice. In the present study, we examined the effect of FTS on cephaloridine (CER)-induced nephrotoxicity in vivo and in vitro. We previously reported that CER led to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney. So, we also investigated whether FTS has an effect on ERK activation induced by CER. Treatment of male Sprague-Dawley rats with intravenous CER (1.2 g/kg) for 24 h markedly increased BUN and plasma creatinine levels and urinary excretion of glucose and protein, decreased creatinine clearance and also led to marked pathological changes in the proximal tubules, as revealed by electron micrographs. An increase in phosphorylated ERK (pERK) was detected in the nuclear fraction prepared from the rat kidney cortex 24 h after CER injection. Pretreatment of rats with FTS (50 microg/kg, i.v.) attenuated the CER-induced renal dysfunction and pathological damage. FTS also suppressed CER-induced ERK activation in the kidney. In vitro treatment of the established cell line, LLC-PK1 cells, with FTS significantly ameliorated CER-induced cell injury, as measured by lactate dehydrogenase (LDH) leakage. Our results, taken together with our previous report that MEK inhibitors ameliorated CER-induced renal cell injury and ERK activation induced by CER, suggest that FTS participates in protection from CER-induced nephrotoxicity by suppressing ERK activation induced by CER.

  20. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  1. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    Directory of Open Access Journals (Sweden)

    Chi-Ming Chan

    2015-03-01

    Full Text Available Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD. Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2 expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD.

  2. Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress.

    Science.gov (United States)

    Si, Pei-Pei; Zhen, Jun-Li; Cai, Yun-Lei; Wang, Wen-Jing; Wang, Wei-Ping

    2016-04-01

    There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.

  3. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    Science.gov (United States)

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  4. The Structural Features of Sports and Race Betting Inducements: Issues for Harm Minimisation and Consumer Protection.

    Science.gov (United States)

    Hing, Nerilee; Sproston, Kerry; Brook, Kate; Brading, Richard

    2016-09-08

    Minimal research has been published about inducements for sports and race betting, despite their ready availability and aggressive advertising. This paper aimed to document the range and structural features of these inducements, and analyse their alignment with the harm minimisation and consumer protection goals of responsible gambling. A scan of all inducements offered on the websites of 30 major race and sports betting brands located 223 separate inducements which we categorised into 15 generic types, all offering financial incentives to purchase. These comprised sign-up offers, refer-a-friend offers, happy hours, mobile betting bonuses, multi-bet offers, refund/stake-back offers, matching stakes/deposits, winnings paid for 'close calls', bonus or better odds, bonus or better winnings, competitions, reduced commission, free bets to selected punters, cash rebates and other free bets. All inducements were subject to numerous terms and conditions which were complex, difficult to find, and obscured by legalistic language. Play-through conditions of bonus bets were particularly difficult to interpret and failed basic requirements for informed choice. Website advertisements for inducements were prominently promoted but few contained a responsible gambling message. The results were analysed to generate 12 research propositions considered worthy of empirical research to inform much needed regulatory reform in this area.

  5. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    Science.gov (United States)

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  6. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    Science.gov (United States)

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  7. Protection of DNA From Ionizing Radiation-Induced Lesions by Asiaticoside.

    Science.gov (United States)

    Joy, Jisha; Alarifi, Saud; Alsuhaibani, Entissar; Nair, Cherupally K Krishnan

    2015-01-01

    This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions.

  8. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  9. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    Science.gov (United States)

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  10. Selenium protects against ischemia-reperfusion- induced gastric lesions in rats

    Directory of Open Access Journals (Sweden)

    Mobarok Ali Abu Taib

    1997-01-01

    Full Text Available Recent studies have shown that selenium afforded protection against ethanol and stress-induced gastric lesions in rats. The present study was undertaken to investigate the effect of selenium on ischemia-reperfusion-induced gastric injuries in which rats were subjected to 30 minutes of ischemia in the presence of 100 mM HCI and a reperfusion for 60 minutes duration. Intraluminal bleeding was assessed macroscopically and gastric lesions were graded microscopically under an inverted microscope. Nonprotein sulphydryl levels were measured spectrophotometrically. The severity of gastric lesions, intraluminal bleeding as well as the depletion of nonprotein sulphydryls during the reperfusion periods was significantly different from that of control. Pretreatment with selenium (0.125-2.0 mg/kg, intraperitoneally 30 minutes before the ischemia-reperfusion, dose-dependently attenuated the gastric lesions, reduced the severity of intraluminal bleeding and prevented the depletion of nonprotein sulphydryls in the stomach. These results suggest that the gastric protection effect of selenium may be due to its antioxidant properties. Furthermore, endogenous nonprotein sulphydryls may play a significant role in the protective mechanisms of selenium.

  11. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    Science.gov (United States)

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  12. Grape seed and skin extract protects against arsenic trioxide induced oxidative stress in rat heart.

    Science.gov (United States)

    Sfaxi, Ichraf; Charradi, Kamel; Limam, Ferid; El May, Michèle Veronique; Aouani, Ezzedine

    2015-07-29

    Arsenic is a metalloid found in water, soil, and air from natural and anthropogenic sources, and is commonly found in inorganic as well as organic forms. The clinical use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL) is limited by its cardiotoxic side effects. Grape seed and skin extract (GSSE) is a polyphenolic mixture with antioxidant properties. This study aimed to evaluate the protective effect of GSSE on arsenic-induced cardiac oxidative stress and injury. Animals exposed to 2.5 mg/kg As2O3 for 21 days exhibited a relevant increase in heart lipoperoxidation, protein carbonylation, and inflammation, as well as a drop in the activity of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). In addition, As2O3 disturbed heart lipidemia and lipase activity, transition metals distribution and the associated enzymes, intracellular mediators such as calcium and the associated calpain activity, as well as myocardial architecture. Treatment with 4 g/kg GSSE protected against most of the deleterious effects provoked by As2O3. Our data suggest that GSSE has the potential to protect against As2O3-induced cardiotoxicity.

  13. Protective effects of pogostone from Pogostemonis Herba against ethanol-induced gastric ulcer in rats.

    Science.gov (United States)

    Chen, Haiming; Liao, Huijun; Liu, Yuhong; Zheng, Yifeng; Wu, Xiaoli; Su, Zuqing; Zhang, Xie; Lai, Zhengquan; Lai, Xiaoping; Lin, Zhi-Xiu; Su, Ziren

    2015-01-01

    We examined the protective effect of pogostone (PO), a chemical constituent isolated from Pogostemonis Herba, on the ethanol-induced gastric ulcer in rats. Administration of PO at doses of 10, 20 and 40 mg/kg body weight prior to ethanol ingestion effectively protected the stomach from ulceration. The gastric lesions were significantly ameliorated by all doses of PO as compared to the vehicle group. Pre-treatment with PO prevented the oxidative damage and the decrease of prostaglandin E2 (PGE2) content. In addition, PO pretreatment markedly increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), and decreased gastric malonaldehyde (MDA), relative to the vehicle group. In the mechanistic study, significant elevation of non-protein-sulfhydryl (NP-SH) was observed in the gastric mucosa pretreated by PO. Analysis of serum cytokines indicated that PO pretreatment obviously elevated the decrease of interleukin-10 (IL-10) level, while markedly mitigated the increment of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretions in ethanol-induced rats. Taken together, these results strongly indicate that PO could exert a gastro-protective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, improvement of antioxidant and anti-inflammatory status, as well as preservation of NP-SH.

  14. Ginger-derived nanoparticles protect against alcohol-induced liver damage.

    Science.gov (United States)

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant-derived nanoparticles.

  15. Ginger-derived nanoparticles protect against alcohol-induced liver damage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2015-11-01

    Full Text Available Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2 led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles.

  16. Protective Effects of Baicalin on Decidua Cells of LPS-Induced Mice Abortion

    Directory of Open Access Journals (Sweden)

    Xiaodan Wang

    2014-01-01

    Full Text Available The study was carried out to investigate the protective effects of Baicalin on decidual cells of LPS-induced abortion mice. In the in vitro experiment, the decidual cells were cultured by uterus tissue mass cultivation sampled at day 6 of pregnancy, and gradient concentrations of LPS were used to determine the optimal LPS concentration of the injured decidual cells model. The injured decidual cells were treated with Baicalin (4 μg/mL to determine the protective role of Baicalin. In the in vivo experiment, lipopolysaccharide (LPS was injected intravenously via the tail vein to induce abortion at day 6 of pregnancy, and the mice were given different concentrations of Baicalin by oral gavage consecutively at days 7 to 8 of pregnancy. On day 9 of gestation, the mice were sacrificed. The TNF and progesterone contents in the serum were assayed by ELISA. The results clearly revealed that Baicalin can prevent the injury to decidual cells from LPS dose dependently, TNF was decreased significantly (P<0.01 compared to LPS group, and there was no effect on the progesterone. These findings suggest that Baicalin has protective effects on the injured decidual cells in the pregnant mice.

  17. Protective effect of Satureja montana extract on cyclophosphamide-induced testicular injury in rats.

    Science.gov (United States)

    Abd El Tawab, Azza M; Shahin, Nancy N; AbdelMohsen, Mona M

    2014-12-05

    The present study investigated the protective effect of Satureja montana extract against cyclophosphamide-induced testicular injury in rats. Total phenolic and flavonoid contents of the extract were 1.03% and 0.34%w/w of dry herb expressed as chlorogenic acid and quercetin, respectively. HPLC analysis identified caffeic, syringic and rosmarinic acids as the chief phenolic acids, and rutin as the major flavonoid in the extract. Oral daily administration of S.montana extract (50mg/kg/day) for 7days before and 7days after an intraperitoneal injection of cyclophosphamide (200mg/kg) restored the reduced relative testicular weight, serum testosterone level and testicular alkaline phosphatase activity, raised the lowered testicular sorbitol dehydrogenase and acid phosphatase activities, and decreased the elevated testicular hemoglobin absorbance. It also attenuated lipid peroxidation, restored the lowered glutathione content, glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase activities, and improved total antioxidant capacity. Moreover, S.montana extract mitigated testicular DNA fragmentation, decreased the elevated Fas and Bax gene expression, up-regulated the decreased Bcl-2 and peroxisome proliferator-activated receptor-gamma (PPAR-γ) gene expression and normalized Akt1 protein level. Histopathological investigation confirmed the protective effects of the extract. Conclusively, S.montana extract protects the rat testis against cyclophosphamide-induced damage via anti-oxidative and anti-apoptotic mechanisms that seem to be mediated, at least in part, by PPAR-γ and Akt1 up-regulation.

  18. A conditionally lethal mutant of Salmonella Typhimurium induces a protective response in mice.

    Science.gov (United States)

    Hidalgo, Alejandro A; Villagra, Nicolás A; Jerez, Sebastián A; Fuentes, Juan A; Mora, Guido C

    2016-02-01

    Here we present the design of a conditionally lethal mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) which growth depends on tetracycline (Tet). Four mutants of S. Typhimurium, with Tet-conditional growth, were created by inserting the tetRA cassette. Three of the mutants presented a conditional-lethal phenotype in vitro. One mutant in the yabB gene remained conditional inside cells and did not persisted after 24 h in cell cultures. The capacity of S. Typhimurium yabB::tetRA to invade deep organs was investigated in intraperitoneally (IP) infected mice fed with or without chlortetracycline (CTet), a Tet analog with lower antibiotic activity. The yabB::tetRA mutant was undetectable in liver or spleen of animals under normal diet, while in mice under diet including CTet, yabB::tetRA invaded at a level comparable to the WT in mice under normal diet. Moreover, yabB::tetRA produced a strong humoral-immunoresponse after one IP immunization with 10(6) bacteria, measured as serum reactivity against S. Typhimurium whole cell extract. By contrast, oral immunization with 10(6) bacteria was weaker and variable on inducing antibodies. Consistently, IP infected mice were fully protected in a challenge with 10(4) oral S. Typhimurium, while protection was partial in orally immunized mice. Our data indicate that S. Typhimurium yabB::tetRA is a conditionally attenuated strain capable of inducing a protective response in mice in non-permissive conditions.

  19. Protection against adriamycin (doxorubicin-induced toxicity in mice by several clinically used drugs.

    Directory of Open Access Journals (Sweden)

    Shinozawa,Shinya

    1987-02-01

    Full Text Available Protective effects of clinically used drugs against adriamycin (ADM-induced toxicity were studied in ICR mice. The control mice, which were administered 15 mg/kg of ADM twice, survived 7.48 +/- 1.99 days (mean +/- S.D.. The survival times of mice treated with the following drugs, expressed as a percent of that of the control group, were 293.6% for coenzyme Q10 (Co Q10, 2 mg/kg, 402.2% for dextran sulfate (MDS, 300 mg/kg, 121.6% for flavin adenine dinucleotide (20 mg/kg, 236.3% for adenosine triphosphate disodium (50 mg/kg, 213.7% for reduced glutathione (100 mg/kg, 121.6% for phytonadione (50 mg/kg, 155.2% for inositol nicotinate (Ino-N, 500 mg/kg, 335.5% for nicomol (1000 mg/kg, 157.5% for nicardipine (10 mg/kg and 123.3% for dipyridamol (50 mg/kg. Anti-hyperlipemic agents such as MDS, nicomol, Ino-N and Co Q10 strongly protected against the ADM-induced toxicity, and the mice administered these drugs lived significantly longer than the control mice. The mechanism of the protective effect was discussed.

  20. Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling

    Science.gov (United States)

    Gao, Xiao-peng; Qian, Dong-wei; Xie, Zhen; Hui, Hao

    2017-01-01

    Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cells was used in this study. Cell injury was assessed using WST-1 assay and lactate dehydrogenase, alanine transaminase, and aspartate aminotransferase release assay. Cell apoptosis were quantified by flow cytometric analysis. The intracellular oxidative level was evaluated by reactive oxidative species, malondialdehyde and glutathione detection. Furthermore, the expression level of Erk, p-Erk, Nrf-2 were assessed using Western blot. Results: Treatment with ethanol induced marked cell injury and cell apoptosis in BRL cells. Licochalcone B significantly attenuated ethanol-induced cell injury, and inhibited cell apoptosis. Furthermore, licochalcone B significantly inhibited ethanol-induced intracellular oxidative level, upregulated the expression of p-Erk, and promoted nuclear localization of Nrf2. Additionally, this hepatoprotective role was significantly abolished by inhibition of Erk signaling. However, no apparent effects of Erk inhibition were observed on ethanol-induced hepatotoxicity. Conclusion: This study demonstrates that licochalcone B protects hepatocyte from alcohol-induced cell injury, and this hepatoprotective role might be attributable to apoptosis reduction, inhibition of oxidative stress, and upregulation of Erk–Nrf2. Therefore, licochalcone B might possess potential as a novel therapeutic drug candidate for alcohol-related liver disorders.

  1. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    Science.gov (United States)

    Yang, Chunguang; Ma, Xueyou; Wang, Zhihua; Zeng, Xing; Hu, Zhiquan; Ye, Zhangqun; Shen, Guanxin

    2017-01-01

    Background Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties. Materials and methods CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot. Results Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin. Conclusion Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties. PMID:28243065

  2. Salidroside Protects against Cadmium-Induced Hepatotoxicity in Rats via GJIC and MAPK Pathways.

    Science.gov (United States)

    Zou, Hui; Liu, Xuezhong; Han, Tao; Hu, Di; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Zhu, Jiaqiao; Liu, Zong-ping

    2015-01-01

    It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepatotoxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associated with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted in the inhibition of gap junction intercellular communication (GJIC) and activation of mitogen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-β-glycyrrhetinic acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treatment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibitor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the participation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Furthermore, we have shown that salidroside may be a functional chemopreventative agent that ameliorates the negative effects of Cd via GJIC and MAPK pathways.

  3. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    Science.gov (United States)

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage.

  4. Protection with cycloheximide or emetine against pulmonary edema induced by ozone or nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Z.; Yokoyama, E.

    1982-03-01

    Pretreatment with cycloheximide or emetine provided significant protection against pulmonary edema in rats exposed to ozone or nitrogen dioxide. Other inhibitors of protein-synthesis, actinomycin D or puromycin, failed to show such effects. Possible actions of these agents as well as the doses and times that afforded the significant protection were investigated. These agents, by themselves, did not alter the water content of the lungs. In vitro study revealed that both cycloheximide and emetine hardly acted as scavengers of oxidant. Pretreatment with either agent was associated with a significant increase in the activity of glucose 6-phosphate dehydrogenase of the lungs, but the increase did not necessarily coincide with the protection. Activity levels of non-protein SH, glutathione-peroxidase and -reductase in the lungs of rats treated with either agent were scarcely altered. The effect of these agents administered in vivo or in vitro on the in vitro lipid peroxidation by air was also investigated. Other possible mechanisms of these agents responsible for the protective effect against pulmonary edema induced by oxidants were also discussed.

  5. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract.

    Science.gov (United States)

    Ajila, C M; Prasada Rao, U J S

    2008-01-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic and cytoprotective activities and other therapeutic properties. Mango peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids and others. In the present study, the protective effect of peel extracts of unripe and ripe mango fruits of two varieties namely, Raspuri and Badami on hydrogen peroxide induced hemolysis, lipid peroxidation, degradation of membrane proteins and its morphological changes are reported. The oxidative hemolysis of rat erythrocytes by hydrogen peroxide was inhibited by mango peel extract in a dose dependent manner. The IC(50) value for lipid peroxidation inhibition on erythrocyte ghost membrane was found to be in the range of 4.5-19.3 microg gallic acid equivalents. The mango peel extract showed protection against membrane protein degradation caused by hydrogen peroxide. Morphological changes to erythrocyte membrane caused by hydrogen peroxide were protected by mango peel extract. The results demonstrated that mango peel extracts protected erythrocytes against oxidative stress and may impart health benefits and it could be used as a valuable food ingredient or a nutraceutical product.

  6. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  7. Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage.

    Science.gov (United States)

    Tulipan, N; Luo, S Q; Allen, G S; Whetsell, W O

    1988-12-01

    Grafts of neonatal striatal tissue were placed into the striata of adult rats. When challenged immediately with intrastriatal injections of either kainic or quinolinic acid, excitotoxic damage was prevented. Thirty days later these same graft recipients received another injection of excitotoxin. The intrastriatal grafts continued to mitigate toxin-induced damage. It is hypothesized that the grafted cells not only survive, but that they may continue to elaborate some substance or substances that prevent excitotoxin-induced injury for at least 30 days. Previous investigations indicated that grafts of neonatal striatal tissue can protect the recipient striatum from kainic acid toxicity. In the following study it is demonstrated that such grafts also protect the striatum from quinolinic acid, an endogenous excitotoxin which induces kainate-like neuronal degeneration and has been implicated in the pathogenesis of Huntington's disease. It is postulated that the salutary effect of striatal grafting may be sufficiently long lasting to mitigate a chronic toxic insult. Such grafting may therefore represent a therapy for Huntington's disease and other neurodegenerative disorders in which an endogenous or exogenous toxin has been implicated as the pathogenetic agent.

  8. Protective effect of linalool against lipopolysaccharide/D-galactosamine-induced liver injury in mice.

    Science.gov (United States)

    Li, Jingyuan; Zhang, Xiaoyu; Huang, Haiying

    2014-12-01

    Linalool, a natural compound of the essential oils, has been shown to have antinociceptive, antimicrobial, and anti-inflammatory properties. The aim of this study was to investigate the effects of linalool against lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced liver injury in mice. Mice were administered with linalool 1h before receiving LPS (50 μg/kg) and GalN (800 mg/kg). The results demonstrated that linalool had a protective effect on LPS/GalN-induced acute liver injury, as evidenced by the attenuation of hepatic pathological damage, malondialdehyde (MDA) content, MPO activity and serum ALT and AST levels. Linalool alleviated serum and hepatic TNF-α and IL-6 production, as well as hepatic iNOS and COX-2 expression by inhibiting NF-κB activation. Treatment of linalool increased bcl-2 expression and inhibited caspase-3 and caspase-8 expression. In addition, linalool increased Nrf2 and heme oxygenase-1 expression up-regulation by LPS/GalN. In conclusion, our results suggested that linalool was protected against LPS/GalN-induced liver injury through induction of antioxidant defense via Nrf2 activating and reduction inflammatory response via NF-κB inhibition.

  9. Protective Effect of Acacia nilotica (L. against Acetaminophen-Induced Hepatocellular Damage in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2013-01-01

    Full Text Available The potential biological functions of A. nilotica have long been described in traditional system of medicine. However, the protective effect of A. nilotica on acetaminophen-induced hepatotoxicity is still unknown. The present study attempted to investigate the protective effect of A. nilotica against acetaminophen-induced hepatic damage in Wistar rats. The biochemical liver functional tests Alanine transaminase (ALT, Aspartate transaminase (AST, Alkaline phosphatase (ALP, total bilirubin, total protein, oxidative stress test (Lipid peroxidation, antioxidant parameter glutathione (GSH, and histopathological changes were examined. Our results show that the pretreatment with A. nilotica (250 mg/kg·bw orally revealed attenuation of serum activities of ALT, AST, ALP, liver weight, and total bilirubin levels that were enhanced by administration of acetaminophen. Further, pretreatment with extract elevated the total protein and GSH level and decreased the level of LPO. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by acetaminophen. The present study undoubtedly provides a proof that hepatoprotective action of A. nilotica extract may rely on its effect on reducing the oxidative stress in acetaminophen-induced hepatic damage in rat model.

  10. The potential protective role of taurine against 5-fluorouracil-induced nephrotoxicity in adult male rats.

    Science.gov (United States)

    Yousef, Hany N; Aboelwafa, Hanaa R

    2017-02-08

    Nephrotoxicity is common with the use of the chemotherapeutic agent 5-Fluorouracil (5-FU). The current study aimed to investigate the probable protective effect of taurine (TAU) against 5-FU-induced nephrotoxicity in rats using biochemical, histological and ultrastructural approaches. Twenty-four rats were equally divided into control, TAU, 5-FU and 5-FU+TAU groups. 5-FU significantly elevated levels of blood urea nitrogen (BUN), creatinine, and uric acid; while it reduced activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Also, 5-FU induced significant elevation in malondialdehyde (MDA) levels accompanied with marked decline in γ-glutamyltranspeptidase (GGT) and alkaline phosphatase (AP) levels in kidney tissues. These biochemical alterations were accompanied by histopathological changes marked by destruction of the normal renal structure, in addition to ultrastructural alterations represented by thickened and irregular glomerular basement membranes, congested glomerular capillaries, damaged lining fenestrated endothelium, mesangial cells hyperplasia with expanded mesangial matrix, and distorted podocyte's processes. Also, the proximal (PCT) and distal (DCT) convoluted tubules showed thickened basement membranes, destructed apical microvilli and loss of basal infoldings of their epithelial cells. Administration of TAU to 5-FU-treated rats reversed most of the biochemical, histological, and ultrastructural alterations. These results indicate that TAU has a protective effect against 5-FU-induced nephrotoxicity.

  11. Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats.

    Science.gov (United States)

    Abdel-Daim, Mohamed M

    2016-03-01

    Diazinon (DZN) is a synthetic organophosphrus acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid-vitamin C against DZN-induced renal injury in male Wistar albino rats. DZN-treated animals revealed significant elevation in serum biochemical parameters related to renal injury: urea, uric acid and creatinine. DZN intoxication significantly increased renal lipid peroxidation, and significant inhibition in antioxidant biomarkers including, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase and total antioxidant capacity. In addition, DZN significantly reduced serum acetylcholinestrase level. Moreover, It induced serum and kidney tumor necrosis factor-α level. Both ceftriaxone and vitamin C protect against DZN-induced serum as well as renal tissue biochemical parameters when used alone or in combination along with DZN-intoxication. Furthermore, both ceftriaxone and vitamin C produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or vitamin C administration are able to minimize the toxic effects of DZN by its free radical-scavenging and potent antioxidant activity.

  12. Protective effect of naringenin against gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Fouad, Amr A; Albuali, Waleed H; Zahran, Ahmed; Gomaa, Wafaey

    2014-09-01

    The protective effect of naringenin, a flavonoid compound isolated from citrus fruits, was investigated against nephrotoxicity induced by gentamicin (80mgkg(-1)/day, i.p., for eight days) in rats. Naringenin treatment (50mgkg(-1)/day, p.o.) was administered for eight days, starting on the same day of gentamicin administration. Gentamicin caused significant elevations of serum creatinine, and kidney tissue levels of malondialdehyde, nitric oxide, and interleukin-8, and a significant decrease in renal glutathione peroxidase activity. Naringenin treatment significantly ameliorated the changes in the measured biochemical parameters resulted from gentamicin administration. Also, naringenin markedly attenuated the histopathological renal tissue injury observed with gentamicin. Immunohistochemical examinations showed that naringenin significantly reduced the gentamicin-induced expression of kidney injury molecule-1, vascular endothelial growth factor, inducible nitric oxide synthase, and caspase-9, and increased survivin expression in the kidney tissue. It was concluded that naringenin, through its antioxidant and anti-inflammatory effects, may represent a therapeutic option to protect against gentamicin nephrotoxicity.

  13. Derinat Protects Skin against Ultraviolet-B (UVB-Induced Cellular Damage

    Directory of Open Access Journals (Sweden)

    Wen-Li Hsu

    2015-11-01

    Full Text Available Ultraviolet-B (UVB is one of the most cytotoxic and mutagenic stresses that contribute to skin damage and aging through increasing intracellular Ca2+ and reactive oxygen species (ROS. Derinat (sodium deoxyribonucleate has been utilized as an immunomodulator for the treatment of ROS-associated diseases in clinics. However, the molecular mechanism by which Derinat protects skin cells from UVB-induced damage is poorly understood. Here, we show that Derinat significantly attenuated UVB-induced intracellular ROS production and decreased DNA damage in primary skin cells. Furthermore, Derinat reduced intracellular ROS, cyclooxygenase-2 (COX-2 expression and DNA damage in the skin of the BALB/c-nu mice exposed to UVB for seven days in vivo. Importantly, Derinat blocked the transient receptor potential canonical (TRPC channels (TRPCs, as demonstrated by calcium imaging. Together, our results indicate that Derinat acts as a TRPCs blocker to reduce intracellular ROS production and DNA damage upon UVB irradiation. This mechanism provides a potential new application of Derinat for the protection against UVB-induced skin damage and aging.

  14. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Mario Rodriguez-Canales

    2016-01-01

    Full Text Available Amphipterygium adstringens is an endemic species in Mexico commonly known as “cuachalalate.” Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index, antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1β cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis.

  15. Interferon-γ Protects from Staphylococcal Alpha Toxin-Induced Keratinocyte Death through Apolipoprotein L1.

    Science.gov (United States)

    Brauweiler, Anne M; Goleva, Elena; Leung, Donald Y M

    2016-03-01

    Staphylococcus aureus is a bacterial pathogen that frequently infects the skin, causing lesions and cell destruction through its primary virulence factor, alpha toxin. Here we show that interferon gamma (IFN-?) protects human keratinocytes from cell death induced by staphylococcal alpha toxin. We find that IFN-? prevents alpha toxin binding and reduces expression of the alpha toxin receptor, a disintegrin and metalloproteinase 10 (ADAM10). We determine that the mechanism for IFN-?-mediated resistance to alpha toxin involves the induction of autophagy, a process of cellular adaptation to sublethal damage. We find that IFN-? potently stimulates activation of the primary autophagy effector, light chain 3 (LC3). This process is dependent on upregulation of apolipoprotein L1. Depletion of apolipoprotein L1 by small interfering RNA significantly increases alpha toxin-induced lethality and inhibits activation of light chain 3. We conclude that IFN-? plays a significant role in protecting human keratinocytes from the lethal effects of staphylococcal alpha toxin through apolipoprotein L1-induced autophagy.

  16. Protective role of edaravone against neomycin-induced ototoxicity in zebrafish.

    Science.gov (United States)

    Choi, June; Chang, Jiwon; Jun, Hyung Jin; Im, Gi Jung; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon-Young; Jung, Hak Hyun; Chung, Ah-Young; Park, Hae-Chul

    2014-05-01

    Aminoglycosides such as neomycin are one of the most commonly prescribed types of antibiotics worldwide. However, these drugs appear to generate free radicals within the inner ear, which can result in permanent hearing loss. We evaluated the effects of edaravone, a neuroprotective agent, on neomycin-induced ototoxicity in transgenic zebrafish. The 5-day post fertilization (dpf) zebrafish larvae were exposed to 125 μM neomycin and various concentrations of edaravone for 1 h. Hair cell survival was calculated as average numbers of the hair cells in the control group, which was not exposed to neomycin. Ultrastructural changes were evaluated using a scanning electron microscope (SEM) and transmission electron microscope (TEM). Edaravone protected against neomycin-induced hair cell loss in the neuromasts (1000 μM: 11.6 ± 1.1 cells, neomycin only: 5.5 ± 0.5 cells; n = 10, Pneomycin and 1000 μM edaravone for 1 h. Edaravone protected against neomycin-induced hair cell loss by preventing apoptosis.

  17. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  18. The protective effect of ENA Actimineral resource A on CCl4-induced liver injury in rats.

    Science.gov (United States)

    Hong, Il-Hwa; Ji, Hoon; Hwa, Sung-Yong; Jeong, Won-Il; Jeong, Da-Hee; Do, Sun-Hee; Kim, Ji-Min; Ki, Mi-Ran; Park, Jin-Kyu; Goo, Moon-Jung; Hwang, Ok-Kyung; Hong, Kyung-Sook; Han, Jung-Youn; Chung, Hae-Young; Jeong, Kyu-Shik

    2011-06-01

    ENA Actimineral Resource A (ENA-A) is alkaline water that is composed of refined edible cuttlefish bone and two different species of seaweed, Phymatolithon calcareum and Lithothamnion corallioides. In the present study, ENA-A was investigated as an antioxidant to protect against CCl(4)-induced oxidative stress and hepatotoxicity in rats. Liver injury was induced by either subacute or chronic CCl(4) administration, and the rats had free access to tap water mixed with 0% (control group) or 10% (v/v) ENA-A for 5 or 8 weeks. The results of histological examination and measurement of antioxidant activity showed that the reactive oxygen species production, lipid peroxidation, induction of CYP2E1 were decreased and the antioxidant activity, including glutathione and catalase production, was increased in the ENA-A groups as compared with the control group. On 2-DE gel analysis of the proteomes, 13 differentially expressed proteins were obtained in the ENA-A groups as compared with the control group. Antioxidant proteins, including glutathione S-transferase, kelch-like ECH-associated protein 1, and peroxiredoxin 1, were increased with hepatocyte nuclear factor 3-beta and serum albumin precursor, and kininogen precursor decreased more in the ENA-A groups than compared to the control group. In conclusion, our results suggest that ENA-A does indeed have some protective capabilities against CCl(4)-induced liver injury through its antioxidant function.

  19. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Abdel-Daim, Mohamed M; El-Ghoneimy, Ashraf

    2015-03-01

    Deltamethrin (DLM) is a synthetic class II pyrethroid acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid against DLM-induced renal injury in male Wistar albino rats. DLM-treated animals revealed significant alterations in serum biochemical parameters related to renal injury; urea, uric acid and creatinine. There was a significant increase in renal lipid peroxidation and a significant inhibition in antioxidant biomarkers. Moreover, DLM significantly reduced serum acetylcholinesterase (AChE) activity. In addition, It induced serum and kidney tumor necrosis factor-α (TNF-α). Both ceftriaxone and ascorbic acid protect against DLM-induced biochemical alterations in serum and renal tissue when used alone or in combination along with DLM-intoxication. Furthermore, both ceftriaxone and ascorbic acid produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or ascorbic acid administration able to minimize the toxic effects of DLM through their free radical-scavenging and potent antioxidant activity.

  20. Protective Effect of Calculus Bovis Sativus on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Xiping Li

    2015-01-01

    Full Text Available Calculus Bovis Sativus (CBS is a commonly used traditional Chinese medicine, which has been reported to exhibit antispasmodic, fever-reducing, anti-inflammatory, and gallbladder-repairing effects. The present study aims to investigate the protective effect of CBS on dextran sulphate sodium- (DSS- induced ulcerative colitis (UC in mice. C57BL/6 male mice were exposed to 5% DSS in drinking water. CBS was given orally at 50 and 150 mg/kg once per day for 7 days. Body weight, disease activity index (DAI, colon length, colonic myeloperoxidase (MPO activity, superoxide dismutase (SOD activity, and malondialdehyde (MDA and nitric oxide (NO levels were measured. Administration of CBS significantly reserved these changes, decreased the MPO activity and MDA and NO level, and increased the SOD activity in the colon tissue. Histological observation suggested that CBS alleviated edema, mucosal damage, and inflammatory cells infiltration induced by DSS in the colon. Moreover, CBS significantly downregulated the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin- (IL- 1β and IL-6 in the colon tissue. Our data suggested that CBS exerted protective effect on DSS-induced UC partially through the antioxidant and anti-inflammatory activities.

  1. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L(-1)) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH(-1) and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst.

  2. Self-Adjuvanting Bacterial Vectors Expressing Pre-Erythrocytic Antigens Induce Sterile Protection against Malaria

    Directory of Open Access Journals (Sweden)

    Elke eBergmann-Leitner

    2013-07-01

    Full Text Available Genetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E. coli expressing malarial antigens resulted in the induction of either Th1 or Th2 biased responses that were dependent on both antigen and sub-cellular localization. Some of these constructs induced higher quality humoral responses compared to recombinant protein and most importantly they were able to induce sterile protection against sporozoite challenge in a murine model of malaria. In light of these encouraging results, two major Plasmodium falciparum pre-erythrocytic malaria vaccine targets, the Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS fused to the Maltose-binding protein in the periplasmic space and the Circumsporozoite Protein (CSP fused to the Outer membrane protein A in the outer membrane were expressed in a clinically relevant, attenuated Shigella strain (Shigella flexneri 2a. This type of live attenuated vector has previously undergone clinical investigations as a vaccine against shigellosis. Using this novel delivery platform for malaria, we find that vaccination with the whole organism represents an effective vaccination alternative that induces protective efficacy against sporozoite challenge. Shigella GeMI-Vax expressing malaria targets warrant further evaluation to determine their full potential as a dual disease, multivalent, self-adjuvanting vaccine system, against both shigellosis and malaria.

  3. The Protective Role of Resveratrol against Arsenic Trioxide-Induced Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Weiqian Zhang

    2013-01-01

    Full Text Available Arsenic trioxide (As2O3 shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL. Unfortunately, limiting the application of this effective agent to APL patients is severe cardiotoxicity. Resveratrol, the natural food-derived polyphenolic compound, is well known for its antioxidant properties and protects the cardiovascular system. But the potential role of resveratrol against As2O3 in heart via nuclear factor erythroid 2-related factor 2 (Nrf2 and heme oxygenase-1 (HO-1 is unclear. The present study evaluated the effects of pretreatment with resveratrol and As2O3 on oxidative stress and cardiac dysfunction in rat. In the present study, resveratrol decreased As2O3-induced reactive oxygen species generation, oxidative DNA damage, and pathological alterations. In addition, cardiac dysfunction parameters, intracellular calcium and arsenic accumulation, glutathione redox ratio, and cAMP deficiency levels were observed in As2O3-treated rats; these changes were attenuated by resveratrol. Furthermore, resveratrol significantly prohibited the downregulation of both Nrf2 and HO-1 gene expressions that were downregulated by As2O3, whereas resveratrol did not alter As2O3-induced nitric oxide formation. Thus, the protective role of resveratrol against As2O3-induced cardiotoxicity is implemented by the maintenance of redox homeostasis (Nrf2-HO-1 pathway and facilitating arsenic efflux. Our findings suggest coadministration with resveratrol, and As2O3 might provide a novel therapeutic strategy for APL.

  4. Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Ishii, Isao; Kamata, Shotaro; Hagiya, Yoshifumi; Abiko, Yumi; Kasahara, Tadashi; Kumagai, Yoshito

    2015-12-01

    The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.

  5. Inhibition of ROCK2 expression protects against methamphetamine-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Yang, Xingyi; Liu, Yunyun; Liu, Chao; Xie, Weibing; Huang, Enping; Huang, Weiye; Wang, Jiawen; Chen, Ling; Wang, Huipin; Qiu, Pingming; Xu, Jingtao; Zhang, Fu; Wang, Huijun

    2013-10-02

    Methamphetamine is a type of psychoactive drug. It is well known that neurotoxicity caused by Methamphetamine(METH) can damage the nervous system and lead to apoptosis and cell loss of dopaminergic neurons. ROCK2 is a prominent target for gene therapy because its inhibition has proved to have a protective effect in various cell lines and pathophysiological conditions. Although several of the negative effects of METH on the dopaminergic system have been studied, the protective molecular mechanisms and the effective treatment of METH-induced apoptosis remain to be clarified. We hypothesized that ROCK2 is involved in METH-induced apoptosis. We tested our hypothesis using RT-PCR and western blotting to analyze whether silencing of ROCK2 with small interfering RNA (siROCK2) could reduce damage and apoptosis in PC12 cells after METH exposure. Increases in viability and cytomorphological changes were detected by MTT assay and bright field microscopy after pretreatment of METH-treated PC12 cells with 100 nM siROCK2. Apoptosis decreased significantly after ROCK2 silencing, as shown by Annexin V and TUNEL staining. The results show that ROCK2 is a possible gene target for therapeutics in METH-induced neurotoxicity in vitro, providing a foundation for future in vivo research.

  6. Protective effect of Eruca sativa seed oil against oral nicotine induced testicular damage in rats.

    Science.gov (United States)

    Abd El-Aziz, Gamal Said; El-Fark, Magdy Omar; Hamdy, Raid Mahmoud

    2016-08-01

    Nicotine is a pharmacologically active component of the tobacco that adversely affects the male reproductive system and fertility. Nicotine administration in experimental animals was found to affect spermatogenesis, epididymal sperm count, motility and the fertilizing potential of sperms. The goal of this work is to assess the protective or ameliorative effect of Eruca Sativa seed oil against testicular damage induced by oral administration of nicotine in rats. Male adult Sprague-Dawley rats were used and divided into three groups; control, nicotine treated and nicotine and Eruca seed oil treated groups. After three weeks of treatment, the rats were weighed and sacrificed where testes were removed and weighed then calculating relative testis weights. The testes were processed for routine paraffin embedding and staining and the sections were examined for different morphometric and histopathological changes. The results show that nicotine administration had an effect on the body and testis weight and various morphometric parameters of the testis. It also induced varying degrees of structural damage to the seminiferous tubules, with shrinkage and absence of mature spermatids. Disorganized, vacuolization and loss of germinal cells were noticed in the basement membrane. The co-administration of Eruca Sativa seed oil led to improvement in the morphometric and histopathological changes of the seminiferous tubules. In conclusion, Eruca Sativa seed oil treatment in this study had a protective role by reversing, almost completely, all morphometric and histological changes in the testis induced by nicotine administration.

  7. Protective effect of hawthorn extract against genotoxicity induced by methyl methanesulfonate in human lymphocytes.

    Science.gov (United States)

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Tanha, Mohammad; Mahmodzadeh, Aziz; Mohammadifar, Sohila

    2011-05-01

    The preventive effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by methyl methanesulfonate (MMS) has been investigated in human cultured blood lymphocytes. Peripheral blood samples were collected from human volunteers at 0 (10 minutes before), and at 1 and 2 hours after a single oral ingestion of 1 g hawthorn powder extract. At each time point, the whole blood was treated in vitro with MMS (200 µmol) at 24 hours after cell culture, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cells. The lymphocytes treated with hawthorn and MMS to exhibit a significant decreasing in the incidence of micronucleated binucleated cells, as compared with similarly MMS-treated lymphocytes from blood samples collected at 0 hour. The maximum protection and decreasing in frequency of micronuclei (36%) was observed at 1 hour after ingestion of hawthorn extract. The high performance liquid chromatography (HPLC) analysis showed that hawthorn contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by toxic compounds. This set of data may have an important application for the protection of human lymphocyte from the genetic damage and side effects induced by chemicals hazardous in people.

  8. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    Science.gov (United States)

    Rodriguez-Canales, Mario; Jimenez-Rivas, Ruben; Canales-Martinez, Maria Margarita; Garcia-Lopez, Ana Judith; Rivera-Yañez, Nelly; Nieto-Yañez, Oscar; Ledesma-Soto, Yadira; Sanchez-Torres, Luvia Enid; Rodriguez-Sosa, Miriam; Terrazas, Luis Ignacio

    2016-01-01

    Amphipterygium adstringens is an endemic species in Mexico commonly known as “cuachalalate.” Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1β cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis. PMID:27635116

  9. Protective effects of boldine against free radical-induced erythrocyte lysis.

    Science.gov (United States)

    Jiménez, I; Garrido, A; Bannach, R; Gotteland, M; Speisky, H

    2000-08-01

    Boldine, an aporphine alkaloid extracted from the leaves and bark of boldo (Peumus boldus Mol.), has been shown to exhibit strong free-radical scavenger and antioxidant properties. Here, we report the in vitro ability of boldine to protect intact red cells against the haemolytic damage induced by the free radical initiator 2, 2'-azobis-(2-amidinopropane) (AAPH). Boldine concentration-dependently prevented the AAPH-induced leakage of haemoglobin into the extracellular medium. Substantial and similar cyto-protective effects of boldine were observed whether the antioxidant was added 1 h prior to, or simultaneously with, the azo-compound. The delayed addition of boldine, by 1 h relative to AAPH, diminished but did not abolish its cytoprotective effect. However, negligible effects of boldine were observed after its addition to erythrocytes previously incubated with AAPH for 2 h. The data presented demonstrate that, in addition to its well-established antioxidant effects, boldine also displays time-dependently strong cytoprotective properties against chemically induced haemolytic damage.

  10. Protective effect of aqueous jujube extract in Carbamazepine induced teratogenicity on Balb/c mice fetuses

    Directory of Open Access Journals (Sweden)

    Doostabadi Mohammadreza

    2016-06-01

    Full Text Available Aim: Carbamazepine (CBZ is an anticonvulsant medication that can produce congenital anomalies. This study aimed to assess protective role of aqueous jujube extract (JE on CBZ induced congenital anomalies in mice fetuses. Methods:One hundred pregnant Balb/c mice were divided into 8 experimental (E and 2 control (C groups equally. The groups (E1, E5, E6 and (E2, E7, E8 received 50 and 100 mg/kg of CBZ, respectively IP, from GD 0 to GD15. Besides, groups (E5, E7 and (E6, E8 in addition to CBZ, were treated with 200 and 400 mg/kg JE, respectively from ten days prior to gestation, till GD15. The groups E3 and E4 received only 200 and 400 mg/kg of JE respectively. The control groups (C1, C2 received normal saline and tween-20 in turn. On GD18 dams cesarianed and their fetuses assessed for skeletal anomalies by using Alizarin red-alcian blue staining. Results:CBZ induced various anomalies such as; limb defects, craniofacial malformations and etc in mice fetuses. However, these anomalies significantly decreased in groups which were co-administered with CBZ and JE. Conclusion: Co-administration of JE and CBZ significantly decrease teratogenicity of CBZ. Therefore, JE may play a protective role against those properties of CBZ inducing teratogenicity

  11. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride-Induced Acute Liver Injur y in Mice

    Institute of Scientific and Technical Information of China (English)

    QIU Zhen-qin; CAI Lei; CHEN Da-shuai

    2015-01-01

    Objective:To observe the protective effect of total lfavonoids from Mimosa pudica on carbon tetrachloride (CCl4)-induced acute liver injury in mice. Methods:CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb) and total antioxidant capacity (T-AOC) were determined. The content of malondiadehyde (MDA) was measured and the activity of superoxide dismutase (SOD) was determined. The histopathological changes of liver were observed. Results:Compared with CCl4 model group, each dose group of total lfavonouida from Mimosa pudica could reduced the activity of ALT and AST in mice obviously (P<0.01), indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. High and middle dose groups of total lfavonouida from Mimosa pudica could increase the content of Alb in mice (P<0.01). Each dose group of total lfavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01), and lower the content of liver homogenate MDA, but enhance the activity of SOD in a dose-depended manner (P<0.01).

  12. Protective effects of selenium on cadmium-induced brain damage in chickens.

    Science.gov (United States)

    Liu, Li-Li; Li, Cheng-Ming; Zhang, Zi-Wei; Zhang, Jiu-Li; Yao, Hai-Dong; Xu, Shi-Wen

    2014-05-01

    Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd + Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.

  13. Thrombopoietin Protects Cardiomyocytes from Iron-Overload Induced Oxidative Stress and Mitochondrial Injury

    Directory of Open Access Journals (Sweden)

    Shing Chan

    2015-07-01

    Full Text Available Background/Aims: Thalassaemia accompanied with iron-overload is common in Hong Kong. Iron-overload induced cardiomyopathy is the commonest cause of morbidity and mortality in patients with β-thalassaemia. Chronic iron-overload due to blood transfusion can cause cardiac failure. Decreased antioxidant defence and increased ROS production may lead to oxidative stress and cell injury. Iron-overload may lead to heart tissue damage through lipid peroxidation in response to oxidative stress, and a great diversity of toxic aldehydes are formed when lipid hydroperoxides break down in heart and plasma. Methods: Iron entry into embryonic heart H9C2 cells was determined by calcein assay using a fluorometer. Reactive oxygen species (ROS production in cells treated with FeCl3 or thrombopoietin (TPO was monitored by using the fluorescent probe H2DCFDA. Changes in mitochondrial membrane potential of H9C2 cells were quantified by using flow cytometry. Results: We demonstrated that iron induced oxidative stress and apoptosis in cardiomyocytes, and that iron increased ROS production and reduced cell viability in a dose-dependent manner. Iron treatment increased the proportion of cells with JC-1 monomers, indicating a trend of drop in the mitochondrial membrane potential. TPO exerted a cardio-protective effect on iron-induced apoptosis. Conclusions: These findings suggest that iron-overload leads to the generation of ROS and further induces apoptosis in cardiomyocytes via mitochondrial pathways. TPO might exert a protective effect on iron-overload induced apoptosis via inhibiting oxidative stress and suppressing the mitochondrial pathways in cardiomyocytes.

  14. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy.

    Science.gov (United States)

    Arkat, Silpa; Umbarkar, Prachi; Singh, Sarojini; Sitasawad, Sandhya L

    2016-08-01

    Mitochondrial oxidative stress has emerged as a key contributor towards the development of diabetic cardiomyopathy. Peroxiredoxin-3 (Prx-3), a mitochondrial antioxidant, scavenges H2O2 and offers protection against ROS related pathologies. We observed a decrease in the expression of Prx-3 in the hearts of streptozotocin (STZ) induced diabetic rats, and also high glucose treated H9c2 cardiac cells, which may augment oxidative stress mediated damage. Hence we hypothesized that overexpression of Prx-3 could prevent the cardiac damage associated with diabetes. In this study we used quercetin (QUE) to achieve Prx-3 induction in vivo, while a Prx-3 overexpressing H9c2 cell line was employed for carrying out in vitro studies. Diabetes was induced in Wistar rats by a single intraperitoneal injection of STZ. Quercetin (50mg/kg body weight) was delivered orally to hyperglycemic and age matched control rats for 2 months. Quercetin treatment induced the myocardial expression of Prx-3 but not Prx-5 both in control and STZ rats. Prx-3 induction by quercetin prevented diabetes induced oxidative stress as confirmed by decrease in expression of markers such as 4-HNE and mitochondrial uncoupling protein, UCP-3. It was also successful in reducing cardiac cell apoptosis, hypertrophy and fibrosis leading to amelioration of cardiac contractility defects. Overexpression of Prx-3 in cultured H9c2 cardiac cells could significantly diminish high glucose inflicted mitochondrial oxidative damage and apoptosis, thus strengthening our hypothesis. These results suggest that diabetes induced cardiomyopathy can be prevented by elevating Prx-3 levels thereby providing extensive protection to the diabetic heart.

  15. Tetrahydroxystilbene glucoside protects against ethanol-induced liver injury in mice by inhibition of expression of inflammatuion-related factors

    Institute of Scientific and Technical Information of China (English)

    熊章鄂

    2013-01-01

    Objective To investigate the protective effects of tetrahydroxystilbene glucoside(TSG)against acute ethanol-induced liver injury in mice and to explore the possible mechanisms involved.Methods Kunming mice were

  16. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Wei, Yuan; Ouyang, Zhen; Su, Zhaoliang

    2016-11-20

    Two polysaccharides CPA-1 and CPB-2 were isolated purified from Cordyceps cicadae by hot water extraction, ethanol precipitation and purification using anion exchange and gel filtration chromatography. Preliminary structural characterization of CPA-1 and CPB-2 were performed. The protective effect of CPA-1 and CPB-2 against glutamate-induced oxidative toxicity in PC12 cells was analyzed. The results indicated that pretreatment of PC12 cells with CPA-1 and CPB-2 significantly increased cell survival, Ca(2+) overload and ROS generation. CPA-1 and CPB-2 also markedly up-regulated the antioxidant status of pretreated PC12 cells. Our results suggested that Cordyceps cicadae polysaccharides can protect PC12 cells against glutamate excitotoxicity and might serve as therapeutic agents for neuronal disorders.

  17. "Rickettsia amblyommii" induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model.

    Science.gov (United States)

    Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H

    2014-08-01

    Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.

  18. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism

    Science.gov (United States)

    Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin

    2017-01-01

    Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. In addition, dioscin a natural steroidal saponin isolated from Chinese medicinal herbs, enhanced the serotonergic system and produced anti-depressant effect by enhancing 5-HT levels in hippocampus. What is more, this finding was verified by metabolic analyses of hippocampus, indicating 5-HT related metabolic pathway was involved in the pathogenesis of endotoxemia induced acute neuro-inflammation. Moreover, neuro-inflammation and neurogenesis within hippocampus were indexed using quantitative immunofluorescence analysis of GFAP DCX and Ki67, as well as real-time RT-PCR analysis of some gene expression levels in hippocampus. Our in vivo and in vitro studies show dioscin protects hippocampus from endotoxemia induced cascade neuro-inflammation through neurotransmitter 5-HT and HMGB-1/TLR4 signaling pathway, which accounts for the dioscin therapeutic effect in behavioral tests. Therefore, the current findings suggest that dioscin could be a potential approach for the therapy of endotoxemia induced acute neuro-inflammation. PMID:28059131

  19. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Javad Khalili Fard

    2016-12-01

    Full Text Available Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.

  20. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ya-Dan Wen

    Full Text Available BACKGROUND: Hydrogen sulfide (H₂S has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H₂O₂ induced endothelial cells damage. METHODOLOGY AND PRINCIPAL FINDINGS: H₂S, at non-cytotoxic levels, exerts a concentration dependent protective effect in human umbilical vein endothelial cells (HUVECs exposed to H₂O₂. Analysis of ATP synthesis, mitochondrial membrane potential (ΔΨm and cytochrome c release from mitochondria indicated that mitochondrial function was preserved by pretreatment with H₂S. In contrast, in H₂O₂ exposed endothelial cells mitochondria appeared swollen or ruptured. In additional experiments, H₂S was also found to preserve the activities and protein expressions levels of the antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in H₂O₂ exposed cells. ROS and lipid peroxidation, as assessed by measuring H₂DCFDA, dihydroethidium (DHE, diphenyl-l-pyrenylphosphine (DPPP and malonaldehyde (MDA levels, were also inhibited by H₂S treatment. Interestingly, in the current model, D, L-propargylglycine (PAG, a selective inhibitor of cystathionine γ-lyase (CSE, abolished the protective effects of H₂S donors. INNOVATION: This study is the first to show that H₂S can inhibit H₂O₂ mediated mitochondrial dysfunction in human endothelial cells by preserving antioxidant defences. SIGNIFICANCE: H₂S may protect against atherosclerosis by preventing H₂O₂ induced injury to endothelial cells. These effects appear to be mediated via the preservation of mitochondrial function and by reducing the deleterious effects of oxidative stress.

  1. Remote ischemic preconditioning protects against liver ischemia-reperfusion injury via heme oxygenase-1-induced autophagy.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available BACKGROUND: Growing evidence has linked autophagy to a protective role of preconditioning in liver ischemia/reperfusion (IR. Heme oxygenase-1 (HO-1 is essential in limiting inflammation and preventing the apoptotic response to IR. We previously demonstrated that HO-1 is up-regulated in liver graft after remote ischemic preconditioning (RIPC. The aim of this study was to confirm that RIPC protects against IR via HO-1-mediated autophagy. METHODS: RIPC was performed with regional ischemia of limbs before liver ischemia, and HO-1 activity was inhibited pre-operation. Autophagy was assessed by the expression of light chain 3-II (LC3-II. The HO-1/extracellular signal-related kinase (ERK/p38/mitogen-activated protein kinase (MAPK pathway was detected in an autophagy model and mineral oil-induced IR in vitro. RESULTS: In liver IR, the expression of LC3-II peaked 12-24 h after IR, and the ultrastructure revealed abundant autophagosomes in hepatocytes after IR. Autophagy was inhibited when HO-1 was inactivated, which we believe resulted in the aggravation of liver IR injury (IRI in vivo. Hemin-induced autophagy also protected rat hepatocytes from IRI in vitro, which was abrogated by HO-1 siRNA. Phosphorylation of p38-MAPK and ERK1/2 was up-regulated in hemin-pretreated liver cells and down-regulated after treatment with HO-1 siRNA. CONCLUSIONS: RIPC may protect the liver from IRI by induction of HO-1/p38-MAPK-dependent autophagy.

  2. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration.

    Science.gov (United States)

    Vaczy, A; Reglodi, D; Somoskeoy, T; Kovacs, K; Lokos, E; Szabo, E; Tamas, A; Atlasz, T

    2016-10-01

    A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.

  3. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.

    NARCIS (Netherlands)

    Dijk, M.R. van; Douradinha, B.; Franke-Fayard, B.; Heussler, V.; Dooren, M.W. van; Schaijk, B.C.L. van; Gemert, G.J.A. van; Sauerwein, R.W.; Mota, M.M.; Waters, A.P.; Janse, C.J.

    2005-01-01

    Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and hu

  4. Is intratympanic injection of erdosteine protective against cisplatin-induced ototoxicity?

    Science.gov (United States)

    Saliba, Issam; El Fata, Fouad

    2012-04-01

    Cisplatin induces ototoxicity in adult and pediatric population. Our aim was (1) to assess the protective effect of intratympanic injections of erdosteine in the prevention of cisplatin-induced ototoxicity and (2) to investigate inner ear protection using a scanning electron microscope. Ears of 20 Hartley guinea pigs were assigned to four subgroups and received an intratympanic injection of: E1-erdosteine 1.125 mg/cc, NS-normal saline, E2-erdosteine 2.25 mg/cc and E4-erdosteine 4.5 mg/cc. After 45 min, an intraperitoneal cisplatin injection of 3 mg/kg was performed and repeated 8 times, once a week to achieve 24 mg/kg. Auditory brainstem responses were recorded before any injection and after 24 mg/kg of cisplatin for the frequencies 1, 2, 4, 6 and 8 kHz. Cochleas were analyzed under scanning electron microscope. Average hearing loss in the NS subgroup was 29.8 dB which was lower than E1, E2 and E4 subgroups (40, 43.9, and 51.7 dB, respectively). Difference in the mean threshold increase was statistically significant between NS and the three erdosteine subgroups (P  0.05). However, difference was significant between E1 and E4 (P erdosteine showed a diffuse inflammatory reaction and osteitis of the middle ear. Low or high concentration of intratympanic erdosteine does not offer protection against cisplatin-induced ototoxicity as it causes a considerable inflammatory reaction.

  5. Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats.

    Science.gov (United States)

    Hafez, Heba M; Ibrahim, Mohamed A; Ibrahim, Salwa A; Amin, Entesar F; Goma, Wafaey; Abdelrahman, Aly M

    2015-12-05

    Methotrexate (MTX), a chemotherapeutic and immunosuppressant drug, is generally well-tolerated by most patients. However, its cytotoxic nature contributes to life-threatening side effects including hepatotoxicity and nephrotoxicity. The present study investigated the possible role of tumor necrosis factor-alpha (TNF-α) inhibitor, etanercept and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine, on MTX-induced hepatotoxicity and nephrotoxicity in rats. Rats were divided into 7 groups: control group, etanercept group, aminoguanidine group, MTX group, MTX+etanercept group, MTX+aminoguanidine group, and MTX+etanercept+aminoguanidine group. MTX caused hepatotoxicity and nephrotoxicity as evidenced biochemically by significant increase in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and creatinine, respectively as well as by histopathological changes. Such effects were associated with significant changes in oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), catalase, and glutathione (GSH)) as well as by upregulation of TNF-α, iNOS and caspase-3 expressions in hepatic and renal tissues. Etanercept and aminoguanidine significantly attenuated MTX-hepatotoxicity and nephrotoxicity. The protective effect of either agent was associated with significant improvement in oxidative stress parameters as well as by downregulation of TNF-α, iNOS and caspase-3 expressions in hepatic and renal tissues. The study suggested that inhibitors of either TNF-α and/or iNOS have protective effect in MTX-induced hepatotoxicity and nephrotoxicity. The protective effect of either agent relies, at least partially, on their antioxidant effects and decreased TNF-α, iNOS, and caspase-3 expressions.

  6. Efficacy of amifostine in protection against doxorubicin-induced acute cardiotoxic effects in rats

    Directory of Open Access Journals (Sweden)

    Dragojević-Simić Viktorija

    2013-01-01

    Full Text Available Background/Aim. Amifostine (AMI is a broad-spectrum cytoprotector which protects against variety of radio- and chemotherapy-related toxicities without decreasing their antitumor action. The aim of the study was to investigate the potential protective effects of AMI against acute cardiotoxic effects of doxorubicin (DOX in male Wistar rats. Methods. AMI (300 mg/kg ip was given 30 min before DOX (6 mg/kg and 10mg/kg b.w., iv. The evaluation of DOXinduced cardiotoxic effects, as well as cardioprotective efficacy of AMI was performed 48 h after their administration by determining serum activities of enzymes known to be markers of cardiac damage (creatine kinase - CK, aspartate aminotransferase - AST, lactate dehydrogenase - LDH, and its isoenzyme α-hydroxybutirate dehydrogenase - α- HBDH, as well as the histopathological and ultrastructural analysis of the heart tissue. Results. AMI successfully prevented a significant increase in serum activity of CK, AST, LDH and α-HBDH in animals treated with DOX in the dose of 6 mg/kg (121.14 ± 18.37 vs 167.70 ± 44.24; 771.42 ± 161.99 vs 1057.00 ± 300.00; 3230.00 ± 1031.73 vs 4243.10 ± 904.06; 202.57 ± 42.46 vs 294.90 ± 80.20 UI/l, respectively, and ameliorated DOX-induced structural damage of the rat myocardium. Pretreatment with AMI in rats given 10 mg/kg DOX reduced the cardiac damage score (CDS from 2.62 ± 0.51 to 1.62 ± 0.51, i.e. to the CDS value obtained with the lower dose of DOX (6 mg/kg. The ultrastructural analysis of the rat myocardium showed that AMI successfully protected the sarcolemma of cardiomyocytes and reduced mitochondria damage induced by DOX given in the dose of 6 mg/kg. Besides, capillaries were less morphologically changed and apoptosis of endothelial cells was extremely rare in AMI-protected animals. AMI itself did not cause any prominent changes in the examined parameters in comparison with the control rats. Conclusion. AMI provided a significant protection against DOX-induced

  7. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    Science.gov (United States)

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.

  8. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells

    Institute of Scientific and Technical Information of China (English)

    Soundharrajan Ilavenil; Da Hye Kim; Young-Il Jeong; Mariadhas Valan Arasu; Mayakrishnan Vijayakumar; Ponnuraj Nagendra Prabhu; Srisesharam Srigopalram; Ki Choon Choi

    2015-01-01

    Objective: To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells. Methods: Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR. Results: It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2. Conclusions: It is suggested that less than 125 μM of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.

  9. Protective Effect of Rosemary (Rosmarinus Officinalis Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    Directory of Open Access Journals (Sweden)

    Neveen M. El-Sherif

    2015-02-01

    Full Text Available Background: Naphthalene (NA is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group, Group II (NA treated group received NA at a dose of 200 mg/kg/day dissolved in 5 ml/kg corn oil orally by gastric tube, Group III (protected group received rosemary extract (10 ml/kg/day followed after 60 min by NA at the same previous dose orally by gastric tube. The experiment lasted 30 days. The following parameters were studied: Biochemical assessment of renal function, histological, immunohistochemical, morphometric studies and statistical analysis of the results. Results: NA treatment resulted in a highly significant increase in the mean values of serum urea and creatinine. NA induced histological changes in the form of glomerular congestion. Some glomeruli demonstrated marked mesangial expansion and hence that Bowman's spaces were almost completely obliterated. Shrinkage of renal glomeruli with widening of Bowman's spaces could also be seen. Focal tubular dilatation with appearance of casts inside the tubules was observed. Congested peritubular blood vessels and interstitial hemorrhage were also seen. The medullary region demonstrated vascular congestion and fibrosis. Focal cellular infiltration was presented in the interstitium. The renal cortex of NA treated rats showed a noticeable down regulation in alkaline phosphatase positive immunoreactive cells in some proximal convoluted tubules. NA induced up regulation of positive immunoreaction for inducible nitric oxide synthase in the proximal and distal convoluted tubules as well as in the collecting tubules

  10. Nicotine, but not cotinine, partially protects dopaminergic neurons against MPTP-induced degeneration in mice.

    Science.gov (United States)

    Parain, K; Marchand, V; Dumery, B; Hirsch, E

    2001-02-02

    In order to analyze the putative neuroprotective role of nicotine and cotinine in parkinsonian syndromes, these two compounds were administered in male C57Bl6 mice for 4 weeks. On day 8, four injections of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) were administered. MPTP intoxication induced a 50% loss of dopaminergic neurons in the substantia nigra and a 45% reduction in dopaminergic fibers in the striatum. Administration of cotinine did not affect MPTP toxicity in the nigrostriatal system but chronic nicotine treatment showed a slight protection (15%) of nigrostriatal dopaminergic neurons against MPTP.

  11. Green tea polyphenols protect spinal cord neurons against hydrogen peroxide-induced oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhao; Shiqiang Fang; Yajiang Yuan; Zhanpeng Guo; Jinhao Zeng; Yue Guo; Peifu Tang; Xifan Mei

    2014-01-01

    Green tea polyphenols are strong antioxidants and can reduce free radical damage. To investigate their neuroprotective potential, we induced oxidative damage in spinal cord neurons using hy-drogen peroxide, and applied different concentrations (50-200 µg/mL) of green tea polyphenol to the cell medium for 24 hours. Measurements of superoxide dismutase activity, malondial-dehyde content, and expression of apoptosis-related genes and proteins revealed that green tea polyphenol effectively alleviated oxidative stress. Our results indicate that green tea polyphenols play a protective role in spinal cord neurons under oxidative stress.

  12. G-CSF protects motoneurons against axotomy-induced apoptotic death in neonatal mice

    Directory of Open Access Journals (Sweden)

    Pitzer Claudia

    2010-02-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (G-CSF is a growth factor essential for generation of neutrophilic granulocytes. Apart from this hematopoietic function, we have recently uncovered potent neuroprotective and regenerative properties of G-CSF in the central nervous system (CNS. The G-CSF receptor and G-CSF itself are expressed in α motoneurons, G-CSF protects motoneurons, and improves outcome in the SOD1(G93A transgenic mouse model for amyotrophic lateral sclerosis (ALS. In vitro, G-CSF acts anti-apoptotically on motoneuronal cells. Due to the pleiotrophic effects of G-CSF and the complexity of the SOD1 transgenic ALS models it was however not possible to clearly distinguish between directly mediated anti-apoptotic and indirectly protective effects on motoneurons. Here we studied whether G-CSF is able to protect motoneurons from purely apoptotic cell death induced by a monocausal paradigm, neonatal sciatic nerve axotomy. Results We performed sciatic nerve axotomy in neonatal mice overexpressing G-CSF in the CNS and found that G-CSF transgenic mice displayed significantly higher numbers of surviving lumbar motoneurons 4 days following axotomy than their littermate controls. Also, surviving motoneurons in G-CSF overexpressing animals were larger, suggesting additional trophic effects of this growth factor. Conclusions In this model of pure apoptotic cell death the protective effects of G-CSF indicate direct actions of G-CSF on motoneurons in vivo. This shows that G-CSF exerts potent anti-apoptotic activities towards motoneurons in vivo and suggests that the protection offered by G-CSF in ALS mouse models is due to its direct neuroprotective activity.

  13. Hibernation-like state induced by an opioid peptide protects against experimental stroke

    Directory of Open Access Journals (Sweden)

    Su Tsung-Ping

    2009-06-01

    Full Text Available Abstract Background Delta opioid peptide [D-ala2,D-leU5]enkephalin (DADLE induces hibernation in summer ground squirrels, and enhances preservation and survival of isolated or transplanted lungs and hearts. In the present study, we investigated the protective effect of DADLE in the central nervous system. Results Adult Sprague-Dawley rats were pretreated with DADLE (4 mg/kg every 2 h × 4 injections, i.p. or saline prior to unilateral occlusion of the middle cerebral artery (MCA. Daily behavioral tests revealed that ischemic animals treated with DADLE did not show any significant behavioral dysfunctions compared with saline-treated ischemic animals. Opioid antagonists only transiently inhibited the protective effect of DADLE, indicating the participation of non-opioid mechanisms in DADLE neuroprotection. Histological examination using triphenyltetrazolium chloride (TTC revealed that brains from ischemic animals treated with DADLE, either alone or with adjuvant opioid blockers, exhibited almost completely intact striata. In contrast, brains from ischemic animals that received saline showed significant infarction in the lateral striatum. Analyses of apoptotic cell death revealed a significant increase in the p-53 mRNA expression in the striatum of ischemic animals that received saline, while those that received DADLE exhibited near normal striatal p-53 expression. This protective effect was accompanied by significant increments in protein levels of glial cell line-derived neurotrophic factor in the striatum of DADLE-treated ischemic animals. Conclusion These results indicate that DADLE protected against necrotic and apoptotic cell death processes associated with ischemia-reperfusion injury. The present study demonstrates that delta opioids are crucially involved in stroke, suggesting that the opioid system is important in the study of brain injury and protection.

  14. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Mirjana Gavella; Vaskresenija Lipovac

    2013-01-01

    This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage.The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa.Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety.The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration.The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects.In our study,we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation.The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation,thus protecting the DNA from cryopreservation-induced damage.Further actions of ganglioside micelles,which were documented by biochemical and biophysical studies,included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane.

  15. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death. PMID:26157553

  16. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  17. Protective effects of imipramine in murine endotoxin-induced acute lung injury.

    Science.gov (United States)

    Yang, Jin; Qu, Jie-ming; Summah, Hanssa; Zhang, Jin; Zhu, Ying-gang; Jiang, Hong-ni

    2010-07-25

    The tricyclic antidepressant imipramine has recently emerged as a cytoprotective agent, exerting beneficial effects in inflammatory tissue injury. The present study aimed to investigate therapeutic effects of imipramine in murine model of endotoxin-induced acute lung injury. Mice were administrated intraperitoneally with LPS (lipopolysaccharide) from Escherichia coli or vehicle. Imipramine was administrated intraperitoneally 30 min before LPS challenge. Pretreatment of mice with imipramine reduced lethality. Impramine also significantly attenuated lung inflammation, lung edema, MPO (myeloperoxidase) activity, lung tissue pathological changes and nuclear factor-kappaB DNA binding activity. The results of this study suggest that imipramine can exert protective effects in endotoxin-induced acute lung injury by suppressing nuclear factor-kappaB-mediated expression of inflammatory genes. Thus, imipramine could be a potential novel therapeutic agent for the treatment for acute lung injury.

  18. TLR4 signaling protects from excessive muscular damage induced by Bothrops jararacussu snake venom.

    Science.gov (United States)

    Paiva-Oliveira, Eustaquio Luiz; Ferreira da Silva, Rafael; Correa Leite, Paulo Emílio; Cogo, José Carlos; Quirico-Santos, Thereza; Lagrota-Candido, Jussara

    2012-12-15

    Immune cells and skeletal muscle express Toll-like receptors (TLRs) that participate as sensors of tissue injury triggering signals for activation of innate and adaptive immune responses. This study aimed to investigate the involvement of TLR4 in the process of skeletal muscle repair. Muscular injury was induced by injection of 0.6 mg/kg of Bothrops jararacussu snake venom in the gastrocnemius muscle of C3H/HeJ mice that express a non-functional TLR-4 receptor and C3H/HeN mice with functional receptor. TLR4-deficient mice had persistent muscular inflammation with few F4/80 macrophages at onset but increased MMP9 activity and collagen deposition during resolution of injury. Since such effect was not observed in the mouse strain with functional receptor it is concluded that TLR4 signaling exerts a protective role preventing from excessive muscular damage induced by B. jararacussu venom.

  19. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage.

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-07-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

  20. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    Science.gov (United States)

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  1. Protective Effect of Ligustrazine on Lumbar Intervertebral Disc Degeneration of Rats Induced by Prolonged Upright Posture

    Directory of Open Access Journals (Sweden)

    Qian-Qian Liang

    2014-01-01

    Full Text Available Most chronic low back pain is the result of degeneration of the lumbar intervertebral disc. Ligustrazine, an alkaloid from Chuanxiong, reportedly is able to relieve pain, suppress inflammation, and treat osteoarthritis and it has the protective effect on cartilage and chondrocytes. Therefore, we asked whether ligustrazine could reduce intervertebral disc degeneration. To determine the effect of ligustrazine on disc degeneration, we applied a rat model. The intervertebral disc degeneration of the rats was induced by prolonged upright posture. We found that pretreatment with ligustrazine for 1 month recovered the structural distortion of the degenerative disc; inhibited the expression of type X collagen, matrix metalloproteinase (MMP-13, and MMP3; upregulated type II collagen; and decreased IL-1β, cyclooxygenase (COX-2, and inducible nitric oxide synthase (iNOS expression. In conclusion, ligustrazine is a promising agent for treating lumbar intervertebral disc degeneration disease.

  2. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    Science.gov (United States)

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  3. PROTECTIVE EFFECT OF Solanum Pubescens LINN ON CCL4 INDUCED HEPATOTOXICITY IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    M.Pushpalatha

    2012-01-01

    Full Text Available Ethanol extract of Solanum pubescens Linn was evaluated for hepato protective and antioxidant activities in rats. The plant extract (500mg/kg/day showed a remarkable hepatoprotective and antioxidant activity against Carbon tetrachloride (CCl4-induced hepatotoxicity as judged from the serum marker enzymes and antioxidant levels in liver tissues. CCl4 induced a significant rise in aspartate amino transferase (AST, alanine amino transferase (ALT, alkaline phosphatase (ALP, total bilirubin, LPO with a reduction of total protein, superoxide dismutase (SOD, catalase, and reduced glutathione (GSH. Treatment of rats with plant extract (500 mg/kg significantly (P<0.01 altered serum marker enzymes and antioxidant levels to near normal against CCl4 - treated rats. The activity of the extract at dose of 500 mg/kg was comparable to the standard drug, Silymarin (50 mg/kg, p.o.. Histopathological examination of the liver tissues supported the hepatoprotective activity of plant.

  4. Protective effect of Matricaria chamomilla on ethanol-induced acute gastric mucosal injury in rats.

    Science.gov (United States)

    Cemek, Mustafa; Yilmaz, Ezgi; Büyükokuroğlu, Mehmet Emin

    2010-07-01

    The antiulcerogenic and antioxidant properties of Matricaria chamomilla L. (Compositae) hydroalcoholic extract (MCE) on ethanol-induced gastric mucosal injury were investigated in rats. After the induction of gastric mucosal injury, all groups were sacrificed; the gastric ulcer index was calculated, and malondialdehyde (MDA) and reduced glutathione (GSH) in whole blood and gastric tissue, and serum ascorbic acid, retinol, and beta-carotene levels were measured in all groups. Pretreatment with MCE at some doses significantly reduced gastric lesions. Again, some doses of MCE significantly reduced the MDA, and significantly increased GSH levels in gastric tissue or whole blood. Serum beta-carotene and retinol levels were significantly higher in the 200 mg/kg MCE-administered group with respect to control. As a result, MCE clearly has a protective effect against ethanol-induced gastric mucosal lesions, and this effect, at least in part, depends upon the reduction in lipid peroxidation and augmentation in antioxidant activity.

  5. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression.

    Science.gov (United States)

    Park, E-M; Cho, B-P; Volpe, B T; Cruz, M O; Joh, T H; Cho, S

    2005-01-01

    The inflammatory response accompanies and exacerbates the developing injury after cerebral ischemia. Ibuprofen, a non-steroidal anti-inflammatory drug, has been shown to attenuate injuries in animal models of various neurological diseases. In the present study, we investigated ibuprofen's neuroprotective effects in rats exposed to transient forebrain ischemia and in cultures exposed to oxygen glucose deprivation (OGD). Rats treated with ibuprofen after transient forebrain ischemia displayed long-lasting protection of CA1 hippocampal neurons. There were selective increases in interleukin-1 receptor antagonist gene and protein expression in ibuprofen-treated OGD microglia. Furthermore, treatment with ibuprofen in neuron/microglia co-cultures increased the number of surviving HC2S2 neurons against OGD whereas IL-1ra neutralizing antibody reversed the ibuprofen-induced neuroprotection. The data indicate that ibuprofen-induced IL-1ra secretion is involved in neuroprotection against ischemic conditions.

  6. Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats.

    Science.gov (United States)

    Karahan, I; Ateşşahin, A; Yilmaz, S; Ceribaşi, A O; Sakin, F

    2005-11-15

    A potential therapeutic approach to protect or reverse gentamicin-induced oxidative stress and nephrotoxicity would have more importance for clinical consequences. Therefore, the present study was designed to investigate the possible protective effects of lycopene against gentamicin-induced renal damage in rats. Male Sprague-Dawley rats were divided into four groups of six rats in each one; first group served as control. The other groups were treated intraperitoneally with gentamicin alone (100 mg kg(-1) per day) for six successive days, gentamicin for 6 days following 10 days of orally lycopene (4 mg kg(-1) per day) pre-treatment and 6-days of simultaneous lycopene and gentamicin. Biochemical and histopathological examinations were utilized for evaluation of the oxidative stress and renal nephrotoxicity. Creatinine, urea, Na(+) and K(+) levels in plasma and malondialdehyde (MDA), reduced glutathione (GSH) levels and glutathione peroxidase (GSH-Px) and catalase (CAT) activities were determined in kidney tissue. Administration of gentamicin to rats induced a marked renal failure, characterized by a significant increase in plasma creatinine and urea concentrations. The animals treated with gentamicin alone showed a significantly higher kidney MDA and lower GSH-Px and CAT activities but unaffected GSH concentrations when compared with the control group. Pre-treatment with lycopene produced amelioration in biochemical indices of nephrotoxicity in plasma. However, little changes were observed in the kidney MDA and GSH levels and GSH-Px and CAT activities when compared with the gentamicin treated group. The histological structures of the renal proximal tubules showed similar patterns. On the other hand, administration of simultaneous lycopene to rats produced amelioration in MDA and GSH levels and GSH-Px and CAT activities when compared with gentamicin group. In addition, simultaneous lycopene was found to reduce the degree of kidney tissue damage in histopathological

  7. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, Christian [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany); Huelsenbeck, Johannes; Huelsenbeck, Stefanie [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Grösch, Sabine [Institute of Clinical Pharmacology, Johann Wolfgang Goethe University Frankfurt, Theodor Stern Kai 7, D-60590 Frankfurt/Main (Germany); Schad, Arno [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Lackner, Karl J. [Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Kaina, Bernd [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Fritz, Gerhard, E-mail: fritz@uni-duesseldorf.de [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany)

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  8. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells.

    Science.gov (United States)

    Wang, Yunxiao; Zhang, Hui; Liu, Yanping; Li, Ping; Cao, Zhihong; Cao, Yu

    2015-03-01

    The aim of this study was to investigate the protective effect and mechanism of EPO on the apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). High glucose-induced apoptosis model was established in RGCs isolated from SD rats (1-3 days old) and identified with Thy1.1 mAb and MAP-2 pAb. The apoptosis was determined by Hochest assay. The levels of ROS were quantitated by staining the cells with dichloro-dihydro-fluorescein diacetate (DCFH-DA) and measure by flow cytometry. The SOD, GSH-Px, CAT activities, and levels of T-AOC and MDA were determined by ELISA. Change in mitochondrial membrane potential (Δψm) was also assessed by flow cytometry, and expressions of Bcl-2, Bax, caspase-3, caspase-9, and cytochrome C were assessed by western blotting. The RGCs treated with high glucose levels exhibited significantly increased apoptotic rate and concentrations of ROS and MDA. Pretreatment of the cells with EPO caused a significant blockade of the high glucose-induced increase in ROS and MDA levels and apoptotic rate. EPO also increased the activities of SOD, GSH-Px, and CAT, and recovered the levels of T-AOC levels. As a consequence, the mitochondrial membrane potential was improved and Cyt c release into the cytoplasm was prevented which led to significantly suppressed up-regulation of Bax reducing the Bax/Bcl-2 ratio. The expressions of caspase-3 and caspase-9 induced by high glucose exposure were also ameliorated in the RGCs treated with EPO. The protective effect of EPO against apoptosis was mediated through its antioxidant action. Thus, it blocked the generation of pro-apoptotic proteins and apoptotic degeneration of the RGCs by preventing the mitochondrial damage.

  9. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haw-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Li, Chien-Chun [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Ai-Hsuan; Huang, Yu-Ju [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Tsu-Shing [Department of Biomedical Science, Chung Shan Medical University, Taichung, Taiwan (China); Yao, Hsien-Tsung, E-mail: htyao@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  10. Ipomoea aquatica Extract Shows Protective Action Against Thioacetamide-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2012-05-01

    Full Text Available In the Indian system of traditional medicine (Ayurveda it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD rats were orally fed with I. aquatica (250 and 500 mg/kg for two months along with administration of TAA (i.p injection 200 mg/kg three times a week for two months. The results showed that the treatment of I. aquatica significantly lowered the TAA-induced serum levels of hepatic enzyme markers (ALP, ALT, AST, protein, albumin, bilirubin and prothrombin time. The hepatic content of activities and expressions SOD and CAT that were reduced by TAA were brought back to control levels by the plant extract supplement. Meanwhile, the rise in MDA level in the TAA receiving groups also were significantly reduced by I. aquatica treatment. Histopathology of hepatic tissues by H&E and Masson trichrome stains displayed that I. aquatica has reduced the incidence of liver lesions, including hepatic cells cloudy swelling, infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by TAA in rats. Therefore, the results of this study show that the protective effect of I. aquatica in TAA-induced liver damage might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. Moreover, it confirms a scientific basis for the traditional use of I. aquatica for the treatment of liver disorders.

  11. Protective mechanisms of thymoquinone on methotrexate-induced intestinal toxicity in rats

    Directory of Open Access Journals (Sweden)

    Azza A El-Sheikh

    2016-01-01

    Full Text Available Background: Intestinal toxicity is a serious side effect in methotrexate (MTX chemotherapy. Objective: To investigate the mechanisms by which the anticancer drug MTX-induced intestinal damage could be prevented by thymoquinone (TQ, an active ingredient of Nigella sativa. Materials and Methods: TQ was given orally for 10 days, and MTX toxicity was induced at the end of day 3 of the experiment, with or without TQ pretreatment. Results: MTX caused intestinal damage, represented by distortion in normal intestinal histological structure, with significant oxidative stress, exhibited as decrease in reduced glutathione concentration and catalase activity, along with significant increase in malondialdehyde level compared to control group. MTX also caused nitrosative stress evident by increased intestinal nitric oxide (NO level, with up-regulation of inducible NO synthase expression shown in immunohistochemical staining. Furthermore, MTX caused inflammatory effects as evident by up-regulation of intestinal necrosis factor-kappa beta and cyclooxygenase-2 expressions, which were confirmed by increased intestinal tumor necrosis factor-alpha level via enzyme-linked immunosorbent assay. Moreover, MTX caused apoptotic effect, as it up-regulated intestinal caspase 3 expression. Concomitant TQ significantly reversed the MTX-induced intestinal toxic effects by reversing intestinal microscopic damage, as well as significantly improving oxidative/nitrosative stress, inflammatory and apoptotic markers tested compared to MTX alone. Conclusion: TQ may possess beneficial intestinal protective effects as an adjuvant co-drug against MTX intestinal toxicity during cancer chemotherapy. TQ protection is conferred via antioxidant, anti-nitrosative, anti-inflammatory, and anti-apoptotic mechanisms.

  12. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity.

    Science.gov (United States)

    Alkiyumi, Salim Said; Abdullah, Mahmood Ameen; Alrashdi, Ahmed Salim; Salama, Suzy Munir; Abdelwahab, Siddig Ibrahim; Hadi, A Hamid A

    2012-05-22

    In the Indian system of traditional medicine (Ayurveda) it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA)-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD) rats were orally fed with I. aquatica (250 and 500 mg/kg) for two months along with administration of TAA (i.p injection 200 mg/kg three times a week for two months). The results showed that the treatment of I. aquatica significantly lowered the TAA-induced serum levels of hepatic enzyme markers (ALP, ALT, AST, protein, albumin, bilirubin and prothrombin time). The hepatic content of activities and expressions SOD and CAT that were reduced by TAA were brought back to control levels by the plant extract supplement. Meanwhile, the rise in MDA level in the TAA receiving groups also were significantly reduced by I. aquatica treatment. Histopathology of hepatic tissues by H&E and Masson trichrome stains displayed that I. aquatica has reduced the incidence of liver lesions, including hepatic cells cloudy swelling, infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by TAA in rats. Therefore, the results of this study show that the protective effect of I. aquatica in TAA-induced liver damage might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. Moreover, it confirms a scientific basis for the traditional use of I. aquatica for the treatment of liver disorders.

  13. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Yoshinori Okada

    2013-01-01

    Full Text Available Aim: Alzheimer′s disease (AD is characterized by large deposits of amyloid β (Aβ peptide. Aβ is known to increase reactive oxygen species (ROS production in neurons, leading to cell death. In this study, we screened 15 plant seeds′ aqueous extracts (PSAE for inhibitory effects on Aβ (25-35-induced cell death using hippocampus neurons (HIPN. Materials and Methods: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce. PSAE were measured for total phenolic content (TPC with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2′, 7′-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. Results: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. Conclusion: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  14. Protective effect of ginger oil on aspirin and pylorus ligation-induced gastric ulcer model in rats

    Directory of Open Access Journals (Sweden)

    Khushtar M

    2009-01-01

    Full Text Available The present investigation was performed in aspirin and pylorus ligation-induced ulcer model in Wistar rats, in which ability of ginger oil to provide gastric protection was studied at two different doses, 0.5 and 1 g/kg po. Gastric protection was evaluated by measuring the ulcer index, serum λ- GTP levels, total acidity of gastric juice and gastric wall mucus thickness. The results obtained in the present study indicated that ginger oil has a protective action against gastric ulcers induced by aspirin plus pylorus ligation in Wistar rats.

  15. Protective effect of Mollugo nudicaulis Lam. on acute liver injury induced by perchloroethylene in experimental rats

    Institute of Scientific and Technical Information of China (English)

    Sundaraj Rajamanikandan; Thangaraj Sindhu; Dhanapal Durgapriya; Dominic Sophia; Paramasivam Ragavendran

    2012-01-01

    Objective:To evaluate the protective effect of ethanol extract of Mollugo nudicaulis (M. nudicaulis) against perchloroethylene-induced hepatotoxicity. Methods: The hepatoprotective activity of the ethanol extract of M. nudicaulis (200 mg/kg body wt) was studied in percholoroethylene (1 000 mg/kg body wt) induced hepatotoxicity in Wistar albino rats. The serum levels of AST, ALT, ALP, bilirubin and the liver content of SOD, CAT, GPx, GST, GSH, vitamin C were assessed to evaluate the hepatoprotective and antioxidant activities of the extract. The activity of the extract was compared with silymarin, a standard reference drug. In addition, serum urea, uric acid and creatinine levels were measured to evaluate the kidney function. The histopathological examination of the liver tissues was observed to support the biochemical parameters. Results:The results revealed that the extract significantly (P<0.05) restored the serum levels of AST, ALT, ALP, bilirubin and significantly (P<0.05) increased the antioxidant enzymes SOD, CAT, GPx, GST, GSH, vitamin C in perchloroethylene-induced rats to its normalcy. The biochemical observations were supported by the histopathological studies of the liver tissues. Conclusions:The results led to the conclusion that M. nudicaulis possess hepatoprotective and antioxidant activites against perchloroethylene-induced hepatotoxicity in rats.

  16. Protective effects of alpha lipoic acid versus N-acetylcysteine on ifosfamide-induced nephrotoxicity.

    Science.gov (United States)

    El-Sisi, Alaa El-Din E; El-Syaad, Magda E; El-Desoky, Karima I; Moussa, Ethar A

    2015-02-01

    Ifosfamide (IFO) is a highly effective chemotherapeutic agent for treating a variety of pediatric solid tumors. However, its use is limited due to its serious side effect on kidneys. The side-chain oxidation of IFO in renal tubular cells produces a reactive toxic metabolite that is believed to be responsible for its nephrotoxic effect. Therefore, this study was carried out to investigate the possible underlying mechanisms that may be involved in IFO-induced nephrotoxicity, including free radical generation and the possible role of alpha lipoic acid (ALA) versus N-acetylcysteine (NAC) in protection against this toxicity. Male albino rats were injected intraperitoneally with saline, IFO (50 mg/kg daily for 5 days), IFO + ALA (100 mg/kg daily for 8 days) and IFO + NAC (200 mg/kg daily for 8 days). Kidney malondialdehyde, nitric oxide and glutathione contents and serum biochemical parameters and histopathological analysis were determined. Both ALA and NAC markedly reduced the severity of renal dysfunction induced by IFO. NAC was more nephroprotective than ALA. This study suggests that oxidative stress is possibly involved in the IFO-induced nephrotoxicity in rats. The study also suggests the potential therapeutic role for ALA and NAC against IFO-induced nephrotoxicity.

  17. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats

    Institute of Scientific and Technical Information of China (English)

    Sang-Wan Seo; Hyung-Min Kim; Seung-Heon Hong; Hyun-Na Koo; Hyo-Jin An; Kang-Beom Kwon; Byung-Cheal Lim; Eun-A Seo; Do-Gon Ryu; Goo Moon; Hong-Yeoul Kim

    2005-01-01

    AIM: Taraxacum officinale (TO) has been frequently used as a remedy for inflammatory diseases. The aim of this study was to investigate the effect of TO on cholecystokinin (CCK)-octapeptide-induced acute pancreatitis in rats.METHODS: TO at 10 mg/kg was orally administered, followed by 75 μg/kg CCK octapeptide injected subcutaneously three times after 1, 3 and 5 h. This whole procedure was repeated for 5 d. We determined the pancreatic weight/body weight ratio, the levels of pancreatic HSP60 and HSP72, and the secretion of pro-inflammatory cytokines. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally-induced pancreatitis.RESULTS: TO significantly decreased the pancreatic weight/body weight ratio in CCK octapeptide-induced acute pancreatitis. TO also increased the pancreatic levels of HSP60 and HSP72. Additionally, the secretion of IL-6 and TNF-α decreased in the animals treated with TO.CONCLUSION: TO may have a protective effect against CCK octapeptide-induced acute pancreatitis.

  18. Lupeol protects against acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes.

    Science.gov (United States)

    Kumari, Archana; Kakkar, Poonam

    2012-05-01

    Drug induced hepatotoxicity is a major problem where phytochemicals hold promise for its abrogation. This study was carried out to explore cytoprotective potential of lupeol, a triterpene, against acetaminophen (AAP)-induced toxicity in rat hepatocytes. AAP exposure significantly (p<0.05) reduced cell viability, disturbed Bcl-2 family pro/anti-apoptotic protein balance, increased ROS production and altered redox homeostasis. It also induced mitochondria-mediated hepatocellular injury by significant mitochondrial depolarization, caspase-9/3 activation and subsequent DNA fragmentation. Our results suggest that lupeol pre-treatment effectively restored antioxidant enzyme levels, decreased lipid peroxidation, inhibited ROS generation and depolarization of mitochondria. Lupeol also attenuated mitochondria-mediated signaling pathway and DNA damage as evident from TUNEL assay and cell cycle studies leading to prevention of cytotoxicity. This study confirms the efficacy of lupeol, a food derived antioxidant, in abrogating ROS generation, maintaining redox balance and providing significant protection against mitochondria-mediated cell death during AAP-induced toxicity.

  19. Protective effect of heme oxygenase-1 on lung injury induced by erythrocyte instillation in rats

    Institute of Scientific and Technical Information of China (English)

    PANG Qing-feng; ZHOU Qiao-mei; ZENG Si; DOU Li-dong; JI Yong; ZENG Yin-ming

    2008-01-01

    Background Intratracheal instillation of blood induces self-repaired acute lung injury.However,the mechanism of repair has been unclear.Heme-oxygenase (HO)-1,which catalyzes heine breakdown,acts as an inducible defense against oxidative stress and plays an important role in inflammation.The objective of this study was to test the role of HO-1 in lung injury caused by intratracheal instillation of red cells.Methods Forty healthy,male Sprague-Dawley rats were randomly divided into five groups:normal group,saline group,erythrocyte group,erythrocyte+zinc-protoporphyrin (ZnPP,HO-1 inhibitor) group and saline+ZnPP group.At 2 days after intratracheal instillation of red cells,lung tissues and lavage samples were isolated for biochemical determinations and histological measurements.Results Histological analysis revealed that administration of ZnPP worsened the acute lung injury induced by instilled erythrocytes.HO-1 was over-expressed in the erythrocyte group and in the erythrocyte+ZnPP group.Compared with the erythrocyte+ZnPP group,the levels of total protein,lactate dehydrogenase and tumor necrosis factor-α in the lavage were lower (P<0.01),while the level of interleukin-10 was higher in the erythrocyte group (P<0.01).Conclusion HO-1 protects against erythrocyte-induced inflammatory injury in lung.

  20. Possible Protective Effect of Diacerein on Doxorubicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Marwa M. M. Refaie

    2016-01-01

    Full Text Available Nephrotoxicity is one of the limiting factors for using doxorubicin (DOX. Interleukin 1 has major role in DOX-induced nephrotoxicity, so we investigated the effect of interleukin 1 receptor antagonist diacerein (DIA on DOX-induced nephrotoxicity. DIA (25 and 50 mg/kg/day was administered orally to rats for 15 days, in the presence or absence of nephrotoxicity induced by a single intraperitoneal injection of DOX (15 mg/kg at the 11th day. We measured levels of serum urea, creatinine, renal reduced glutathione (GSH, malondialdehyde (MDA, total nitrites (NOx, catalase, and superoxide dismutase (SOD. In addition, caspase-3, tumor necrosis factor alpha (TNFα, nuclear factor kappa B (NFκB expressions, and renal histopathology were assessed. Our results showed that DOX-induced nephrotoxicity was ameliorated or reduced by both doses of DIA, but diacerein high dose (DHD showed more improvement than diacerein low dose (DLD. This protective effect was manifested by significant improvement in all measured parameters compared to DOX treated group by using DHD. DLD showed significant improvement of creatinine, MDA, NOx, GSH, histopathology, and immunohistochemical parameters compared to DOX treated group.

  1. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    Science.gov (United States)

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  2. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Elizabeth Huerta-García

    2013-01-01

    Full Text Available Particulate matter (PM and nanoparticles (NPs induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture with U937 cells, proliferation by crystal violet staining, and oxidative stress through DCFDA and Griess reagent. PM10 and TiO2 NPs induced adhesion and oxidative stress and inhibited proliferation of HUVEC; however, when particles were added in combination with DHEA, the effects previously observed were abolished independently from the tested concentrations and the time of addition of DHEA to the cultures. These results indicate that DHEA exerts significant anti-inflammatory and antioxidative effects on the damage induced by particles in HUVEC, suggesting that DHEA could be useful to counteract the harmful effects and inflammatory diseases induced by PM and NPs.

  3. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao

    2014-12-01

    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  4. Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis.

    Science.gov (United States)

    Fiorini, Claudia; Menegazzi, Marta; Padroni, Chiara; Dando, Ilaria; Dalla Pozza, Elisa; Gregorelli, Alex; Costanzo, Chiara; Palmieri, Marta; Donadelli, Massimo

    2013-03-01

    TP53 mutations compromising p53 transcriptional function occur in more than 50 % of human cancers, including pancreatic adenocarcinoma, and render cancer cells more resistant to conventional therapy. In the last few years, many efforts have been addressed to identify p53-reactivating molecules able to restore the wild-type transcriptionally competent conformation of the mutated proteins. Here, we show that two of these compounds, CP-31398 and RITA, induce cell growth inhibition, apoptosis, and autophagy by activating p53/DNA binding and p53 phosphorylation (Ser15), without affecting the total p53 amount. These effects occur in both wild-type and mutant p53 pancreatic adenocarcinoma cell lines, whereas they are much less pronounced in normal human primary fibroblasts. Furthermore, CP-31398 and RITA regulate the axis SESN1-2/AMPK/mTOR by inducing AMPK phosphorylation on Thr172, which has a crucial role in the autophagic response. The protective role of autophagy in cell growth inhibition by CP-31398 and RITA is supported by the finding that the AMPK inhibitor compound C or the autophagy inhibitors chloroquine or 3-methyladenine sensitize both pancreatic adenocarcinoma cell lines to the apoptotic response induced by p53-reactivating molecules. Our results demonstrate for the first time a survival role for autophagy induced by p53-reactivating molecules, supporting the development of an anti-cancer therapy based on autophagy inhibition associated to p53 activation.

  5. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Huang, Huimin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Fan, Ting; Mu, Qingli; Li, Huani

    2013-10-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.

  6. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage.

    Science.gov (United States)

    Zhang, Jing-Xing; Wang, Rui; Xi, Jin; Shen, Lin; Zhu, An-You; Qi, Qi; Wang, Qi-Yi; Zhang, Lun-Jun; Wang, Feng-Chao; Lü, He-Zuo; Hu, Jian-Guo

    2017-03-01

    Oxidative stress-induced cell injury has been linked to the pathogenesis of neurodegenerative disorders such as spinal cord injury, Parkinson's disease, and multiple sclerosis. Morroniside is an antioxidant derived from the Chinese herb Shan-Zhu-Yu. The present study investigated the neuroprotective effect of morroniside against hydrogen peroxide (H2O2)-induced cell death in SK-N-SH human neuroblastoma cells. H2O2 increased cell apoptosis, as determined by flow cytometry and Hoechst 33342 staining. This effect was reversed by pretreatment with morroniside at concentrations of 1-100 µM. The increase in intracellular reactive oxygen species (ROS) generation and lipid peroxidation induced by H2O2 was also abrogated by morroniside. H2O2 induced a reduction in mitochondrial membrane potential, increased caspase-3 activity, and caused downregulation of B cell lymphoma-2 (Bcl-2) and upregulation of Bcl-2-associated X protein (Bax) expression. These effects were blocked by morroniside pretreatment. Thus, morroniside protects human neuroblastoma cells against oxidative damage by inhibiting ROS production while suppressing Bax and stimulating Bcl-2 expression, thereby blocking mitochondrial-mediated apoptosis. These results indicate that morroniside has therapeutic potential for the prevention and treatment of neurodegenerative diseases.

  7. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2016-02-01

    Full Text Available Following one of the world’s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM, a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL, the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes.

  8. Protective effect of vitamin E against ethanol-induced small intestine damage in rats.

    Science.gov (United States)

    Shirpoor, Alireza; Barmaki, Hanieh; Khadem Ansari, Mohamadhasan; Lkhanizadeh, BehrouzI; Barmaki, Haleh

    2016-03-01

    The role of oxidative stress and inflammatory reaction has been reported in various ethanol-induced complications. The purpose of this study was to evaluate the effect of ethanol-induced structural alteration, oxidative stress, and inflammatory reaction on the small intestine of rats, and plausible protective effect of vitamin E to determine whether it inhibits the abnormality induced by ethanol in the small intestine. Twenty-four male wistar rats were divided into three groups, namely: Control, ethanol, and vitamin E treated ethanol groups. After six weeks of treatment, the small intestine length, villus height, crypt depth and muscular layer thickness, oxidative stress, and inflammatory parameters showed significant changes in the ethanol treated group compared to the control group. Vitamin E consumption along with ethanol ameliorated structural alteration of the small intestine and reduced the elevated amount of oxidative stress and inflammatory markers such as protein carbonyl, OX-LDL, IL-6, Hcy, and TNF-α. Furthermore, their total antioxidant capacity was increased significantly compared to that of the ethanol group. These findings indicate that ethanol induces the small intestine abnormality by oxidative and inflammatory stress, and that these effects can be alleviated by using vitamin E as an antioxidant and anti-inflammatory molecule.

  9. Inducible 70 kDa Heat Shock Proteins Protect Embryos from Teratogen-Induced Exencephaly: Analysis using Hspa1a/a1b Knockout Mice

    Science.gov (United States)

    Background: It is well known that a variety of teratogens induce neural tube defects in animals; however, less is known about proteins that play a role in protecting embryos from teratogen-induced neural tube defects. Previously, our lab has shown that embryos over-expressing th...

  10. Protective Role of Sodium Selenite on Mercuric Chloride Induced Oxidative and Renal Stress in Rats

    Directory of Open Access Journals (Sweden)

    Necib, Youcef

    2013-04-01

    Full Text Available Backgroud: Reactive oxygen species are known to play a major role in mercuric chloride induced oxidative and renal stress. Sodium selenite as an exogenous source of selenium is used for endogenous selenoprotein synthesis to scavenge the free radicals. The study was designed to investigate the possible protective role of sodium selenite in mercuric chloride induced renal stress, by using biochemical approaches. Adult male Albinos Wistar rats were randomly divided into four groups. The first group was served as the control, the second group was given sodium selenite (0.25 mg/kg b.w, while the third group was given mercuric chloride (0.25 mg/kg, finally, the fourth group was given combined treatment of sodium selenite and mercuric chloride for 3 weeks.Results: The effects of sodium selenite on mercuric chloride induced oxidative and renal stress were evaluated by serum creatinine, urea, uric acid, billirubin levels and LDH activity, kidney tissue lipid peroxidation, GSH levels, GSH-Px, GST and catalase activities and hematological parameters. Administration of mercuric chloride induced significant increase in serum: creatinine, urea, uric acid and billirubin concentration showing renal stress. Mercuric chloride also induced oxidative stress, as indicate by decreased kidney tissue of GSH level, GSH-Px, GST, and catalase activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney weight and decreased body weight and erythrocytes, hemoglobin, hematocrit levels. Sodium selenite treatment markedly reduced elevated serum: creatinine, urea, uric acid and billirubin levels, and LDH activity and conteracted the deterious effects of mercuric chloride on oxidative stress markers and hematological parameters and atteneuated histopathological changes caused by HgCl2 in kidney.Conclusion: Our results indicate that sodium selenite could have a beneficial role against mercuric

  11. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    Science.gov (United States)

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  12. Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats

    Institute of Scientific and Technical Information of China (English)

    Sheng-Hsuan Chen; Yu-Chih Liang; Jane CJ Chao; Li-Hsueh Tsai; Chun-Chao Chang; Chia-Chi Wang; Shiann Pan

    2005-01-01

    AIM: To evaluate the preventive effect of Ginkgo bilobaextract (GbE) on ethanol-induced gastric mucosal injuries in rats.METHODS: Female Wistar albino rats were used for the studies. We randomly divided the rats for each study into five subgroups: normal control, experimental control, and three experimental groups. The gastric ulcers were induced by instilling 1 mL 50% ethanol into the stomach. We gaveGbE 8.75, 17.5, 26.25 mg/kg intravenously to the experimental groups respectively 30 min prior to the ulcerative challenge. We removed the stomachs 45 min later. The gastric ulcers,gastric mucus and the content of non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), c-Jun kinase (JNK) activity in gastric mucosa were evaluated. The amount of gastric juice and its acidity were also measured. RESULTS: The findings of our study are as follows: (1)GbE pretreatment was found to provide a dose-dependent protection against the ethanol-induced gastric ulcers in rats; (2) the GbE pretreatment afforded a dose-dependent inhibition of ethanol-induced depletion of stomach wall mucus, NP-SH oontents and increase in the lipid peroxidation (increase MDA) in gastric tissue; (3) gastric ulcer induced by ethanolproduced an increase in JNK activity in gastric mucosawhich also significantly inhibited by pretreatment with GbE;and (4) GbE alone had no inhibitory effect on gastric secretionin pylorus-ligated rats.CONCLUSION: The finding of this study showed that GbE significantly inhibited the ethanol-induced gastric lesions in rats. We suggest that the preventive effect of GbE may be mediated through: (1) inhibition of lipid peroxidation;(2) preservation of gastric mucus and NP-SH; and (3)blockade of cell apoptosis.

  13. Protective Effects of Hydrolyzed Nucleoproteins from Salmon Milt against Ethanol-Induced Liver Injury in Rats.

    Science.gov (United States)

    Kojima-Yuasa, Akiko; Goto, Mayu; Yoshikawa, Eri; Morita, Yuri; Sekiguchi, Hirotaka; Sutoh, Keita; Usumi, Koji; Matsui-Yuasa, Isao

    2016-12-19

    Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM) on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model. Plasma aspartate transaminase and alanine transaminase were significantly less active in the DNSM-treated group than in the ethanol plus carbon tetrachloride (CCl₄)-treated group. Collagen accumulation in the liver and hepatic necrosis were observed histologically in ethanol plus CCl₄-treated rats; however, DNSM-treatment fully protected rats against ethanol plus CCl₄-induced liver fibrosis and necrosis. Furthermore, we examined whether DNSM had a preventive effect against alcohol-induced liver injury by regulating the cytochrome p450 2E1 (CYP2E1)-mediated oxidative stress pathway in an in vivo model. In this model, CYP2E1 activity in ethanol plus CCl₄-treated rats increased significantly, but DNSM-treatment suppressed the enzyme's activity and reduced intracellular thiobarbituric acid reactive substances (TBARS) levels. Furthermore, the hepatocytes treated with 100 mM ethanol induced an increase in cell death and were not restored to the control levels when treated with DNSM, suggesting that digestive products of DNSM are effective for the prevention of alcohol-induced liver injury. Deoxyadenosine suppressed the ethanol-induced increase in cell death and increased the activity of alcohol dehydrogenase. These results suggest that DNSM treatment represents a novel tool for the prevention of alcohol-induced liver injury.

  14. Dietary supplement enriched in antioxidants and omega-3 protects from progressive light-induced retinal degeneration.

    Directory of Open Access Journals (Sweden)

    Khaoula Ramchani-Ben Othman

    Full Text Available In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD. For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA, 142% for docosapentaenoic acid (DPA and 19% for docosahexaenoic acid (DHA and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration.

  15. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    Science.gov (United States)

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  16. Protective Effects of Hydrolyzed Nucleoproteins from Salmon Milt against Ethanol-Induced Liver Injury in Rats

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2016-12-01

    Full Text Available Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model. Plasma aspartate transaminase and alanine transaminase were significantly less active in the DNSM-treated group than in the ethanol plus carbon tetrachloride (CCl4-treated group. Collagen accumulation in the liver and hepatic necrosis were observed histologically in ethanol plus CCl4-treated rats; however, DNSM-treatment fully protected rats against ethanol plus CCl4-induced liver fibrosis and necrosis. Furthermore, we examined whether DNSM had a preventive effect against alcohol-induced liver injury by regulating the cytochrome p450 2E1 (CYP2E1-mediated oxidative stress pathway in an in vivo model. In this model, CYP2E1 activity in ethanol plus CCl4-treated rats increased significantly, but DNSM-treatment suppressed the enzyme’s activity and reduced intracellular thiobarbituric acid reactive substances (TBARS levels. Furthermore, the hepatocytes treated with 100 mM ethanol induced an increase in cell death and were not restored to the control levels when treated with DNSM, suggesting that digestive products of DNSM are effective for the prevention of alcohol-induced liver injury. Deoxyadenosine suppressed the ethanol-induced increase in cell death and increased the activity of alcohol dehydrogenase. These results suggest that DNSM treatment represents a novel tool for the prevention of alcohol-induced liver injury.

  17. Cymbopogon citratus protects against the renal injury induced by toxic doses of aminoglycosides in rabbits

    Directory of Open Access Journals (Sweden)

    N Ullah

    2013-01-01

    Full Text Available Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6 including group 1 (0.9% saline treated, group 2 (80 mg/kg/day gentamicin-treated, group 3 (200 mg/kg/day Cymbopogon citratus treated and group 4 (80 mg/kg/day gentamicin and 200 mg/kg/day Cymbopogon citratus treated. Biochemical kidney functioning parameters, urinary enzymes and histopathological examination were performed. The results of the present study showed that simultaneous administration of Cymbopogon citrates and gentamicin significantly protected alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase and urinary alkaline phosphatase induced by gentamicin. Histological examination of the kidney also suggested the same. It is concluded from the current study that co-administration of Cymbopogon citratus with gentamicin for 3 weeks successfully prevented renal damage associated with aminoglycosides.

  18. Protective effect of quercetin in the regression of ethanol-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Vidhya A

    2009-01-01

    Full Text Available This study examined the protective effects of quercetin on chronic ethanol-induced liver injury. Rats were treated with ethanol at a dose of 4 g/100 g/day for 90 days. After ethanol intoxication, levels of serum amino transferases were significantly elevated. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was also observed on ethanol administration. Increased amounts of lipid peroxidation products viz. hydroperoxides, conjugated dienes and malodialdehyde were observed on ethanol intoxication. Ethanol administration resulted in significant decrease in liver glutathione content. After 90 days, the control animals were divided into two groups, the control group and the control+quercetin group. Ethanol-treated group was divided into two groups, abstention group and quercetin-supplemented group. After 30 days, the animals were sacrificed and various biochemical parameters were analyzed. The changes in enzyme activities as well as levels of lipid peroxidation products were reversed to a certain extent by quercetin. Quercetin supplementation resulted in increase of glutathione content to a significant level compared to normal abstention group. Quercetin supplemented group showed a faster recovery than abstention group. This shows the protective effect of quercetin against chronic ethanol induced hepatotoxicity. Histopathological study is also in line with these results.

  19. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    Science.gov (United States)

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  20. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Bihamta

    2017-01-01

    Full Text Available Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium (MTT assay. The level of reactive oxygen species (ROS and lipid peroxidation were measured by fluorimetric methods.Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity.Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases.

  1. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes

    Institute of Scientific and Technical Information of China (English)

    Lu-yang YU; Bo LIN; Zhen-lin ZHANG; Li-he GUO

    2004-01-01

    AIM: To investigate the efficiency of transfer of A20 gene into pancreas against STZ-induced diabetes. METHODS:PVP-plasmid mixture was directly transferred into the pancreatic parenchyma 2 d before STZ injection. The uptake of plasmid pcDNA3-LacZ or pcDNA3-A20 was detected by PCR and the expression of LacZ was confirmed by histological analysis with X-gal. A20 expression in the pancreas of pcDNA3-A20 transgenic mice was measured by RT-PCR and Westem blots. Urine amylase, NO generation, and histological examination were examined. RESULTS:Injection of PVP-plasmid mixture directly into the pancreatic parenchyma increased urine amylase concentration 16 h after operation and reversed it to nearly normal 36 h later. On d 33 LacZ expression could be found in spleen,duodenum, and islets. The development of diabetes was prevented by direct A20 gene transferring into the pancreas and A20-mediated protection was correlated with suppression of NO production. The insulitis was ameliorated in A20-treated mice. CONCLUSION: Injection of PVP-plasmid mixture directly into the pancreatic parenchyma led to target gene expression in islets. Direct transfer of A20 gene into the pancreas protected mice from STZ-induced diabetes.

  2. Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei

    2016-04-01

    This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.

  3. Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6.

    Science.gov (United States)

    Tsai, Hsin-Da; Wu, Jui-Sheng; Kao, Mei-Han; Chen, Jin-Jer; Sun, Grace Y; Ong, Wei-Yi; Lin, Teng-Nan

    2016-09-01

    Many population-based epidemiological studies have unveiled an inverse correlation between intake of herbal plants and incidence of stroke. C. nutans is a traditional herbal medicine widely used for snake bite, viral infection and cancer in Asian countries. However, its role in protecting stroke damage remains to be studied. Despite of growing evidence to support epigenetic regulation in the pathogenesis and recovery of stroke, a clear understanding of the underlying molecular mechanisms is still lacking. In the present study, primary cortical neurons were subjected to in vitro oxygen-glucose deprivation (OGD)-reoxygenation and hypoxic neuronal death was used to investigate the interaction between C. nutans and histone deacetylases (HDACs). Using pharmacological agents (HDAC inhibitor/activator), loss-of-function (HDAC siRNA) and gain-of-function (HDAC plasmid) approaches, we demonstrated an early induction of HDAC1/2/3/8 and HDAC6 in neurons after OGD insult. C. nutans extract selectively inhibited HDAC1 and HDAC6 expression and attenuated neuronal death. Results of reporter analysis further revealed that C. nutans suppressed HDAC1 and HDAC6 transcription. Besides ameliorating neuronal death, C. nutans also protected astrocytes and endothelial cells from hypoxic-induced cell death. In summary, results support ability for C. nutans to suppress post-hypoxic HDACs activation and mitigate against OGD-induced neuronal death. This study further opens a new avenue for the use of herbal medicines to regulate epigenetic control of brain injury.

  4. Recreation-induced changes in boreal bird communities in protected areas.

    Science.gov (United States)

    Kangas, K; Luoto, M; Ihantola, A; Tomppo, E; Siikamäki, P

    2010-09-01

    The impacts of human-induced disturbance on birds have been studied in growing extent, but there are relatively few studies about the effects of recreation on forest bird communities in protected areas. In this paper, the relative importance of recreation as well as environmental variables on bird communities in Oulanka National Park, in northeastern Finland, was investigated using general additive models (GAM). Bird data collected using the line transect method along hiking trails and in undisturbed control areas were related to number of visits, area of tourism infrastructure, and habitat variables. We further examined the impact of spatial autocorrelation by calculating an autocovariate term for GAMs. Our results indicate that number of visits affects the occurrence and composition of bird communities, but it had no impact on total species richness. Open-cup nesters breeding on the ground showed strongest negative response to visitor pressure, whereas the open-cup nesters nesting in trees and shrubs were more tolerant. For cavity-nesting species, recreation had no significant impact. The contribution of the number of visits was generally low also in models in which it was selected, and the occurrence of birds was mainly determined by habitat characteristics of the area. However, our results show that the recreation-induced disturbance with relatively low visitor pressure can have negative impacts on some bird species and groups of species and should be considered in management of protected areas with recreational activities.

  5. Protective Effect of Salicornia europaea Extracts on High Salt Intake-Induced Vascular Dysfunction and Hypertension

    Science.gov (United States)

    Panth, Nisha; Park, Sin-Hee; Kim, Hyun Jung; Kim, Deuk-Hoi; Oak, Min-Ho

    2016-01-01

    High salt intake causes and aggravates arterial hypertension and vascular dysfunction. We investigated the effect of Salicornia europaea extracts (SE) on vascular function and blood pressure. SE constituents were analyzed using high performance liquid chromatography, and SE’s effect on vascular function was evaluated in isolated porcine coronary arteries. SE’s vascular protective effect was also evaluated in vivo using normotensive and spontaneous hypertensive rats (SHRs). SE mainly contained sodium chloride (55.6%), 5-(hydroxymethyl)furfural, p-coumaric acid, and trans-ferulic acid. High sodium (160 mmol/L) induced vascular dysfunction; however, SE containing the same quantity of sodium did not cause vascular dysfunction. Among the compounds in SE, trans-ferulic acid accounts for the vascular protective effect. Normotensive rats fed a high-salt diet showed significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which decreased significantly in the SE-treated groups. In SHRs, high edible salt intake significantly increased SBP, DBP, and MAP, but SE intake was associated with a significantly lower MAP. Thus, SE did not induce vascular dysfunction, and trans-ferulic acid might be at least partly responsible for the vasoprotective effect of SE. Taken together, SE could be used as an alternative to purified salt to prevent and ameliorate hypertension. PMID:27455235

  6. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Pei-Ying Li

    2015-12-01

    Full Text Available Diabetes is an important chronic disease and the 4th leading cause of death in Taiwan. Hyperglycemia-induced oxidative and inflammatory damage are the main causes of chronic complications in diabetic patients. The red guava (red-fleshed guava cultivar of Psidium guajava L. is a tropical fruit belonging to the Myrtaceae family and an important commercial crop in Taiwan. In this study, the protective effects of a diet containing red guava on inflammation and oxidative stress in streptozotocin (STZ-induced diabetic mice were examined. The experimental group was divided into seven subgroups: normal (N, diabetes mellitus (DM, diabetes + red guava 1% (L, 2% (M, and 5% (H, diabetes + 5% red guava + anti-diabetic rosiglitazone (HR, and diabetes + anti-diabetic rosiglitazone (R. The mice were fed for 8 weeks and sacrificed by decapitation. Compared with the DM group, the experimental groups with diets containing red guava as well as rosiglitazone all showed significant improvements in blood glucose control, insulin resistance, creatinine, blood urea nitrogen, triglycerides, non-esterified fatty acids, cholesterol, c-reactive protein, TNF-α, and IL-10. Furthermore, the expression of inflammatory proteins, such as iNOS and NF-κB, was suppressed via activated PPARγ, and the expression levels of GPx3 and ACO increased. In summary, red guava can significantly suppress inflammatory and oxidative damage caused by diabetes and alleviate diabetic symptoms; thus, it exerts protective effects and has potential applications for the development of a dietary supplement.

  7. Protective Effect of Plantago major Extract against t-BOOH-Induced Mitochondrial Oxidative Damage and Cytotoxicity.

    Science.gov (United States)

    Mello, Joyce C; Gonzalez, Mariano V D; Moraes, Vivian W R; Prieto, Tatiana; Nascimento, Otaciro R; Rodrigues, Tiago

    2015-09-25

    Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species) generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(P)H) against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major.

  8. Gallic acid protects against cyclophosphamide-induced toxicity in testis and epididymis of rats.

    Science.gov (United States)

    Oyagbemi, A A; Omobowale, T O; Saba, A B; Adedara, I A; Olowu, E R; Akinrinde, A S; Dada, R O

    2016-05-01

    The protective role of gallic acid (GA) on reproductive toxicity induced by cyclophosphamide (CPA), an antineoplastic drug, was investigated in male Wistar rats. Sixty rats were grouped into 10 rats per group. Group 1 (control) received distilled water. Rats in groups 2 and 3 received GA alone at 60 and 120 mg kg(-1) for 14 consecutive days, respectively. Group 4 received a single intraperitoneal dose of CPA at 200 mg kg(-1) on day 1. Groups 5 and 6 received a single dose of CPA (200 mg kg(-1) ) intraperitoneally on day 1 followed by treatment with GA at 60 and 120 mg kg(-1) for 14 consecutive days, respectively. In testes and epididymis of the treated rats, CPA administration resulted in significant elevation (P < 0.05) in malondialdehyde (MDA), nitrite and hydrogen peroxide levels. There was a significant decrease in the activities of superoxide dismutase and glutathione-S-transferase. Furthermore, there were significant reductions in plasma luteinising hormone (LH), follicle stimulation hormone (FSH) and testosterone levels, which were accompanied by significant decrease in sperm motility and viability in CPA-treated rats. Histological examination revealed marked testicular and epididymal atrophy in CPA alone treated rats and these aberrations were reversed by GA. In conclusion, GA has capacity to protect against reproductive toxicity induced by cyclophosphamide.

  9. Protective effect of erdosteine against naphthalene-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Özer Şehirli

    2010-05-01

    Full Text Available In this study the role of free radicals in naphthalene-induced toxicity and the protection by erdosteine are investigated. Female Sprague-Dawley rats were treated with a single oral dose of 1100 mg naphthalene/kg in corn oil. Erdosteine was given 50 mg/kg/day orally for 3 days before naphthalene treatment and rats were decapitated 24 hours after naphthalene administration. Liver and kidney tissue samples were taken for determination of malondialdehyde (MDA, glutathione (GSH, Na+, K+-ATPase and myeloperoxidase (MPO activities. Aspartate aminotransferase (AST, alanine aminotransferase (ALT, blood urea nitrogen (BUN and creatinine levels and lactate dehydrogenase (LDH activity were measured in the serum samples, while TNF-α, IL-1β, IL-6, 8-hydroxy-2'-deoxyguanosine (8- OHdG and total antioxidant capacity (AOC were assayed in plasma samples. Naphthalene administration caused a significant decrease in tissue GSH levels, Na+, K+-ATPase activity and plasma AOC levels, which was accompanied with significant increases in tissue MDA levels and MPO activity. Moreover the pro-inflammatory mediators (TNF-α, IL-β, IL-6, 8- OHdG, LDH activity, AST, ALT, creatinine and BUN levels were significantly increased in the naphthalene group. On the other hand erdosteine treatment prevented all these biochemical changes induced by naphthalene. In conclusion, it seems likely that erdostein protects tissues by inhibiting neutrophil infiltration, balancing the oxidant–antioxidant status and regulating the generation of inflammatory mediators.

  10. Protective Effect of Aqueous and Ethanolic Extracts of Portulaca Oleracea Against Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimi

    2010-04-01

    Full Text Available Objective(sPortulaca oleracea L. is a herbaceous weed from portulacaceae family. It can be found in many parts of the world. Modern pharmacological studies have demonstrated that P. oleracea have antioxidant effects. The protective effect of aqueous and ethanolic extract of P. oleracea against cisplatin-induced renal toxicity was studied in rats.Materials and MethodsSingle intraperitoneal injection of 4 mg/kg cisplatin was administrated to rats. After 5 days, blood urea nitrogen (BUN and serum creatinine (Scr concentration were determined. Effect of aqueous and ethanolic extracts, before and after cisplatin injection on BUN and Scr, as well as morphological renal damage, was evaluated. ResultsIt was indicated that treatment with aqueous and ethanolic extracts of P. oleracea in the highest dose (0.8 and 2 g/ kg, 6 and 12 hr before cisplatin injection reduced BUN and Scr. Tubular necrotic damage was not observed either. ConclusionResults suggest that P. oleracea extract may protect against cisplatin-induced renal toxicity and might serve as a novel combination agent with cisplan to limit renal injury.

  11. Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Elahe Taghiabadi

    2012-01-01

    Full Text Available Reactive α,β-unsaturated aldehydes such as acrolein (ACR are major components of environmental pollutants and have been implicated in the neurodegenerative and cardiac diseases. In this study, the protective effect of silymarin (SN against cardiotoxicity induced by ACR in mice was evaluated. Studies were performed on seven groups of six animals each, including vehicle-control (normal saline + 0.5% w/v methylcellulose, ACR (7.5 mg/kg/day, gavage for 3 weeks, SN (25, 50 and 100 mg/kg/day, i.p. plus ACR, vitamin E (Vit E, 100 IU/kg, i.p. plus ACR, and SN (100 mg/kg, i.p. groups. Mice received SN 7 days before ACR and daily thereafter throughout the study. Pretreatment with SN attenuated ACR-induced increased levels of malondialdehyde (MDA, serum cardiac troponin I (cTnI, and creatine kinase-MB (CK-MB, as well as histopathological changes in cardiac tissues. Moreover, SN improved glutathione (GSH content, superoxide dismutase (SOD, and catalase (CAT activities in heart of ACR-treated mice. Western blot analysis showed that SN pretreatment inhibited apoptosis provoked by ACR through decreasing Bax/Bcl-2 ratio, cytosolic cytochrome c content, and cleaved caspase-3 level in heart. In conclusion, SN may have protective effects against cardiotoxicity of ACR by reducing lipid peroxidation, renewing the activities of antioxidant enzymes, and preventing apoptosis.

  12. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans.

    Science.gov (United States)

    Yiasemides, Eleni; Sivapirabu, Geetha; Halliday, Gary M; Park, Joohong; Damian, Diona L

    2009-01-01

    Cutaneous immunity, which is a key defence against the development of skin cancers, is suppressed by even small doses of ultraviolet (UV) radiation. Preventing this UV-induced immunosuppression may therefore reduce the incidence of skin cancer. Nicotinamide (vitamin B3) has immune-protective and cancer-preventive effects against UV radiation in mice, and we have shown previously that topical nicotinamide is immune protective in humans. Using the Mantoux model of skin immunity in healthy volunteers, we compared oral nicotinamide to placebo (both administered for 1 week) in a randomized, double-blinded, crossover design against the effects of solar-simulated ultraviolet (ssUV) radiation on delayed-type hypersensitivity to tuberculin purified protein derivative. Discrete areas of the back were irradiated with low doses of ssUV daily for three consecutive days. Immunosuppression, calculated as the difference in Mantoux-induced erythema of irradiated sites compared with unirradiated control sites, was determined in volunteers taking oral nicotinamide and placebo. Significant immunosuppression occurred in an UV dose-dependent manner in the presence of placebo. Oral nicotinamide, at doses of either 1500 or 500 mg daily, was well tolerated and significantly reduced UV immunosuppression with no immune effects in unirradiated skin. Oral nicotinamide is safe and inexpensive and looks promising as a chemopreventive supplement for reducing the immunosuppressive effects of sunlight.

  13. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice

    Institute of Scientific and Technical Information of China (English)

    Lei Diao; Qiao Mei; Jian-Ming Xu; Xiao-Chang Liu; Jing Hu; Juan Jin; Qiang Yao

    2012-01-01

    AIM:To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice.METHODS:Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally.A control group received the vehicle by gavage.Rebamipide (100 mg/kg,200 mg/kg,400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration.Intestinal permeability was evaluated by Evans blue and the FITC-dextran method.The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM).Mitochondrial function including mitochondrial swelling,mitochondrial membrane potential,mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels,succinate dehydrogenase (SDH) and ATPase activities were measured.Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity.RESULTS:Compared with the control group,intestinal permeability was significantly increased in the diclofenac group,which was accompanied by broken tight junctions,and significant increases in MDA content and MPO activity.Rebamipide significantly reduced intestinal permeability,improved inter-cellular tight junctions,and was associated with decreases in intestinal MDA content and MPO activity.At the mitochondrial level,rebamipide increased SDH and ATPase activities,NADH level and decreased mitochondrial swelling.CONCLUSION:Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide,which partially contributed to the protection of mitochondrial function.

  14. The Protective Effect of Curcumin on Ionizing Radiation-induced Cataractogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Fatma Nesrin Turan

    2012-12-01

    Full Text Available Objective: The aim of the study was to determine the protective effect of curcumin against ionizing radiation-induced cataract in the lens of rats. Material and Methods: Rats were divided into six groups. Group 1: Control, Group 2: Dimethyl sulfoxide (DMSO, Group 3: DMSO+curcumin, Group 4: Irradiation, Group 5: Irradiation+DMSO, Group 6: Irradiation+DMSO+curcumin. A 15 Gy total dose was given to 4, 5, 6 groups for radiation damage. Curcumin (100 mg/kg was dissolved in DMSO and given by intragastric intubation for 28 days. At the end of the experiment, lenses were graded and enucleated. The lenticular activity of the antioxidant enzymes, total antioxidant and glutathione peroxidase (GSH-Px, and the malondialdehyde (MDA were measured.Results: 100% Cataract was seen in the irradiation group. Cataract rate fell to 40% and was limited at grade 1 and 2 in the curcumin group. In the irradiation group, antioxidant enzyme levels were decreased, MDA levels were increased. There was an increase in antioxidant enzyme levels and a significant decrease in MDA in the group which was given curcumin.Conclusion: Curcumin has antioxidant and radioprotective properties and is likely to be a valuable agent for protection against ionizing radiation. Hence, it may be used as an antioxidant and radioprotector against radiation-induced cataractogenesis.

  15. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model.

    Science.gov (United States)

    Liu, Wenwu; Liu, Kehuan; Ma, Chunqing; Yu, Jiangang; Peng, Zhaoyun; Huang, Guoyang; Cai, Zhiyu; Li, Runping; Xu, Weigang; Sun, Xuejun; Liu, Kan; Zheng, Juan

    2014-01-01

    Hyperbaric oxygen therapy is one of the most widely used clinical interventions to counteract insufficient pulmonary oxygen delivery in patients with severe lung injury. However, prolonged exposure to hyperoxia leads to inflammation and acute lung injury. This study aimed to investigate the protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury. Rats were intraperitoneally treated with sodium hydrosulphide (NaHS) at 28 μmol/kg immediately before hyperoxia exposure and then exposed to pure oxygen at 2.5 atmospheres absolute (atm abs) with continuous ventilation for six hours, Immediately after hyperoxia exposure, rats were sacrificed via anesthesia. The bronchoalveolar lavage fluid (BALF) was harvested for the detection of protein concentration and IL-1 content, and the lungs were collected for HE staining, TUNEL staining and detection of wet/dry weight ratio. Our results showed hyperbaric hyperoixa exposure could significantly damage the lung (HE staining), increase the protein and IL-13 in the BALF, elevate the wet/dry Weight ratio and raise the TUNEL positive cells. However, pre-treatment with hydrogen sulfide improved the lung morphology, reduced the TUNEL positive cells and attenuated the lung inflammation (reduction in IL-13 of BALF and HE staining). Taken together, our findings indicate that hydrogen sulfide pretreatment may exert protective effects on hyperbaric hyperoxia-induced lung injury.

  16. Hesperidin protects testicular and spermatological damages induced by cisplatin in rats.

    Science.gov (United States)

    Kaya, K; Ciftci, O; Cetin, A; Doğan, H; Başak, N

    2015-09-01

    The clinic usage of cisplatin, an anticancer drug, is limited due to it has many side effects in many systems and organs. In this context, it was aimed to investigate the protective effect of hesperidin, a citrus flavonoid, on testicular and spermatological damages induced by cisplatin in rats. The rats were randomly divided into four groups. The first group was kept as a control. In the second groups, cisplatin was given at the single dose of 7 mg kg(-1) intraperitoneally. In the third group, hesperidin was orally administered at the dose of 50 mg/kg day(-1) for 14 days. In the fourth group, cisplatin and hesperidin were given together at the same doses. Cisplatin treatment caused significant reductions enzymatic (SOD, CAT and GPx) and nonenzymatic (GSH) antioxidants and significant induction level of TBARS. In addition, cisplatin treatment caused decreased sperm motility, epididymal sperm concentration, increased abnormal sperm rate and histopathological damage. In contrast, hesperidin treatment significantly attenuated the harmful effects. In conclusion, this study clearly demonstrated that hesperidin has protective effects on cisplatin-induced reproductive system toxicity depending on its antioxidant properties. Thus, it is thought that hesperidin may be useful against cisplatin toxicity in patients with cancer in terms of reproductive system.

  17. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections.

    Science.gov (United States)

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2016-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions.

  18. Protective effect of Cassia fistula fruit extract on bromobenzene-induced nephrotoxicity in mice.

    Science.gov (United States)

    Kalantari, Heibatullah; Jalali, Mohammadtaha; Jalali, Amir; Salimi, Abobakr; Alhalvachi, Foad; Varga, Balazs; Juhasz, Bela; Jakab, Anita; Kemeny-Beke, Adam; Gesztelyi, Rudolf; Tosaki, Arpad; Zsuga, Judit

    2011-10-01

    The efficacy of a crude hydro-alcoholic extract of Cassia fistula (golden shower tree) fruit to protect the kidney against bromobenzene-induced toxicity was studied. Negative control mice received normal saline; positive control mice were given 460 mg/kg of bromobenzene; Cassia fistula treated mice received 200, 400, 600 and 800 mg/kg of Cassia fistula fruit extract followed by 460 mg/kg bromobenzene (daily by oral gavage for 10 days). On the 11th day, the mice were sacrificed, blood samples were obtained to assess blood urea nitrogen (BUN) and creatinine levels, and kidneys were removed for histological examination. We found that bromobenzene induced significant nephrotoxicity reflected by an increase in levels of BUN and creatinine that was dose dependently prevented by the Cassia fistula fruit extract. The nephroprotective effect of the Cassia fistula fruit extract was confirmed by the histological examination of the kidneys. To the best of our knowledge, this is the first study to demonstrate the protective effect of Cassia fistula in nephrotoxicity.

  19. Protective Effect of Plantago major Extract against t-BOOH-Induced Mitochondrial Oxidative Damage and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Joyce C. Mello

    2015-09-01

    Full Text Available Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(PH against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major.

  20. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    Science.gov (United States)

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  1. Protective effects of electroacupuncture on acetylsalicylic acid-induced acute gastritis in rats

    Institute of Scientific and Technical Information of China (English)

    Hye Suk Hwang; Kyung-Ju Han; Yeon Hee Ryu; Eun Jin Yang; Yoo Sung Kim; Sang Yong Jeong; Young-Seop Lee; Myeong Soo Lee; Sung Tae Koo; Sun-Mi Choi

    2009-01-01

    AIM: To invest igate the protect ive effects of electroacupuncture (EA) pretreatment on acetylsalicylic acid (ASA)-induced ulceration in rats. METHODS: We randomly divided 72 rats into three groups including control (administered with distilled water), ASA group (administered 100 mg/kg ASA) and EA group (administered EA + 100 mg/kg ASA). Each rat was fasted for 18 to 24 h before experimentation, and lesion scores, gastric acidity, cyclooxygenase (COX)-1 and -2 mRNA levels, and total nitric oxide (NO) concentration were measured. RESULTS: The lesion scores of the EA group were significantly lower than those of the ASA group. Gastric acidity of the ASA and EA groups was reduced compared to the control group. COX-1 and -2 mRNA levels were significantly increased in the EA group as compared to the control and ASA groups, and NO levels were also significantly increased in the EA group as compared to the ASA group. CONCLUSION: These results suggest that EAmediated protection against ASA-induced ulceration in rats may occur via gastric defense components.

  2. PROTECTIVE EFFICACY OF HUMBOLDTIA BRUNONIS WALL ON DOXORUBICIN INDUCED OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Palanisamy P

    2012-02-01

    Full Text Available Liver, heart and kidney are the frequent targets of the toxicants as liver involved in metabolism, heart supplies O2 to entire body and kidney involves in the excretion and re-absorption of the substances. The principle cases of doxorubicin toxicity are decreased activities of antioxidant enzymes and generation of free radicals. The main objective of this work is to develop an organo-protective agent from Humboldtia brunonis. Wall which can be used against doxorubicin induced oxidative damage. After the preliminary phytochemical screening and acute toxicity study, the methanolic extract of H.brunonis.Wall was evaluated for the presence of in-vitro antioxidant activity using DPPH, superoxide radical, hydroxyl radical, nitric oxide radical scavenging and lipid peroxidation assays using doses of 200 mg/kg and 400 mg/kg. The cardioprotective effects of H. brunonis using the levels of cardiac marker enzymes(CPK and LDH, the hepatoprotective effects using the levels of liver marker enzymes(GOT, GPT and ALP and the nephroprotective effects using the levels of kidney markers(creatinine and urea in serum were evaluated in the present study. The results indicate that H. Brunonis Wall extract is capable of direct free radical scavenging effects and enhancing the hepato, cardio and nephro-protective activities against the doxorubicin induced oxidative damage to the vital organs.

  3. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: Role of aldose reductase

    Institute of Scientific and Technical Information of China (English)

    Safinaz S Ibrahim; Noha N Nassar

    2008-01-01

    AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Uver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes.

  4. Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers

    Institute of Scientific and Technical Information of China (English)

    Marjorie Valix; Diyana Zamri; Hiro Mineyama; Wai Hung Cheung; Jeffrey Shi; Heri Bustamante

    2012-01-01

    Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.

  5. In Vitro Protective Potentials of Annona muricata Leaf Extracts Against Sodium Arsenite-induced Toxicity.

    Science.gov (United States)

    George, Vazhappilly Cijo; Kumar, Devanga Ragupathi Naveen; Suresh, Palamadai Krishnan; Kumar, Rangasamy Ashok

    2015-01-01

    Sodium arsenite (NaAsO2) is a metalloid which is present widely in the environment and its chronic exposure can contribute to the induction of oxidative stress, resulting in disturbances in various metabolic functions including liver cell death. Hence, there is a need to develop drugs from natural sources, which can reduce arsenic toxicity. While there have been reports regarding the antioxidant and protective potentials of Annona muricataleaf extracts, our study is the first ofits kind to extend these findings by specifically evaluating its ability to render protection against sodium arsenite (NaAsO2) induced toxicity (10 μM) in WRL-68 (human hepatic cells) and human erythrocytes by employing XTT and haemolysis inhibition assays respectively. The methanolic extract exhibited higher activity than the aqueous extract in both assays. The results showed a dose-dependent decrease in arsenic toxicity in both WRL-68 cells and erythrocytes, suggesting the protective nature of Annona muricatato mitigate arsenic toxicity. Hence the bioactive extracts can further be scrutinized for the identification and characterization of their principal contributors.

  6. Chronic nitrate enrichment decreases severity and induces protection against an infectious disease.

    Science.gov (United States)

    Smallbone, Willow; Cable, Jo; Maceda-Veiga, Alberto

    2016-05-01

    Excessive fertilisation is one of the most pernicious forms of global change resulting in eutrophication. It has major implications for disease control and the conservation of biodiversity. Yet, the direct link between nutrient enrichment and disease remains largely unexplored. Here, we present the first experimental evidence that chronic nitrate enrichment decreases severity and induces protection against an infectious disease. Specifically, this study shows that nitrate concentrations ranging between 50 and 250mgNO3(-)/l reduce Gyrodactylus turnbulli infection intensity in two populations of Trinidadian guppies Poecilia reticulata, and that the highest nitrate concentration can even clean the parasites from the fish. This added to the fact that host nitrate pre-exposure altered the fish epidermal structure and reduced parasite intensity, suggests that nitrate protected the host against the disease. Nitrate treatments also caused fish mortality. As we used ecologically-relevant nitrate concentrations, and guppies are top-consumers widely used for mosquito bio-control in tropical and often nutrient-enriched waters, our results can have major ecological and social implications. In conclusion, this study advocates reducing nitrate level including the legislative threshold to protect the aquatic biota, even though this may control an ectoparasitic disease.

  7. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  8. Maternal Antibody Protected Chicks from Growth Retardation and Immunosuppression Induced by Early Reticuloendotheliosis Virus Infection

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-hong; GUI Zhi-zhong; QU Li-xin

    2007-01-01

    To determine if the maternal antibody from breeders vaccinated with cell culture-adapted reticuloendotheliosis virus (REV) could protect chicks from early REV infection, one-day-old chicks with or without anti-REV maternal antibodies were inoculated with REV, and then their growth rates and antibody tilers to Newcastle disease virus (NDV) and avian influenza virus (AIV), after vaccination with inactivated vaccines, were compared. This study indicated that REV infection could cause growth retardation and severely inhibit immune reactions to inactivated vaccines against NDV and Avian influenza virus (AIV, H9 and H5) in one-day-old broilers without maternal antibodies specific to REV. Maternal antibody from breeders vaccinated with an attenuated REV vaccine effectively protected REV-challenged birds from growth retardation and immunosuppression on antibody reactions to NDV and AIV vaccines. Four weeks after vaccination, the HI liters to NDV, AIV-H9, and AIV-H5 in maternal antibody positive and negative groups were 3.36±2.04 versus 1.58±1.69 (P<0.01), 6.27±3.87 versus 0.71±1.60(P<0.01), and 6.72 versus 0.54±1.44(p<0.01). Maternal antibodies from breeders vaccinated with REV vaccine could successfully protect chicks from REV infection and effectively prevent REV-induced growth retardation and immunosuppression in antibody responses to NDV and AIV.

  9. A mint purified extract protects human keratinocytes from short-term, chemically induced oxidative stress.

    Science.gov (United States)

    Berselli, Patrizia Valeria Rita; Zava, Stefania; Montorfano, Gigliola; Corsetto, Paola Antonia; Krzyzanowska, Justyna; Oleszek, Wieslaw; Berra, Bruno; Rizzo, Angela Maria

    2010-11-10

    Oxidative stress is strictly correlated to the pathogenesis of many diseases, and a diet rich in fruits and vegetables, or adequately integrated, is currently considered to be a protective and preventive factor. This study aimed to analyze the efficacy of a 1 h preincubation with the highest nontoxic dose of a characterized Mentha longifolia extract (80 μg/mL) in protecting human keratinocytes (NCTC2544) from chemically induced oxidative stress (500 μM H2O2 for 2, 16, and 24 h). As reference synthetic pure compounds rosmarinic acid (360.31 μg/mL), a major mint phenolic constituent, and resveratrol (31.95 mg/mL), a well-known antioxidant, were used. Cellular viability was significantly protected by mint, which limited protein and DNA damage, decreased lipid peroxidation, and preserved glutathione and superoxide dismutase activity in the shorter phases of oxidative stress induction, in extents comparable to or better than those of pure compounds. These data suggest that mint use as only a flavoring has to be revised, taking into consideration its enrichment in foodstuff and cosmetics.

  10. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Sandro Roier

    Full Text Available Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.

  11. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    Directory of Open Access Journals (Sweden)

    B Rajendar

    2011-01-01

    Full Text Available Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT could protect the cadmium (Cd-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conducted in rats. A total of 40 Wistar strain adult male rats were divided into four groups. Group 1 served as control, while group 2 to 4 received CdCl 2 (3 mg/kg b. wt. s/c once a week. In addition to Cd, group 3 and 4 rats also received eTT (5 mg/kg b.wt. daily as oral gavage and α-tocopherol (75 mg/kg daily by oral gavage, respectively. At the end of 6th week, all the rats were sacrificed and the separated testes were weighted and processed for estimation of tissue peroxidation markers, antioxidant markers, functional markers, and Cd concentration. The testes were also subjected to histopathological screening. Results : In in vitro studies, the percentage of metal ion chelating activity of 50 μg/ml of eTT and α-tocopherol were 2.76 and 9.39, respectively, and the antioxidant capacity of eTT was equivalent to 0.063 μg of α-tocopherol/μg of eTT. In in vivo studies, administration of Cd significantly reduced the absolute and relative testicular weight, antioxidant markers such as superoxide dismutase and glutathione, and functional markers such as LDH and ALP, along with significant increase in peroxidation markers such as malondialdehyde and protein carbonyls in testicular tissue. Testes of Cd only-treated group showed histological insults like necrotic changes in seminiferous tubules and interstitium, shrunken tubules with desquamated basal lamina, vacuolization and destruction of sertoli cells, and degenerating Leydig cells. This group also had higher Cd

  12. p-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats.

    Science.gov (United States)

    Navaneethan, Dhanalakshmi; Rasool, Mahaboobkhan

    2014-03-01

    The present study was conducted to elucidate the protective role of p-coumaric acid, a common dietary polyphenol against cadmium induced nephrotoxicity in rats. For the purpose of comparison, a standard reference drug silymarin (50 mg/kg b. wt) was used. In this experiment, the animals were divided into four groups, with each consisting of six animals. The animals in Group I animals received saline and served as a control group and those in Group II received cadmium chloride (3 mg/kg b. wt) subcutaneously once daily for 3 weeks, but Group III and IV animals received cadmium chloride followed by p-coumaric acid (100 mg/kg b. wt, oral) and silymarin (50 mg/kg b. wt, oral), respectively, daily for 3 weeks. At the end of the treatment, the animals were sacrificed, and the blood and kidney samples were collected. The results obtained in this study revealed the fact that the levels of lipid peroxidation, lysosomal enzymes, glycoprotein, cadmium and metallothionein were increased in the cadmium chloride alone treated rats and antioxidant status was found to be decreased, when compared to the control group. The levels of kidney functional markers (urea, uric acid and creatinine) were also found to be abnormal in serum and urine of cadmium chloride alone treated rats. On the other hand, the administration of p-coumaric acid along with cadmium chloride significantly protected the biochemical alterations as observed in the cadmium chloride alone treated rats as evidenced by histopathology. Thus, the oral administration of p-coumaric acid significantly protected the cadmium-induced nephrotoxicity in rats.

  13. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Faller Simone

    2012-10-01

    Full Text Available Abstract Background Local pulmonary and systemic infections can lead to acute lung injury (ALI. The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury. Methods C57BL/6 N mice received lipopolysaccharide (LPS intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance. Results Histological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation. Conclusion Inhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses.

  14. Protective effect of hydrogen sulfide against cold restraint stress-induced gastric mucosal injury in rats.

    Science.gov (United States)

    Aboubakr, Esam M; Taye, Ashraf; El-Moselhy, Mohamed A; Hassan, Magdy K

    2013-12-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator plays a potential role in modulating gastric inflammatory responses. However, its putative protective role remains to be defined. The present study aimed to evaluate role of the exogenously released and endogenously synthesized H2S in cold restraint stress (CRS)-induced oxidative gastric damage in rats. Rats were restrained, and maintained at 4 °C for 3 h. The H2S donor, sodium hydrosulfide (NaHS) (60 μmol/kg) was injected intraperitoneally (i.p.) before CRS. Our results revealed that NaHS pretreatment significantly attenuated ulcer index, free and total acid output, and pepsin activity in gastric juice along with decreased gastric mucosal carbonyl content and reactive oxygen species production. This was accompanied by increased gastric juice pH and mucin concentration in addition to restoring the deficits in the gastric reduced glutathione, catalase as well as superoxide dismutase enzyme activities. NaHS pretreatment markedly reduced the serum level of tumor necrosis factor (TNF-α) and myeloperoxidase activity compared to CRS-non-treated. Moreover, NaHS preadministration significantly abrogated the inflammatory and the deleterious responses of gastric mucosa in CRS. The protective effects of H2S were confirmed by gastric histopathological examination. However, pretreatment with the H2S-synthesizing enzyme, cystathionine-gamma-lyase inhibitor, beta-cyano-L-alanine (50 mg/kg, i.p.) reversed the gastroprotection afforded by the endogenous H2S. Collectively, our results suggest that H2S can protect rat gastric mucosa against CRS-induced gastric ulceration possibly through mechanisms that involve anti-oxidant and anti-inflammatory actions alongside enhancement of gastric mucosal barrier and reduction in acid secretory parameters.

  15. A dual drug sensitive L. major induces protection without lesion in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Noushin Davoudi

    Full Text Available Leishmaniasis is a major health problem in some endemic areas and yet, no vaccine is available against any form of the disease. Historically, leishmanization (LZ which is an inoculation of individual with live Leishmania, is the most effective control measure at least against cutaneous leishmaniasis (CL. Due to various reasons, LZ is not used today. Several live attenuated Leishmania have been developed but their use is limited. Previously, we developed a transgenic strain of L. major that harbors two suicide genes tk and cd genes (lmtkcd+/+ for use as a challenge strain in vaccine studies. These genes render the parasite susceptible to Ganciclovir (GCV and 5-flurocytosine (5-FC. The dual drug sensitive strain of L. major was developed using gene targeting technology using a modified Herpes Simplex Virus thymidine kinase gene (hsv-tk sensitive to Ganciclovir antibiotic and Saccharomyces cerevisae cytosine deaminase gene (cd sensitive to 5-flurocytosine that were stably introduced into L. major chromosome. BALB/c mice inoculated with lmtkcd+/+ developed lesions which upon treatment with GCV and 5-FC completely healed. In the current study, the transgenic lmtkcd+/+strain was assessed as a live vaccine model to determine the time necessary to develop a protective immune response. C57BL/6 mice were inoculated with the transgenic lmtkcd+/+strain, and treated at the time of inoculation (day 0 or at day 8 after inoculation. Immunized animals were challenged with wild-type L. major, and complete protection was induced in mice that were treated at day 8. The results show that in contrast to leishmanization, in group of mice inoculated with a dual sensitive L. major development and persistence of lesion is not necessary to induce Th1 response and protection.

  16. Partially Protective Immunity Induced by a 20 kDa Protein Secreted by Trichinella spiralis Stichocytes.

    Directory of Open Access Journals (Sweden)

    Kuo Bi

    Full Text Available Trichinella spiralis infection induces protective immunity against re-infection in animal models. Identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Trichinella infection and immunodiagnosis.The T. spiralis adult cDNA library was immunoscreened with sera from pigs experimentally infected with 20,000 infective T. spiralis larvae. Total 43 positive clones encoding for 28 proteins were identified; one of the immunodominant proteins was 20 kDa Ts-ES-1 secreted by Trichinella stichocytes and existing in the excretory/secretory (ES products of T. spiralis adult and muscle larval worms. Ts-ES-1 contains 172 amino acids with a typical signal peptide in the first 20 amino acids. The expression of Ts-ES-1 was detected in both the adult and muscle larval stages at the mRNA and protein expression levels. Mice immunized with recombinant Ts-ES-1 (rTs-ES-1 formulated with ISA50v2 adjuvant exhibited a significant worm reduction in both the adult worm (27% and muscle larvae burden (42.1% after a challenge with T. spiralis compared to the adjuvant control group (p<0.01. The rTs-ES-1-induced protection was associated with a high level of specific anti-Ts-ES-1 IgG antibodies and a Th1/Th2 mixed immune response.The newly identified rTs-ES-1 is an immunodominant protein secreted by Trichinella stichocytes during natural infection and enables to the induction of partial protective immunity in vaccinated mice against Trichinella infection. Therefore, rTs-ES-1 is a potential candidate for vaccine development against trichinellosis.

  17. Protective effects of atorvastatin and quercetin on isoprenaline-induced myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Mai A. Zaafan

    2013-06-01

    Full Text Available Myocardial infarction (MI continues to be a major public health problem in the world. Statins exhibit cardio-protective effects by several mechanisms beyond their lipid lowering activity. Quercetin is a natural flavonoid that possesses significant anti-oxidant and antiinflammatory activities. The present study aimed to investigate the effects of pretreatment with atorvastatin (10 mg/kg and quercetin (50 mg/kg, as well as their combination on isoprenaline-induced MI in rats. Markers chosen to assess cardiac damage included serum activity of creatine kinase-MB (CK-MB and serum level of cardiac troponin-I (cTn-I, as well as oxidative stress and inflammatory biomarkers including serum levels of C-reactive protein (CRP, tumor necrosis factor-alpha (TNF-α, and interleukin-10 (IL-10 as well as cardiac contents of lipid peroxides, reduced glutathione (GSH, and nitrite. Furthermore, ECG monitoring and histological examinations of cardiac tissues were done. Isoprenaline increased serum CK-MB activity and cTn-I level as well as inflammatory and oxidative stress biomarkers. In addition, it produced ST-segment elevation and degenerative changes in heart tissues. Pretreatment with atorvastatin suppressed significantly the elevated levels of cTn-I, CRP, TNF-α, and IL-10 in serum coupled with reduction in cardiac lipid peroxides; however, it increased cardiac nitrite content. Quercetin decreased isoprenaline-induced changes in oxidative stress and inflammatory biomarkers with marked improvement in ECG and histopathologic alterations. Combination of quercetin with atorvastatin resulted in similar protective effects. In conclusion, quercetin can be regarded as a promising cardio-protective natural agent in MI alone or combined with atorvastatin.

  18. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.

  19. Protective effect of sericin peptide against alcohol-induced gastric injury in mice

    Institute of Scientific and Technical Information of China (English)

    LI You-gui; JI Dong-feng; LIN Tian-bao; ZHONG Shi; HU Gui-yan; CHEN Shi

    2008-01-01

    Background Sericin peptide (SP) has shown a powerful anti-oxidant property in a host of studies. The present study was designed to investigate the possible protective effects of SP against alcohol-induced gastric lesions in mice and to explore the potential mechanisms.Methods Animals were randomly divided into 5 groups: control, alcohol (56%, 14.2 ml/kg), SP-treated mice (0.2, 0.4, 0.8 g/kg). Mice were pretreated with SP before administering alcohol, the concentration of ethanol in serum and urine, the contents of malondialdehyde (MDA), glutathione (GSH) and the glutathione peroxidase (GSH-PX), catalase (CAT) and superoxide dismutase (SOD) activities in the gastric mucosa were measured, subsequently, the pathological evaluation of stomach was also observed.Results Of the animals pre-treated with SP (0.4, 0.8 g/kg), the concentration of ethanol in serum was significantly decreased, while increased in urine as compared to the alcohol-administered alone animals. Alcohol administration caused severe gastric damage as indicated by markedly increased MDA levels and decreased antioxidants, such as reduced GSH, GSM-PX and SOD in the gastric tissue while the CAT activity was not altered. On SP administration there was a reversal in these values towards normal. Histopathological studies confirmed the beneficial role of SP, which was in accordance with the biochemical parameters.Conclusions SP could protect gastric mucosa from alcohol-induced mucosal injury. These gastroprotective effects might be due to increasing 'first-pass metabolism' in the stomach and hastening ethanol elimination directly through the urine. SP might also play an important role in the protection of the structure and function of gastric mitochondria, at least partly based on their anti-oxidant effect.

  20. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  1. Poor awareness of preventing aspirin-induced gastrointestinal injury with combined protective medications

    Institute of Scientific and Technical Information of China (English)

    Ling-Ling Zhu; Ling-Cheng Xu; Yan Chen; Quan Zhou; Su Zeng

    2012-01-01

    AIM:To investigate prescribing pattern in low-dose aspirin users and physician awareness of preventing aspirin-induced gastrointestinal (GI) injury with combined protective medications.METHODS:A retrospective drug utilization study was conducted in the 2nd Affiliated Hospital,School of Medicine,Zhejiang University.The hospital has 2300 beds and 2.5 million outpatient visits annually.Data mining was performed on all aspirin prescriptions for outpatients and emergency patients admitted in 2011.Concomitant use of proton-pump inhibitors (PPIs),histamine 2-receptor antagonists (H2RA) and mucoprotective drugs (MPs) were analyzed.A defined daily dose (DDD) methodology was applied to each MP.A further investigation was performed in aspirin users on combination use of GI injurious medicines [non-steoid anti-inflammatory drugs (NSAIDs),corticosteroids and clopidogrel and warfarin] or intestinal protective drugs (misoprostol,rebamipide,teprenone and gefarnate).Data of major bleeding episodes were derived from medical records and adverse drug reaction monitoring records.The annual incidence of major GI bleeding due to low-dose aspirin was estimated for outpatients.RESULTS:Prescriptions for aspirin users receiving PPIs,H2RA and MPs (n =1039) accounted for only 3.46%of total aspirin prescriptions (n =30 015).The ratios of coadministration of aspirin/PPI,aspirin/H2RA,aspirin/MP and aspirin/PPI/MP to the total aspirin prescriptions were 2.82%,0.12%,0.40% and 0.12%,respectively.No statistically significant difference was observed in age between patients not receiving any GI protective medications and patients receiving PPIs,H2RA or MPs.The combined medication of aspirin and PPI was used more frequently than that of aspirin and MPs (2.82% vs 0.40%,P < 0.05) and aspirin/H2RA (2.82% vs 0.12%,P < 0.05).The values of DDDs of MPs in descending order were as follows:gefarnate,hydrotalcite > teprenone > sucralfate oral suspension > L-glutamine and sodium

  2. Epidemiology of noise-induced tinnitus and the attitudes and beliefs towards noise and hearing protection in adolescents.

    Directory of Open Access Journals (Sweden)

    Annick Gilles

    Full Text Available BACKGROUND AND OBJECTIVES: Previous research showed an increase of noise-induced symptoms in adolescents. Permanent tinnitus as a consequence of loud music exposure is usually considered as noise-induced damage. The objective was to perform an epidemiological study in order to obtain prevalence data of permanent noise-induced tinnitus as well as temporary tinnitus following noise exposure in a young population. In addition the attitudes and beliefs towards noise and hearing protection were evaluated in order to explain the use/non-use of hearing protection in a young population. METHODS: A questionnaire was completed by 3892 high school students (mean age: 16.64 years old, SD: 1.29 years. The prevalence of temporary and permanent tinnitus was assessed. In addition the 'Youth Attitudes to Noise Scale' and the 'Beliefs About Hearing Protection and Hearing Loss' were used in order to assess the attitudes and beliefs towards noise and hearing protection respectively. RESULTS: The prevalence of temporary noise-induced tinnitus and permanent tinnitus in high school students was respectively 74.9% and 18.3%. An increasing prevalence of temporary tinnitus with age was present. Most students had a 'neutral attitude' towards loud music and the use of hearing protection was minimal (4.7%. The limited use of hearing protection is explained by a logistic regression analysis showing the relations between certain parameters and the use of hearing protection. CONCLUSIONS: Despite the very high prevalence of tinnitus in such a young population, the rate of hearing protection use and the knowledge about the risks of loud music is extremely low. Future preventive campaigns should focus more on tinnitus as a warning signal for noise-induced damage and emphasize that also temporary symptoms can result in permanent noise-induced damage.

  3. Protective effects of isoatriplicolide tiglate from Paulownia coreana against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Eun-Hye; Jeon, Hyun-Seok; Moon, Hyung-In

    2010-06-01

    To examine the neuroprotective effects of Paulownia coreana, we tested its protection against the glutamate-induced neurotoxicity to primary cultured cortical neurons. An aqueous extract of the plants exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. By such fractionation, one bioactive sesquiterpene lactone, isoatriplicolide tiglate, was isolated, which exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microM to 10 microM.

  4. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    Science.gov (United States)

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs.

  5. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Directory of Open Access Journals (Sweden)

    David A Cappel

    Full Text Available Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD. Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α. These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  6. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Science.gov (United States)

    Cappel, David A; Lantier, Louise; Palmisano, Brian T; Wasserman, David H; Stafford, John M

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  7. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Veronica L. [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Stocke, Kendall S. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Schmidt, Robin H.; Tan, Min [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Ajami, Nadim [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Neal, Rachel E. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Petrosino, Joseph F. [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Barve, Shirish [Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Arteel, Gavin E., E-mail: gavin.arteel@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States)

    2015-05-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.

  8. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice.

    Science.gov (United States)

    Zhao, Ran-Ran; Xu, Xiao-Chen; Xu, Fei; Zhang, Wei-Li; Zhang, Wen-Lin; Liu, Liang-Min; Wang, Wei-Ping

    2014-06-13

    Cognitive impairment, the most common and severe comorbidity of epilepsy, greatly diminishes the quality of life. However, current therapeutic interventions for epilepsy can also cause untoward cognitive effects. Thus, there is an urgent need for new kinds of agents targeting both seizures and cognition deficits. Oxidative stress is considered to play an important role in epileptogenesis and cognitive deficits, and antioxidants have a putative antiepileptic potential. Metformin, the most commonly prescribed antidiabetic oral drug, has antioxidant properties. This study was designed to evaluate the ameliorative effects of metformin on seizures, cognitive impairment and brain oxidative stress markers observed in pentylenetetrazole-induced kindling animals. Male C57BL/6 mice were administered with subconvulsive dose of pentylenetetrazole (37 mg/kg, i.p.) every other day for 14 injections. Metformin was injected intraperitoneally in dose of 200mg/kg along with alternate-day PTZ. We found that metformin suppressed the progression of kindling, ameliorated the cognitive impairment and decreased brain oxidative stress. Thus the present study concluded that metformin may be a potential agent for the treatment of epilepsy as well as a protective medicine against cognitive impairment induced by seizures.

  9. Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats.

    Science.gov (United States)

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-04-01

    Gentamicin (GM) is a widely used antibiotic against serious, life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of selenium (Se) in GM-induced nephrotoxicity in rats. Experiments were done on 32 adult Wistar rats divided into four groups of 8 animals each. The GM group received gentamicin (100 mg/kg), whereas the GM+Se group received the same dose of GM and selenium (1 mg/kg) by intraperitoneal (i.p.) injections on a daily basis. Animals in the Se group, serving as a positive control, received only selenium (1 mg/kg) and the control group received saline (1 mL/day), both given i.p. All groups were treated during 8 consecutive days. Quantitative evaluation of GM-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of selenium coadministration with GM. GM was observed to cause a severe nephrotoxicity, which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous selenium administration protected kidney tissue against oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by selenium pretreatment. The results from our study indicate that selenium supplementation attenuates oxidative-stress-associated renal injury by reducing oxygen free radicals and lipid peroxidation in GM-treated rats.

  10. Protective Effects of Acupuncture Against Gentamicin-Induced Ototoxicity in Rats: Possible Role of Neurotrophin-3

    Science.gov (United States)

    Zhou, Ping; Ma, Weijun; Sheng, Ying; Duan, Maoli; Zhang, Xiaotong

    2017-01-01

    Background The aim of this study was to investigate the protective effects of acupuncture against gentamicin-induced ototoxicity and explore the possible protective role of neurotrophin-3 (NT-3). Material/Methods Twenty-four rats were divided randomly into 4 groups: control group, gentamicin group, neitinggong group, and tinggong group. Rats in the gentamicin, neitinggong, and tinggong groups received intraperitoneal injection of gentamicin (100 mg/kg) for 14 consecutive days. Rats in the neitinggong and tinggong groups further received acupuncture at neitinggong or tinggong acupoints once every 2 days for 20 days. Rats in the control group received intraperitoneal injection of saline. Auditory brainstem response (ABR) was tested in all rats on the day before treatment (day 0), and again on day 14 and day 20 to determine the average threshold value of ABR for each treatment group. The expression of NT-3 in the cochlear nucleus and the inferior colliculus nucleus were detected by immunohistochemical staining. Results The average threshold value of ABR was significantly higher in the gentamicin group as compared with that of the control group on day 14 (P0.05). However, the expression of NT-3 in the inferior colliculus nucleus in both the neitinggong and tinggong groups was significantly higher than that of the gentamicin group (P<0.01). Conclusions A decrease in NT-3 expression in the inferior colliculus nucleus may contribute to gentamicin-induced ototoxicity in rats. Acupuncture at neitinggong or tinggong acupoints effectively improved hearing, which was attributed partially to the rescue of NT-3 expression in the inferior colliculus nucleus. Therefore, preserving NT-3 expression in the auditory system may be a viable strategy to counteract gentamicin-induced ototoxicity. PMID:28121979

  11. Tyrosine kinase Etk/BMX protects nasopharyngeal carcinoma cells from apoptosis induced by radiation.

    Science.gov (United States)

    Zhang, Zhenhua; Zhu, Weiliang; Zhang, Jian; Guo, Linlang

    2011-04-01

    Etk (Epithelial and endothelial tyrosine kinase), also known as Bmx (bone marrow X kinase) plays an important role in apoptosis of cancer cells. The purpose of this study was to investigate whether Etk/Bmx is involved in the apoptosis induced by irradiation in NPC cells and correlated with the apoptosis associated proteins such as p53, Bcl-2, Bcl-X(L) and Bak. To this end, we first developed a NPC subline (SUNE1-Etk) by transfection. The SUNE1-Etk that over-expresses Etk/BMX and its parental SUNE1 cell line were used to confirm whether Etk/BMX can protect NPC cells from apoptosis induced by radiation. The proliferation rates or the level of cell survival following irradiation were assessed by MTT and flow cytometry. Tumorigenecity study was done to substantiate the results in vitro. The results showed that the cell viability was significantly higher in SUNE1-Etk cells than that in parental SUNE1 cells in vitro, and tumors inoculated with SUNE1-Etk cells grew rapidly than those with SUNE1 after irradiation treatment. Our data also demonstrated that the up-expression of Etk/BMX increased G(2)/M arrest in response to irradiation. The protein level of p53 was greatly down-regulated whereas Bcl-2 was up-regulated, after irradiation treatment of SUNE1-Etk cells. Our results suggested that Etk/BMX may play a role in protection of NPC cells from apoptosis, and both p53 and Bcl-2 may be involved in radiation-induced apoptosis through Etk/Bmx pathway in NPC cells.

  12. The protective effect of erdosteine against cyclosporine A-induced cardiotoxicity in rats.

    Science.gov (United States)

    Selcoki, Yusuf; Uz, Ebru; Bayrak, Reyhan; Sahin, Semsettin; Kaya, Arif; Uz, Burak; Karanfil, Aydin; Ozkara, Adem; Akcay, Ali

    2007-09-24

    Cyclosporine A (CsA) is a frequently used immunosuppressive agent in transplant medicine to prevent rejection and in the treatment of autoimmune diseases. However, CsA generates reactive oxygen species, which causes nephrotoxicity, hepatotoxicity and cardiotoxicity. The use of antioxidants reduces the adverse effects of CsA. The aim of this study is to determine the protective effects of erdosteine on CsA-induced heart injury through tissue oxidant/antioxidant parameters and light microscopic evaluation in rats. CsA cardiotoxicity was induced by administrating an oral dose of 15mg/kg CsA daily for 21 days. The rats were divided into four groups: control group (n=4), CsA administrated group (15mg/kg, n=5), CsA+erdosteine administrated group (10mg/kg day orally erdosteine, n=4) and only erdosteine administrated group (10mg/kg day orally n=5). CsA treated rats showed increase in the number of infiltrated cells and disorganization of myocardial fibers with interstitial fibrosis. The number of infiltrated cells, disorganization of myocardial fibers and interstitial fibrosis was diminished in the hearts of CsA-treated rats given erdosteine. The malondialdehyde, the protein carbonyl content and nitric oxide levels were increased in the cyclosporine A group in comparison with the control and CsA plus erdosteine groups. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were higher in CsA plus erdosteine group than CsA group. However, the CAT, GSH-Px and SOD activities were significantly lower in CsA group than in control group and erdosteine group. These results suggest that erdosteine has protective effect against CsA-induced cardiotoxicity.

  13. Puerarin protects human bronchial epithelial cells from apoptosis induced by gunpowder smog

    Directory of Open Access Journals (Sweden)

    Yun-xia CHEN

    2016-03-01

    Full Text Available Objective  To investigate protective effects of puerarin on the human bronchial epithelial (BEAS-2B cell line against apoptosis caused by gunpowder smog and its mechanisms. Methods  BEAS-2B cells cultured in vitro were randomly divided into control group, smog group (the group treated with 4g gunpowder smog for 10min, and smog + puerarin group [puerarin group, the cells were pre-incubated with various concentrations of puerarin (12.5, 25.0, 50.0, 100.0µg/ml and then exposed to smoke]. Puerarin was added into the cells after innoculation for 12h and then the cells were sequentially cultured for 24h and followed by exposure to smoke for 10min. After being cultured again for 2h, the smoked cells were examined for cell viability using Cell Counting Kit-8(CCK-8, cell apoptosis was observed using Hoechst33258 nucleus staining, and positive rates of Annexin V-PI staining cells and caspase-3 were determined with flow cytometer. Resu lts  Compared with control, treatment of BEAS-2B cells with 4g gunpowder smog induced a characteristic apoptotic cell death (P<0.01. Pretreatment with various concentrations of puerarin antagonized the action of gunpowder smog in different degrees. The 25µg/ml was determined as the optimal effective concentration of puerarin. Compared with smog group, the apoptosis rate of BEAS-2B cells and positive rates of Annexin V-PI staining cells and caspase-3 were decreased significantly in smog + puerarin group (P<0.05, P<0.01. Conclusion  Gunpowder smog can induce apoptosis of BEAS-2B cells in vitro, while pretreatment with puerarin could protect BEAS-2B cells against apoptosis induced by gunpowder smog. DOI: 10.11855/j.issn.0577-7402.2016.01.16

  14. Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2-/- and their wild-type (Nos2+/+ littermates were fed a high methionine/low folate (HM/LF diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet. Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet. Nos2-/- mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice. Nos2-/- mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice, and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice. These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.

  15. Betaine supplementation protects against high-fructose-induced renal injury in rats.

    Science.gov (United States)

    Fan, Chen-Yu; Wang, Ming-Xing; Ge, Chen-Xu; Wang, Xing; Li, Jian-Mei; Kong, Ling-Dong

    2014-03-01

    High fructose intake causes metabolic syndrome, being an increased risk of chronic kidney disease development in humans and animals. In this study, we examined the influence of betaine on high-fructose-induced renal damage involving renal inflammation, insulin resistance and lipid accumulation in rats and explored its possible mechanisms. Betaine was found to improve high-fructose-induced metabolic syndrome including hyperuricemia, dyslipidemia and insulin resistance in rats with systemic inflammation. Betaine also showed a protection against renal dysfunction and tubular injury with its restoration of the increased glucose transporter 9 and renal-specific transporter in renal brush bolder membrane and the decreased organic anion transporter 1 and adenosine-triphosphate-binding cassette transporter 2 in the renal cortex in this model. These protective effects were relevant to the anti-inflammatory action by inhibiting the production of inflammatory cytokines including interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in renal tissue of high-fructose-fed rat, being more likely to suppress renal NOD-like receptor superfamily, pyrin domain containing 3 inflammasome activation than nuclear factor κB activation. Subsequently, betaine with anti-inflammation ameliorated insulin signaling impairment by reducing the up-regulation of suppressor of cytokine signaling 3 and lipid accumulation partly by regulating peroxisome proliferator-activated receptor α/palmityltransferase 1/carnitine/organic cation transporter 2 pathway in kidney of high-fructose-fed rats. These results indicate that the inflammatory inhibition plays a pivotal role in betaine's improvement of high-fructose-induced renal injury with insulin resistance and lipid accumulation in rats.

  16. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    Science.gov (United States)

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  17. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment

    Directory of Open Access Journals (Sweden)

    Radosław Świercz

    2013-08-01

    Full Text Available Background: Organophosphates are cholinesterase (ChE inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP poisoning symptomatology. In rodents, corticosterone (CORT is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentraion (the CORT response and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET [2-methyl-1,2-di(pyridin-3-ylpropan-1-one] blocks CORT synthesis by inhibiting steoid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP [2-chloro-1-(2,4-dichlorophenyl ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. Material and Methods: The purose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. Conclusion: The following was observed in the MET-treated rats: i no rise in plasma CORT concentration after the CVP administration, ii a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  18. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    Science.gov (United States)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential.

  19. Cumene hydroperoxide debilitates macrophage physiology by inducing oxidative stress: possible protection by alpha-tocopherol.

    Science.gov (United States)

    Kaur, Gurpreet; Alam, M Sarwar; Athar, Mohammad

    2009-05-15

    Macrophages, the major phagocytes of body, are largely dependent on membrane for their apposite functioning. Cum-OOH, a catalyst used in chemical and pharmaceutical industry, is a peroxidative agent, which may induce oxidative stress in macrophages hampering the integrity of their membrane. Alpha-tocopherol is known to protect the membrane from oxidative modulation and preserve its integrity. In the present study, we investigated the effect of Cum-OOH on physiology of macrophages and evaluated the protective effect of alpha-tocopherol against Cum-OOH-induced functional impairment. An in vitro exposure to 10-200 microM Cum-OOH altered redox balance of murine peritoneal macrophages and led to a severe physiological impairment. It markedly augmented the release of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and prostaglandin E(2)), lipopolysaccharide primed nitric oxide release and inducible nitric oxide synthase expression, and lysosomal hydrolases secretion. It mitigated respiratory burst and phagocytosis and intracellular killing of yeast (Saccharomyces cerevisiae). Mannose receptor, a major macrophage phagocytic receptor (also implicated in S. cerevisiae phagocytosis), exhibited a hampered recycling with its number being reduced to about 54% of the untreated, control cells following Cum-OOH exposure. A 24-h pretreatment of macrophages with 25 microM alpha-tocopherol preserved most of the assessed functions close to their corresponding control values. These data suggest that exposure to Cum-OOH may impair the physiology of immune cells such as macrophages and that supplementation with alpha-tocopherol can safeguard these cells against Cum-OOH toxicity.

  20. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Directory of Open Access Journals (Sweden)

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  1. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine-induced liver injury in rats

    Science.gov (United States)

    Choi, Myung-Joo; Zheng, Hong-Mei; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng

    2016-01-01

    Oxidative stress in liver injury is a major pathogenetic factor in the progression of liver damage. Centella asiatica (L.) Urban, known in the United States as Gotu kola, is widely used as a traditional herbal medicine in Chinese or Indian Pennywort. The efficacy of Centella asiatica is comprehensive and is used as an anti-inflammatory agent, for memory improvement, for its antitumor activity and for treatment of gastric ulcers. The present study investigated the protective effects of Centella asiatica on dimethylnitrosamine (DMN)-induced liver injury in rats. The rats in the treatment groups were treated with Centella asiatica at either 100 or 200 mg/kg in distilled water (D.W) or with silymarin (200 mg/kg in D.W) by oral administration for 5 days daily following intraperitoneal injections of 30 mg/kg DMN. Centella asiatica significantly decreased the relative liver weights in the DMN-induced liver injury group, compared with the control. The assessment of liver histology showed that Centella asiatica significantly alleviated mass periportal ± bridging necrosis, intralobular degeneration and focal necrosis, with fibrosis of liver tissues. Additionally, Centella asiatica significantly decreased the level of malondialdehyde, significantly increased the levels of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and catalase, and may have provided protection against the deleterious effects of reactive oxygen species. In addition, Centella asiatica significantly decreased inflammatory mediators, including interleukin (IL)-1β, IL-2, IL-6, IL-10, IL-12, tumor necrosis factor-α, interferon-γ and granulocyte/macrophage colony-stimulating factor. These results suggested that Centella asiatica had hepatoprotective effects through increasing the levels of antioxidant enzymes and reducing the levels of inflammatory mediators in rats with DMN-induced liver injury. Therefore, Centella asiatica may be useful in preventing liver damage. PMID:27748812

  2. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation.

    Directory of Open Access Journals (Sweden)

    Mona F Mahmoud

    Full Text Available Vascular complications are the leading cause of morbidity and mortality in patients with diabetes. Quercetin is an important flavonoid with antioxidant and anti-inflammatory activity. Here, the effect of quercetin on diabetes-induced exaggerated vasoconstriction in insulin deficient and insulin resistant rat models was investigated. Insulin deficiency was induced by streptozotocin while, insulin resistance by fructose. Rats were left 8 weeks or 12 weeks after STZ or fructose administration respectively. Quercetin was daily administered in the last 6 weeks. Then, tail blood pressure (BP was recorded in conscious animals; concentration-response curves for phenylephrine (PE and KCl were studied in thoracic aorta rings. Non-fasting blood glucose level, serum insulin level, insulin resistance index, serum tumour necrosis factor-α (TNF-α and serum C-reactive protein (CRP were determined. Nuclear transcription factor-κB (NF-κB was assessed by immunofluorescence technique. Histopathological examination was also performed. The results showed that quercetin protected against diabetes-induced exaggerated vasoconstriction and reduced the elevated blood pressure. In addition, quercetin inhibited diabetes associated adventitial leukocyte infiltration, endothelial pyknosis and increased collagen deposition. These effects were accompanied with reduction in serum level of both TNF-α and CRP and inhibition of aortic NF-κB by quercetin in both models of diabetes. On the other hand, quercetin did not affect glucose level in any of the used diabetic models. This suggests that the protective effect of quercetin is mediated by its anti-inflammatory effect rather than its metabolic effects. In summary, quercetin is potential candidate to prevent diabetic vascular complications in both insulin deficiency and resistance via its inhibitory effect on inflammatory pathways especially NF-κB signaling.

  3. The Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury.

    Science.gov (United States)

    Wang, Wei; Pei, Xiaokun; Xu, Mengxin; Sun, Songmei; Zhang, Chunlei; Mu, Keying; Liu, Zhifeng

    2015-01-01

    Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/Kg/day); OMT (13.8 mg/Kg/day) and three SF+OMT groups (3.1 + 6.9; 6.2 + 13.8 and 12.3 + 27.7 mg/Kg/day). The mortality and death time were monitored. Sprague-Dawley rats were randomly divided into seven groups including control, PQ, SF (3.1 mg/Kg/day); OMT (6.9 mg/Kg/day) and three SF+OMT groups (1.6 + 3.4; 3.1 + 6.9 and 6.2 + 13.8 mg/Kg/day). The lung wet/dry weight (W/D) ratio, lung histopathologic changes, C-reactive protein (CRP), interleukin-6 (IL-6), nuclear factor κB (NF-κB), malondialdehyde (MDA) and superoxidase dismutase (SOD) were analysed. Compared with PQ group, the mortality significantly decreased and the death time prolonged in SF and OMT combination treatment groups of mice. Also in SF and OMT combination treatment groups of rats, the increased lung W/D ratio and histopathological score induced by PQ injection were significantly decreased; the levels of CRP, IL-6, NF-κB and MDA in serum and lung homogenate were significantly decreased; the SOD activities in serum and lung homogenate were improved. These results suggested that SF and OMT combination had an obvious protective effect on PQ-induced lung injury. The anti-inflammatory and antioxidant effect might be involved in the mechanism.

  4. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-01-01

    Full Text Available Lipopolysaccharide (LPS-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI. The high mobility group box 1 (HMGB1 protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS, and LPS+GAL group (5 mg/kg GAL before LPS administration. Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D weight ratio, myeloperoxidase (MPO activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline, 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA. Moreover, GAL treatment significantly decreased the mortality rate (ANOVA. In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  5. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1.

    Science.gov (United States)

    Siew, E L; Chan, K M; Williams, G T; Ross, D; Inayat-Hussain, S H

    2012-10-15

    The Fau gene (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified as a potential tumor suppressor gene using a forward genetics approach. Downregulation of Fau by overexpression of its reverse sequence has been shown to inhibit apoptosis induced by DNA-damaging agents. To address a potential role of Fau in benzene toxicity, we investigated the apoptotic effects of hydroquinone (HQ), a major benzene metabolite, in W7.2 mouse thymoma cells transfected with either a plasmid construct expressing the antisense sequence of Fau (rfau) or the empty vector (pcDNA3.1) as a control. HQ induced apoptosis via increased production of reactive oxygen species and DNA damage, measured using dihydroethidine (HE) staining and alkaline Comet assay, respectively, in W7.2 pcDNA3.1 cells. In contrast, when Fau was downregulated by the antisense sequence in W7.2 rfau cells, HQ treatment did not cause DNA damage and oxidative stress and these cells were markedly more resistant to HQ-induced apoptosis. Further investigation revealed that there was an upregulation of NAD(P)H: quinone oxidoreductase 1 (NQO1), a detoxification enzyme for benzene-derived quinones, in W7.2 rfau cells. Compromising cellular NQO1 by use of a specific mechanism-based inhibitor (MAC 220) and NQO1 siRNA resensitized W7.2 rfau cells to HQ-induced apoptosis. Silencing of Fau in W7.2 wild-type cells resulted in increased levels of NQO1, confirming that downregulation of Fau results in NQO1 upregulation which protects against HQ-induced apoptosis.

  6. Peroxynitrite-mediated pulmonary vascular injury induced by endotoxin and protective role of cholecystokinin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this study we found: 1\\, There was endogenous ONOO- formation in lungs in the early stage of endotoxic shock. Exogenous ONOO- led to increase in microvascular permeability, severe lung pathological changes and enhanced MDA content. 2\\, It was, for the first time, found that responses of isolated pulmonary artery preincubated with ONOO- showed abnormal manifestations. (1) Low dose of ONOO- let to the inhibition of endothelial dependent relaxation, but enhacement of contractile response, both of which were similar to changes of reactivity in isolated pulmonary artery induced by LPS. (2) High dose of ONOO- reduced contractile response to PE and relaxation to SNP. 3\\, ONOO- had direct effect for relaxation of precontracted isolated pulmonary artery. The relaxing action of ONOO- was weak and was negtively regulated by endothelial cells, supporting the notion that ONOO- may be involved in pulmonary hypertension in the early stage of endotoxic shock. 4\\, It was, for the first time, found that LPS-induced increase in endogenous ONOO- generation in BPAEC and that endogenous ONOO- mediated injury to BPAEC induced by LPS, which may be a novel mechanism for endotoxin-elicited damage to endothelial cells. 5\\, Exposure of pulmonary artery to LPS led to reduction in endothelial dependent relaxation but enhancement in contractile response, both of which were reversed by concomitant exposure to CCK and LPS. 6\\, CCK protected cultured BPAEC against the detrimental effects of LPS such as lipoperoxide damages and cellular apoptosis as well as LPS-induced endogenous ONOO- formation. The underlying mechanism of CCK for cytoprotection may be mediated by its receptors and related to its reduced ability of endothelia to generate ONOO- induced by LPS.

  7. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    Science.gov (United States)

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  8. Edaravone, a free radical scavenger, protects liver against valproic acid induced toxicity

    Directory of Open Access Journals (Sweden)

    Cakmak Neziha Hacihasanoglu

    2015-01-01

    Full Text Available Valproic acid (VPA, is a well established anticonvulsant drug that has been increasingly used in the treatment of many forms of generalized epilepsy. Edaravone (EDA; 3-methyl-1-phenyl-2-pyrazoline-5-one is a potent free radical scavenger. In this study, we aimed to investigate the effects of EDA on VPA-induced hepatic damage. Male Sprague Dawley rats were divided into four groups. Group I was control animals. Group II was control rats given valproic acid (500 mg kg-1 day for seven days. Group III was given only EDA (30 mg kg-1day for seven days. Group IV was given VPA+EDA (in same dose and time. EDA and VPA were given intraperitoneally. On the 8th day of experiment, blood samples and liver tissue were taken. Serum aspartate and alanine aminotransferase, alkaline phosphatase and bilirubin levels, liver myeloperoxidase, xanthine oxidase, adenosine deaminase, Na+/K+ATPase, sorbitol dehydrogenase, glutamate dehydrogenase, DT-diaphorase, arginase and thromboplastic activities, lipid peroxidation, protein carbonyl levels were increased whereas paraoxonase, biotinidase activities and glutathione levels were decreased in VPA group. Application of EDA with VPA protected against VPA-induced effects. These results demonstrated that administration of EDA is a potentially beneficial agent to reduce hepatic damage in VPA induced hepatotoxicity, probably by decreasing oxidative stress.

  9. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

    Science.gov (United States)

    Akagi, Sosuke; Kono, Nozomu; Ariyama, Hiroyuki; Shindou, Hideo; Shimizu, Takao; Arai, Hiroyuki

    2016-05-01

    The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by dietary consumption of fatty acids such as saturated fatty acids and polyunsaturated fatty acids (PUFAs). Cells must adapt to changes in composition of membrane fatty acids by regulating lipid-metabolizing enzymes. In this study, we investigated how cells respond to loading with excess PUFAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. A lipidomics analysis revealed that dipalmitoylphosphatidylcholine (DPPC) was increased after the production of PUFA-containing phospholipids in cells loaded with PUFAs. An RNA interference screen of lipid-metabolizing enzymes revealed that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was involved in the DPPC production. Moreover, LPCAT1 knockdown markedly enhanced the cytotoxicity induced by excess PUFAs. PUFA-induced cytotoxicity was dependent on caspase and unfolded protein response (UPR) sensor proteins inositol requiring 1α and protein kinase R-like endoplasmic reticulum kinase, suggesting that excess PUFAs trigger UPR-mediated apoptosis. In murine retina, in which PUFAs are highly enriched, DPPC was produced along with increase of PUFA-containing phospholipids. In LPCAT1 knockout mice, DPPC level was reduced and UPR was activated in the retina. Our results provide insight into understanding of the retinal degeneration seen in rd11 mice that lack LPCAT1.-Akagi, S., Kono, N., Ariyama, H., Shindou, H., Shimizu, T., Arai, H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

  10. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification.

    Science.gov (United States)

    Paloian, Neil J; Leaf, Elizabeth M; Giachelli, Cecilia M

    2016-05-01

    Pathologic calcification is a significant cause of increased morbidity and mortality in patients with chronic kidney disease. The precise mechanisms of ectopic calcification are not fully elucidated, but it is known to be caused by an imbalance of procalcific and anticalcific factors. In the chronic kidney disease population, an elevated phosphate burden is both highly prevalent and a known risk factor for ectopic calcification. Here we tested whether osteopontin, an inhibitor of calcification, protects against high phosphate load-induced nephrocalcinosis and vascular calcification. Osteopontin knockout mice were placed on a high phosphate diet for 11 weeks. Osteopontin deficiency together with phosphate overload caused uremia, nephrocalcinosis characterized by substantial renal tubular and interstitial calcium deposition, and marked vascular calcification when compared with control mice. Although the osteopontin-deficient mice did not exhibit hypercalcemia or hyperphosphatemia, they did show abnormalities in the mineral metabolism hormone fibroblast growth factor-23. Thus, endogenous osteopontin plays a critical role in the prevention of phosphate-induced nephrocalcinosis and vascular calcification in response to high phosphate load. A better understanding of osteopontin's role in phosphate-induced calcification will hopefully lead to better biomarkers and therapies for this disease, especially in patients with chronic kidney disease and other at-risk populations.

  11. The Protective Effects of Silymarin against Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Momir Mikov

    2011-10-01

    Full Text Available Silymarin is a complex of five major compounds, and silibinin is the most biologically active component of the complex. The aim of this study was to investigate, evaluate and confirm the potential cardioprotective and hepatoprotective effects of administration of silymarin, rich in silibinin, at a dose of 60 mg/kg orally for a time-span of 12 days on doxorubicin induced toxicity in male Wistar rats. The in vivo model was used to explore whether silymarin could prevent damage of liver and heart tissue induced by doxorubicin administered every other day at dose of 1.66 mg/kg intraperitoneally for twelve days. In the study the change of body weight, ECG changes, biochemical parameters of oxidative stress, serum activity of alanine and aspartate transaminase, lactate dehydrogenase, creatine kinase and histological preparations of heart and liver samples of treated animals were examined. According to physiological, pharmacological, microscopic and biochemical results, we confirmed that at the examined dose, silymarin exhibits a protective influence on the heart and liver tissue against toxicity induced by doxorubicin.

  12. Protective effect of Etlingera elatior (torch ginger) extract on lead acetate--induced hepatotoxicity in rats.

    Science.gov (United States)

    Haleagrahara, Nagaraja; Jackie, Tan; Chakravarthi, Srikumar; Rao, Mallikarjuna; Kulur, Anupama

    2010-10-01

    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.

  13. Protective effect of Pisonia aculeata on thioacetamide induced hepatotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    Anbarasu C; Rajkapoor B; Bhat KS; John Giridharan; A Arul Amuthan; Satish K

    2012-01-01

    Objective:To evaluate the protective effect of Pisonia aculeata (P. aculeata) on thioacetamide induced hepatotoxicity in rats. Methods:Male Wistar rats were administered 250 or 500 mg/kg p.o. of P. aculeata extract for 21 days and simultaneously administered thioacetamide (TAA) 50 mg/kg bw s.c. 1 h after the respective assigned treatments every 72 h. At the end of all experimental methods, all the animals were sacrificed by cervical decapitation. Blood samples were collected. Serum was separated and analyzed for various biochemical parameters. Results: TAA induced a significant rise in aspartate amino transferase (AST), alanine amino transferase (ALT), alkaline phosphatase (ALP), total bilirubin, gamma glutamate transpeptidase (GGTP), lipid peroxidase (LPO) with a reduction of total protein, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione S-transferase (GST). Treatment of rats with different doses of plant extract (250 and 500 mg/kg) significantly (P<0.001) altered serum marker enzymes and antioxidant levels to near normal against TAA treated rats. The activity of the extract at a dose of 300 mg/kg was comparable to the standard drug, silymarin (50 mg/kg, p.o.). Conclusions:It can be concluded that P. aculeata extract possesses a remarkable hepatoprotective and antioxidant activity against TAA induced hepatotoxicity. More research is required to derive an optimal therapeutic dose.

  14. Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Mohan, Mahalaxmi; Kamble, Sarika; Gadhi, Prakash; Kasture, Sanjay

    2010-01-01

    Nephrotoxicity is one of the important side effects of anthracycline antibiotics. The aim of the study was to determine the protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats using biochemical and histopathological approaches. Oxidative stress is the main factor in doxorubicin (DOX) induced nephrotoxicity. Wistar rats received either DOX (67.75 mg/kg, i.v, 2 days before sacrifice) or S. torvum (100mg/kg and 300 mg/kg, p.o.) prior to DOX treatment or S. torvum (100mg/kg and 300 mg/kg, p.o.) extract alone for 4 weeks. Nephrotoxicity was assessed by measuring the abnormal levels of serum creatinine and blood urea nitrogen (BUN). The anti-oxidant defence enzymes superoxide dismutase (SOD) and catalase (CAT) of kidney tissue were also measured at the end of the treatment schedule. Treatment with S. torvum (100mg/kg and 300 mg/kg) significantly (pnephrotoxicity induced by doxorubicin.

  15. Protective effect of ginger against toxicity induced by chromate in rats.

    Science.gov (United States)

    Krim, Meriem; Messaadia, Amira; Maidi, Imen; Aouacheri, Ouassila; Saka, Saad

    2013-01-01

    The evaluation of the effect of ginger on the modulation of toxic effects induced by chromate is the objective of our study. 50 male rats Albinos Wistar were divided to five groups as follow: group I (T) is served as control, received a mineral water by gavage (per os); group II (G) received an experimental diet with 2% of ginger; group III (Cr) received an oral dose of potassium dichromate (15 mg/kg) and normal diet; group IV (CrG): received an oral dose of potassium dichromate (15 mg/kg) and an experimental diet containing 2% ginger; and group V (Cr(+)G) received an oral dose of potassium dichromate (25 mg/kg) and an experimental diet with 2% of ginger. The results of this study indicate that the chromate provoked a haematoxic effect (anemia), nephrotoxic, hepatotoxic, and also a perturbation in lipids profile. In addition, chromate has a pro-oxidant effect, which was indicated by decrease of reduced glutathione (GSH) levels in different tissues. However, the administration of ginger revealed a reduction of the intensity of oxidative stress induced by the chromate resulting in the decrease of the majority of the previous parameters concentrations. In conclusion we demonstrated that ginger has potent antioxidants activity, revealed by the amelioration of chromate's toxic effects. We can say that ginger has a protective effect towards damages induced by the chromate.

  16. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (PGDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  17. Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

    Directory of Open Access Journals (Sweden)

    João W Silveira

    Full Text Available Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol injected immediately after lesion were analyzed acutely (2 days by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

  18. Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

    Science.gov (United States)

    Silveira, João W; Issy, Ana Carolina; Castania, Vitor A; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H; Guimarães, Francisco S; Defino, Helton L A; Del Bel, Elaine

    2014-01-01

    Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

  19. Protective autophagy antagonizes oxaliplatin-induced apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ling Xu; Xiu-Juan Qu; Yun-Peng Liu; Ying-Ying Xu; Jing Liu; Ke-Zuo Hou; Ye Zhang

    2011-01-01

    Oxaliplatin-based chemotherapy is used for treating gastric cancer. Autophagy has been extensively implicated in cancer cells; however, its function is not fully understood. Our study aimed to determine if oxaliplatin induce autophagy in gastric cancer MGC803 cells and to assess the effect of autophagy on apoptosis induced by oxaliplatin. MGC803 cells were cultured with oxaliplatin. Cell proliferation was measured using MTT assay, and apoptosis was determined by flow cytometry. Protein expression was detected by Western blot. Autophagy was observed using fluorescent microscopy. Our results showed that the rate of apoptosis was 9.73% and 16.36% when MGC803 cells were treated with 5 and 20 μg/mL oxaliplatin for 24 h, respectively. In addition, caspase activation and poly ADP-ribose polymerase (PARP)cleavage were detected. Furthermore, when MGC803 cells were treated with oxaliplatin for 24 h, an accumulation of punctate LC3 and an increase of LC3-Ⅱ protein were also detected, indicating the activation of autophagy. Phosphorylation of Akt and mTOR were inhibited by oxaliplatin. Compared to oxaliplatin alone, the combination of autophagy inhibitor chlorochine and oxaliplatin significantly enhanced the inhibition of cell proliferation and the induction of cell apoptosis. In conclusion, oxaliplatin-induced protective autophagy partially prevents apoptosis in gastric cancer MGC803 cells. The combination of autophagy inhibitor and oxaliplatin may be a new therapeutic option for gastric cancer.

  20. Turkish propolis protects human endothelial cells in vitro from homocysteine-induced apoptosis.

    Science.gov (United States)

    Darendelioglu, Ekrem; Aykutoglu, Gurkan; Tartik, Musa; Baydas, Giyasettin

    2016-05-01

    Chronic cardiovascular and neurodegenerative complications induced by hyperhomocysteinemia have been most relatively associated with endothelial cell injury. Elevated homocysteine (Hcy) generates reactive oxygen species (ROS) accompanying with oxidative stress which is hallmarks of the molecular mechanisms responsible for cardiovascular disease. Propolis is a natural product, obtained by honeybee from various oils, pollens, special resins and wax materials, conventionally used with the purpose of treatment by folks Propolis has various biological activities and powerful antioxidant capacity. The flavonoids and phenolic acids, most bioactive components of propolis, have superior antioxidant ability to defend cell from free radicals. This study was designed to examine the protective effects of Turkish propolis (from east of country) on Hcy induced ROS production and apoptosis in human vascular endothelial cells (HUVECs). According to results, co-treatment of HUVECs with propolis decreased Hcy-induced ROS overproduction and lipid peroxidation (LPO) levels. Furthermore, overproductions of Bax, caspase-9 and caspase-3 protein, elevation of cytochrome c release in Hcy-treated HUVECs were significantly reduced by propolis. It was concluded that propolis has cytoprotective ability against cytotoxic effects of high Hcy in HUVECs.

  1. Supplemental dietary phytosterin protects against 4-nitrophenol-induced oxidative stress and apoptosis in rat testes

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    2015-01-01

    Full Text Available 4-Nitrophenol (PNP, is generally regarded as an environmental endocrine disruptor (EED. Phytosterin (PS, a new feed additive, possesses highly efficient antioxidant activities. The transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2, is an important regulator of cellular oxidative stress. Using rats, this study examined PNP-induced testicular oxidative damage and PS-mediated protection against that damage. The generation of MDA and H2O2 upon PNP and PS treatment was milder than that upon treatment with PNP alone. This mitigation was accompanied by partially reversed changes in SOD, CAT, GSH and GSH-Px. Moreover, PNP significantly reduced the caudal epididymal sperm counts and serum testosterone levels. Typical morphological changes were also observed in the testes of PNP-treated animals. PNP reduced the transcriptional level of Nrf2, as evaluated by RT-PCR, but it promoted the dissociation from the Nrf2 complex, stabilization and translocation into the nucleus, as evaluated by immunohistochemistry and Western blotting. In addition, PNP enhanced the Nrf2-dependent gene expression of heme oxygenase-1 (HO-1 and glutamate–cysteine ligase catalytic subunit (GCLC. These results suggest that the Nrf2 pathway plays an important role in PNP-induced oxidative damage and that PS possesses modulatory effects on PNP-induced oxidative damage in rat testes.

  2. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs. Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.

  3. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  4. Polymer fraction of Aloe vera exhibits a protective activity on ethanol-induced gastric lesions.

    Science.gov (United States)

    Park, Chul-Hong; Nam, Dong-Yoon; Son, Hyeong-U; Lee, Si-Rim; Lee, Hyun-Jin; Heo, Jin-Chul; Cha, Tae-Yang; Baek, Jin-Hong; Lee, Sang-Han

    2011-04-01

    For centuries, Aloe has been used as a herbal plant remedy against skin disorders, diabetes, and for its cardiac stimulatory activity. Here, we examined the gastroprotective effects of an Aloe vera polymer fraction (Avpf; molecular weight cut-off ≥50 kDa; 150 mg/kg body weight, p.o.) on an ethanol-induced gastric lesion mouse model. Mice pre-treated with Avpf had significantly fewer gastric lesions than their respective controls. To further examine the potential mechanism underlying this effect, we used reverse transcription-polymerase chain reaction to examine nitric oxide synthase and matrix metalloproteinase (MMP)mRNA expression on tissues from gastric lesions. Our results revealed that the mRNA expressions of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) were each reduced by ~50% in Avpf-treated mice vs. the controls, whereas, the mRNA expression levels of endothelial nitric oxide synthase remained unchanged. MMP-9, an index for gastric lesions, also alleviated the ethanol-treated gastric ulceration during Avpf treatment. These findings collectively suggest that Avpf significantly protects the gastric mucosa against ethanol-induced gastric damage, at least in part, by decreasing mRNA expression levels of not only iNOS and nNOS, but also MMP-9.

  5. AHNAK KO mice are protected from diet-induced obesity but are glucose intolerant.

    Science.gov (United States)

    Ramdas, M; Harel, C; Armoni, M; Karnieli, E

    2015-04-01

    AHNAK is a 700 KD phosphoprotein primarily involved in calcium signaling in various cell types and regulating cytoskeletal organization and cell membrane architecture. AHNAK expression has also been associated with obesity. To investigate the role of AHNAK in regulating metabolic homeostasis, we studied whole body AHNAK knockout mice (KO) on either regular chow or high-fat diet (HFD). KO mice had a leaner phenotype and were resistant to high-fat diet-induced obesity (DIO), as reflected by a reduction in adipose tissue mass in conjunction with higher lean mass compared to wild-type controls (WT). However, KO mice exhibited higher fasting glucose levels, impaired glucose tolerance, and diminished serum insulin levels on either diet. Concomitantly, KO mice on HFD displayed defects in insulin signaling, as evident from reduced Akt phosphorylation and decreased cellular glucose transporter (Glut4) levels. Glucose intolerance and insulin resistance were also associated with changes in expression of genes regulating fat, glucose, and energy metabolism in adipose tissue and liver. Taken together, these data demonstrate that (a) AHNAK is involved in glucose homeostasis and weight balance (b) under normal feeding KO mice are insulin sensitive yet insulin deficient; and (c) AHNAK deletion protects against HFD-induced obesity, but not against HFD-induced insulin resistance and glucose intolerance in vivo.

  6. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  7. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection.

    Directory of Open Access Journals (Sweden)

    Maria Shirely Herbas

    Full Text Available The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction.

  8. Protective Role of Black Tea Extract against Nonalcoholic Steatohepatitis-Induced Skeletal Dysfunction

    Directory of Open Access Journals (Sweden)

    Subhra