WorldWideScience

Sample records for b-catenin signaling increases

  1. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    Science.gov (United States)

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  2. WNT Signaling Is Required for Peritoneal Membrane Angiogenesis.

    Science.gov (United States)

    Padwal, Manreet Kaur; Cheng, Genyang; Liu, Limin; Boivin, Felix J; Gangji, Azim; Brimble, Kenneth Scott; Bridgewater, Darren; Margetts, Peter J

    2018-01-24

    The WNT signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor beta (TGFB) mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGFΒ-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal b-catenin protein was significantly upregulated after infection with AdTGFB along with elements of the WNT signaling pathway. Treatment with a b-catenin inhibitor (ICG-001) in mice with AdTGFB-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf related protein (DKK) 1. In addition to this, DKK-1 blocked epithelial to mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

  3. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  4. Chemical intervention in plant sugar signalling increases yield and resilience

    Science.gov (United States)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  5. Increasing the Signal to Noise Ratio in a Chemistry Laboratory ...

    African Journals Online (AJOL)

    Increasing the Signal to Noise Ratio in a Chemistry Laboratory - Improving a Practical for Academic Development Students. ... Analysis of data collected in 2001 shows that the changes made a significant impact on the effectiveness of the laboratory session. South African Journal of Chemistry Vol.56 2003: 47-53 ...

  6. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  7. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake.We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia.Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to "the fast food

  8. Photoplethysmographic signal waveform index for detection of increased arterial stiffness

    International Nuclear Information System (INIS)

    Pilt, K; Meigas, K; Ferenets, R; Temitski, K; Viigimaa, M

    2014-01-01

    The aim of this research was to assess the validity of the photoplethysmographic (PPG) waveform index PPGAI for the estimation of increased arterial stiffness. For this purpose, PPG signals were recorded from 24 healthy subjects and from 20 type II diabetes patients. The recorded PPG signals were processed with the analysis algorithm developed and the waveform index PPGAI similar to the augmentation index (AIx) was calculated. As a reference, the aortic AIx was assessed and normalized for a heart rate of 75 bpm (AIx@75) by a SphygmoCor device. A strong correlation (r = 0.85) between the PPGAI and the aortic AIx@75 and a positive correlation of both indices with age were found. Age corrections for the indices PPGAI and AIx@75 as regression models from the signals of healthy subjects were constructed. Both indices revealed a significant difference between the groups of diabetes patients and healthy controls. However, the PPGAI provided the best statistical discrimination for the group of subjects with increased arterial stiffness. The waveform index PPGAI based on the inexpensive PPG technology can be considered as a perspective measure of increased arterial stiffness estimation in clinical screenings. (paper)

  9. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila.

    Science.gov (United States)

    Zhang, Shixing; Yin, Yan; Lu, Huimin; Guo, Aike

    2008-05-23

    Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.

  10. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  11. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    Science.gov (United States)

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  12. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  13. PMT signal increase using a wavelength shifting paint

    Energy Technology Data Exchange (ETDEWEB)

    Allada, K. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hurlbut, Ch. [Eljen Technology, Sweetwater, TX 79556 (United States); Ou, L.; Schmookler, B. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Shahinyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Wojtsekhowski, B., E-mail: bogdanw@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2015-05-11

    We report a 1.65 times increase of the PMT signal and a simple procedure of application of a new wavelength shifting (WLS) paint for PMTs with non-UV-transparent windows. Samples of four different WLS paints, made from hydrocarbon polymers and organic fluors, were tested on a 5-in. PMT (ET 9390KB) using Cherenkov radiation produced in fused silica disks by {sup 106}Ru electrons on a ‘table-top’ setup. The best performing paint was employed on two different types of 5-in. PMTs (ET 9390KB and XP4572B), installed in atmospheric pressure CO{sub 2} gas Cherenkov detectors, and tested using GeV electrons.

  14. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    Science.gov (United States)

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  15. Association between increased EEG signal complexity and cannabis dependence.

    Science.gov (United States)

    Laprevote, Vincent; Bon, Laura; Krieg, Julien; Schwitzer, Thomas; Bourion-Bedes, Stéphanie; Maillard, Louis; Schwan, Raymund

    2017-12-01

    Both acute and regular cannabis use affects the functioning of the brain. While several studies have demonstrated that regular cannabis use can impair the capacity to synchronize neural assemblies during specific tasks, less is known about spontaneous brain activity. This can be explored by measuring EEG complexity, which reflects the spontaneous variability of human brain activity. A recent study has shown that acute cannabis use can affect that complexity. Since the characteristics of cannabis use can affect the impact on brain functioning, this study sets out to measure EEG complexity in regular cannabis users with or without dependence, in comparison with healthy controls. We recruited 26 healthy controls, 25 cannabis users without cannabis dependence and 14 cannabis users with cannabis dependence, based on DSM IV TR criteria. The EEG signal was extracted from at least 250 epochs of the 500ms pre-stimulation phase during a visual evoked potential paradigm. Brain complexity was estimated using Lempel-Ziv Complexity (LZC), which was compared across groups by non-parametric Kruskall-Wallis ANOVA. The analysis revealed a significant difference between the groups, with higher LZC in participants with cannabis dependence than in non-dependent cannabis users. There was no specific localization of this effect across electrodes. We showed that cannabis dependence is associated to an increased spontaneous brain complexity in regular users. This result is in line with previous results in acute cannabis users. It may reflect increased randomness of neural activity in cannabis dependence. Future studies should explore whether this effect is permanent or diminishes with cannabis cessation. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  16. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    Science.gov (United States)

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  17. Increased STAT1 signaling in endocrine-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Rui Huang

    that STAT signaling is important in endocrine resistance, and that STAT inhibitors may represent potential therapies in breast cancer, even in the resistant setting.

  18. Electromagnetic Signals and Earthquakes 2.0: Increasing Signals and Reducing Noise

    Science.gov (United States)

    Dunson, J. C.; Bleier, T.; Heraud, J. A.; Muller, S.; Lindholm, C.; Christman, L.; King, R.; Lemon, J.

    2013-12-01

    QuakeFinder has an international network of 150+ Magnetometers and air conductivity instruments located in California, Peru, Chile, Taiwan, and Greece. Since 2000, QuakeFinder has been collecting electromagnetic data and applying simple algorithms to identify and characterize electromagnetic signals that occur in the few weeks prior to earthquakes greater than M4.5. In this presentation, we show refinements to several aspects of our signal identification techniques that enhance detection of pre-earthquake patterns. Our magnetometers have been improved to show longer pulses, and we are now using second generation algorithms that have been refined to detect the proper shape of the earthquake-generated pulses and to allow individual site adjustments. Independent lightning strike data has also now been included to mask out lightning based on amplitude and distance from a given instrument site. Direction of arrival (Azimuth) algorithms have been added to identify patterns of pulse clustering that occur prior to nearby earthquakes. Likewise, positive and negative air ion concentration detection has been improved by building better enclosures, using stainless screens to eliminate insects and some dirt sources, conformal coating PC boards to reduce moisture contamination, and filtering out contaminated data segments based on relative humidity measurements at each site. Infra Red data from the western GOES satellite has been time-filtered, cloud-filtered, and compared to 3 year averages of each pixel's output (by seasonal month) to arrive at a relevant comparison baseline for each night's temperature/cooling slope. All these efforts have helped improve the detection of multiple, nearly simultaneous, electromagnetic signals due to earthquake preparation processes, while reducing false positive indications due to environmental noise sources.

  19. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Science.gov (United States)

    Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter

    2015-01-01

    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796

  20. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  1. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  2. Exponential increase of signal crayfish in running waters in Sweden – due to illegal introductions?

    Directory of Open Access Journals (Sweden)

    Bohman P.

    2011-07-01

    Full Text Available Sweden has only one indigenous species of crayfish, the noble crayfish (Astacus astacus, Fabricius. There has been a steady decline of noble crayfish populations in Sweden since 1907, mainly due to the crayfish plague. To substitute the noble crayfish fishery lost, the Swedish government launched a large-scale introduction of the signal crayfish (Pacifastacus leniusculus Dana. Today, the signal crayfish is regarded as a chronic carrier of the crayfish plague, and an expansion of the species may seriously threaten the noble crayfish. This paper examines the decrease of noble crayfish populations, and the concurrent expansion of signal crayfish in running waters. Data from the Swedish Electrofishing RegiSter (SERS was used. We found that in 1980–1984 the noble crayfish occurred in 4.5% of the studied river sections. In 2008–2009 the occurrences had decreased to 1.9%. In contrast, the signal crayfish had increased in occurrence, from 0.2% (1980–1984 to 11.8% in (2008–2009. We studied the number of stocking permits for signal crayfish introductions, and the available signal crayfish population from the open fishery in Lake Vättern, as possible causes of this expansion. A negative correlation between stocking permits and increased occurrence in streams, and a positive correlation between the availability of crayfish in Lake Vättern and the occurrence in streams was found. This suggests that the expansion of signal crayfish may be due to illegal introductions, further endangering the endemic noble crayfish.

  3. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.

    Science.gov (United States)

    Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo

    2018-02-01

    The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L.; Stupp, Samuel I. (NWU); (USC)

    2016-04-12

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  5. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    Science.gov (United States)

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    Science.gov (United States)

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  7. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

    Science.gov (United States)

    Schartner, Michael M.; Carhart-Harris, Robin L.; Barrett, Adam B.; Seth, Anil K.; Muthukumaraswamy, Suresh D.

    2017-04-01

    What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness - as measured by neural signal diversity.

  8. Reading the copepod personal ads : increasing encounter probability with hydromechanical signals

    NARCIS (Netherlands)

    van Duren, LA; Stamhuis, EJ; Videler, JJ

    1998-01-01

    Females of the calanoid copepod Temora longicornis react to chemical exudates of male conspecifics with little hops, quite distinct from their normal smooth uniform swimming motion. These hops possibly serve to create a hydrodynamical signal in the surrounding water, to increase encounter

  9. Simulation study on effects of signaling network structure on the developmental increase in complexity

    Energy Technology Data Exchange (ETDEWEB)

    Keranen, Soile V.E.

    2003-04-02

    The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions than on the increase in numbers of regulatory genes.

  10. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  11. Increased T2 signal intensity in the distal clavicle: incidence and clinical implications

    International Nuclear Information System (INIS)

    Fiorella, D.; Helms, C.A.; Speer, K.P.

    2000-01-01

    Objective. The objectives of the current study were (1) to quantify the incidence of increased T2 signal in the distal clavicle and (2) to assess the clinical significance of this finding in patients with chronic acromioclavicular (AC) joint pain.Design and patients. Eight patients (five male and three female, 15-41 years of age) with disabling shoulder pain localized to the AC joint and marked increased T2 signal in the distal clavicle are presented. These eight patients underwent MR examination over a 25 month period (August 1996 to September 1998). The dictated reports of all shoulder MR examinations conducted over this same time period were reviewed retrospectively for the presence of signal abnormality in the distal cla-vicle. Clinical data and, in five patients, findings at shoulder arthroscopy or open surgery, were correlated with the results of MR imaging. One patient underwent arthroscopy on both shoulders.Results. The selected eight patients each presented clinically with disabling shoulder pain localized to the AC joint. One patient is presented twice, as both shoulders were symptomatic (n=9). Plain film examination (9/9) failed to indicate a structural cause of shoulder pain in any of the patients. MR examination demonstrated abnormally increased T2 signal in the distal clavicle in all nine cases and no other cause for AC joint pain. Three patients responded to a course of conservative therapy. Six experienced refractory pain despite conservative therapy. Resection of the distal clavicle was performed in five of the six cases. All patients who underwent resection of the distal clavicle experienced complete resolution of AC joint pain. A retrospective review of the dictated reports for all shoulder MR imaging examinations performed at out institution over a 25 month period (August 1996 to September 1998; n=761) demonstrated a 12.5% incidence of abnormally increased T2 signal in the distal clav-icle.Conclusions. Increased T2 signal in the distal clavicle

  12. Increased T2 signal intensity in the distal clavicle: incidence and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Fiorella, D.; Helms, C.A. [Dept. of Radiology, Duke Univ., Durham, NC (United States); Speer, K.P. [Dept. of Orthopedic Surgery, Duke Univ., Durham, NC (United States)

    2000-12-01

    Objective. The objectives of the current study were (1) to quantify the incidence of increased T2 signal in the distal clavicle and (2) to assess the clinical significance of this finding in patients with chronic acromioclavicular (AC) joint pain.Design and patients. Eight patients (five male and three female, 15-41 years of age) with disabling shoulder pain localized to the AC joint and marked increased T2 signal in the distal clavicle are presented. These eight patients underwent MR examination over a 25 month period (August 1996 to September 1998). The dictated reports of all shoulder MR examinations conducted over this same time period were reviewed retrospectively for the presence of signal abnormality in the distal cla-vicle. Clinical data and, in five patients, findings at shoulder arthroscopy or open surgery, were correlated with the results of MR imaging. One patient underwent arthroscopy on both shoulders.Results. The selected eight patients each presented clinically with disabling shoulder pain localized to the AC joint. One patient is presented twice, as both shoulders were symptomatic (n=9). Plain film examination (9/9) failed to indicate a structural cause of shoulder pain in any of the patients. MR examination demonstrated abnormally increased T2 signal in the distal clavicle in all nine cases and no other cause for AC joint pain. Three patients responded to a course of conservative therapy. Six experienced refractory pain despite conservative therapy. Resection of the distal clavicle was performed in five of the six cases. All patients who underwent resection of the distal clavicle experienced complete resolution of AC joint pain. A retrospective review of the dictated reports for all shoulder MR imaging examinations performed at out institution over a 25 month period (August 1996 to September 1998; n=761) demonstrated a 12.5% incidence of abnormally increased T2 signal in the distal clav-icle.Conclusions. Increased T2 signal in the distal clavicle

  13. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet.

    Science.gov (United States)

    Melnik, Bodo

    2012-01-01

    The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of

  14. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  15. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  16. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  17. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke

    Directory of Open Access Journals (Sweden)

    Buckwalter Marion S

    2010-10-01

    Full Text Available Abstract Background TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging. Methods We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia. Results TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes. Conclusions We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial

  18. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke.

    Science.gov (United States)

    Doyle, Kristian P; Cekanaviciute, Egle; Mamer, Lauren E; Buckwalter, Marion S

    2010-10-11

    TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging. We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia. TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes. We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial scar formation and the immune response to stroke.

  19. Reactions to merit pay increases: a longitudinal test of a signal sensitivity perspective.

    Science.gov (United States)

    Shaw, Jason D; Duffy, Michelle K; Mitra, Atul; Lockhart, Daniel E; Bowler, Matthew

    2003-06-01

    The relationships among merit pay raises, trait positive affectivity (PA), and reactions to merit pay increases (pay attitudes and behavioral intentions) were explored in a longitudinal study of hospital employees. Drawing on signal sensitivity theory, the authors expected that PA would moderate the relationship between merit pay raise size and reactions to the increase such that pay raise size would be more strongly related to pay attitudes and behavioral intentions among those low in PA. Results strongly supported the predictions in the case of reactions to the raise amount (happiness and effort intentions) but not for pay level satisfaction. Implications of the results and directions for future research are identified.

  20. Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Stefania Lucia Nori

    2013-01-01

    Full Text Available Diabetic polyneuropathy (DPN, characterized by early hyperalgesia and increased nerve growth factor (NGF, evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB. In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.

  1. Multisegment coloboma in a case of Marfan syndrome: another possible effect of increased TGFβ signaling.

    Science.gov (United States)

    LeBlanc, Shannon K; Taranath, Deepa; Morris, Scott; Barnett, Christopher P

    2014-02-01

    Colobomata are etiologically heterogeneous and may occur as an isolated defect or as a feature of a variety of single-gene disorders, chromosomal syndromes, or malformation syndromes. Although not classically associated with Marfan syndrome, colobomata have been described in several reports of Marfan syndrome, typically involving the lens and rarely involving other ocular structures. While colobomata of the lens have been described in Marfan syndrome, there are very few reports of coloboma involving other ocular structures. We report a newborn boy presenting with coloboma of the iris, lens, retina, and optic disk who was subsequently diagnosed with Marfan syndrome. Marfan syndrome is a disorder of increased TGFβ signaling, and recent work in the mouse model suggests a role for TGFβ signaling in eye development and coloboma formation, suggesting a causal association between Marfan syndrome and coloboma. Crown Copyright © 2014. Published by Mosby, Inc. All rights reserved.

  2. Increase of nonlinear signal distortions due to linear mode coupling in space division multiplexed systems

    DEFF Research Database (Denmark)

    Kutluyarov, Ruslan V.; Bagmanov, Valeriy Kh; Antonov, Vyacheslav V.

    2017-01-01

    This paper is focused on the analysis of linear and nonlinear mode coupling in space division multiplexed (SDM) optical communications over step-index fiber in few-mode regime. Linear mode coupling is caused by the fiber imperfections, while the nonlinear coupling is caused by the Kerr......-nonlinearities. Therefore, we use the system of generalized coupled nonlinear Schrödinger equations (GCNLSE) to describe the signal propagation. We analytically show that the presence of linear mode coupling may cause increasing of the nonlinear signal distortions. For the detailed study we solve GCNLSE numerically...... for the standard step index fiber at the wavelength of 850 nm in the basis of spatial modes with helical phase front (vortex modes) and for a special kind of few-mode fiber with enlarged core, providing propagation of five spatial modes at 1550 nm. Simulation results confirm that the linear mode coupling may lead...

  3. Stochastic effects as a force to increase the complexity of signaling networks

    KAUST Repository

    Kuwahara, Hiroyuki; Gao, Xin

    2013-01-01

    Cellular signaling networks are complex and appear to include many nonfunctional elements. Recently, it was suggested that nonfunctional interactions of proteins cause signaling noise, which, perhaps, shapes the signal transduction mechanism

  4. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  5. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy.

    Science.gov (United States)

    Oishi, Yoshimi; Tsukamoto, Hayato; Yokokawa, Takumi; Hirotsu, Keisuke; Shimazu, Mariko; Uchida, Kenji; Tomi, Hironori; Higashida, Kazuhiko; Iwanaka, Nobumasa; Hashimoto, Takeshi

    2015-03-15

    We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals. Copyright © 2015 the American Physiological Society.

  6. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  7. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum.

    Science.gov (United States)

    Aznar, Néstor R; Consolo, V Fabiana; Salerno, Graciela L; Martínez-Noël, Giselle M A

    2018-02-01

    TOR is the master regulator of growth and development that senses energy availability. Biotic stress perturbs metabolic and energy homeostasis, making TOR a good candidate to participate in the plant response. Fusarium graminearum (Fusarium) produces important losses in many crops all over the world. To date, the role of TOR in Fusarium infection has remained unexplored. Here, we show that the resistance to the pathogen increases in different Arabidopsis mutants impaired in TOR complex or in wild-type plants treated with a TOR inhibitor. We conclude that TOR signaling is involved in plant defense against Fusarium.

  8. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    Energy Technology Data Exchange (ETDEWEB)

    Win, Thida [Lister Hospital, Respiratory Medicine, Stevenage (United Kingdom); Thomas, Benjamin A.; Lambrou, Tryphon; Hutton, Brian F.; Endozo, Raymondo; Shortman, Robert I.; Afaq, Asim; Ell, Peter J.; Groves, Ashley M. [University College London, Institute of Nuclear Medicine, University College Hospital, London (United Kingdom); Screaton, Nicholas J. [Papworth Hospital, Radiology Department, Papworth Everard (United Kingdom); Porter, Joanna C. [University College London, Centre for Respiratory Diseases, University College Hospital, London (United Kingdom); Maher, Toby M. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Lukey, Pauline [GSK, Fibrosis DPU, Research and Development, Stevenage (United Kingdom)

    2014-02-15

    Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent {sup 18}F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of {sup 18}F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). IPF patients have increased pulmonary uptake of {sup 18}F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. (orig.)

  9. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.

    Science.gov (United States)

    Lee, Shin J; Sanchez-Watts, Graciela; Krieger, Jean-Philippe; Pignalosa, Angelica; Norell, Puck N; Cortella, Alyssa; Pettersen, Klaus G; Vrdoljak, Dubravka; Hayes, Matthew R; Kanoski, Scott; Langhans, Wolfgang; Watts, Alan G

    2018-05-01

    Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function. We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization. GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies. Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Exendin-4 Inhibits Hepatic Lipogenesis by Increasing β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Mi Hae Seo

    Full Text Available The aim of this study is to investigate whether the beneficial effect of exendin-4 on hepatic steatosis is mediated by β-catenin signaling. After the HepG2 human hepatoma cells were treated with PA for 24 hours, total triglycerides levels were increased in a dose-dependent manner, and the expression levels of perilipin family members were upregulated in cells treated with 400 μM PA. For our in vitro model of hepatic steatosis, HepG2 cells were treated with 400 μM palmitic acid (PA in the presence or absence of 100 nM exendin-4 for 24 hours. PA increased the expression of lipogenic genes, such as sterol regulatory element-binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor gamma (PPARγ, stearoyl-CoA desaturase 1 (SCD1, fatty acid synthase (FAS, and acetyl-CoA carboxylase (ACC and triglyceride synthesis-involved genes, such as diacylglycerol acyltransferase 1 (DGAT1 and diacylglycerol acyltransferase 2 (DGAT2 in HepG2 cells, whereas exendin-4 treatment significantly prevented the upregulation of SREBP-1c, PPARγ, SCD1, FAS, ACC, DGAT1 and DGAT2. Moreover, exendin-4 treatment increased the expression of phosphorylated glycogen synthase kinase-3 beta (GSK-3β in the cytosolic fraction and the expression of β-catenin and transcription factor 4 (TCF4 in the nuclear fraction. In addition, siRNA-mediated inhibition of β-catenin upregulated the expression of lipogenic transcription factors. The protective effects of exendin-4 on intracellular triglyceride content and total triglyceride levels were not observed in cells treated with the β-catenin inhibitor IWR-1. These data suggest that exendin-4 treatment improves hepatic steatosis by inhibiting lipogenesis via activation of Wnt/β-catenin signaling.

  11. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    International Nuclear Information System (INIS)

    Win, Thida; Thomas, Benjamin A.; Lambrou, Tryphon; Hutton, Brian F.; Endozo, Raymondo; Shortman, Robert I.; Afaq, Asim; Ell, Peter J.; Groves, Ashley M.; Screaton, Nicholas J.; Porter, Joanna C.; Maher, Toby M.; Lukey, Pauline

    2014-01-01

    Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18 F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18 F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p 18 F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. (orig.)

  12. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake.

    Science.gov (United States)

    Nakajima, Ken-ichiro; Cui, Zhenzhong; Li, Chia; Meister, Jaroslawna; Cui, Yinghong; Fu, Ou; Smith, Adam S; Jain, Shalini; Lowell, Bradford B; Krashes, Michael J; Wess, Jürgen

    2016-01-08

    Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.

  13. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Christina Kopp

    2014-11-01

    Full Text Available The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001 and the mRNA abundances of GPR109A (p ≤ 0.05 and chemerin (p ≤ 0.01. Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001. The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.

  14. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  15. Feeding of Whitefly on Tobacco Decreases Aphid Performance via Increased Salicylate Signaling.

    Directory of Open Access Journals (Sweden)

    Haipeng Zhao

    Full Text Available The feeding of Bemisia tabaci nymphs trigger the SA pathway in some plant species. A previous study showed that B. tabaci nymphs induced defense against aphids (Myzus persicae in tobacco. However, the mechanism underlying this defense response is not well understood.Here, the effect of activating the SA signaling pathway in tobacco plants through B. tabaci nymph infestation on subsequent M. persicae colonization is investigated. Performance assays showed that B. tabaci nymphs pre-infestation significantly reduced M. persicae survival and fecundity systemically in wild-type (WT but not salicylate-deficient (NahG plants compared with respective control. However, pre-infestation had no obvious local effects on subsequent M. persicae in either WT or NahG tobacco. SA quantification results indicated that the highest accumulation of SA was induced by B. tabaci nymphs in WT plants after 15 days of infestation. These levels were 8.45- and 6.14-fold higher in the local and systemic leaves, respectively, than in controls. Meanwhile, no significant changes of SA levels were detected in NahG plants. Further, biochemical analysis of defense enzymes polyphenol oxidase (PPO, peroxidase (POD, β-1,3-glucanase, and chitinase demonstrated that B. tabaci nymph infestation increased these enzymes' activity locally and systemically in WT plants, and there was more chitinase and β-1, 3-glucanase activity systemically than locally, which was opposite to the changing trends of PPO. However, B. tabaci nymph infestation caused no obvious increase in enzyme activity in any NahG plants except POD.In conclusion, these results underscore the important role that induction of the SA signaling pathway by B. tabaci nymphs plays in defeating aphids. It also indicates that the activity of β-1, 3-glucanase and chitinase may be positively correlated with resistance to aphids.

  16. Perceptual learning increases the strength of the earliest signals in visual cortex.

    Science.gov (United States)

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  17. Inaccessibility of reinforcement increases persistence and signaling behavior in the fox squirrel (Sciurus niger).

    Science.gov (United States)

    Delgado, Mikel M; Jacobs, Lucia F

    2016-05-01

    Under natural conditions, wild animals encounter situations where previously rewarded actions do not lead to reinforcement. In the laboratory, a surprising omission of reinforcement induces behavioral and emotional responses described as frustration. Frustration can lead to aggressive behaviors and to the persistence of noneffective responses, but it may also lead to new behavioral responses to a problem, a potential adaptation. We assessed the responses to inaccessible reinforcement in free-ranging fox squirrels (Sciurus niger). We trained squirrels to open a box to obtain food reinforcement, a piece of walnut. After 9 training trials, squirrels were tested in 1 of 4 conditions: a control condition with the expected reward, an alternative reinforcement (a piece of dried corn), an empty box, or a locked box. We measured the presence of signals suggesting arousal (e.g., tail flags and tail twitches) and found that squirrels performed fewer of these behaviors in the control condition and increased certain behaviors (tail flags, biting box) in the locked box condition, compared to other experimental conditions. When faced with nonreinforcement, that is, frustration, squirrels increased the number of interactions with the apparatus and spent more time interacting with the apparatus. This study of frustration responses in a free-ranging animal extends the conclusions of captive studies to the field and demonstrates that fox squirrels show short-term negatively valenced responses to the inaccessibility, omission, and change of reinforcement. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Increased working memory related fMRI signal in children following Tick Borne Encephalitis.

    Science.gov (United States)

    Henrik, Ullman; Åsa, Fowler; Ronny, Wickström

    2016-01-01

    Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  20. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801

    Science.gov (United States)

    Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling. PMID:26700309

  1. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    Science.gov (United States)

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  3. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  4. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    International Nuclear Information System (INIS)

    Mulkern, Robert V.; Voss, Stephan; Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S.

    2008-01-01

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14±2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  5. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)

    2008-10-15

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  6. Stochastic effects as a force to increase the complexity of signaling networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-07-29

    Cellular signaling networks are complex and appear to include many nonfunctional elements. Recently, it was suggested that nonfunctional interactions of proteins cause signaling noise, which, perhaps, shapes the signal transduction mechanism. However, the conditions under which molecular noise influences cellular information processing remain unclear. Here, we explore a large number of simple biological models of varying network sizes to understand the architectural conditions under which the interactions of signaling proteins can exhibit specific stochastic effects - called deviant effects - in which the average behavior of a biological system is substantially altered in the presence of molecular noise. We find that a small fraction of these networks does exhibit deviant effects and shares a common architectural feature whereas most of the networks show only insignificant levels of deviations. Interestingly, addition of seemingly unimportant interactions into protein networks gives rise to deviant effects.

  7. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    Directory of Open Access Journals (Sweden)

    Wen-Bin Alfred Chng

    Full Text Available Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  8. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    Science.gov (United States)

    Chng, Wen-Bin Alfred; Koch, Rafael; Li, Xiaoxue; Kondo, Shu; Nagoshi, Emi; Lemaitre, Bruno

    2017-01-01

    Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw) after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  9. Chronically Increased G[subscript s][alpha] Signaling Disrupts Associative and Spatial Learning

    Science.gov (United States)

    Bourtchouladze, Rusiko; Patterson, Susan L.; Kelly, Michele P.; Kreibich, Arati; Kandel, Eric R.; Abel, Ted

    2006-01-01

    The cAMP/PKA pathway plays a critical role in learning and memory systems in animals ranging from mice to "Drosophila" to "Aplysia." Studies of olfactory learning in "Drosophila" suggest that altered expression of either positive or negative regulators of the cAMP/PKA signaling pathway beyond a certain optimum range may be deleterious. Here we…

  10. beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis

    NARCIS (Netherlands)

    van Veelen, Wendy; Le, Ngoc H.; Helvensteijn, Werner; Blonden, Lau; Theeuwes, Myrte; Bakker, Elvira R. M.; Franken, Patrick F.; van Gurp, Leon; Meijlink, Frits; van der Valk, Martin A.; Kuipers, Ernst J.; Fodde, Riccardo; Smits, Ron

    Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or beta-catenin genes underlies colorectal carcinogenesis. As a result, beta-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear

  11. beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis

    NARCIS (Netherlands)

    van Veelen, W.; Le, N.H.; Helvensteijn, W.; Blonden, L.; Theeuwes, M.; Bakker, E.R.; Franken, P.F.; van Gurp, L.; Meijlink, F.; van der Valk, M.A.; Kuipers, E.J.; Fodde, R.; Smits, R.E.H.M.

    2011-01-01

    Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or beta-catenin genes underlies colorectal carcinogenesis. As a result, beta-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear

  12. Declining cost efficiency as a signal of increasing bank vulnerability: an entropy-based approach

    NARCIS (Netherlands)

    Balasubramanyan, L.; Stefanou, S.E.; Stokes, J.R.

    2010-01-01

    The mortgage crisis of 2007/08 has impacted the health of both small and large commercial banks in the financial services industry. The pressing question is how do regulators and bank monitors identify the warning signals of bank vulnerability and bank risk because of weakening credit and asset

  13. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  14. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    Science.gov (United States)

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  15. No evidence that kin selection increases the honesty of begging signals in birds

    NARCIS (Netherlands)

    Bebbington, Kat; Kingma, Sjouke A.

    Providing plausible mechanisms to explain variation in the honesty of information communicated through offspring begging signals is fundamental to our understanding of parent–offspring conflict and the evolution of family life. A recently published research article used comparative analyses to

  16. Human airway eosinophils exhibit preferential reduction in STAT signaling capacity and increased CISH expression.

    Science.gov (United States)

    Burnham, Mandy E; Koziol-White, Cynthia J; Esnault, Stephane; Bates, Mary E; Evans, Michael D; Bertics, Paul J; Denlinger, Loren C

    2013-09-15

    Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of IL-5 family cytokines and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOS(PB)) viability, recruit EOS(PB) to the airways, and, at higher concentrations, induce degranulation and reactive oxygen species generation. Although airway EOS (EOS(A)) remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOS(A) with IL-5 family cytokines no longer confers a survival advantage. Because the IL-5 family receptors have common signaling capacity, but are uncoupled from EOS(A) survival, whereas other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOS(A) possess a JAK/STAT-specific regulatory mechanism (because JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOS(A) relative to blood EOS from airway allergen-challenged donors. However, IL-5 family-induced ERK1/2 phosphorylation is not altered between EOS(A) and EOS from airway allergen-challenged donors. These observations suggest EOS(A) possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOS(PB), IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOS(A) express significantly more CISH and SOCS1 mRNA and CISH protein than EOS(PB) counterparts. In EOS(PB), long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family-induced STAT5 phosphorylation. These data support a model in which IL-5 family cytokines trigger a selective downregulation mechanism in EOS(A) for JAK/STAT pathways.

  17. Human Airway Eosinophils Exhibit Preferential Reduction in STAT Signaling Capacity and Increased CISH Expression1

    Science.gov (United States)

    Burnham, Mandy E.; Koziol-White, Cynthia J.; Esnault, Stephane; Bates, Mary E.; Evans, Michael D.; Bertics, Paul J.; Denlinger, Loren C.

    2013-01-01

    Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of Interleukin-5 (IL-5) family cytokines, and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOSPB) viability, recruit EOSPB to the airways, and at higher concentrations, induce degranulation and reactive oxygen species (ROS) generation. While, EOSA remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOSA with IL-5 family cytokines no longer confers a survival advantage. Since the IL-5 family receptors have common signaling capacity, but are uncoupled from EOSA survival while other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOSA possess a JAK/STAT specific regulatory mechanism (since JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOSA relative to blood EOS from airway allergen-challenged donors (EOSCPB). However, IL-5 family induced ERK1/2 phosphorylation is not altered between EOSA and EOSCPB. These observations suggest EOSA possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOSPB, IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOSA express significantly more CISH and SOCS1 mRNA and CISH protein than EOSPB counterparts. In EOSPB, long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family induced STAT5 phosphorylation. These data support a model wherein IL-5 family cytokines trigger a selective down-regulation mechanism in EOSA for JAK/STAT pathways. PMID:23956426

  18. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?

    Science.gov (United States)

    Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S

    2004-11-01

    To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.

  19. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  20. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  1. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  2. Phosphatase and tensin homolog-β-catenin signaling modulates regulatory T cells and inflammatory responses in mouse liver ischemia/reperfusion injury.

    Science.gov (United States)

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-06-01

    The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  3. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species.

    Science.gov (United States)

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-02-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.

  4. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Buchanan David J

    2009-08-01

    Full Text Available Abstract Painful distal sensory polyneuropathy (DSP is the most common neurological complication of HIV1 infection. Although infection with the virus itself is associated with an incidence of DSP, patients are more likely to become symptomatic following initiation of nucleoside reverse transcriptase inhibitor (NRTI treatment. The chemokines monocyte chemoattractant protein-1 (MCP1/CCL2 and stromal derived factor-1 (SDF1/CXCL12 and their respective receptors, CCR2 and CXCR4, have been implicated in HIV1 related neuropathic pain mechanisms including NRTI treatment in rodents. Utilizing a rodent model that incorporates the viral coat protein, gp120, and the NRTI, 2'3'-dideoxycytidine (ddC, we examined the degree to which chemokine receptor signaling via CCR2 and CXCR4 potentially influences the resultant chronic hypernociceptive behavior. We observed that following unilateral gp120 sciatic nerve administration, rats developed profound tactile hypernociception in the hindpaw ipsilateral to gp120 treatment. Behavioral changes were also present in the hindpaw contralateral to the injury, albeit delayed and less robust. Using immunohistochemical studies, we demonstrated that MCP1 and CCR2 were upregulated by primary sensory neurons in lumbar ganglia by post-operative day (POD 14. The functional nature of these observations was confirmed using calcium imaging in acutely dissociated lumbar dorsal root ganglion (DRG derived from gp120 injured rats at POD 14. Tactile hypernociception in gp120 treated animals was reversed following treatment with a CCR2 receptor antagonist at POD 14. Some groups of animals were subjected to gp120 sciatic nerve injury in combination with an injection of ddC at POD 14. This injury paradigm produced pronounced bilateral tactile hypernociception from POD 14–48. More importantly, functional MCP1/CCR2 and SDF1/CXCR4 signaling was present in sensory neurons. In contrast to gp120 treatment alone, the hypernociceptive behavior

  5. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models

    Science.gov (United States)

    Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J.; Campbell, Sean R.; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J.; Chambers, Daniel B.; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M.; Liebelt, David A.; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J.; Louneva, Natalia; Arnold, Steven E.; Featherstone, Robert E.; Siegel, Steven J.; Zukin, R. Suzanne; McDonald, Thomas V.; Bolduc, Francois V.; Jongens, Thomas A.; McBride, Sean M. J.

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731

  6. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala

    DEFF Research Database (Denmark)

    Jensen, Morten; Ratner, Cecilia; Rudenko, Olga

    2016-01-01

    BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has...... not previously been addressed directly. METHOD: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration...... and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor...

  7. A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2

    International Nuclear Information System (INIS)

    Kim, Jinwon

    2001-01-01

    Dynamically downscaled climate change signals due to increased atmospheric CO2 are investigated for three California basins. The downscaled signals show strong elevation dependence, mainly due to elevated freezing levels in the increased CO2 climate. Below 2.5 km, rainfall increases by over 150% while snowfall decreases by 20-40% in the winter. Above 2.5 km, rainfall and snowfall both increase in the winter, as the freezing levels appear mostly below this level. Winter snowmelt increases in all elevations due to warmer temperatures in the increased CO2 climate. Reduced snowfall and enhanced snowmelt during the winter decreases snowmelt-driven spring runoff below the 2.5 km level, where the peak snowmelt occurs one month earlier in the increased CO2 climate. Above 2.5km, increased winter snowfall maintains snowmelt-driven runoff through most of the warm season. The altered hydrologic characteristics in the increased CO2 climate affect the diurnal temperature variation mainly via snow-albedo-soil moisture feedback

  8. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    Science.gov (United States)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  9. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  10. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Science.gov (United States)

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  11. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    DEFF Research Database (Denmark)

    Wang, Qian; Bailey, Charles G; Ng, Cynthia

    2011-01-01

    was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor-mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary......L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function...... prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid...

  12. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  13. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future.

    Science.gov (United States)

    Verhaegen, A; Van Gaal, L

    2017-10-01

    The prevalence of non-cigarette tobacco use in electronic cigarettes, also called vaping, is rapidly increasing, especially in adolescents and young adults, due to attractive marketing techniques promoting them as healthier alternatives to conventional tobacco cigarettes. Although smoking is associated with weight loss, it increases insulin resistance and attributes to other features of the metabolic syndrome, increasing the cardiometabolic risk profile. Whether vaping has the same deleterious effects on metabolic parameters as regular cigarette smoke has not yet been studied thoroughly in humans. However, animal model experiments attribute comparable effects of e-cigarette smoking, even without nicotine exposure, on weight and metabolic parameters as compared to smoking cigarettes. In this review paper, we want to give an overview of published data on the effects on weight and cardiometabolic parameters of e-cigarette use and formulate some mechanistic hypotheses. © 2017 World Obesity Federation.

  14. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  15. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  16. Effect of increased left ventricle mass on ischemia assessment in electrocardiographic signals: rabbit isolated heart study

    Czech Academy of Sciences Publication Activity Database

    Ronzhina, M.; Olejníčková, Veronika; Stračina, T.; Nováková, M.; Janoušek, O.; Hejč, J.; Kolářová, J.; Hlaváčová, M.; Paulová, H.

    2017-01-01

    Roč. 17, Aug 4 (2017), č. článku 216. ISSN 1471-2261 Institutional support: RVO:67985823 Keywords : myocardial ischemia detection * increased left ventricular mass * electrogram * ROC analysis * isolated heart * rabbit Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Physiology (including cytology) Impact factor: 1.832, year: 2016

  17. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger.

    Science.gov (United States)

    Xu, Yue; Wang, Yan-Hui; Liu, Tian-Qi; Zhang, Hui; Zhang, He; Li, Jie

    2018-03-31

    α-Galactosidases are widely used in many fields. It is necessary to improve the production of enzymes through microbiological processes. The aim of this study was to construct recombinant Aspergillus niger strains with high α-galactosidase production. Two recombinant A. niger strains were constructed: AB and AGB. The recombinant AB strain contained the α-galactosidase aglB gene from A. niger with its native AglB signal peptide regulated by the glucoamylase promoter. In the AGB recombinant strain, the AglB signal peptide was replaced with the glucoamylase (GlaA) signal peptide. The extracellular maximum α-galactosidase activity of the AGB strain was 215.7 U/ml and that of the AB strain was 9.8 U/mL. The optimal conditions for α-galactosidase were pH 3.5 and 35 °C. The GlaA signal peptide substantially increased the yield of secreted α-galactosidase in A. niger. This recombinant strain holds great potential for industrial applications.

  18. A Practical Method to Increase the Frequency Readability for Vibration Signals

    Directory of Open Access Journals (Sweden)

    Jean Loius Ntakpe

    2016-10-01

    Full Text Available Damage detection and nondestructive evaluation of mechanical and civil engineering structures are nowadays very important to assess the integrity and ensure the reliability of structures. Thus, frequency evaluation becomes a crucial issue, since this modal parameter is mainly used in structural integrity assessment. The herein presented study highligts the possibility of increasing the frequency readability by involving a simple and cost-effective method.

  19. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  20. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers

    Science.gov (United States)

    Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.

    2017-05-01

    Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.

  1. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    Science.gov (United States)

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  2. Notch1 and 4 Signaling Responds to an Increasing Vascular Wall Shear Stress in a Rat Model of Arteriovenous Malformations

    Directory of Open Access Journals (Sweden)

    Jian Tu

    2014-01-01

    Full Text Available Notch signaling is suggested to promote the development and maintenance of cerebral arteriovenous malformations (AVMs, and an increasing wall shear stress (WSS contributes to AVM rupture. Little is known about whether WSS impacts Notch signaling, which is important for understanding the angiogenesis of AVMs. WSS was measured in arteriovenous fistulas (AVF surgically created in 96 rats at different time points over a period of 84 days. The expression of Notch receptors 1 and 4 and their ligands, Delta1 and 4, Jagged1, and Notch downstream gene target Hes1 was quantified in “nidus” vessels. The interaction events between Notch receptors and their ligands were quantified using proximity ligation assay. There was a positive correlation between WSS and time (r=0.97; P<0.001. The expression of Notch receptors and their ligands was upregulated following AVF formation. There was a positive correlation between time and the number of interactions between Notch receptors and their ligands aftre AVF formation (r=0.62, P<0.05 and a positive correlation between WSS and the number of interactions between Notch receptors and their ligands (r=0.87, P<0.005. In conclusion, an increasing WSS may contribute to the angiogenesis of AVMs by activation of Notch signaling.

  3. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  4. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  5. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling

    Science.gov (United States)

    O’Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K.

    2016-01-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3 g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24 h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24 h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence

  6. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling.

    Science.gov (United States)

    O'Neill, Casey E; Newsom, Ryan J; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C; Spencer, Robert L; Campeau, Serge; Bachtell, Ryan K

    2016-05-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased

  7. Activin Signals through SMAD2/3 to Increase Photoreceptor Precursor Yield during Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Lu, Amy Q; Popova, Evgenya Y; Barnstable, Colin J

    2017-09-12

    In vitro differentiation of mouse embryonic stem cells (ESCs) into retinal fates can be used to study the roles of exogenous factors acting through multiple signaling pathways during retina development. Application of activin A during a specific time frame that corresponds to early embryonic retinogenesis caused increased generation of CRX + photoreceptor precursors and decreased PAX6 + retinal progenitor cells (RPCs). Following activin A treatment, SMAD2/3 was activated in RPCs and bound to promoter regions of key RPC and photoreceptor genes. The effect of activin on CRX expression was repressed by pharmacological inhibition of SMAD2/3 phosphorylation. Activin signaling through SMAD2/3 in RPCs regulates expression of transcription factors involved in cell type determination and promotes photoreceptor lineage specification. Our findings can contribute to the production of photoreceptors for cell replacement therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  9. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K

    2017-01-01

    to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16% of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h...... and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from...... persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic...

  10. New trends in design and fabrication of signal and power cables to increase nuclear safety

    International Nuclear Information System (INIS)

    Salmen, Florin; Florescu, Gheorghe; Ionescu, Aurel

    2007-01-01

    contained halogens that lead to formation of fluorine chlorine, bromine, and iodine salts. The fluorine and chlorine were important for old types of cables and wires as atoms in plastic molecules; bromine was a component of flame protection additives. During burning, behavior of cables is very important for installation in buildings and also in power and control systems of the plants. When such cables are under flame influence they allow propagation of flame and produce smoke and fire and also corrosive and toxic gases. They develop smoke with high density (endangering the use of emergency exits) and make difficult the fire extinguishing. A disadvantage of these types of cables is that the isolation is not mechanically too resistant. The new type of cables with halogen free jackets are composed of polymers based on pure hydrocarbons. Polymers like polyethylene (PE) or polypropylene (PP) are halogen-free. This paper presents the behavior of halogen-free cables during accelerated ageing generated by thermal, abnormal conditions and nuclear environment conditions. The effect on availability of an electrical system as well as the reliability parameters of both types of cables are compared and presented in the paper. Aging mechanism, effects, and simulation were studied and the analysis of the test results is given as well. In conclusions, we evaluated the aging degradation after accelerated aging of polyethylene jacket and under continuous and intermittent heating condition. Contrary to general expectation, we found that intermittent heating to polyethylene cable jacket showed low aging degradation as compared with continuous heating. We also had evaluated accelerated aging degradation in radiation flux conditions similar to those in rooms 303 and 304 in Cernavoda NPP and we found an increase of rigidity of PVC jackets. This can be an inconvenient for cables laid on cable transporter

  11. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway

    Science.gov (United States)

    Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-10-01

    Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.

  12. Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension.

    Science.gov (United States)

    Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng

    2017-06-01

    Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?

    Directory of Open Access Journals (Sweden)

    Marie Morimoto

    2016-11-01

    Full Text Available Abstract Background Schimke immuno-osseous dysplasia (SIOD is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1 gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. Results We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated β-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. Conclusions We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.

  14. Low concentration of a Gd-chelate increases the signal-to-noise ratio in fast pulsing BEST experiments

    Science.gov (United States)

    Sibille, Nathalie; Bellot, Gaëtan; Wang, Jing; Déméné, Hélène

    2012-11-01

    Despite numerous developments in the past few years that aim to increase the sensitivity of NMR multidimensional experiments, NMR spectroscopy still suffers from intrinsic low sensitivity. In this report, we show that the combination of two developments in the field, the Band-selective Excitation Short-Transient (BEST) experiment [Schanda et al., J. Am. Chem. Soc., 128 (2006) 9042] and the addition of the nonionic paramagnetic gadolinium chelate gadodiamide into NMR samples, enhances the signal-to-noise ratio. This effect is shown here for four different proteins, three globular and one unfolded, of molecular weights ranging from 6.5 kDa to 40 kDa, using 2D BEST HSQC and 3D BEST triple resonance sequences. Moreover, we show that the increase in signal-to-noise ratio provided by the gadodiamide is higher for peak resonances with lower than average intensity in BEST experiments. It is interesting to note that these residues are on average the weakest ones in those experiments. In this case, the gadodiamide-mediated increase can reach a value of 60% for low and 30% for high molecular weight proteins respectively. An investigation into the origin of this “paramagnetic gain” in BEST experiments is presented.

  15. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis.

    Science.gov (United States)

    Spangle, Jennifer M; Münger, Karl

    2010-09-01

    The mammalian target of rapamycin (mTOR) kinase acts as a cellular rheostat that integrates signals from a variety of cellular signal transduction pathways that sense growth factor and nutrient availability as well as intracellular energy status. It was previously reported that the human papillomavirus type 16 (HPV16) E6 oncoprotein may activate the S6 protein kinase (S6K) through binding and E6AP-mediated degradation of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) (Z. Lu, X. Hu, Y. Li, L. Zheng, Y. Zhou, H. Jiang, T. Ning, Z. Basang, C. Zhang, and Y. Ke, J. Biol. Chem. 279:35664-35670, 2004; L. Zheng, H. Ding, Z. Lu, Y. Li, Y. Pan, T. Ning, and Y. Ke, Genes Cells 13:285-294, 2008). Our results confirmed that HPV16 E6 expression causes an increase in mTORC1 activity through enhanced phosphorylation of mTOR and activation of downstream signaling pathways S6K and eukaryotic initiation factor binding protein 1 (4E-BP1). However, we did not detect a decrease in TSC2 levels in HPV16 E6-expressing cells. We discovered, however, that HPV16 E6 expression causes AKT activation through the upstream kinases PDK1 and mTORC2 under conditions of nutrient deprivation. We show that HPV16 E6 expression causes an increase in protein synthesis by enhancing translation initiation complex assembly at the 5' mRNA cap and an increase in cap-dependent translation. The increase in cap-dependent translation likely results from HPV16 E6-induced AKT/mTORC1 activation, as the assembly of the translation initiation complex and cap-dependent translation are rapamycin sensitive. Lastly, coexpression of the HPV16 E6 and E7 oncoproteins does not affect HPV16 E6-induced activation of mTORC1 and cap-dependent translation. HPV16 E6-mediated activation of mTORC1 signaling and cap-dependent translation may be a mechanism to promote viral replication under conditions of limited nutrient supply in differentiated, HPV oncoprotein-expressing proliferating cells.

  16. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    Science.gov (United States)

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells

    Science.gov (United States)

    Rios, Carmen; D'Ippolito, Gianluca; Curtis, Kevin M.; Delcroix, Gaëtan J.-R.; Gomez, Lourdes A.; El Hokayem, Jimmy; Rieger, Megan; Parrondo, Ricardo; de las Pozas, Alicia; Perez-Stable, Carlos; Howard, Guy A.

    2016-01-01

    Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells. PMID:27059084

  18. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D.; Lyashkov, Alexey E.; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G.

    2015-01-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alter the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirous expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca2+-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. PMID:26241846

  19. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study.

    Science.gov (United States)

    Chen, Fei; Wang, Haoxiang; Xiang, Xin; Yuan, Jichao; Chu, Weihua; Xue, Xingsen; Zhu, Haitao; Ge, Hongfei; Zou, Mingming; Feng, Hua; Lin, Jiangkai

    2014-12-01

    The objective of the present study was to clarify the relationship between the neuroprotective effects of curcumin and the classical wnt signaling pathway. Using Sprague-Dawley rats at a gestational age of 14.5 d, we isolated neural stem cells from the anterior two-thirds of the fetal rat brain. The neural stem cells were passaged three times using the half media replacement method and identified using cellular immunofluorescence. After passaging for three generations, we cultured cells in media without basic fibroblast growth factor and epidermal growth factor. Then we treated cells in five different ways, including a blank control group, a group treated with IWR1 (10 μmol/L), a group treated with curcumin (500 nmol/L), a group treated with IWR1 + curcumin, and a group treated with dimethyl sulfoxide (10 μmol/L). We then measured the protein and RNA expression levels for wnt3a and β-catenin using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Western-blotting: after the third generation of cells had been treated for 72 h, we observed that wnt3a and β-catenin expression was significantly increased in the group receiving 500 nmol/L curcumin but not in the other groups. Furthermore, cells in the IWR1-treated group showed decreased wnt3a and β-catenin expression, and wnt3a and β-catenin was also decreased in the IWR1 + 500 nmol/L curcumin group. No obvious change was observed in the dimethyl sulfoxide group. RT-PCR showed similar changes to those observed with the Western blotting experiments. Our study suggests that curcumin can activate the wnt signaling pathway, which provides evidence that curcumin exhibits a neuroprotective effect through the classical wnt signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    Science.gov (United States)

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-04

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions

    Science.gov (United States)

    Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.

    2018-02-01

    Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.

  2. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  3. Increasing reliability of defect characterization on sg tubings using a combination of signal processing and expert system

    International Nuclear Information System (INIS)

    Benoist, B.; David, B.; Pigeon, M.

    1989-01-01

    An expert system is developed for automatic analysis of eddy current signals provided by the multifrequency control of steam generators tubing. This article describes on one hand the aim and the results of the elimination of pilgrim noise, on the other hand the expert system which uses signal analysis and signal processing in unison

  4. Increased expression of IRE1α and stress-related signal transduction proteins in ischemia-reperfusion injured retina

    Directory of Open Access Journals (Sweden)

    Natsuyo Hata

    2008-08-01

    Full Text Available Natsuyo Hata1, Toshiyuki Oshitari1,2, Akiko Yokoyama1,3, Yoshinori Mitamura1, Shuichi Yamamoto11Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan; 2Department of Ophthalmology, Kimitsu Central Hospital, Kisarazu City, Chiba, Japan; 3Department of Ophthalmology, Inoue Memorial Hospital, Chuo-ku, Chiba, JapanAbstract: The purpose of this study was to determine whether the expression of ER stress-related factors IRE1α, apoptosis signal-regulating kinase 1 (ASK1, SAPK/ERK kinase 1 (SEK1 and c-Jun N-terminal kinase (JNK is associated with the damaged retinal neurons induced by ischemia-reperfusion injury. After 60 minutes of ischemia, the rat retinas were reperfused, and retinas were isolated and fixed after 6, 9, 12, 18, and 24 hours, and 2, 5, and 9 days of reperfusion. Cryosections were immunostained with Fluoro-Jade B, a degenerating neuron marker to label degenerating neurons. Semi-quantitative analysis of the expression of IRE1α, ASK1, SEK1, and JNK were performed in both control and ischemic retinas. In ischemic retinas, the intensities of IRE1α immunoreactivity in the ganglion cell layer (GCL were significantly higher than in the control retinas. In ischemic retinas, the numbers of SEK1-, ASK1-, and JNK-positive cells were significantly increased in the GCL compared to those in the control retinas. In addition, the cells that were positive for SEK1-, ASK1-, and JNK were also positive for Fluoro-Jade B-positive cells. These results indicate that the increased expression of ER stress-related factors was, in part, associated with the retinal neuronal abnormalities after ischemia-reperfusion injury in rat retinas.Keywords: endoplasmic reticulum, IRE1α, apoptosis signal-regulating kinase 1, SAPK/ERK kinase 1, c-Jun N-terminal kinase, Fluoro-Jade B, ischemia-reperfusion injury

  5. The Role of b-Catenin in Mammary Gland Carcinogenesis

    Science.gov (United States)

    2002-03-01

    Wetering, M., Cavallo, R., Dooijes, D., van Beest , M., van Es, J., Loureiro, J., Ypma, A., hursh, D., Jones, T., Bejsovec, A., Peifer, M., Mortin, M...Transduction Lab - domain of /3-catenin. oratories) and anti-KT3 (Babco) were used as primary Elevated levels of fl-catenin were recently observed in antibodies...1988). Cell, 55, 619 -625. Kolligs FT, Hu G, Dang CV and Fearon ER. (1999). Mol. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Cell. Biol

  6. Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: A new potential therapy for the treatment of melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Karasic, Thomas B.; Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States)

    2010-07-15

    Resistance of cancer cells to apoptosis is dependent on a balance of multiple genetic and epigenetic mechanisms, which up-regulate efficacy of the surviving growth factor-receptor signaling pathways and suppress death-receptor signaling pathways. The Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling pathway is highly active in metastatic melanoma cells by mediating downstream activation of PI3K-AKT and MAPK pathways and controlling general cell survival and proliferation. In the present study, we used human melanoma lines with established genotypes that represented different phases of cancer development: radial-growth-phase WM35, vertical-growth-phase WM793, metastatic LU1205 and WM9 [1]. All these lines have normal NRAS. WM35, WM793, LU1205 and WM9 cells have mutated BRAF (V600E). WM35 and WM9 cells express normal PTEN, while in WM793 cells PTEN expression is down-regulated; finally, in LU1205 cells PTEN is inactivated by mutation. Cyclolignan picropodophyllin (PPP), a specific inhibitor of IGF-1R kinase activity, strongly down-regulated the basal levels of AKT activity in WM9 and in WM793 cells, modestly does so in LU1205, but has no effect on AKT activity in the early stage WM35 cells that are deficient in IGF-1R. In addition, PPP partially down-regulated the basal levels of active ERK1/2 in all lines used, highlighting the role of an alternative, non-BRAF pathway in MAPK activation. The final result of PPP treatment was an induction of apoptosis in WM793, WM9 and LU1205 melanoma cells. On the other hand, dose-dependent inhibition of IGF-1R kinase activity by PPP at a relatively narrow dose range (near 500 nM) has different effects on melanoma cells versus normal cells, inducing apoptosis in cancer cells and G2/M arrest of fibroblasts. To further enhance the pro-apoptotic effects of PPP on melanoma cells, we used a combined treatment of TNF-Related Apoptosis-Inducing Ligand (TRAIL) and PPP. This combination substantially increased death by apoptosis for

  7. Cosmosiin Increases ADAM10 Expression via Mechanisms Involving 5’UTR and PI3K Signaling

    Directory of Open Access Journals (Sweden)

    Zhuo Min

    2018-06-01

    Full Text Available The α-secretase “a disintegrin and metalloproteinase domain-containing protein” (ADAM10 is involved in the processing of amyloid precursor protein (APP. Upregulation of ADAM10 precludes the generation of neurotoxic β-amyloid protein (Aβ and represents a plausible therapeutic strategy for Alzheimer’s disease (AD. In this study, we explored compounds that can potentially promote the expression of ADAM10. Therefore, we performed high-throughput small-molecule screening in SH-SY5Y (human neuroblastoma cells that stably express a luciferase reporter gene driven by the ADAM10 promoter, including a portion of its 5’-untranslated region (5’UTR. This has led to the discovery of cosmosiin (apigenin 7-O-β-glucoside. Here, we report that in human cell lines (SH-SY5Y and HEK293, cosmosiin proportionally increased the levels of the immature and mature forms of the ADAM10 protein without altering its mRNA level. This effect was attenuated by translation inhibitors or by deleting the 5’UTR of ADAM10, suggesting that a translational mechanism was responsible for the increased levels of ADAM10. Luciferase deletion assays revealed that the first 144 nucleotides of the 5’UTR were necessary for mediating the cosmosiin-induced enhancement of ADAM10 expression in SH-SY5Y cells. Cosmosiin failed to increase the levels of the ADAM10 protein in murine cells, which lack native expression of the ADAM10 transcript containing the identified 5’UTR element. The potential signaling pathway may involve phosphatidylinositide 3-kinase (PI3K because pharmacological inhibition of PI3K attenuated the effect of cosmosiin on the expression of the ADAM10 protein. Finally, cosmosiin attenuated Aβ generation because the levels of Aβ40/42 in HEK-APP cells were significantly reduced after cosmosiin treatment. Collectively, we found that the first 144 nucleotides of the ADAM10 5’UTR, and PI3K signaling, are involved in cosmosiin-induced enhancement of the expression

  8. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  9. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose.

    Science.gov (United States)

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan

    2017-11-22

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.

  10. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability

    Directory of Open Access Journals (Sweden)

    Beatrix Tettmann

    2016-12-01

    Full Text Available The 2-alkyl-3-hydroxy-4(1H-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.

  11. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling.

    Science.gov (United States)

    Rivas, Priscila M S; Vechiato, Fernanda M V; Borges, Beatriz C; Rorato, Rodrigo; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2017-07-01

    Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Correlation of increased fundus autofluorescence signals at closed macula with visual prognosis after successful macular hole surgery.

    Science.gov (United States)

    Shiragami, Chieko; Shiraga, Fumio; Nitta, Eri; Fukuda, Kouki; Yamaji, Hidetaka

    2012-02-01

    To study the significance of the increased fundus autofluorescence (FAF) signals at closed macula with spectral-domain optical coherence tomography and visual prognosis after successful surgery in eyes with idiopathic full-thickness macular holes (MHs). Seventy-eight eyes of 78 consecutive patients with full-thickness MHs underwent successful standard vitrectomy, with internal limiting membrane peeling and followed by 10% sulfur hexafluoride gas injection. Simultaneous FAF and optical coherence tomography images were recorded at 10 days, and 1, 3, and 6 months postoperatively, using a combined spectral-domain optical coherence tomography-fluorescein angiography device (Spectralis™/HRA Heidelberg Retina Angiograph 2). The appearance of increased FAF in the macula postoperatively and the relationship of FAF and optical coherence tomography findings to best-corrected visual acuity were examined. Stage 2, 3, and 4 MHs were present in 31, 29, and 18 eyes, respectively. The median patient age was 66 years, with a range of 54 to 79 years. In all patients, the MHs were successfully closed, and the preoperative increased FAF corresponding to MH disappeared 10 days after surgery. In 36 eyes (46.2%), however, hyperautofluorescence again appeared in the macular area 1 month postoperatively. This hyperautofluorescence was significantly associated with the recovery of the external limiting membrane lines at the fovea 1 month after surgery (P = 0.001, multiple logistic regression analysis). Also, this recovery of the external limiting membrane lines 1 month postoperatively was significantly associated with the recovery of photoreceptor inner and outer segment junction line 3 months postoperatively at the fovea (P macula 1 month postoperatively, the recovery of the photoreceptor inner and outer segment lines at the fovea 3 months postoperatively, and preoperative good visual acuity (P macula 1 month after successful MH surgery. This hyperautofluorescence could be a sign of good

  13. Bell's palsy: what is the prognostic value of measurements of signal intensity increases with contrast enhancement on MRI?

    International Nuclear Information System (INIS)

    Kress, B.P.J.; Efinger, K.; Solbach, T.; Gottschalk, A.; Baehren, W.; Griesbeck, F.; Kornhuber, A.W.

    2002-01-01

    Our objective was to assess the prognostic value of measurements of the degree of contrast enhancement of the intratemporal segments of the facial nerve. We prospectively obtained MRI, slice thickness <1 mm of 20 patients with a facial palsy on the first day of inpatient treatment, and measured contrast enhancement of the nerve. The data were compared with compound muscle action potential (CMAP) measurements and the clinical course. Analysis of the initial enabled differentiation of three patients whose palsy was to show no improvement from 17 whose palsy was to resolve as expected. No patient with a poor outcome showed lesser increase in signal in the internal auditory canal, pars tympanica and pars mastoidea than patients who fully recovered. In no patient who had been diagnosed on the basis of the initial MRI as having a ''normal'' palsy was the amplitude of the (CMAP) reduced to less than 20% that of the normal side. Measurement of contrast enhancement was thus shown to be a prognostic indicator and may provide a basis for a differential treatment of facial palsy. (orig.)

  14. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis.

    Science.gov (United States)

    Meng, Xiangqi; Vander Ark, Alexandra; Daft, Paul; Woodford, Erica; Wang, Jie; Madaj, Zachary; Li, Xiaohong

    2018-04-01

    TGF-β plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-β signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2 Col1CreERT KO) or in osteoclasts (Tgfbr2 LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2 Col1CreERT KO mice, but was inhibited in the Tgfbr2 LysMCre KO mice, relative to their respective control Tgfbr2 FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2 Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2 Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2 Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Pregnancy in obese mice protects selectively against visceral adiposity and is associated with increased adipocyte estrogen signalling.

    Directory of Open Access Journals (Sweden)

    Silvia M A Pedroni

    Full Text Available Maternal obesity is linked with increased adverse pregnancy outcomes for both mother and child. The metabolic impact of excessive fat within the context of pregnancy is not fully understood. We used a mouse model of high fat (HF feeding to induce maternal obesity to identify adipose tissue-mediated mechanisms driving metabolic dysfunction in pregnant and non-pregnant obese mice. As expected, chronic HF-feeding for 12 weeks preceding pregnancy increased peripheral (subcutaneous and visceral (mesenteric fat mass. However, unexpectedly at late gestation (E18.5 HF-fed mice exhibited a remarkable normalization of visceral but not peripheral adiposity, with a 53% reduction in non-pregnant visceral fat mass expressed as a proportion of body weight (P<0.001. In contrast, in control animals, pregnancy had no effect on visceral fat mass proportion. Obesity exaggerated glucose intolerance at mid-pregnancy (E14.5. However by E18.5, there were no differences, in glucose tolerance between obese and control mice. Transcriptomic analysis of visceral fat from HF-fed dams at E18.5 revealed reduced expression of genes involved in de novo lipogenesis (diacylglycerol O-acyltransferase 2--Dgat2 and inflammation (chemokine C-C motif ligand 20--Ccl2 and upregulation of estrogen receptor α (ERα compared to HF non pregnant. Attenuation of adipose inflammation was functionally confirmed by a 45% reduction of CD11b+CD11c+ adipose tissue macrophages (expressed as a proportion of all stromal vascular fraction cells in HF pregnant compared to HF non pregnant animals (P<0.001. An ERα selective agonist suppressed both de novo lipogenesis and expression of lipogenic genes in adipocytes in vitro. These data show that, in a HF model of maternal obesity, late gestation is associated with amelioration of visceral fat hypertrophy, inflammation and glucose intolerance, and suggest that these effects are mediated in part by elevated visceral adipocyte ERα signaling.

  16. BMI-1 suppression increases the radiosensitivity of oesophageal carcinoma via the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai

    2018-02-01

    BMI-1 knockdown, while the kinase agonist IGF-1 reversed the effects of BMI-1 knockdown on cell viability and radiosensitivity. Taken together, BMI-1 knockdown induces radiosensitivity in ESCC and significantly inhibits cell viability, which may contribute to an increased proportion of cells in the G0/G1 phase and cell apoptosis via suppression of the PI3K/Akt signalling pathway.

  17. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-01-01

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  18. The Human Papillomavirus Type 16 E6 Oncoprotein Activates mTORC1 Signaling and Increases Protein Synthesis ▿ †

    OpenAIRE

    Spangle, Jennifer M.; Münger, Karl

    2010-01-01

    The mammalian target of rapamycin (mTOR) kinase acts as a cellular rheostat that integrates signals from a variety of cellular signal transduction pathways that sense growth factor and nutrient availability as well as intracellular energy status. It was previously reported that the human papillomavirus type 16 (HPV16) E6 oncoprotein may activate the S6 protein kinase (S6K) through binding and E6AP-mediated degradation of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) (Z. Lu, X. Hu, Y....

  19. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  20. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling

    Science.gov (United States)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447

  1. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  2. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    Science.gov (United States)

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  3. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  4. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  5. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    Science.gov (United States)

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  6. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2013-03-01

    Full Text Available Genome-wide association studies (GWAS have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, and low-density lipoprotein cholesterol (LDL-C, respectively, in individuals of African American (n = 6,832, East Asian (n = 9,449, and European (n = 10,829 ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies.

  7. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images - a voxel-based whole brain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Soenke; Kromrey, Marie-Luise [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Kuehn, Jens-Peter [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); University Hospital, Carl Gustav Carus University Dresden, Institute for Radiology, Dresden (Germany); Grothe, Matthias [University Medicine Greifswald, Department of Neurology, Greifswald (Germany); Domin, Martin [University Medicine Greifswald, Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany)

    2017-09-15

    To identify a possible association between repeated intravenous administration of gadobutrol and increased signal intensity in the grey and white matter using voxel-based whole-brain analysis. In this retrospective single-centre study, 217 patients with a clinically isolated syndrome underwent baseline brain magnetic resonance imaging and at least one annual follow-up examination with intravenous administration of 0.1 mmol/kg body weight of gadobutrol. Using the ''Diffeomorphic Anatomical Registration using Exponentiated Lie algebra'' (DARTEL) normalisation process, tissue templates for grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) were calculated, as were GM-CSF and WM-CSF ratios. Voxel-based whole-brain analysis was used to calculate the signal intensity for each voxel in each data set. Paired t-test was applied to test differences to baseline MRI for significance. Voxel-based whole-brain analysis demonstrated no significant changes in signal intensity of grey and white matter after up to five gadobutrol administrations. There was no significant change in GM-CSF and grey WM-CSF ratios. Voxel-based whole-brain analysis did not demonstrate increased signal intensity of GM and WM on unenhanced T1-weighted images after repeated gadobutrol administration. The molecular structure of gadolinium-based contrast agent preparations may be an essential factor causing SI increase on unenhanced T1-weighted images. (orig.)

  8. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  9. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N.

    1991-01-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  10. Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?

    International Nuclear Information System (INIS)

    Hanimann, Raphael; Vinterbäck, Johan; Mark-Herbert, Cecilia

    2015-01-01

    A higher percentage of energy from renewable resources is an important goal on many environmental policy agendas. Yet, the demand for renewable electricity in liberalized markets has developed much more slowly than the demand for other green products. To date, research has mainly examined the willingness to pay for renewable electricity, but limited research has been conducted on the motivations behind it. The concept of identity signaling has proven to play a significant role in consumer behavior for green products. However, (renewable) electricity in the Swedish residential market typically lacks two important drivers for identity signaling: visibility and product involvement. A consumer choice simulation among 434 Swedish households compared consumer choices for renewable electricity contracts. The results show a positive effect of identity signaling on the demand for renewable electricity and yield suggestions for increasing the share of renewable electricity without market distorting measures. This leads to implications for policymakers, electricity suppliers and researchers. - Highlights: • Low demand for renewable electricity contracts falls short of high market potential. • For this study a consumer choice simulation for electricity contracts was processed. • Higher visibility and involvement increases demand for green electricity contracts. • Branding that enables identity signaling contributes to green energy policy goals

  11. Bisphosphonate-associated osteonecrosis of the jaw is linked to suppressed TGFβ1-signaling and increased Galectin-3 expression: A histological study on biopsies

    Directory of Open Access Journals (Sweden)

    Schlegel Karl A

    2011-07-01

    Full Text Available Abstract Background Bisphosphonate associated osteonecrosis of the jaw (BRONJ implies an impairment in oral hard- and soft tissue repair. An understanding of the signal transduction alterations involved can inform therapeutic strategies. Transforming growth factor β1 (TGFβ1 is a critical regulator of tissue repair; galectin-3 mediates tissue differentiation and specifically modulates periodontopathic bacterial infection. The aim of this study was to compare the expression of TGFβ1-related signaling molecules and Galectin-3 in BRONJ-affected and healthy mucosal tissues. To discriminate between BRONJ-specific impairments in TGFβ1 signaling and secondary inflammatory changes, the results were compared to the expression of TGFβ1 and Galectin-3 in mucosal tissues with osteoradionecrosis. Methods Oral mucosal tissue samples with histologically-confirmed BRONJ (n = 20, osteoradionecrosis (n = 20, and no lesions (normal, n = 20 were processed for immunohistochemistry. Automated staining with an alkaline phosphatase-anti-alkaline phosphatase kit was used to detect TGFβ1, Smad-2/3, Smad-7, and Galectin-3. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index, Bonferroni-adjustment. Results TGFβ1 and Smad-2/3 were significantly decreased (p Conclusion Our results showed that disrupted TGFβ1 signaling was associated with delayed periodontal repair in BRONJ samples. The findings also indicated that impairments in TGFβ1-signaling were different in BRONJ compared to osteoradionecrosis. BRONJ appeared to be associated with increased terminal osseous differentiation and decreased soft tissue proliferation. The increase in Galectin-3 reflected the increase in osseous differentiation of mucoperiosteal progenitors, and this might explain the inflammatory anergy observed in BRONJ-affected soft tissues. The results substantiated the clinical success of treating BRONJ with sequestrectomy, followed by strict mucosa

  12. Disrupted PI3K p110δ Signaling Dysregulates Maternal Immune Cells and Increases Fetal Mortality In Mice

    Directory of Open Access Journals (Sweden)

    Jens Kieckbusch

    2015-12-01

    Full Text Available Maternal immune cells are an integral part of reproduction, but how they might cause pregnancy complications remains elusive. Macrophages and their dual function in inflammation and tissue repair are thought to play key yet undefined roles. Altered perinatal growth underpins adult morbidity, and natural killer (NK cells may sustain fetal growth by establishing the placental blood supply. Using a mouse model of genetic inactivation of PI3K p110δ, a key intracellular signaling molecule in leukocytes, we show that p110δ regulates macrophage dynamics and NK-cell-mediated arterial remodeling. The uterus of dams with inactive p110δ had decreased IFN-γ and MHC class IIlow macrophages but enhanced IL-6. Poor vascular remodeling and a pro-inflammatory uterine milieu resulted in fetal death or growth retardation. Our results provide one mechanism that explains how imbalanced adaptations of maternal innate immune cells to gestation affect offspring well-being with consequence perinatally and possibly into adulthood.

  13. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    Science.gov (United States)

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Combination of fat saturation and variable bandwidth imaging to increase signal-to-noise ratio and decrease motion artifacts for body MR imaging at high field

    International Nuclear Information System (INIS)

    Chew, W.M.

    1989-01-01

    The signal-to-noise ratio (SNR) of the MR imaging examination is a critical component of the quality of the image. Standard methods to increase SNR include signal averaging with multiple excitations, at the expense of imaging time (which on T2-weighted images could be quite significant), or increasing pixel volume by manipulation of field of view, matrix size, and/or section thickness, all at the expense of resolution. Another available method to increase SNR is to reduce the bandwidth of the receiver, which increases SNR by the square root of the amount of the reduction. The penalty imposed on high-field-strength MR examinations of the body is an unacceptable increase in chemical shift artifact. However, presaturating the fat resonance eliminates the chemical shift artifact. Thus, a combination of imaging techniques, fat suppression, and decreased bandwidth imaging can produce images free of chemical shift artifact with increased SNR and no penalty in resolution or imaging time. Early studies also show a reduction in motion artifact when fat saturation is used. This paper reports MR imaging performed with a 1.5-T Signa imager. With this technique, T2-weighted images (2,500/20/80 [repetition time msec/echo time msec/inversion time msec]) illustrating the increase in SNR and T1-weighted images (600/20) demonstrating a decrease in motion artifact are shown

  16. Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Houchun H.; Pokorney, Amber; Towbin, Richard B.; Miller, Jeffrey H. [Phoenix Children' s Hospital, Department of Medical Imaging and Radiology, Phoenix, AZ (United States)

    2016-10-15

    Recent reports have suggested residual gadolinium deposition in the brain in subjects undergoing multiple contrast-enhanced MRI exams. These findings have raised some concerns regarding gadolinium-based contrast agent (GBCA) usage and retention in brain tissues. To summarize findings of hyperintense brain structures on precontrast T1-weighted images in 21 children undergoing multiple GBCA MRI exams. This retrospective study involved 21 patients, each of whom received multiple MRI examinations (range: 5-37 exams) with GBCA over the course of their medical treatment (duration from first to most recent exam: 1.2-12.9 years). The patients were between 0.9 and 14.4 years of age at the time of their first GBCA exam. Regions of interest were drawn in the dentate nucleus and the globus pallidus on 2-D fast spin echo images acquired at 1.5 T. The signal intensities of these two structures were normalized by that of the corpus callosum genu. Signal intensity ratios from these patients were compared to control patients of similar ages who have never received GBCA. Signal intensity ratios increased between the first and the most recent MRI exam in all 21 patients receiving GBCA, with an increase of 18.6%±12.7% (range: 0.5% to 47.5%) for the dentate nucleus and 12.4%±7.4% (range: -1.2% to 33.7%) for the globus pallidus (P<0.0001). Signal intensity ratios were also higher in GBCA patients than in controls (P<0.01). The degree of signal intensity enhancement did not correlate with statistical significance to the cumulative number or volume of GBCA administrations each patient received, the patient's age or the elapsed time between the first and most recent GBCA MRI exams. These results in children are consistent with recent findings in adults, suggesting possible gadolinium deposition in the brain. (orig.)

  17. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    OpenAIRE

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-J...

  18. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  19. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress.

    Science.gov (United States)

    Qi, Xiaoli; Lin, Wenjuan; Li, Junfa; Li, Huanhuan; Wang, Weiwen; Wang, Donglin; Sun, Meng

    2008-08-01

    Our previous research indicates that the extracellular signal-regulated kinase (ERK)-cyclic AMP-responsive-element-binding protein (CREB) signal system may be involved in the molecular mechanism of depression. The present study further investigated the effect of antidepressant fluoxetine on the ERK-CREB signal system and the depressive-like behaviors in rats. Fluoxetine was administrated to either naive rats or stressed rats for 21 days. The results showed that chronic forced swim stress induced depressive-like behaviors and decreased the levels of P-ERK2, P-CREB, ERK1/2 and CREB in hippocampus and prefrontal cortex. Fluoxetine alleviated the depressive-like behaviors and reversed the disruptions of the P-ERK2 and P-CREB in stressed rats. Fluoxetine also exerted mood-elevating effect and increased the levels of the P-ERK2 and P-CREB in naive rats. These results suggest that the ERK-CREB signal system may be the targets of the antidepressant action of fluoxetine and participate in the neuronal mechanism of depression.

  20. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  1. Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.

    Directory of Open Access Journals (Sweden)

    Anne Waehre

    Full Text Available RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF, but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/- displayed increased mortality during a follow-up of 80 days after aortic banding (AB. Following three weeks of AB, CXCR5(-/- developed significant left ventricular (LV dilatation compared to wild type (WT mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs were significantly reduced in AB CXCR5(-/- compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/- mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

  2. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    Science.gov (United States)

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Caffeic acid phenethylester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway.

    Science.gov (United States)

    Havermann, Susannah; Chovolou, Yvonni; Humpf, Hans-Ulrich; Wätjen, Wim

    2014-01-01

    CAPE is an active constituent of propolis which is widely used in traditional medicine. This hydroxycinnamic acid derivate is a known activator of the redox-active Nrf2 signalling pathway in mammalian cells. We used C. elegans to investigate the effects of this compound on accumulation of reactive oxygen species and the modulation of the pivotal redox-active pathways SKN-1 and DAF-16 (homologues of Nrf2 and FoxO, respectively) in this model organism; these results were compared to the effects in Hct116 human colon carcinoma cells. CAPE exerts a strong antioxidative effect in C. elegans: The increase of reactive oxygen species induced by thermal stress was diminished by about 50%. CAPE caused a nuclear translocation of DAF-16, but not SKN-1. CAPE increased stress resistance of the nematode against thermal stress and finally a prolongation of the median and maximum lifespan by 9 and 17%, respectively. This increase in stress resistance and lifespan was dependent on DAF-16 as shown in experiments using a DAF-16 loss of function mutant strain. Life prolongation was retained under SKN-1 RNAi conditions showing that the effect is SKN-1 independent. The results of CAPE obtained in C. elegans differed from the results obtained in Hct116 colon carcinoma cells: CAPE also caused strong antioxidative effects in the mammalian cells, but no activation of the FoxO4 signalling pathway was detectable. Instead, an activation of the Nrf2 signalling pathway was shown by luciferase assay and western blots. CAPE activates the insulin-like DAF-16, but not the SKN-1 signalling pathway in C. elegans and therefore enhances the stress resistance and lifespan of this organism. Since modulation of the DAF-16 pathway was found to be a pivotal effect of CAPE in C. elegans, this has to be taken into account for the investigation of the molecular mechanisms of the traditional use of propolis.

  4. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  5. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling.

    Science.gov (United States)

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Leverkus, Martin; Ströbel, Philipp; Marx, Alexander

    2017-10-27

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1 high thymomas and TCs.

  6. Increased signal intensity at the proximal patellar tendon: correlation between MR imaging and histology in eight cadavers and clinical MR imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Seong Jong; Jin, Wook; Yoon, So Hee; Park, So Young [Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Yong-Koo [Kyung Hee University Medical Center, Department of Pathology, Seoul (Korea, Republic of); Kim, Gou Young [Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Jung Eun; Park, Ji Seon; Ryu, Kyung Nam [Kyung Hee University Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2015-10-15

    We set out to investigate the cause of persistently increased signal intensity (SI) in the posterior portion of the proximal patellar tendon (pPT) on T1-weighted images (T1WI). MR imaging was performed in eight cadavers, followed by gross histological examination. In addition, 84 patients without trauma history or anterior knee pain were included to compare the SI of the PTs. The patients were divided according to their age, sex, and Kellgren-Lawrence (KL) grades. The length and thickness of the increased SI portion in the pPT and whole PT (wPT) on T1WI were recorded. Histological specimens demonstrated that the adipose tissue, vessels, and perivascular connective tissue invaginated into the posterior portion of the pPT. This histological anatomy corresponded to the pPT signal change on MR imaging. There was linear and interdigitating increased SI of the pPT in all of the 84 patients (100 %). There were no differences in the lengths and thicknesses of the increased SI portion of pPTs and wPTs according to age, sex, and KL grade (all p > 0.05). The increased SI of the pPT on T1WI and fluid-sensitive MR images results from invaginating fat, vessels, and perivascular connective tissue. It is not pathological, but a normal and common finding. (orig.)

  7. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling.

    Science.gov (United States)

    Skelly, M J; Chappell, A E; Carter, E; Weiner, J L

    2015-10-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups

    Science.gov (United States)

    Soñanez-Organis, José G.; Viscarra, Jose A.; Jaques, John T.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2016-01-01

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649

  9. Dopamine in the nucleus accumbens core, but not shell, increases during signaled food reward and decreases during delayed extinction.

    Science.gov (United States)

    Biesdorf, C; Wang, A-L; Topic, B; Petri, D; Milani, H; Huston, J P; de Souza Silva, M A

    2015-09-01

    Microdialysis studies in rat have generally shown that appetitive stimuli release dopamine (DA) in the nucleus accumbens (NAc) shell and core. Here we examined the release of DA in the NAc during delivery of reward (food) and during extinction of food reward in the freely moving animal by use of in vivo microdialysis and HPLC. Fifty-two male Wistar rats were trained to receive food reward associated with appearance of cue-lights in a Skinner-box during in vivo microdialysis. Different behavioral protocols were used to assess the effects of extinction on DA and its metabolites. Results Exp. 1: (a) During a 20-min period of cued reward delivery, DA increased significantly in the NAc core, but not shell subregion; (b) for the next 60min period half of the rats underwent immediate extinction (with the CS light presented during non-reward) and the other half did not undergo extinction to the cue lights (CS was not presented during non-reward). DA remained significantly increased in both groups, providing no evidence for a decrease in DA during extinction in either NAc core or shell regions. (c) In half of the animals of the group that was not subjected to extinction, the cue lights were turned on for 30min, thus, initiating extinction to cue CS at a 1h delay from the period of reward. In this group DA in the NAc core, but not shell, significantly decreased. Behavioral analysis showed that while grooming is an indicator of extinction-induced behavior, glances toward the cue-lights (sign tracking) are an index of resistance to extinction. Results Exp. 2: (a) As in Exp. 1, during a 30-min period of cued reward delivery, DA levels again increased significantly in the NAc core but not in the NAc shell. (b) When extinction (the absence of reward with the cue lights presented) was administered 24h after the last reward session, DA again significantly decreased in the NAc core, but not in the NAc shell. (a) These results confirm the importance of DA release in the NAc for

  10. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  11. Sensori-motor synchronisation variability decreases as the number of metrical levels in the stimulus signal increases.

    Science.gov (United States)

    Madison, Guy

    2014-03-01

    Timing performance becomes less precise for longer intervals, which makes it difficult to achieve simultaneity in synchronisation with a rhythm. The metrical structure of music, characterised by hierarchical levels of binary or ternary subdivisions of time, may function to increase precision by providing additional timing information when the subdivisions are explicit. This hypothesis was tested by comparing synchronisation performance across different numbers of metrical levels conveyed by loudness of sounds, such that the slowest level was loudest and the fastest was softest. Fifteen participants moved their hand with one of 9 inter-beat intervals (IBIs) ranging from 524 to 3,125 ms in 4 metrical level (ML) conditions ranging from 1 (one movement for each sound) to 4 (one movement for every 8th sound). The lowest relative variability (SD/IBI<1.5%) was obtained for the 3 longest IBIs (1600-3,125 ms) and MLs 3-4, significantly less than the smallest value (4-5% at 524-1024 ms) for any ML 1 condition in which all sounds are identical. Asynchronies were also more negative with higher ML. In conclusion, metrical subdivision provides information that facilitates temporal performance, which suggests an underlying neural multi-level mechanism capable of integrating information across levels. © 2013.

  12. Hoxa5 Promotes Adipose Differentiation via Increasing DNA Methylation Level and Inhibiting PKA/HSL Signal Pathway in Mice

    Directory of Open Access Journals (Sweden)

    Weina Cao

    2018-02-01

    Full Text Available Background/Aims: Impaired adipogenesis may be the underlying cause in the development of obesity and type II diabetes. Mechanistically, the family of Homeobox transcription factors is implicated in the regulation of adipocyte fate. Hoxa5 is highly expressed in adipocytes, and its mRNA expression is decreased during differentiation. However, the function of Hoxa5 in adipose tissue has been poorly understood. The aim of this study is to unveil the role of Hoxa5 on adipocyte differentiation and its underlying mechanisms. Methods: Quantitative real-time PCR (qPCR and western blot were performed to determine Hoxa5 expression in primary adipocytes and in adipose tissues from mice. Lipid accumulation was evaluated by bodipy staining. Dual luciferase assay was applied to explore the transcription factor of Hoxa5 and the transcriptional target gene modulated by Hoxa5. All measurements were performed at least for three times at least. Results: A significant reduction of Hoxa5 expression was observed in adipose tissue of High Fat Diet (HFD induced obesity mice. We determined Hoxa5 increased adipocytes differentiation and mitochondrial biogenesis in adipocytes in vitro. CEBPβ was determined a transcription factor of Hoxa5 and inhibited methylation level of Hoxa5 by combining on the promoter of Hoxa5. Importantly, we found Fabp4, a known positive regulator of adipocytes differentiation, was transcriptional activation by Hoxa5. In addition, Hoxa5 promotes adipocytes differentiation by inhibiting PKA/HSL pathway. Conclusion: Our study demonstrated the promoting role of Hoxa5 in adipocytes differentiation and therefore bringing a new therapeutic mean to the treatment of obesity and type II diabetes.

  13. Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Directory of Open Access Journals (Sweden)

    Ahn Dong-Kuk

    2009-09-01

    Full Text Available Abstract Group I mGluRs (mGluR1 and 5 pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs in the spinal trigeminal subnucleus oralis (Vo, we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min, activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.

  14. A large increase of sour taste receptor cells in Skn-1-deficient mice does not alter the number of their sour taste signal-transmitting gustatory neurons.

    Science.gov (United States)

    Maeda, Naohiro; Narukawa, Masataka; Ishimaru, Yoshiro; Yamamoto, Kurumi; Misaka, Takumi; Abe, Keiko

    2017-05-01

    The connections between taste receptor cells (TRCs) and innervating gustatory neurons are formed in a mutually dependent manner during development. To investigate whether a change in the ratio of cell types that compose taste buds influences the number of innervating gustatory neurons, we analyzed the proportion of gustatory neurons that transmit sour taste signals in adult Skn-1a -/- mice in which the number of sour TRCs is greatly increased. We generated polycystic kidney disease 1 like 3-wheat germ agglutinin (pkd1l3-WGA)/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice by crossing Skn-1a -/- mice and pkd1l3-WGA transgenic mice, in which neural pathways of sour taste signals can be visualized. The number of WGA-positive cells in the circumvallate papillae is 3-fold higher in taste buds of pkd1l3-WGA/Skn-1a -/- mice relative to pkd1l3-WGA/Skn-1a +/+ mice. Intriguingly, the ratio of WGA-positive neurons to P2X 2 -expressing gustatory neurons in nodose/petrosal ganglia was similar between pkd1l3-WGA/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice. In conclusion, an alteration in the ratio of cell types that compose taste buds does not influence the number of gustatory neurons that transmit sour taste signals. Copyright © 2017. Published by Elsevier B.V.

  15. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret; Farese, Robert V

    2016-07-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1–40/42 and Phospho-Tau May Abet Alzheimer Development

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret

    2016-01-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat–fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1–40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1–40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. PMID:26895791

  17. Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Masahiro; Naganawa, Shinji; Kawai, Hisashi; Nihashi, Takashi [Nagoya University, Department of Radiology, Graduate School of Medicine, Nagoya (Japan); Fukatsu, Hiroshi [Aichi Medical University Hospital, Department of Medical Informatics, Nagakute (Japan); Nakashima, Tsutomu [Nagoya University, Department of Otorhinolaryngology, Graduate School of Medicine, Nagoya (Japan)

    2009-12-15

    In the vestibular schwannoma patients, the pathophysiologic mechanism of inner ear involvement is still unclear. We investigated the status of the cochleae in patients with vestibular schwannoma by evaluating the signal intensity of cochlear fluid on pre- and post-contrast enhanced thin section three-dimensional fluid-attenuated inversion recovery (3D-FLAIR). Twenty-eight patients were retrospectively analyzed. Post-contrast images were obtained in 18 patients, and 20 patients had the records of their pure-tone audiometry. Regions of interest of both cochleae (C) and of the medulla oblongata (M) were determined on 3D-FLAIR images by referring to 3D heavily T2-weighted images on a workstation. The signal intensity ratio between C and M on the 3D-FLAIR images (CM ratio) was then evaluated. In addition, correlation between the CM ratio and the hearing level was also evaluated. The CM ratio of the affected side was significantly higher than that of the unaffected side (p < 0.001). In the affected side, post-contrast signal elevation was observed (p < 0.005). In 13 patients (26 cochleae) who underwent both gadolinium injection and the pure-tone audiometry, the post-contrast CM ratio correlated with hearing level (p < 0.05). The results of the present study suggest that alteration of cochlear fluid composition and increased permeability of the blood-labyrinthine barrier exist in the affected side in patients with vestibular schwannoma. Furthermore, although weak, positive correlation between post-contrast cochlear signal intensity on 3D-FLAIR and hearing level warrants further study to clarify the relationship between 3D-FLAIR findings and prognosis of hearing preservation surgery. (orig.)

  18. Does short-term exposure to mobile phone base station signals increase symptoms in individuals who report sensitivity to electromagnetic fields? A double-blind randomized provocation study.

    Science.gov (United States)

    Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine

    2007-11-01

    Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself.

  19. Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma

    International Nuclear Information System (INIS)

    Yamazaki, Masahiro; Naganawa, Shinji; Kawai, Hisashi; Nihashi, Takashi; Fukatsu, Hiroshi; Nakashima, Tsutomu

    2009-01-01

    In the vestibular schwannoma patients, the pathophysiologic mechanism of inner ear involvement is still unclear. We investigated the status of the cochleae in patients with vestibular schwannoma by evaluating the signal intensity of cochlear fluid on pre- and post-contrast enhanced thin section three-dimensional fluid-attenuated inversion recovery (3D-FLAIR). Twenty-eight patients were retrospectively analyzed. Post-contrast images were obtained in 18 patients, and 20 patients had the records of their pure-tone audiometry. Regions of interest of both cochleae (C) and of the medulla oblongata (M) were determined on 3D-FLAIR images by referring to 3D heavily T2-weighted images on a workstation. The signal intensity ratio between C and M on the 3D-FLAIR images (CM ratio) was then evaluated. In addition, correlation between the CM ratio and the hearing level was also evaluated. The CM ratio of the affected side was significantly higher than that of the unaffected side (p < 0.001). In the affected side, post-contrast signal elevation was observed (p < 0.005). In 13 patients (26 cochleae) who underwent both gadolinium injection and the pure-tone audiometry, the post-contrast CM ratio correlated with hearing level (p < 0.05). The results of the present study suggest that alteration of cochlear fluid composition and increased permeability of the blood-labyrinthine barrier exist in the affected side in patients with vestibular schwannoma. Furthermore, although weak, positive correlation between post-contrast cochlear signal intensity on 3D-FLAIR and hearing level warrants further study to clarify the relationship between 3D-FLAIR findings and prognosis of hearing preservation surgery. (orig.)

  20. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway.

    Science.gov (United States)

    Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan

    2013-12-01

    Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ames dwarf (Prop1(df)/Prop1(df)) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle.

    Science.gov (United States)

    Miquet, Johanna G; Muñoz, Marina C; Giani, Jorge F; González, Lorena; Dominici, Fernando P; Bartke, Andrzej; Turyn, Daniel; Sotelo, Ana I

    2010-04-01

    Growth hormone (GH) is an anabolic hormone that regulates growth and metabolism. Ames dwarf mice are natural mutants for Prop1, with impaired development of anterior pituitary and undetectable levels of circulating GH, prolactin and TSH. They constitute an endocrine model of life-long GH-deficiency. The main signaling cascades activated by GH binding to its receptor are the JAK2/STATs, PI-3K/Akt and the MAPK Erk1/2 pathways. We have previously reported that GH-induced STAT5 activation was higher in Ames dwarf mice liver compared to non-dwarf controls. The aim of this study was to evaluate the principal components of the main GH-signaling pathways under GH-deficiency in liver and skeletal muscle, another GH-target tissue. Ames dwarf mice and their non-dwarf siblings were assessed. Animals were injected i.p. with GH or saline 15min before tissue removal. Protein content and phosphorylation of signaling mediators were determined by immunoblotting of tissue solubilizates. GH was able to induce STAT5 and STAT3 tyrosine phosphorylation in both liver and muscle, but the response was higher for Ames dwarf mice than for non-dwarf controls. When Erk1/2 activation was assessed in liver, only dwarf mice showed GH-induced phosphorylation, while in muscle no response to the hormone was found in either genotype. GH-induced Akt phosphorylation at Ser473 in liver was only detected in dwarf mice. In skeletal muscle, both normal and dwarf mice responded to a GH stimulus, although dwarf mice presented higher GH activation levels. The phosphorylation of GSK-3, a substrate of Akt, increased upon hormone stimulation only in dwarf mice in both tissues. In contrast, no differences in the phosphorylation of mTOR, another substrate of Akt, were observed after GH stimulus, either in normal or dwarf mice in liver, while we were unable to determine mTOR in muscle. Protein content of GH-receptor and of the signaling mediators studied did not vary between normal and dwarf animals in the assessed

  2. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  3. Cellular senescence of human mammary epithelial cells (HMEC) is associated with an altered MMP-7/HB-EGF signaling and increased formation of elastin-like structures.

    Science.gov (United States)

    Bertram, Catharina; Hass, Ralf

    2009-10-01

    The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.

  4. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  5. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men.

    Science.gov (United States)

    West, Daniel W D; Kujbida, Gregory W; Moore, Daniel R; Atherton, Philip; Burd, Nicholas A; Padzik, Jan P; De Lisio, Michael; Tang, Jason E; Parise, Gianni; Rennie, Michael J; Baker, Steven K; Phillips, Stuart M

    2009-11-01

    We aimed to determine whether exercise-induced elevations in systemic concentration of testosterone, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) enhanced post-exercise myofibrillar protein synthesis (MPS) and phosphorylation of signalling proteins important in regulating mRNA translation. Eight young men (20 +/- 1.1 years, BMI = 26 +/- 3.5 kg m(-2)) completed two exercise protocols designed to maintain basal hormone concentrations (low hormone, LH) or elicit increases in endogenous hormones (high hormone, HH). In the LH protocol, participants performed a bout of unilateral resistance exercise with the elbow flexors. The HH protocol consisted of the same elbow flexor exercise with the contralateral arm followed immediately by high-volume leg resistance exercise. Participants consumed 25 g of protein after arm exercise to maximize MPS. Muscle biopsies and blood samples were taken as appropriate. There were no changes in serum testosterone, GH or IGF-1 after the LH protocol, whereas there were marked elevations after HH (testosterone, P anabolic hormones do not enhance fed-state anabolic signalling or MPS following resistance exercise. Local mechanisms are likely to be of predominant importance for the post-exercise increase in MPS.

  6. Increased signal intensity of prostate lesions on high b-value diffusion-weighted images as a predictive sign of malignancy

    International Nuclear Information System (INIS)

    Quentin, Michael; Schimmoeller, Lars; Antoch, Gerald; Blondin, Dirk; Arsov, Christian; Rabenalt, Robert; Albers, Peter

    2014-01-01

    The evaluation of lesions detected in prostate magnetic resonance imaging (MRI) with increased signal intensity (SI) on high b-value diffusion-weighted images as a sign of malignancy. One hundred and three consecutive patients with prostate MRI examination and MRI-guided in-bore biopsy were retrospectively included in the study. MRI-guided in-bore biopsy histologically confirmed prostate cancer in 50 patients (n = 92 lesions). The other 53 patients (n = 122 lesions) had negative bioptical results. In patients with histologically confirmed prostate cancer, 46 of the 92 lesions had visually increased SI on the high b-value images compared with the peripheral zone (SI = +27 ± 16%) or the central gland (SI = +37 ± 19%, P < 0.001 respectively). In patients with a negative biopsy, ten of the 122 lesions had visually increased SI (compared with the peripheral zone, SI = +29 ± 18%, and with the central gland, SI = +41 ± 15%, P < 0.001 respectively). Neither the apparent diffusion coefficient (ADC) values nor the Gleason Score of lesions with increased SI were significantly different from lesions without increased SI. Visually increased SI on the high b-value images of diffusion-weighted imaging using standard b-values is a sign of malignancy but can occasionally also be a feature of benign lesions. However, it does not indicate more aggressive tumours. (orig.)

  7. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  8. Notch Signaling Activation Is Associated with Patient Mortality and Increased FGF1-Mediated Invasion in Squamous Cell Carcinoma of the Oral Cavity.

    Science.gov (United States)

    Weaver, Alice N; Burch, M Benjamin; Cooper, Tiffiny S; Della Manna, Deborah L; Wei, Shi; Ojesina, Akinyemi I; Rosenthal, Eben L; Yang, Eddy S

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is a cancer subtype that lacks validated prognostic and therapeutic biomarkers, and human papillomavirus status has not proven beneficial in predicting patient outcomes. A gene expression pathway analysis was conducted using OSCC patient specimens to identify molecular targets that may improve management of this disease. RNA was isolated from 19 OSCCs treated surgically at the University of Alabama at Birmingham (UAB; Birmingham, AL) and evaluated using the NanoString nCounter system. Results were confirmed using the oral cavity subdivision of the Head and Neck Squamous Cell Carcinoma Cancer (HNSCC) study generated by The Cancer Genome Atlas (TCGA) Research Network. Further characterization of the in vitro phenotype produced by Notch pathway activation in HNSCC cell lines included gene expression, proliferation, cell cycle, migration, invasion, and radiosensitivity. In both UAB and TCGA samples, Notch pathway upregulation was significantly correlated with patient mortality status and with expression of the proinvasive gene FGF1 In vitro Notch activation in HNSCC cells increased transcription of FGF1 and induced a marked increase in cell migration and invasion, which was fully abrogated by FGF1 knockdown. These results reveal that increased Notch pathway signaling plays a role in cancer progression and patient outcomes in OSCC. Accordingly, the Notch-FGF interaction should be further studied as a prognostic biomarker and potential therapeutic target for OSCC. Patients with squamous cell carcinoma of the oral cavity who succumb to their disease are more likely to have upregulated Notch signaling, which may mediate a more invasive phenotype through increased FGF1 transcription. Mol Cancer Res; 14(9); 883-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells.

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G

    2015-09-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  11. Severe energy deficit at high altitude inhibits skeletal muscle mTORC1-mediated anabolic signaling without increased ubiquitin proteasome activity.

    Science.gov (United States)

    Margolis, Lee M; Carbone, John W; Berryman, Claire E; Carrigan, Christopher T; Murphy, Nancy E; Ferrando, Arny A; Young, Andrew J; Pasiakos, Stefan M

    2018-06-07

    Muscle loss at high altitude (HA) is attributable to energy deficit and a potential dysregulation of anabolic signaling. Exercise and protein ingestion can attenuate the effects of energy deficit on muscle at sea level (SL). Whether these effects are observed when energy deficit occurs at HA is unknown. To address this, muscle obtained from lowlanders ( n = 8 males) at SL, acute HA (3 h, 4300 m), and chronic HA (21 d, -1766 kcal/d energy balance) before [baseline (Base)] and after 80 min of aerobic exercise followed by a 2-mile time trial [postexercise (Post)] and 3 h into recovery (Rec) after ingesting whey protein (25 g) were analyzed using standard molecular techniques. At SL, Post, and REC, p-mechanistic target of rapamycin (mTOR) Ser2448 , p-p70 ribosomal protein S6 kinase (p70S6K) Ser424/421 , and p-ribosomal protein S6 (rpS6) Ser235/236 were similar and higher ( P anabolic resistance that is exacerbated by energy deficit during acclimatization, with no change in proteolysis.-Margolis, L. M., Carbone, J. W., Berryman, C. E., Carrigan, C. T., Murphy, N. E., Ferrando, A. A., Young, A. J., Pasiakos, S. M. Severe energy deficit at high altitude inhibits skeletal muscle mTORC1-mediated anabolic signaling without increased ubiquitin proteasome activity.

  12. DMAV in Drinking Water Activated NF-κB Signal Pathway and Increased TGF-β and IL-1β Expressions in Bladder Epithelial Cells of Rats

    Directory of Open Access Journals (Sweden)

    Siqi Cao

    2015-01-01

    Full Text Available Dimethylarsinic acid (DMAV is the main product of arsenic methylation metabolism in vivo and is rat bladder carcinogen and tumor promoting agent. In this study, we measured the expressions of mRNA and proteins of NF-κB pathway members, IKKα, IKKβ, p65, and p50 in rat bladder epithelium by qRT-PCR and immunohistochemical analysis after rats received drinking water containing 100 and 200 ppm DMAV for 10 weeks. Transforming growth factor-β (TGF-β immunoexpression in rat bladder epithelium and urine level of IL-1β also were determined. We found that DMAV dramatically increased the mRNA levels of NF-κB p50 and IKKα in the bladder epithelium of rats compared to the control group. Immunohistochemical examinations showed that DMAV increased immunoreactivities of IKKα, IKKβ, and phospho-NF-κB p50 in the cytoplasm and phospho-NF-κB p50 and p65 in nucleus of rat urothelial cells. In addition, DMAV treated rats exhibited significantly increased inflammatory factor TGF-β immunoreactivity in bladder epithelium and IL-1β secretion in urine. These data suggest that DMAV could activate NF-κB signal pathway and increase TGF-β and IL-1β expressions in bladder epithelial cells of rats.

  13. Increased transforming growth factor beta (TGF-β) and pSMAD3 signaling in a Murine Model for Contrast Induced Kidney Injury.

    Science.gov (United States)

    Kilari, Sreenivasulu; Yang, Binxia; Sharma, Amit; McCall, Deborah L; Misra, Sanjay

    2018-04-26

    We tested the hypothesis that post-contrast acute kidney injury (PC-AKI) occurs due to increase in transforming growth factor beta (Tgf-β) and pSMAD3 signaling in a murine model of PC-AKI. Mice had nephrectomy performed and twenty-eight days later, 100-μL of radio-contrast (Vispaque 320) or saline was administered via the jugular vein. Animals were sacrificed at 2, 7, and 28 days later and the serum BUN, creatinine, urine protein levels, and kidney weights were assessed. In human kidney-2 (HK-2) cells, gene and protein expression with cellular function was assessed following inhibition of TGFβR-1 plus contrast exposure. After contrast administration, the average serum creatinine is significantly elevated at all time points. The average gene expression of connective tissue growth factor (Ctgf), Tgfβ-1, matrix metalloproteinase-9 (Mmp-9), and collagen IVa (Col IVa) are significantly increased at 2 days after contrast administration (P < 0.05). Cellular proliferation is decreased and there is increased apoptosis with tubulointerstitial fibrosis. Contrast administered to HK-2 cells results in increased pSMAD3 levels and gene expression of Ctgf, Tgfβ-1, Tgfβ-2, Col IVa, Mmp-9, and caspase/7 activity with a decrease in proliferation (all, P < 0.05). TGFβR-1 inhibition decreased the expression of contrast mediated pro-fibrotic genes in HK-2 cells with no change in the proliferation and apoptosis.

  14. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Science.gov (United States)

    Speed, Haley E; Masiulis, Irene; Gibson, Jay R; Powell, Craig M

    2015-01-01

    A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons

  15. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Directory of Open Access Journals (Sweden)

    Haley E Speed

    Full Text Available A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C of Neuroligin 3 (NLGN3R451C is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs from parvalbumin-positive (PV or somatostatin-positive (SOM interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at

  16. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    DEFF Research Database (Denmark)

    Garza-Villarreal, Eduardo A; Jiang, Zhiguo; Vuust, Peter

    2015-01-01

    , correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (r......Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without...... external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn...

  17. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed...... to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal...... in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age....

  18. Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity.

    Science.gov (United States)

    Palmer, Kirsten R; Kaitu'u-Lino, Tu'uhevaha J; Hastie, Roxanne; Hannan, Natalie J; Ye, Louie; Binder, Natalie; Cannon, Ping; Tuohey, Laura; Johns, Terrance G; Shub, Alexis; Tong, Stephen

    2015-12-01

    In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a-specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a. © 2015 American Heart Association, Inc.

  19. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  20. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Maoxi; Fu, Zhongxue; Wu, Xingye; Du, Kunli; Zhang, Shouru; Zeng, Li

    2016-05-01

    Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

  1. Cancer dormancy and cell signaling: Induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells

    Science.gov (United States)

    Marches, Radu; Hsueh, Robert; Uhr, Jonathan W.

    1999-01-01

    The p21WAF1 (p21) cyclin-dependent kinase inhibitor plays a major role in regulating cell cycle arrest. It was recently reported that the p53-independent elevation of p21 protein levels is essential in mediating the G1 arrest resulting from signal transduction events initiated by the crosslinking of membrane IgM on Daudi Burkitt lymphoma cells. Although the role of p21 in cell cycle regulation is well documented, there is little information concerning its role in antibody-mediated apoptosis. In the present study, we examined the involvement of p21 in the regulation of apoptosis by suppressing its induction in anti-IgM-treated Daudi cells through a p21 antisense expression construct approach. Reduction in induced p21 protein levels resulted in diminished G1 arrest and increased apoptosis. The increased susceptibility to anti-IgM-mediated apoptosis was associated with increased caspase-3-like activity and poly-(ADP)ribose polymerase cleavage. These data suggest that p21 may directly interfere with the caspase cascade, thus playing a dual role in regulating both cell cycle progression and apoptosis. PMID:10411940

  2. Exposure to Ionizing Radiation Causes Long-Term Increase in Serum Estradiol and Activation of PI3K-Akt Signaling Pathway in Mouse Mammary Gland

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Shubhankar [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC (United States); Johnson, Michael D. [Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States); Fornace, Albert J. [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC (United States); Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States); Datta, Kamal, E-mail: kd257@georgetown.edu [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC (United States)

    2012-10-01

    Purpose: Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy. Methods and Materials: Adolescent (6-8 weeks old; n = 10) female C57BL/6J mice were exposed to 2 Gy total body {gamma}-radiation, the mammary glands were surgically removed, and serum and urine samples were collected 2 and 12 months after exposure. Molecular pathways involving estrogen receptor-{alpha} (ER{alpha}) and phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling were investigated by immunohistochemistry and Western blot. Results: Serum estrogen and urinary levels of the oncogenic estrogen metabolite (16{alpha}OHE1) were significantly increased in irradiated animals. Immunostaining for the cellular proliferative marker Ki-67 and cyclin-D1 showed increased nuclear accumulation in sections of mammary glands from irradiated vs. control mice. Marked increase in p85{alpha}, a regulatory sub-unit of the PI3K was associated with increase in Akt, phospho-Akt, phospho-BAD, phospho-mTOR, and c-Myc in irradiated samples. Persistent increase in nuclear ER{alpha} in mammary tissues 2 and 12 months after radiation exposure was also observed. Conclusions: Taken together, our data not only support epidemiologic observations associating radiation and breast cancer but also, specify molecular events that could be involved in radiation-induced breast cancer.

  3. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  4. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro.

    Science.gov (United States)

    Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo

    2017-07-12

    Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but

  5. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    Science.gov (United States)

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  6. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    Science.gov (United States)

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  8. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  9. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2017-12-01

    Full Text Available Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL muscles collected (1 during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2 24 h or 3 weeks after constitutive activation of AKT, and (3 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.

  10. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Science.gov (United States)

    Soltani, Asma; Lebrun, Solène; Carpentier, Gilles; Zunino, Giulia; Chantepie, Sandrine; Maïza, Auriane; Bozzi, Yuri; Desnos, Claire; Darchen, François; Stettler, Olivier

    2017-01-01

    Engrailed 1 (En1) and 2 (En2) code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  11. Increased signal intensity within glioblastoma resection cavities on fluid-attenuated inversion recovery imaging to detect early progressive disease in patients receiving radiotherapy with concomitant temozolomide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Luke A. [Monash University, Melbourne (Australia); Korfiatis, Panagiotis; Erickson, Bradley J. [Mayo Clinic Rochester, Department of Radiology, Rochester, MN (United States); Agrawal, Jay P. [University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States)

    2018-01-15

    Our study tested the diagnostic accuracy of increased signal intensity (SI) within FLAIR MR images of resection cavities in differentiating early progressive disease (ePD) from pseudoprogression (PsP) in patients with glioblastoma treated with radiotherapy with concomitant temozolomide therapy. In this retrospective study approved by our Institutional Review Board, we evaluated the records of 122 consecutive patients with partially or totally resected glioblastoma. Region of interest (ROI) analysis assessed 33 MR examinations from 11 subjects with histologically confirmed ePD and 37 MR examinations from 14 subjects with PsP (5 histologically confirmed, 9 clinically diagnosed). After applying an N4 bias correction algorithm to remove B0 field distortion and to standardize image intensities and then normalizing the intensities based on an ROI of uninvolved white matter from the contralateral hemisphere, the mean intensities of the ROI from within the resection cavities were calculated. Measures of diagnostic performance were calculated from the receiver operating characteristic (ROC) curve using the threshold intensity that maximized differentiation. Subgroup analysis explored differences between the patients with biopsy-confirmed disease. At an optimal threshold intensity of 2.9, the area under the ROC curve (AUROC) for FLAIR to differentiate ePD from PsP was 0.79 (95% confidence interval 0.686-0.873) with a sensitivity of 0.818 and specificity of 0.694. The AUROC increased to 0.86 when only the patients with biopsy-confirmed PsP were considered. Increased SI within the resection cavity of FLAIR images is not a highly specific sign of ePD in glioblastoma patients treated with the Stupp protocol. (orig.)

  12. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men.

    Science.gov (United States)

    McGlory, Chris; Wardle, Sophie L; Macnaughton, Lindsay S; Witard, Oliver C; Scott, Fraser; Dick, James; Bell, J Gordon; Phillips, Stuart M; Galloway, Stuart D R; Hamilton, D Lee; Tipton, Kevin D

    2016-03-01

    Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Directory of Open Access Journals (Sweden)

    Asma Soltani

    Full Text Available Engrailed 1 (En1 and 2 (En2 code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  14. Bell's palsy: what is the prognostic value of measurements of signal intensity increases with contrast enhancement on MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Kress, B.P.J.; Efinger, K.; Solbach, T.; Gottschalk, A.; Baehren, W. [Department of Radiology, Armed Forces Hospital, Deutsche Bundeswehr, Ulm (Germany); Griesbeck, F.; Kornhuber, A.W. [Department of Neurology/Psychiatry, Armed Forces Hospital, Deutsche Bundeswehr, Ulm (Germany)

    2002-05-01

    Our objective was to assess the prognostic value of measurements of the degree of contrast enhancement of the intratemporal segments of the facial nerve. We prospectively obtained MRI, slice thickness <1 mm of 20 patients with a facial palsy on the first day of inpatient treatment, and measured contrast enhancement of the nerve. The data were compared with compound muscle action potential (CMAP) measurements and the clinical course. Analysis of the initial enabled differentiation of three patients whose palsy was to show no improvement from 17 whose palsy was to resolve as expected. No patient with a poor outcome showed lesser increase in signal in the internal auditory canal, pars tympanica and pars mastoidea than patients who fully recovered. In no patient who had been diagnosed on the basis of the initial MRI as having a ''normal'' palsy was the amplitude of the (CMAP) reduced to less than 20% that of the normal side. Measurement of contrast enhancement was thus shown to be a prognostic indicator and may provide a basis for a differential treatment of facial palsy. (orig.)

  15. Inactivation of TGF-β signaling in lung cancer results in increased CDK4 activity that can be rescued by ELF

    International Nuclear Information System (INIS)

    Baek, Hye Jung; Kim, Sang Soo; Silva, Fabio May da; Volpe, Eugene A.; Evans, Stephen; Mishra, Bibhuti; Mishra, Lopa; Blair Marshall, M.

    2006-01-01

    Escape from TGF-β inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-β adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf -/- mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-β signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-β adaptor protein in suppressing early lung cancer

  16. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Eduardo A. Garza-Villarreal

    2015-07-01

    Full Text Available Music reduces pain in fibromyalgia (FM, a chronic pain disease, but the functional neural correlates of music-induced analgesia are still largely unknown. We recruited FM patients (n = 22 who listened to their preferred relaxing music and an auditory control (pink noise for 5 minutes without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the left angular gyrus showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex, the left caudate, and decreased connectivity with right anterior cingulate cortex, right supplementary motor area, precuneus and right precentral gyrus. Pain intensity analgesia was correlated (r = .61 to the connectivity of the left angular gyrus with the right precentral gyrus. Our results show that music-induced analgesia in FM is related to top-down regulation of the pain modulatory network by the default-mode network.

  17. Increased sensitivity of transforming growth factor (TGF) beta 1 null cells to alkylating agents reveals a novel link between TGFbeta signaling and O(6)-methylguanine methyltransferase promoter hypermethylation.

    Science.gov (United States)

    Yamada, H; Vijayachandra, K; Penner, C; Glick, A

    2001-06-01

    Inactivation of the transforming growth factor beta (TGFbeta)-signaling pathway and gene silencing through hypermethylation of promoter CpG islands are two frequent alterations in human and experimental cancers. Here we report that nonneoplastic TGFbeta1-/- keratinocyte cell lines exhibit increased sensitivity to cell killing by alkylating agents, and this is due to lack of expression of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT). In TGFbeta1-/- but not TGFbeta1+/- cell lines, the CpG dinucleotides in the MGMT promoter are hypermethylated, as measured by restriction enzyme analysis and methylation specific polymerase chain reaction. In one unstable TGFbeta1+/- cell line, loss of the wild type TGFbeta1 allele correlates with the appearance of methylation in the MGMT promoter. Bisulfite sequencing shows that in the KO3 TGFbeta1-/- cell line nearly all of the 28 CpG sites in the MGMT promoter 475 base pairs upstream of the start site of transcription are methylated, whereas most are unmethylated in the H1 TGFbeta1+/- line. Treatment of the TGFbeta1-/- cell lines with 5-azacytidine causes reexpression of MGMT mRNA and demethylation of CpG islands in the promoter. Analysis of the time course of methylation using methylation-specific polymerase chain reaction shows a lack of methylation in primary TGFbeta1-/- keratinocytes and increasing methylation with passage number of immortalized clones. Subcloning of early passage clones reveals a remarkable heterogeneity and instability of the methylation state in the TGFbeta1-/- keratinocytes. Thus, the TGFbeta1-/- genotype does not directly regulate MGMT methylation but predisposes cells to immortalization-associated MGMT hypermethylation.

  18. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  19. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  20. Increasing the number and signal-to-noise ratio of OBS traces with supervirtual refraction interferometry and free-surface multiples

    KAUST Repository

    Bharadwaj, P.; Wang, X.; Schuster, Gerard T.; McIntosh, K.

    2013-01-01

    The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability

  1. Increasing the number and signal-to-noise ratio of OBS traces with supervirtual refraction interferometry and free-surface multiples

    KAUST Repository

    Bharadwaj, P.

    2013-01-10

    The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability

  2. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  3. Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH.

    Science.gov (United States)

    El-Magd, Mohammed Abu; Saleh, Ayman A; Abdel-Hamid, Tamer M; Saleh, Rasha M; Afifi, Mohammed A

    2016-10-01

    Chicken growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin (GHRL), a peptide hormone produced by chicken proventriculus, which stimulates growth hormone (GH) release and food intake. The purpose of this study was to search for single nucleotide polymorphisms (SNPs) in exon 2 of GHSR gene and to analyze their effect on the appetite, growth traits and expression levels of GHSR, GHRL, and GH genes as well as serum levels of GH and GHRL in Mandara chicken. Two adjacent SNPs, A239G and G244A, were detected in exon 2 of GHSR gene. G244A SNP was non-synonymous mutation and led to replacement of lysine amino acid (aa) by arginine aa, while A239G SNP was synonymous mutation. The combined genotypes of A239G and G244A SNPs produced three haplotypes; GG/GG, GG/AG, AG/AG, which associated significantly (P4 to 16w. Chickens with the homozygous GG/GG haplotype showed higher growth performance than other chickens. The two SNPs were also correlated with mRNA levels of GHSR and GH (in pituitary gland), and GHRL (in proventriculus and hypothalamus) as well as with serum level of GH and GHRL. Also, chickens with GG/GG haplotype showed higher mRNA and serum levels. This is the first study to demonstrate that SNPs in GHSR can increase appetite, growth traits, expression and level of GHRL, suggesting a hunger signal role for endogenous GHRL. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Norepinephrine-Induced Adrenergic Activation Strikingly Increased the Atrial Fibrillation Duration through β1- and α1-Adrenergic Receptor-Mediated Signaling in Mice.

    Directory of Open Access Journals (Sweden)

    Kenji Suita

    Full Text Available Atrial fibrillation (AF is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered by the lack of suitable AF models in experimental animals.Our aim was to establish a long-lasting AF model in mice. We also investigated the role of adrenergic receptor (AR subtypes, which may be involved in the onset and duration of AF.Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but with only a short duration (29.0 ± 8.1 sec. We found that adrenergic activation by intraperitoneal norepinephrine (NE injection strikingly increased the AF duration. It increased the duration to more than 10 minutes, i.e., by more than 20-fold (656.2 ± 104.8 sec; P<0.001. In this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker prazosin both significantly attenuated NE-induced elongation of AF. To further explore the mechanisms underlying these receptors' effects on AF, we assessed the SR Ca(2+ leak, a major trigger of AF, and consequent spontaneous SR Ca(2+ release (SCR in atrial myocytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin significantly inhibited the NE-induced SR Ca(2+ leak and SCR. These findings suggest that both β1-AR and α1-AR may play important roles in the development of AF.We have established a long-lasting AF model in mice induced by adrenergic activation, which will be valuable in future AF study using experimental animals, such as transgenic mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the development of AF through in-vivo and in-vitro experiments.

  5. WNT/β-Catenin Signaling in Vertebrate Eye Development

    Czech Academy of Sciences Publication Activity Database

    Fujimura, Naoko

    2016-01-01

    Roč. 4, November (2016), č. článku 138. ISSN 2296-634X R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:68378050 Keywords : retina * WNT * b-catenin * development * differentiation Subject RIV: EB - Genetics ; Molecular Biology

  6. Perception of Verbal and Nonverbal Emotional Signals in Women With Borderline Personality Disorder: Evidence of a Negative Bias and an Increased Reliance on Nonverbal Cues.

    Science.gov (United States)

    Brück, Carolin; Derstroff, Stephanie; Jacob, Heike; Wolf-Arehult, Martina; Wekenmann, Stefanie; Wildgruber, Dirk

    2017-04-01

    Studies conducted in patients diagnosed with borderline personality disorder (BPD) have documented a variety of anomalies concerning patients' abilities to interpret emotional signals. Attempting to clarify the bases of these anomalies, the current literature draws attention to a possible role of dysfunctional expectations, such as the expectation of social rejection. Dysfunctional expectations, however, may not only bias social interpretations, but may also focus attention on social cues most important in conveying emotional messages, such as nonverbal signals. To explore these assumptions, 30 female BPD patients were tasked to judge the valence of emotional states conveyed by combinations of verbal and nonverbal emotional cues. Compared to controls, BPD patients exhibited a negative bias in their interpretations and relied more on available nonverbal cues. Shifts in the relative importance of nonverbal cues appeared to be rooted mainly in a reduced reliance on positive verbal cues presumably deemed less credible by BPD patients.

  7. Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse.

    Science.gov (United States)

    Golani, Idit; Tadmor, Hagar; Buonanno, Andres; Kremer, Ilana; Shamir, Alon

    2014-11-01

    The ErbB signaling pathway has been genetically and functionally implicated in schizophrenia. Numerous findings support the dysregulation of Neuregulin (NRG) and epidermal growth factor (EGF) signaling in schizophrenia. However, it is unclear whether alterations of these pathways in the adult brain or during development are involved in the pathophysiology of schizophrenia. Herein we characterized the behavioral profile and molecular changes resulting from pharmacologically blocking the ErbB signaling pathway during a critical period in the development of decision making, planning, judgments, emotions, social cognition and cognitive skills, namely adolescence. We demonstrate that chronic administration of the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ) to adolescent mice elevated striatal dopamine levels and reduced preference for sucrose without affecting locomotor activity and exploratory behavior. In adulthood, adolescent JNJ-treated mice continue to consume less sucrose and needed significantly more correct-response trials to reach the learning criterion during the discrimination phase of the T-maze reversal learning task than their saline-injected controls. In addition, JNJ mice exhibited deficit in reference memory but not in working memory as measured in the radial arm maze. Inhibition of the pathway during adolescence did not affect exploratory behavior and locomotor activity in the open field, social interaction, social memory, and reversal learning in adult mice. Our data suggest that alteration of ErbB signaling during adolescence resulted in changes in the dopaminergic systems that emerge in pathological learning and hedonic behavior in adulthood, and pinpoints the possible role of the pathway in the development of cognitive skills and motivated behavior. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  8. Joint positions matter for ultrasound examination of RA patients-increased power Doppler signal in neutral versus flat position of hands.

    Science.gov (United States)

    Husic, Rusmir; Lackner, Angelika; Stradner, Martin H; Hermann, Josef; Dejaco, Christian

    2017-08-01

    Position of joints might influence the result of US examination in patients with RA. The purpose of this work was to compare grey-scale (GS) and power Doppler (PWD) findings obtained in neutral vs flat position of hands. A cross-sectional study of 42 RA patients with active disease. Two dimensional and 3D sonography of wrists and MCP joints were conducted in two different joint positions: neutral position, which is a slight flexion of the fingers with relaxed extensor muscles; and flat position, where all palm and volar sides of fingers touch the Table. Two dimensional GS synovitis (GSS) and PWD signals were scored semi-quantitatively (0-3). For 3D sonography, the percentage of PWD voxels within a region of interest was calculated. GSS was not quantified using 3D sonography. Compared with neutral position, 2D PWD signals disappeared in 28.3% of joints upon flattening. The median global 2D PWD score (sum of all PWD scores of an individual patient) decreased from 8 to 3 ( P < 0.001), and the global 3D PWD voxel score from 3.8 to 0.9 ( P < 0.001). The reduction of PWD scores was similar in all joints (2D: minus 50%, 3D: minus 66.4-80.1%). Inter- and intrareader agreement of PWD results was good (intraclass correlation coefficient: 0.75-0.82). In RA, a neutral position of the hands is linked to a higher sensitivity of 2D and 3D sonography in detecting PWD signals at wrists and MCP joints, compared with a flat position. Standardization of the scanning procedure is essential for obtaining comparable US results in RA patients in trials and clinical routines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-10-01

    We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.

  10. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    International Nuclear Information System (INIS)

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-01

    Research highlights: → We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. → Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. → This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  11. Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination

    Science.gov (United States)

    Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan

    2017-11-01

    A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.

  12. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis.

    Science.gov (United States)

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-11-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. © 2013 British Society for Immunology.

  13. Cocaine-associated odor cue re-exposure increases blood oxygenation level dependent signal in memory and reward regions of the maternal rat brain.

    Science.gov (United States)

    Caffrey, Martha K; Febo, Marcelo

    2014-01-01

    Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    Science.gov (United States)

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  15. Expression of b-catenins and cadherins by follicular dendritic dells in human lymph nodes

    Czech Academy of Sciences Publication Activity Database

    Müller, Julius; Tvrdík, Daniel; Dvořák, Richard; Djaborkhel, Rashed; Mandys, Václav; Bednář, B.; Raška, Ivan; Lojda, Z.

    2000-01-01

    Roč. 102, - (2000), s. 369-380 ISSN 0065-1281 R&D Projects: GA ČR GA302/99/0587; GA ČR GA304/00/1481; GA MŠk VS96129; GA ČR GA304/94/1578 Institutional research plan: CEZ:AV0Z5039906 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.943, year: 2000

  16. All that glitters is not gold: Increased Signal in the Subarachnoid Space on Fluid-Attenuated Inversion Recovery Imaging after gadolinium injection

    Directory of Open Access Journals (Sweden)

    Juliana Avila Duarte

    2016-08-01

    Full Text Available A 61-year-old woman arrived at the emergency department of the Hospital Nossa Senhora das Graças, Canoas, southern Brazil, with suspected ischemic stroke. After clinical and laboratory examination, the clinical diagnosis of ischemic stroke was made, without fulfilling criteria for thrombolysis. The patient had no history of renal failure. Three days later, she performed a magnetic resonance imaging (MRI examination that confirmed the suspected diagnosis. This examination was performed without sedation or supplemental oxygen. Brain MRI was performed after gadolinium injection, using fluid-attenuated inversion recovery (FLAIR imaging, T1-weighted image, diffusion-weighted imaging, and T2-weighted image sequences that revealed signs of subacute watershed stroke in the left cerebral hemisphere (Figures 1, 2 and 3. There was a hyperintense cerebrospinal fluid (CSF in the subarachnoid space (SAS on FLAIR imaging, a finding that has been reported in many  pathologic conditions1 such as superior sagittal thrombosis, subarachnoid hemorrhage², meningitis,  meningeal carcinomatosis,  next to tumors, status epilepticus and stroke.3-7 It has also been reported in otherwise healthy patients undergoing anesthesia with supplemental oxygen.8 The exact mechanism by which CSF diffuses into the SAS in patients with or without renal insufficiency is not completely explained. Some authores have suggested that in patients with renal failure, the gadolinium may shift across an osmotic gradient at the circumventricular organs in the setting of proctracted elevation of plasma concentrations.9 We believe that the cause of this imaging phenomenon of hyperintense signal of the CSF in the SAS which has already been noted in patients with compromised cerebral perfusion, including cases of acute ischemic stroke, was due to the recent stroke.10-11 Keywords: Flair hyperintensity, MRI, stroke, Gadolinium

  17. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells.

    Science.gov (United States)

    Choi, Yeong Min; An, Sungkwan; Lee, Junwoo; Lee, Jae Ho; Lee, Jae Nam; Kim, Young Sam; Ahn, Kyu Joong; An, In-Sook; Bae, Seunghee

    2017-12-01

    Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.

  18. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  19. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors

    Directory of Open Access Journals (Sweden)

    Charles Yoon

    2018-01-01

    Full Text Available The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development.

  20. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells

    International Nuclear Information System (INIS)

    Soto-Pena, Gerson A.; Vega, Libia

    2008-01-01

    Arsenic is known to produce inhibition as well as induction of immune cells proliferative responses depending on the doses as one of its mechanisms of immunotoxicity. Here we evaluate the effect of arsenic exposure on the activation of splenic mononuclear cells (SMC) in male CD57BL6N mice. Intra-gastric exposure to arsenic (as sodium arsenite) for 30 days (1, 0.1, or 0.01 mg/kg/day), reduced the proportion of CD4+ cells and the CD4+/CD8+ ratio in the spleen, increasing the proportion of CD11b+ cells. Arsenic exposure did not modify the proportion of B cells. SMC showed an increased level of phosphorylation of lck and fyn kinases (first kinases associated to TCR complex when activated). Although normal levels of apoptosis were observed on freshly isolated SMC, an increase in apoptotic cells related with the increase in phosphorylation of lck and fyn was observed when SMC were activated with Concanavalin-A (Con-A). Arsenic exposure reduced the proliferative response of SMC to Con-A, and also reduced secretion of IL-2, IL-6, IL-12 and IFNγ. No effect was observed on IL-4, and IL-10 secretion. The same effects were observed when SMC of exposed animals were activated with anti-CD3/CD28 antibodies for 24 h, but these effects were transitory since a recovery, up to control levels or even higher, were observed after 72 h of stimulation. This study demonstrates that repeated and prolonged exposure to arsenic alters cell populations and produces functional changes depending on the specific activation pathway, and could be related with the phosphorylation status of lck and fyn kinases

  1. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  2. Aspalathin Reverts Doxorubicin-Induced Cardiotoxicity through Increased Autophagy and Decreased Expression of p53/mTOR/p62 Signaling

    Directory of Open Access Journals (Sweden)

    Rabia Johnson

    2017-09-01

    Full Text Available Doxorubicin (Dox is an effective chemotherapeutic agent used in the treatment of various cancers. Its clinical use is often limited due to its potentially fatal cardiotoxic side effect. Increasing evidence indicates that tumour protein p53 (p53, adenosine monophosphate-activated protein kinase (AMPK, nucleoporin p62 (p62, and the mammalian target of rapamycin (mTOR are critical mediators of Dox-induced apoptosis, and subsequent dysregulation of autophagy. Aspalathin, a polyphenolic dihydrochalcone C-glucoside has been shown to activate AMPK while decreasing the expression of p53. However, the role that aspalathin could play in the inhibition of Dox-induced cardiotoxicity through increased autophagy flux remained unexplored. H9c2 cardiomyocytes and Caov-3 ovarian cancer cells were cultured in Dulbecco’s Modified Eagle’s medium and treated with or without Dox for five days. Thereafter, cells exposed to 0.2 µM Dox were co-treated with either 20 µM Dexrazozane (Dexra or 0.2 µM aspalathin (ASP daily for 5 days. Results obtained showed that ASP mediates its cytoprotective effect in a p53-dependent manner, by increasing the Bcl-2/Bax ratio and decreasing apoptosis. The latter effect was diminished through ASP-induced activation of autophagy-related genes (Atgs with an associated decrease in p62 through induction of AMPK and Fox01. Furthermore, we showed that ASP was able to potentiate this effect without decreasing the anti-cancer efficacy of Dox, as could be observed in Caov-3 ovarian cancer cells. Taken together, the data presented in this study provides a credible mechanism by which ASP co-treatment could protect the myocardium from Dox-induced cardiotoxicity.

  3. Detecting Climate Signals in Precipitation Extremes from TRMM (1998-2013) - Increasing Contrast Between Wet and Dry Extremes During the "Global Warming Hiatus"

    Science.gov (United States)

    Wu, Huey-Tzu Jenny; Lau, William K.-M.

    2016-01-01

    We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998-2013), which coincides with the "global warming hiatus." Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean.

  4. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β/AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling

    Directory of Open Access Journals (Sweden)

    André O. P. Protzek

    2014-01-01

    Full Text Available Glucocorticoid (GC therapies may adversely cause insulin resistance (IR that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT substrate with 160 kDa (AS160 as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX (1 mg/kg body weight for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

  5. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Directory of Open Access Journals (Sweden)

    René Huber

    Full Text Available The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (premonocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (posttranslational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  6. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    Science.gov (United States)

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  7. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism

    Directory of Open Access Journals (Sweden)

    Meera E. Modi

    2018-06-01

    Full Text Available Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD. The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD in the striatum but opposing morphological and cellular alterations in the hippocampus (HP. Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the

  8. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    Science.gov (United States)

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  9. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    Science.gov (United States)

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  10. CISD2 serves a novel role as a suppressor of nitric oxide signalling and curcumin increases CISD2 expression in spinal cord injuries.

    Science.gov (United States)

    Lin, Chai-Ching; Chiang, Tien-Huang; Chen, Wei-Jung; Sun, Yu-Yo; Lee, Yi-Hsuan; Lin, Muh-Shi

    2015-12-01

    CISD2 is known to have roles in calcium metabolism, anti-apoptosis, and longevity. However, whether CISD2 is involved in the inflammatory response associated with injuries of the central nervous system (CNS) remains unclear. This issue is particularly relevant for traumatic spinal cord injuries (SCIs), which lack therapeutic targeting and often cause long-term disability in patients. The authors previously demonstrated the neuroprotective effects of curcumin against RANTES-mediated neuroinflammation. In this study, we investigated (1) the role of CISD2 in injury-induced inflammation and (2) whether curcumin influences CISD2 expression in acute SCI. The efficacy of curcumin treatment (40 mg/kg i.p.) was evaluated in an animal model of SCI. In a neural cell culture model, lipopolysaccharide (LPS) was administrated to induce inflammation with the aim of mimicking the situation commonly encountered in SCI. Additionally, knockdown of CISD2 expression by siRNA (siCISD2) in LPS-challenged neural cells was performed to verify the causal relationship between CISD2 and SCI-related inflammation. The injuries were shown to reduce CISD2 mRNA and protein expression in vivo, and CISD2-positive cells were upregulated by the curcumin treatment. LPS led to a decrease in CISD2 expression in vitro; however, treatment with 1 μM curcumin attenuated the downregulation of CISD2. Furthermore, in a cellular model of LPS-induced injury, the loss of CISD2 function caused by siCISD2 resulted in a pronounced iNOS increase as well as a decrease in BCL2 expression. To the best of our knowledge, this is the first study to report the following: (1) CISD2 exerts anti-apoptotic and anti-inflammatory effects in neural cells; and (2) curcumin can attenuate the downregulation of CISD2 in SCI and LPS-treated astrocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  12. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  13. ATP signals

    DEFF Research Database (Denmark)

    Novak, Ivana

    2016-01-01

    The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas......The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas...

  14. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-01-01

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  15. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingyu [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Mao, Xinjian [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  16. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Dragan A. [University of Nis, Faculty of Medicine, Nis (Serbia); Clinical Center Nis, Center for Radiology, Nis (Serbia); Aracki-Trenkic, Aleksandra [Clinical Center Nis, Center for Radiology, Nis (Serbia); Vojinovic, Slobodan; Ljubisavljevic, Srdjan [University of Nis, Faculty of Medicine, Nis (Serbia); Clinical Center Nis, Clinic for Neurology, Nis (Serbia); Benedeto-Stojanov, Daniela [University of Nis, Faculty of Medicine, Nis (Serbia)

    2016-03-15

    To evaluate correlation between cumulative dose of gadobutrol and signal intensity (SI) within dentate nucleus and globus pallidus on unenhanced T1-weighted images in patients with relapsing-remitting multiple sclerosis (RRMS). Dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios, and renal and liver functions, were evaluated after multiple intravenous administrations of 0.1 mmol/kg gadobutrol at 27, 96-98, and 168 weeks. We compared SI ratios based on the number of administrations, total amount of gadobutrol administered, and time between injections. Globus pallidus-to-thalamus (p = 0.025) and dentate nucleus-to-pons (p < 0.001) SI ratios increased after multiple gadobutrol administrations, correlated with the number of administrations (ρ = 0.263, p = 0.046, respectively) and depended on the length of administration (p = 0.017, p = 0.037, respectively). Patients receiving gadobutrol at 27 weeks showed the greatest increase in both SI ratios (p = 0.006; p = 0.014, respectively, versus 96-98 weeks). GGT increased at the end of the study (p = 0.004). In patients with RRMS, SI within the dentate nucleus and globus pallidus increased on unenhanced T1-weighted images after multiple gadobutrol injections. Administration of the same total amount of gadobutrol over a shorter period caused greater SI increase. (orig.)

  17. Measurand transient signal suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  18. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  19. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  20. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2 Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model.

    Directory of Open Access Journals (Sweden)

    Rachel Rupp

    2015-12-01

    Full Text Available Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2. The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host's inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway.

  2. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery.

    Science.gov (United States)

    Thompson, Brandon J; Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Zhang, Yifeng; Laracuente, Mei-li; Ronaldson, Patrick T

    2014-04-01

    Cerebral hypoxia and subsequent reoxygenation stress (H/R) is a component of several diseases. One approach that may enable neural tissue rescue after H/R is central nervous system (CNS) delivery of drugs with brain protective effects such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (i.e., statins). Our present in vivo data show that atorvastatin, a commonly prescribed statin, attenuates poly (ADP-ribose) polymerase (PARP) cleavage in the brain after H/R, suggesting neuroprotective efficacy. However, atorvastatin use as a CNS therapeutic is limited by poor blood-brain barrier (BBB) penetration. Therefore, we examined regulation and functional expression of the known statin transporter organic anion transporting polypeptide 1a4 (Oatp1a4) at the BBB under H/R conditions. In rat brain microvessels, H/R (6% O2, 60 minutes followed by 21% O2, 10 minutes) increased Oatp1a4 expression. Brain uptake of taurocholate (i.e., Oap1a4 probe substrate) and atorvastatin were reduced by Oatp inhibitors (i.e., estrone-3-sulfate and fexofenadine), suggesting involvement of Oatp1a4 in brain drug delivery. Pharmacological inhibition of transforming growth factor-β (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling with the selective inhibitor SB431542 increased Oatp1a4 functional expression, suggesting a role for TGF-β/ALK5 signaling in Oatp1a4 regulation. Taken together, our novel data show that targeting an endogenous BBB drug uptake transporter (i.e., Oatp1a4) may be a viable approach for optimizing CNS drug delivery for treatment of diseases with an H/R component.

  3. Brain-Derived Neurotrophic Factor Increases Synaptic Protein Levels via the MAPK/Erk Signaling Pathway and Nrf2/Trx Axis Following the Transplantation of Neural Stem Cells in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying

    2017-11-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.

  4. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  5. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    AIM: This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , β1-3 , and FXYD1) to an interval running session, and determined if these effects were related to increased oxidative stress, hypoxia......). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...... of oxidative stress and type-I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. CONCLUSION: Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type...

  6. Signal detection

    International Nuclear Information System (INIS)

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  7. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma.

    Science.gov (United States)

    Newcomb, Dawn C; Cephus, Jacqueline Yvonne; Boswell, Madison G; Fahrenholz, John M; Langley, Emily W; Feldman, Amy S; Zhou, Weisong; Dulek, Daniel E; Goleniewska, Kasia; Woodward, Kimberly B; Sevin, Carla M; Hamilton, Robert G; Kolls, Jay K; Peebles, R Stokes

    2015-10-01

    Women have an increased prevalence of severe asthma compared with men. IL-17A is associated with severe asthma and requires IL-23 receptor (IL-23R) signaling, which is negatively regulated by let-7f microRNA. We sought to Determine the mechanism by which 17β-estradiol (E2) and progesterone (P4) increase IL-17A production. IL-17A production was determined by using flow cytometry in TH17 cells from women (n = 14) and men (n = 15) with severe asthma. Cytokine levels were measured by using ELISA, and IL-23R and let-7f expression was measured by using quantitative PCR in TH17-differentiated cells from healthy women (n = 13) and men (n = 14). In sham-operated or ovariectomized female mice, 17β-E2, P4, 17β-E2+P4, or vehicle pellets were administered for 3 weeks before ex vivo TH17 cell differentiation. Airway neutrophil infiltration and CXCL1 (KC) expression were also determined in ovalbumin (OVA)-challenged wild-type female recipient mice with an adoptive transfer of OVA-specific TH17 cells from female and male mice. In patients with severe asthma and healthy control subjects, IL-17A production was increased in TH17 cells from women compared with men. IL-23R expression was increased and let-7f expression was decreased in TH17-differentiated cells from women compared with men. In ovariectomized mice IL-17A and IL-23R expression was increased and Let-7f expression was decreased in TH17 cells from mice administered 17β-E2+P4 compared with those administered vehicle. Furthermore, transfer of female OVA-specific TH17 cells increased acute neutrophil infiltration in the lungs of OVA-challenged recipient mice compared with transfer of male OVA-specific TH17 cells. 17β-E2+P4 increased IL-17A production from TH17 cells, providing a potential mechanism for the increased prevalence of severe asthma in women compared with men. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Optimal Signal Quality Index for Photoplethysmogram Signals

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2016-09-01

    Full Text Available A photoplethysmogram (PPG is a noninvasive circulatory signal related to the pulsatile volume of blood in tissue and is typically collected by pulse oximeters. PPG signals collected via mobile devices are prone to artifacts that negatively impact measurement accuracy, which can lead to a significant number of misleading diagnoses. Given the rapidly increased use of mobile devices to collect PPG signals, developing an optimal signal quality index (SQI is essential to classify the signal quality from these devices. Eight SQIs were developed and tested based on: perfusion, kurtosis, skewness, relative power, non-stationarity, zero crossing, entropy, and the matching of systolic wave detectors. Two independent annotators annotated all PPG data (106 recordings, 60 s each and a third expert conducted the adjudication of differences. The independent annotators labeled each PPG signal with one of the following labels: excellent, acceptable or unfit for diagnosis. All indices were compared using Mahalanobis distance, linear discriminant analysis, quadratic discriminant analysis, and support vector machine with leave-one-out cross-validation. The skewness index outperformed the other seven indices in differentiating between excellent PPG and acceptable, acceptable combined with unfit, and unfit recordings, with overall F 1 scores of 86.0%, 87.2%, and 79.1%, respectively.

  9. Optimal Signal Quality Index for Photoplethysmogram Signals.

    Science.gov (United States)

    Elgendi, Mohamed

    2016-09-22

    A photoplethysmogram (PPG) is a noninvasive circulatory signal related to the pulsatile volume of blood in tissue and is typically collected by pulse oximeters. PPG signals collected via mobile devices are prone to artifacts that negatively impact measurement accuracy, which can lead to a significant number of misleading diagnoses. Given the rapidly increased use of mobile devices to collect PPG signals, developing an optimal signal quality index (SQI) is essential to classify the signal quality from these devices. Eight SQIs were developed and tested based on: perfusion, kurtosis, skewness, relative power, non-stationarity, zero crossing, entropy, and the matching of systolic wave detectors. Two independent annotators annotated all PPG data (106 recordings, 60 s each) and a third expert conducted the adjudication of differences. The independent annotators labeled each PPG signal with one of the following labels: excellent, acceptable or unfit for diagnosis. All indices were compared using Mahalanobis distance, linear discriminant analysis, quadratic discriminant analysis, and support vector machine with leave-one-out cross-validation. The skewness index outperformed the other seven indices in differentiating between excellent PPG and acceptable, acceptable combined with unfit, and unfit recordings, with overall F 1 scores of 86.0%, 87.2%, and 79.1%, respectively.

  10. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  11. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    Science.gov (United States)

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  12. Source of seismic signals

    Energy Technology Data Exchange (ETDEWEB)

    Frankovskii, B.A.; Khor' yakov, K.A.

    1980-08-30

    Patented is a source of seismic signals consisting of a shock generator with a basic low-voltage and auxillary high-voltage stator coils, a capacitive transformer and control switches. To increase the amplitude of signal excitation a condensor battery and auxillary commutator are introduced into the device, which are connected in parallel and serially into the circuit of the main low-voltage stator coil.

  13. Signal Processing

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Signal processing techniques, extensively used nowadays to maximize the performance of audio and video equipment, have been a key part in the design of hardware and software for high energy physics detectors since pioneering applications in the UA1 experiment at CERN in 1979

  14. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm.

    Science.gov (United States)

    Yeap, Wan-Chin; Lee, Fong-Chin; Shabari Shan, Dilip Kumar; Musa, Hamidah; Appleton, David Ross; Kulaveerasingam, Harikrishna

    2017-07-01

    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Increased platelet count and reticulated platelets in recently symptomatic versus asymptomatic carotid artery stenosis and in cerebral microembolic signal-negative patient subgroups: results from the HaEmostasis In carotid STenosis (HEIST) study.

    Science.gov (United States)

    Murphy, S J X; Lim, S T; Kinsella, J A; Murphy, D; Enright, H M; McCabe, Dominick J H

    2018-02-23

    The pathophysiological mechanisms responsible for the disparity in stroke risk between asymptomatic and symptomatic carotid stenosis patients are not fully understood. The functionally important reticulated platelet fraction and reticulocytes could play a role. We performed a prospective, multi-centre, observational analytical study comparing full blood count parameters and platelet production/turnover/activation markers in patients with asymptomatic versus recently symptomatic moderate (≥ 50-69%) or severe (≥ 70-99%) carotid stenosis. Data from 34 asymptomatic patients were compared with 43 symptomatic patients in the 'early phase' (≤ 4 weeks) and 37 of these patients in the 'late phase' (≥ 3 months) after TIA/ischaemic stroke. Reticulated platelets were quantified by whole blood flow cytometry and reticulated platelets and red cell reticulocytes by 'automated assays' (Sysmex XE-2100™). Bilateral simultaneous transcranial Doppler ultrasound monitoring classified patients as micro-embolic signal (MES)+ve or MES-ve. Mean platelet count was higher in early (216 × 10 9 /L; P = 0.04) and late symptomatic (219 × 10 9 /L; P = 0.044) than asymptomatic patients (194 × 10 9 /L). Mean platelet volume was higher in early symptomatic than asymptomatic patients (10.8 vs. 10.45 fl; P = 0.045). Automated assays revealed higher % reticulated platelet fractions in early (5.78%; P < 0.001) and late symptomatic (5.11%; P = 0.01) than asymptomatic patients (3.48%). Red cell reticulocyte counts were lower in early (0.92%; P = 0.035) and late symptomatic (0.93%; P = 0.036) than asymptomatic patients (1.07%). The automated % reticulated platelet fraction was also higher in early symptomatic than asymptomatic MES-ve patients (5.7 vs. 3.55%; P = 0.001). The combination of increased platelet counts and a shift towards production of an increased population of larger, young, reticulated platelets could contribute to a higher risk of first or recurrent

  16. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling

    Directory of Open Access Journals (Sweden)

    Po-Shuen Lin

    2017-05-01

    Conclusion: These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling.

  17. Integrin Signalling

    OpenAIRE

    Schelfaut, Roselien

    2005-01-01

    Integrins are receptors presented on most cells. By binding ligand they can generate signalling pathways inside the cell. Those pathways are a linkage to proteins in the cytosol. It is known that tumor cells can survive and proliferate in the absence of a solid support while normal cells need to be bound to ligand. To understand why tumour cells act that way, we first have to know how ligand-binding to integrins affect the cell. This research field includes studies on activation of proteins b...

  18. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  19. Signal processing in microdosimetry

    International Nuclear Information System (INIS)

    Arbel, A.

    1984-01-01

    Signals occurring in microdosimetric measurements cover a dynamic range of 100 dB at a counting rate which normally stays below 10 4 but could increase significantly in case of an accident. The need for high resolution at low energies, non-linear signal processing to accommodate the specified dynamic range, easy calibration and thermal stability are conflicting requirements which pose formidable design problems. These problems are reviewed, and a practical approach to their solution is given employing a single processing channel. (author)

  20. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  1. Multimodal signalling in estrildid finches

    DEFF Research Database (Denmark)

    Gomes, A. C. R.; Funghi, C.; Soma, M.

    2017-01-01

    Sexual traits (e.g. visual ornaments, acoustic signals, courtship behaviour) are often displayed together as multimodal signals. Some hypotheses predict joint evolution of different sexual signals (e.g. to increase the efficiency of communication) or that different signals trade off with each other...... (e.g. due to limited resources). Alternatively, multiple signals may evolve independently for different functions, or to communicate different information (multiple message hypothesis). We evaluated these hypotheses with a comparative study in the family Estrildidae, one of the largest songbird...... compromise, but generally courtship dance also evolved independently from other signals. Instead of correlated evolution, we found that song, dance and colour are each related to different socio-ecological traits. Song complexity evolved together with ecological generalism, song performance with investment...

  2. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation

    Science.gov (United States)

    Palová-Jelínková, Lenka; Dáňová, Klára; Drašarová, Hana; Dvořák, Miloš; Funda, David P.; Fundová, Petra; Kotrbová-Kozak, Anna; Černá, Marie; Kamanová, Jana; Martin, Stefan F.; Freudenberg, Marina; Tučková, Ludmila

    2013-01-01

    Celiac disease (CD) is a gluten-responsive, chronic inflammatory enteropathy. IL-1 cytokine family members IL-1β and IL-18 have been associated with the inflammatory conditions in CD patients. However, the mechanisms of IL-1 molecule activation in CD have not yet been elucidated. We show in this study that peripheral blood mononuclear cells (PBMC) and monocytes from celiac patients responded to pepsin digest of wheat gliadin fraction (PDWGF) by a robust secretion of IL-1β and IL-1α and a slightly elevated production of IL-18. The analysis of the upstream mechanisms underlying PDWGF-induced IL-1β production in celiac PBMC show that PDWGF-induced de novo pro-IL-1β synthesis, followed by a caspase-1 dependent processing and the secretion of mature IL-1β. This was promoted by K+ efflux and oxidative stress, and was independent of P2X7 receptor signaling. The PDWGF-induced IL-1β release was dependent on Nod-like receptor family containing pyrin domain 3 (NLRP3) and apoptosis-associated speck like protein (ASC) as shown by stimulation of bone marrow derived dendritic cells (BMDC) from NLRP3−/− and ASC−/− knockout mice. Moreover, treatment of human PBMC as well as MyD88−/− and Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)−/− BMDC illustrated that prior to the activation of caspase-1, the PDWGF-triggered signal constitutes the activation of the MyD88/TRIF/MAPK/NF-κB pathway. Moreover, our results indicate that the combined action of TLR2 and TLR4 may be required for optimal induction of IL-1β in response to PDWGF. Thus, innate immune pathways, such as TLR2/4/MyD88/TRIF/MAPK/NF-κB and an NLRP3 inflammasome activation are involved in wheat proteins signaling and may play an important role in the pathogenesis of CD. PMID:23658628

  3. PKD signaling and pancreatitis

    Science.gov (United States)

    Yuan, Jingzhen; Pandol, Stephen J.

    2016-01-01

    Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861

  4. Calcium signaling in liver.

    Science.gov (United States)

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  5. Signal anomaly detection and characterization

    International Nuclear Information System (INIS)

    Morgenstern, V.M.; Upadhyaya, B.R.; Gloeckler, O.

    1988-08-01

    As part of a comprehensive signal validation system, we have developed a signal anomaly detector, without specifically establishing the cause of the anomaly. A signal recorded from process instrumentation is said to have an anomaly, if during steady-state operation, the deviation in the level of the signal, its root-mean-square (RMS) value, or its statistical distribution changes by a preset value. This deviation could be an unacceptable increase or a decrease in the quantity being monitored. An anomaly in a signal may be characterized by wideband or single-frequency noise, bias error, pulse-type error, nonsymmetric behavior, or a change in the signal bandwidth. Various signatures can be easily computed from data samples and compared against specified threshold values. We want to point out that in real processes, pulses can appear with different time widths, and at different rates of change of the signal. Thus, in characterizing an anomaly as a pulse-type, the fastest pulse width is constrained by the signal sampling interval. For example, if a signal is sampled at 100 Hz, we will not be able to detect pulses occurring at kHz rates. Discussion with utility and Combustion Engineering personnel indicated that it is not practical to detect pulses having a narrow time width. 9 refs., 11 figs., 8 tabs

  6. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    Science.gov (United States)

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  7. NMR signal transducer

    International Nuclear Information System (INIS)

    Kucheryaev, A.G.; Oliferchuk, N.L.

    1975-01-01

    A signal transducer of nuclear magnetic resonance for simultaneously measuring frequency and intensitivity of two various isotope signals, which are in one specimen is described. The transducer represents radiofrequency circuit with two resonance frequences, which is common for two autodyne generators. To decrease measuring time and to increase recording diagram stability the radiofrequency circuit has LC netork, in the inductivity of which investigated specimen is located; a circuit variable capacity is connected in parallel with one of the autodyne generators. Besides the radiofrequency circuit has an inductance coil in series with a standard specimen inside as well as a variable capacitor connected in parallel with the second autodyne generator. An amplitude of oscillation of each resonance frequency is controlled and adjusted separately. The transducer described can be used for the measurement of a nuclei concentration, isotope concentration and for the spin determination

  8. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  9. Smog signals

    International Nuclear Information System (INIS)

    Fick, S.; Shilts, E.

    2008-01-01

    Nitrogen dioxide (NO 2 ) gas is created when fossil fuels are burned. Hot spots of NO 2 pollution in the troposphere have been identified by researchers at the Royal Netherlands Meteorological Institute. In addition to traffic, the biggest emitters of NO 2 include power plants, heavy industry and oil refineries. The City of Shanghai in China ranks with Los Angeles and Mexico City as the urban areas with the highest NO 2 concentrations in the world. NO 2 combines with particles in the air to create a smog that hangs over larger cities in the summer and plays a role in the production of ground-level ozone, both of which cause a variety of respiratory problems. According to the World Health Organization, such air pollution reduces the life of the average European by 8.6 months. This article included a map indicating NO 2 concentrations around the world. The high levels at Fort McMurray, Alberta can be attributed to the NO 2 emitted by oil sands plants. Individual power plants in Chandrapur and Ramagundam in India and oil refineries around the Persian Gulf also revealed high levels, as did the Highveld area outside of Johannesburg in South Africa, where a number of power plants sit on a plateau. At high altitude, NO 2 lingers longer in the air. In the past decade in Europe and eastern North America, cleaner technology in cars and power plants has led to declines in NO 2 in those regions. However, huge increases in emissions in East Asia mean the air will remain smoggy. 1 fig

  10. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  11. Signaling equilibria in sensorimotor interactions.

    Science.gov (United States)

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  13. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B

    1985-01-01

    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  14. Nurse-led implementation of an insulin-infusion protocol in a general intensive care unit: improved glycaemic control with increased costs and risk of hypoglycaemia signals need for algorithm revision

    Directory of Open Access Journals (Sweden)

    Bull Eva M

    2008-01-01

    Full Text Available Abstract Background Strict glycaemic control (SGC has become a contentious issue in modern intensive care. Physicians and nurses are concerned about the increased workload due to SGC as well as causing harm through hypoglycaemia. The objective of our study was to evaluate our existing degree of glycaemic control, and to implement SGC safely in our ICU through a nurse-led implementation of an algorithm for intensive insulin-therapy. Methods The study took place in the adult general intensive care unit (11 beds of a 44-bed department of intensive care at a tertiary care university hospital. All patients admitted during the 32 months of the study were enrolled. We retrospectively analysed all arterial blood glucose (BG results from samples that were obtained over a period of 20 months prior to the implementation of SGC. We then introduced an algorithm for intensive insulin therapy; aiming for arterial blood-glucose at 4.4 – 6.1 mmol/L. Doctors and nurses were trained in the principles and potential benefits and risks of SGC. Consecutive statistical analyses of blood samples over a period of 12 months were used to assess performance, provide feedback and uncover incidences of hypoglycaemia. Results Median BG level was 6.6 mmol/L (interquartile range 5.6 to 7.7 mmol/L during the period prior to implementation of SGC (494 patients, and fell to 5.9 (IQR 5.1 to 7.0 mmol/L following introduction of the new algorithm (448 patients. The percentage of BG samples > 8 mmol/L was reduced from 19.2 % to 13.1 %. Before implementation of SGC, 33 % of samples were between 4.4 to 6.1 mmol/L and 12 patients (2.4 % had one or more episodes of severe hypoglycaemia ( Conclusion The retrospective part of the study indicated ample room for improvement. Through the implementation of SGC the fraction of samples within the new target range increased from 33% to 45.8%. There was also a significant increase in severe hypoglycaemic episodes. There continues to be potential

  15. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-01-01

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways

  16. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Sung-Ho [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Lim, Shin-Saeng [School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Kwon, Jungkee [College of Veterinary Medicine, Chonbuk National University, Jeonju (Korea, Republic of); Hwang, Jae-Won; Bae, Cheol-Hyeon [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Seo, Young-Kwon [Research Institute of Biotechnology, Dongguk University, Seoul (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  17. Proinflammatory Cytokines IL-6 and TNF-α Increased Telomerase Activity through NF-κB/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Seyung S. Chung

    2017-01-01

    Full Text Available There are increasing evidences of proinflammatory cytokine involvement in cancer development. Here, we found that two cytokines, IL-6 and TNF-α, activated colorectal cancer cells to be more invasive and stem-like. Combined treatment of IL-6 and TNF-α phosphorylated transcription factors STAT3 in a synergistic manner. STAT3, STAT1, and NF-κB physically interacted upon the cytokine stimulation. STAT3 was bound to the promoter region of human telomerase reverse transcriptase (hTERT. IL-6 and TNF-α stimulation further enhanced STAT3 binding affinity. Stem cell marker Oct-4 was upregulated in colorectal cancer cells upon IL-6 and TNF-α stimulation. Withaferin A, an anti-inflammatory steroidal lactone, inhibited the IL-6- and TNF-α-induced cancer cell invasion and decreased colonosphere formation. Notably, withaferin A inhibited STAT3 phosphorylation and abolished the STAT3, STAT1, and NF-κB interactions. Oct-4 expression was also downregulated by withaferin A inhibition. The binding of STAT3 to the hTERT promoter region and telomerase activity showed reduction with withaferin A treatments. Proinflammatory cytokine-induced cancer cell invasiveness is mediated by a STAT3-regulated mechanism in colorectal cancer cells. Our data suggest that withaferin A could be a promising anticancer agent that effectively inhibits the progression of colorectal cancer.

  18. Price increase

    CERN Multimedia

    2006-01-01

    Please take note that after five years of stable prices at Restaurant No 1 a price increase will come into force on 1st January 2006. This increase has been agreed after discussions between the CSR (Comité de Surveillance des Restaurants) and the catering company Novae and will reflect the inflation rate of the last few years. In addition, a new children's menu will be introduced, as well as 'Max Havelaar' fair-trade coffee at a price of 1.70 CHF.

  19. Price increase

    CERN Multimedia

    2005-01-01

    Please take note that after five years of stable prices at Restaurant No 1 a price increase will come into force on 1st January 2006. This increase has been agreed after discussions between the CSR (Comité de Surveillance des Restaurants) and the catering company Novae and will reflect the inflation rate of the last few years. In addition, a new children's menu will be introduced as well as 'Max Havelaar' fair-trade coffee at a price of 1.70 CHF.

  20. Retroactive signaling in short signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jacques-Alexandre Sepulchre

    Full Text Available In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.

  1. Molecular Evidence of Increased Resistance to Anti-Folate Drugs in Plasmodium falciparum in North-East India: A Signal for Potential Failure of Artemisinin Plus Sulphadoxine-Pyrimethamine Combination Therapy

    Science.gov (United States)

    Mohapatra, Pradyumna Kishore; Sarma, Devojit Kumar; Prakash, Anil; Bora, Khukumoni; Ahmed, Md. Atique; Sarma, Bibhas; Goswami, Basanta Kumar; Bhattacharyya, Dibya Ranjan; Mahanta, Jagadish

    2014-01-01

    North-east India, being a corridor to South-east Asia, is believed to play an important role in transmitting drug resistant Plasmodium falciparum malaria to India and South Asia. North-east India was the first place in India to record the emergence of drug resistance to chloroquine as well as sulphadoxine/pyrimethamine. Presently chloroquine resistance is widespread all over the North-east India and resistance to other anti-malarials is increasing. In this study both in vivo therapeutic efficacy and molecular assays were used to screen the spectrum of drug resistance to chloroquine and sulphadoxine/pyrimethamine in the circulating P. falciparum strains. A total of 220 P. falciparum positives subjects were enrolled in the study for therapeutic assessment of chloroquine and sulphadoxine/pyrimethamine and assessment of point mutations conferring resistances to these drugs were carried out by genotyping the isolates following standard methods. Overall clinical failures in sulphadoxine/pyrimethamine and chloroquine were found 12.6 and 69.5% respectively, while overall treatment failures recorded were 13.7 and 81.5% in the two arms. Nearly all (99.0%) the isolates had mutant pfcrt genotype (76T), while 68% had mutant pfmdr-1 genotype (86Y). Mutation in dhps 437 codon was the most prevalent one while dhfr codon 108 showed 100% mutation. A total of 23 unique haplotypes at the dhps locus and 7 at dhfr locus were found while dhps-dhfr combined loci revealed 49 unique haplotypes. Prevalence of double, triple and quadruple mutations were common while 1 haplotype was found with all five mutated codons (F/AGEGS/T) at dhps locus. Detection of quadruple mutants (51I/59R/108N/164L) in the present study, earlier recorded from Car Nicobar Island, India only, indicates the presence of high levels of resistance to sulphadoxine/pyrimethamine in north-east India. Associations between resistant haplotypes and the clinical outcomes and emerging resistance in sulphadoxine/pyrimethamine in

  2. Signal trend identification with fuzzy methods

    International Nuclear Information System (INIS)

    Reifman, J.; Tsoukalas, L. H.; Wang, X.; Wei, T. Y. C.

    1999-01-01

    A fuzzy-logic-based methodology for on-line signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of on-line signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one

  3. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Increased GABAB receptor signaling in a rat model for schizophrenia

    NARCIS (Netherlands)

    Selten, M.M.; Meyer, F.; Ba, W.; Valles, A.; Maas, D.A.; Negwer, M.J.; Eijsink, V.D.; Vugt, R.W.M. van; Hulten, J.A; Bakel, N.H.M. van; Roosen, J.; Linden, R.J. van der; Schubert, D.; Verheij, M.M.M.; Nadif Kasri, N.; Martens, G.J.M.

    2016-01-01

    Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an

  5. Insulin Signaling and Heart Failure

    Science.gov (United States)

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  6. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Signal sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  8. Signal sciences workshop. Proceedings

    International Nuclear Information System (INIS)

    Candy, J.V.

    1997-01-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing

  9. ECG signal processing

    NARCIS (Netherlands)

    2009-01-01

    A system extracts an ECG signal from a composite signal (308) representing an electric measurement of a living subject. Identification means (304) identify a plurality of temporal segments (309) of the composite signal corresponding to a plurality of predetermined segments (202,204,206) of an ECG

  10. Second-hand signals

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten

    2014-01-01

    Studies of signaling theory have traditionally focused on the dyadic link between the sender and receiver of the signal. Within a science‐based perspective this framing has led scholars to investigate how patents and publications of firms function as signals. I explore another important type...... used by various agents in their search for and assessment of products and firms. I conclude by arguing how this second‐hand nature of signals goes beyond a simple dyadic focus on senders and receivers of signals, and thus elucidates the more complex interrelations of the various types of agents...

  11. Chansporter complexes in cell signaling.

    Science.gov (United States)

    Abbott, Geoffrey W

    2017-09-01

    Ion channels facilitate diffusion of ions across cell membranes for such diverse purposes as neuronal signaling, muscular contraction, and fluid homeostasis. Solute transporters often utilize ionic gradients to move aqueous solutes up their concentration gradient, also fulfilling a wide variety of tasks. Recently, an increasing number of ion channel-transporter ('chansporter') complexes have been discovered. Chansporter complex formation may overcome what could otherwise be considerable spatial barriers to rapid signal integration and feedback between channels and transporters, the ions and other substrates they transport, and environmental factors to which they must respond. Here, current knowledge in this field is summarized, covering both heterologous expression structure/function findings and potential mechanisms by which chansporter complexes fulfill contrasting roles in cell signaling in vivo. © 2017 Federation of European Biochemical Societies.

  12. Method of signal analysis

    International Nuclear Information System (INIS)

    Berthomier, Charles

    1975-01-01

    A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr

  13. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals

    Science.gov (United States)

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2018-01-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development. PMID:28581486

  14. Wnt signaling in cancer

    Science.gov (United States)

    Zhan, T; Rindtorff, N; Boutros, M

    2017-01-01

    Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches. PMID:27617575

  15. The genetic algorithm for a signal enhancement

    International Nuclear Information System (INIS)

    Karimova, L.; Kuadykov, E.; Makarenko, N.

    2004-01-01

    The paper is devoted to the problem of time series enhancement, which is based on the analysis of local regularity. The model construction using this analysis does not require any a priori assumption on the structure of the noise and the functional relationship between original signal and noise. The signal itself may be nowhere differentiable with rapidly varying local regularity, what is overcome with the help of the new technique of increasing the local Hoelder regularity of the signal under research. A new signal with prescribed regularity is constructed using the genetic algorithm. This approach is applied to enhancement of time series in the paleoclimatology, solar physics, dendrochronology, meteorology and hydrology

  16. The genetic algorithm for a signal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Karimova, L. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)]. E-mail: karimova@math.kz; Kuadykov, E. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan); Makarenko, N. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)

    2004-11-21

    The paper is devoted to the problem of time series enhancement, which is based on the analysis of local regularity. The model construction using this analysis does not require any a priori assumption on the structure of the noise and the functional relationship between original signal and noise. The signal itself may be nowhere differentiable with rapidly varying local regularity, what is overcome with the help of the new technique of increasing the local Hoelder regularity of the signal under research. A new signal with prescribed regularity is constructed using the genetic algorithm. This approach is applied to enhancement of time series in the paleoclimatology, solar physics, dendrochronology, meteorology and hydrology.

  17. On-line signal trend identification

    International Nuclear Information System (INIS)

    Tambouratzis, T.; Antonopoulos-Domis, M.

    2004-01-01

    An artificial neural network, based on the self-organizing map, is proposed for on-line signal trend identification. Trends are categorized at each incoming signal as steady-state, increasing and decreasing, while they are further classified according to characteristics such signal shape and rate of change. Tests with model-generated signals illustrate the ability of the self-organizing map to accurately and reliably perform on-line trend identification in terms of both detection and classification. The proposed methodology has been found robust to the presence of white noise

  18. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  19. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  20. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  1. Nichtkontinuierliche (zeitdiskrete) Signale

    Science.gov (United States)

    Plaßmann, Wilfried

    Zeitdiskrete Signale werden häufig aus zeitkontinuierlichen Signalen durch Abtastung erzeugt. Dass beide Signale gleichwertig sind, zeigt das Abtasttheorem (Kap. 116) von Shannon, sofern die Bedingung nach (116.2), f_{ab}≈(2{,}2 {\\ldots} 4)\\cdot fg) eingehalten wird. Digitale Signale haben Vorteile: Einfache Speicherung, Weiterverarbeitung in Rechnern, wenig störanfällige Übertragung. Für die Bearbeitung dieser Signale dienen die im Kapitel dargestellten Hilfsmittel: Diskrete Fouriertransformation; Schnelle Fouriertransformation; z-Transformation: Darstellung, Sätze zur z-Transformation, Korrespondenzen zu Zeitfunktionen, Beispiele.

  2. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  3. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  4. Digital signal processing

    CERN Document Server

    O'Shea, Peter; Hussain, Zahir M

    2011-01-01

    In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers sel

  5. Selection-Mutation Dynamics of Signaling Games

    Directory of Open Access Journals (Sweden)

    Josef Hofbauer

    2015-01-01

    Full Text Available We study the structure of the rest points of signaling games and their dynamic behavior under selection-mutation dynamics by taking the case of three signals as our canonical example. Many rest points of the replicator dynamics of signaling games are not isolated and, therefore, not robust under perturbations. However, some of them attract open sets of initial conditions. We prove the existence of certain rest points of the selection-mutation dynamics close to Nash equilibria of the signaling game and show that all but the perturbed rest points close to strict Nash equilibria are dynamically unstable. This is an important result for the evolution of signaling behavior, since it shows that the second-order forces that are governed by mutation can increase the chances of successful signaling.

  6. β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4

    DEFF Research Database (Denmark)

    Funa, Nina Sofi Ayumi; Schachter, Karen; Lerdrup, Mads

    2015-01-01

    Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector b-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we...... specification. This study provides mechanistic insight into how Wnt signaling controls early cell lineage decisions....

  7. Drought Signaling in Plants

    Indian Academy of Sciences (India)

    depending upon the source and nature of signaling: (i) hormone signal, (ii) .... plants to regulate the rate of transpiration through minor structural .... cell has to keep spending energy (in the form of A TP) to maintain a .... enzymes and proteins in the regulation of cellular metabolism can be determined by either inactivating.

  8. SignalR blueprints

    CERN Document Server

    Ingebrigtsen, Einar

    2015-01-01

    This book is designed for software developers, primarily those with knowledge of C#, .NET, and JavaScript. Good knowledge and understanding of SignalR is assumed to allow efficient programming of core elements and applications in SignalR.

  9. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  10. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  11. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  12. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  13. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  14. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  15. Adaptive signal processor

    Energy Technology Data Exchange (ETDEWEB)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 ..mu..sec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed.

  16. Adaptive signal processor

    International Nuclear Information System (INIS)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  17. Microphone detected ionacoustic signal from metals

    International Nuclear Information System (INIS)

    Dioszeghy, T.; Szoekefalvi-Nagy, Z.; Biro, T.

    1986-12-01

    An experimental system for studying the radiation-induced acoustic signal generated by a modulated 2 MeV He + ion beam in metals is described. For detection, a closed cell on the rear side of the copper or aluminium sample, a half-inch condenser microphone, and a lock-in amplifier were employed. The signal was found to be proportional to beam current and particle energy, and inversely proportional to cell length. A decrease of the signal magnitude and an increase of the phase delay with increasing modulation frequency and sample thickness were also observed. (author)

  18. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  19. VEGF Signaling in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Joon W. Shim

    2018-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is a potent growth factor playing diverse roles in vasculogenesis and angiogenesis. In the brain, VEGF mediates angiogenesis, neural migration and neuroprotection. As a permeability factor, excessive VEGF disrupts intracellular barriers, increases leakage of the choroid plexus endothelia, evokes edema, and activates the inflammatory pathway. Recently, we discovered that a heparin binding epidermal growth factor like growth factor (HB-EGF—a class of EGF receptor (EGFR family ligands—contributes to the development of hydrocephalus with subarachnoid hemorrhage through activation of VEGF signaling. The objective of this review is to entail a recent update on causes of death due to neurological disorders involving cerebrovascular and age-related neurological conditions and to understand the mechanism by which angiogenesis-dependent pathological events can be treated with VEGF antagonisms. The Global Burden of Disease study indicates that cancer and cardiovascular disease including ischemic and hemorrhagic stroke are two leading causes of death worldwide. The literature suggests that VEGF signaling in ischemic brains highlights the importance of concentration, timing, and alternate route of modulating VEGF signaling pathway. Molecular targets distinguishing two distinct pathways of VEGF signaling may provide novel therapies for the treatment of neurological disorders and for maintaining lower mortality due to these conditions.

  20. Orexin/Hypocretin Signaling.

    Science.gov (United States)

    Kukkonen, Jyrki P

    Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX 1 and OX 2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.

  1. Signaling and the Education Premium

    OpenAIRE

    Gregory Kurtzon

    2004-01-01

    A large portion of the rise in the education premium can be explained by a signaling theory of education which predicts that in the future, increases in the education level of the workforce will actually cause the education premium to rise, simply because different workers are being labeled as “highly educated†. This prediction is supported by past behavior of the high school education premium. It runs counter to the view that increases in the relative supply of high education workers wil...

  2. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  3. SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory

    OpenAIRE

    Koukoumidis, Emmanouil; Peh, Li-Shiuan; Martonosi, Margaret

    2011-01-01

    While traffic signals are necessary to safely control competing flows of traffic, they inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces traffic flow and causes traffic jams. These side effects can be alleviated by providing drivers and their onboard computational devices (e.g., vehicle computer, smartphone) with information about the schedule of the traffic signals ahead. Based on when the signal ahead will turn green, drivers can then adjust speed so...

  4. Underwater Acoustic Signal Processing

    National Research Council Canada - National Science Library

    Culver, Richard L; Sibul, Leon H; Bradley, David L

    2007-01-01

    .... The research is directed toward passive sonar detection and classification, continuous wave (CW) and broadband signals, shallow water operation, both platform-mounted and distributed systems, and frequencies below 1 kHz...

  5. Signals and systems

    CERN Document Server

    Rao, K Deergha

    2018-01-01

    This textbook covers the fundamental theories of signals and systems analysis, while incorporating recent developments from integrated circuits technology into its examples. Starting with basic definitions in signal theory, the text explains the properties of continuous-time and discrete-time systems and their representation by differential equations and state space. From those tools, explanations for the processes of Fourier analysis, the Laplace transform, and the z-Transform provide new ways of experimenting with different kinds of time systems. The text also covers the separate classes of analog filters and their uses in signal processing applications. Intended for undergraduate electrical engineering students, chapter sections include exercise for review and practice for the systems concepts of each chapter. Along with exercises, the text includes MATLAB-based examples to allow readers to experiment with signals and systems code on their own. An online repository of the MATLAB code from this textbook can...

  6. Topological signal processing

    CERN Document Server

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  7. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  8. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  9. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  10. Foundations of signal processing

    CERN Document Server

    Vetterli, Martin; Goyal, Vivek K

    2014-01-01

    This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression. The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localisation, the limitations of uncertainty and computational costs. Standard engineering notation is used throughout, making mathematical examples easy for students to follow, understand and apply. It includes over 150 homework problems and over 180 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, ...

  11. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 might induce a general stress response, but it does not have...... the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers...... and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  12. Multivariate Analysis for the Processing of Signals

    Directory of Open Access Journals (Sweden)

    Beattie J.R.

    2014-01-01

    Full Text Available Real-world experiments are becoming increasingly more complex, needing techniques capable of tracking this complexity. Signal based measurements are often used to capture this complexity, where a signal is a record of a sample’s response to a parameter (e.g. time, displacement, voltage, wavelength that is varied over a range of values. In signals the responses at each value of the varied parameter are related to each other, depending on the composition or state sample being measured. Since signals contain multiple information points, they have rich information content but are generally complex to comprehend. Multivariate Analysis (MA has profoundly transformed their analysis by allowing gross simplification of the tangled web of variation. In addition MA has also provided the advantage of being much more robust to the influence of noise than univariate methods of analysis. In recent years, there has been a growing awareness that the nature of the multivariate methods allows exploitation of its benefits for purposes other than data analysis, such as pre-processing of signals with the aim of eliminating irrelevant variations prior to analysis of the signal of interest. It has been shown that exploiting multivariate data reduction in an appropriate way can allow high fidelity denoising (removal of irreproducible non-signals, consistent and reproducible noise-insensitive correction of baseline distortions (removal of reproducible non-signals, accurate elimination of interfering signals (removal of reproducible but unwanted signals and the standardisation of signal amplitude fluctuations. At present, the field is relatively small but the possibilities for much wider application are considerable. Where signal properties are suitable for MA (such as the signal being stationary along the x-axis, these signal based corrections have the potential to be highly reproducible, and highly adaptable and are applicable in situations where the data is noisy or

  13. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  14. Electronic devices for analog signal processing

    CERN Document Server

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  15. Ras signaling in aging and metabolic regulation.

    Science.gov (United States)

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  16. ROS and ROS-Mediated Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Jixiang Zhang

    2016-01-01

    Full Text Available It has long been recognized that an increase of reactive oxygen species (ROS can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt, ion channels and transporters (Ca2+ and mPTP, and modifying protein kinase and Ubiquitination/Proteasome System.

  17. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  18. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  19. Low order anti-aliasing filters for sparse signals in embedded ...

    Indian Academy of Sciences (India)

    The computation load increases only linearly with the number of signals, N since the ... We have considered, for simulation, the simple case of acquiring two signals .... Oppenheim A V and Schafer R W 1989 Discrete-time signal processing.

  20. Calcium signalling silencing in atrial fibrillation.

    Science.gov (United States)

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  2. Cellular signalling properties in microcircuits

    DEFF Research Database (Denmark)

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties...

  3. Endocannabinoid signaling in reward and addiction

    Science.gov (United States)

    Parsons, Loren H.; Hurd, Yasmin L.

    2015-01-01

    Brain endocannabinoid signaling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated endocannabinoid signaling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired endocannabinoid signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states, and craving that propel addiction. Understanding the contributions of endocannabinoid disruptions to behavioral and physiological traits provides insight into the endocannabinoid influence on addiction vulnerability. PMID:26373473

  4. Signal integrity characterization techniques

    CERN Document Server

    Bogatin, Eric

    2009-01-01

    "Signal Integrity Characterization Techniques" addresses the gap between traditional digital and microwave curricula all while focusing on a practical and intuitive understanding of signal integrity effects within the data transmission channel. High-speed interconnects such as connectors, PCBs, cables, IC packages, and backplanes are critical elements of differential channels that must be designed using today's most powerful analysis and characterization tools.Both measurements and simulation must be done on the device under test, and both activities must yield data that correlates with each other. Most of this book focuses on real-world applications of signal integrity measurements - from backplane for design challenges to error correction techniques to jitter measurement technologies. The authors' approach wisely addresses some of these new high-speed technologies, and it also provides valuable insight into its future direction and will teach the reader valuable lessons on the industry.

  5. Quantum signaling game

    International Nuclear Information System (INIS)

    Frackiewicz, Piotr

    2014-01-01

    We present a quantum approach to a signaling game; a special kind of extensive game of incomplete information. Our model is based on quantum schemes for games in strategic form where players perform unitary operators on their own qubits of some fixed initial state and the payoff function is given by a measurement on the resulting final state. We show that the quantum game induced by our scheme coincides with a signaling game as a special case and outputs nonclassical results in general. As an example, we consider a quantum extension of the signaling game in which the chance move is a three-parameter unitary operator whereas the players' actions are equivalent to classical ones. In this case, we study the game in terms of Nash equilibria and refine the pure Nash equilibria adapting to the quantum game the notion of a weak perfect Bayesian equilibrium. (paper)

  6. Understanding signal integrity

    CERN Document Server

    Thierauf, Stephen C

    2010-01-01

    This unique book provides you with practical guidance on understanding and interpreting signal integrity (SI) performance to help you with your challenging circuit board design projects. You find high-level discussions of important SI concepts presented in a clear and easily accessible format, including question and answer sections and bulleted lists.This valuable resource features rules of thumb and simple equations to help you make estimates of critical signal integrity parameters without using circuit simulators of CAD (computer-aided design). The book is supported with over 120 illustratio

  7. Electronic signal conditioning

    CERN Document Server

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  8. TOR signalling in plants.

    Science.gov (United States)

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants. © 2015 Authors; published by Portland Press Limited.

  9. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  10. Television picture signal processing

    NARCIS (Netherlands)

    1998-01-01

    Field or frame memories are often used in television receivers for video signal processing functions, such as noise reduction and/or flicker reduction. Television receivers also have graphic features such as teletext, menu-driven control systems, multilingual subtitling, an electronic TV-Guide, etc.

  11. Signals: Applying Academic Analytics

    Science.gov (United States)

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  12. Communication Signals in Lizards.

    Science.gov (United States)

    Carpenter, Charles C.

    1983-01-01

    Discusses mechanisms and functional intent of visual communication signals in iguanid/agamid lizards. Demonstrated that lizards communicate with each other by using pushups and head nods and that each species does this in its own way, conveying different types of information. (JN)

  13. Modeling binaural signal detection

    NARCIS (Netherlands)

    Breebaart, D.J.

    2001-01-01

    With the advent of multimedia technology and powerful signal processing systems, audio processing and reproduction has gained renewed interest. Examples of products that have been developed are audio coding algorithms to efficiently store and transmit music and speech, or audio reproduction systems

  14. Quantum cloning and signaling

    International Nuclear Information System (INIS)

    Simon, C.; Weihs, G.; Zeilinger, A.

    1999-01-01

    We discuss the close connections between cloning of quantum states and superluminal signaling. We present an optimal universal cloning machine based on stimulated emission recently proposed by the authors. As an instructive example, we show how a scheme for superluminal communication based on this cloning machine fails. (Authors)

  15. "Utilizing" signal detection theory.

    Science.gov (United States)

    Lynn, Spencer K; Barrett, Lisa Feldman

    2014-09-01

    What do inferring what a person is thinking or feeling, judging a defendant's guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, for which different responses are appropriate) and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial, we show how incorporating the economic concept of utility allows signal detection theory to serve as a model of optimal decision making, going beyond its common use as an analytic method. This utility approach to signal detection theory clarifies otherwise enigmatic influences of perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (an inverse relationship between bias magnitude and sensitivity optimizes utility). A "utilized" signal detection theory offers the possibility of expanding the phenomena that can be understood within a decision-making framework. © The Author(s) 2014.

  16. Magnetoencephalography signals are influenced by skull defects.

    Science.gov (United States)

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  18. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  19. The newest digital signal processing

    International Nuclear Information System (INIS)

    Lee, Chae Uk

    2002-08-01

    This book deal with the newest digital signal processing, which contains introduction on conception of digital signal processing, constitution and purpose, signal and system such as signal, continuos signal, discrete signal and discrete system, I/O expression on impress response, convolution, mutual connection of system and frequency character,z transform of definition, range, application of z transform and relationship with laplace transform, Discrete fourier, Fast fourier transform on IDFT algorithm and FFT application, foundation of digital filter of notion, expression, types, frequency characteristic of digital filter and design order of filter, Design order of filter, Design of FIR digital filter, Design of IIR digital filter, Adaptive signal processing, Audio signal processing, video signal processing and application of digital signal processing.

  20. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Science.gov (United States)

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  1. Price signals in the power market

    International Nuclear Information System (INIS)

    2000-01-01

    Which price signals should be given to the players in the power market to promote a socio-economic power supply in the short term and the long term? In a model with perfect competition, without problems involving delivery quality, and with free scalable capacity in both transmission and production, price signals that reflect marginal losses and shortage of transmission capacity are all that is needed. Stepwise investments create a need for measures that are specific to the situation. Price signals reflecting delivery reliability are probably too weak today. Market power may create a need for greater transmission capacity, but gives no reason for new price signals. Tariffs that reduce installed capacity weakens delivery quality and increases the probability of market power

  2. Modularized TGFbeta-Smad Signaling Pathway

    Science.gov (United States)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  3. Variable reflectivity signal mirrors and signal response measurements

    International Nuclear Information System (INIS)

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  4. Variable reflectivity signal mirrors and signal response measurements

    CERN Document Server

    Vine, G D; McClelland, D E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  5. Signaling in large-scale neural networks

    DEFF Research Database (Denmark)

    Berg, Rune W; Hounsgaard, Jørn

    2009-01-01

    We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages of this m......We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages...... of this metabolically costly organization are analyzed by comparing with synaptically less intense networks driven by the intrinsic response properties of the network neurons....

  6. Lymphocyte signaling: beyond knockouts.

    Science.gov (United States)

    Saveliev, Alexander; Tybulewicz, Victor L J

    2009-04-01

    The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Although this gene 'knockout' approach is often informative, in many cases, the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to 'knock in' subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully based on structural and biophysical data.

  7. Sphingosine signaling and atherogenesis

    DEFF Research Database (Denmark)

    Xu, Cang-bao; Hansen-Schwartz, Jacob; Edvinsson, Lars

    2004-01-01

    Sphingosine-1-phosphate (S1P) has diverse biological functions acting inside cells as a second messenger to regulate cell proliferation and survival, and extracellularly, as a ligand for a group of G protein-coupled receptors (GPCRs) named the endothelial differentiation gene (EDG) family. Five...... closely related GPCRs of EDG family (EDG1, EDG3, EDG5, EDG6, and EDG8) have recently been identified as high-affinity S1P receptors. These receptors are coupled via Gi, Gq, G12/13, and Rho. The signaling pathways are linked to vascular cell migration, proliferation, apoptosis, intracellular Ca2......+ mobilization, and expression of adhesion molecules. The formation of an atherosclerotic lesion occurs through activation of cellular events that include monocyte adhesion to the endothelium and vascular smooth muscle cell (VSMC) migration and proliferation. Thus, S1P signaling may play an important role...

  8. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  9. Wnt signaling inhibition deprives small intestinal stem cells of clonogenic capacity

    Czech Academy of Sciences Publication Activity Database

    Janečková, Lucie; Fafílek, Bohumil; Krausová, Michaela; Horázná, Monika; Vojtěchová, Martina; Alberich-Jorda, Meritxell; Šloncová, Eva; Galušková, Kateřina; Sedláček, Radislav; Anděrová, Miroslava; Kořínek, Vladimír

    2016-01-01

    Roč. 54, č. 3 (2016), s. 101-114 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA14-33952S; GA ČR(CZ) GAP303/12/0855; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk LO1220; GA MŠk LK21307; GA MŠk(CZ) LM2011032; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 ; RVO:68378041 Keywords : b-catenin * Cre/loxP * gene targeting * gut * Wnt pathway * TCF/LEF transcription factors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.143, year: 2016

  10. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  11. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  12. Redox signaling during hypoxia in mammalian cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Smith

    2017-10-01

    Full Text Available Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS such as hydrogen peroxide (H2O2 occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(PH oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

  13. Intensity and directionality of bat echolocation signals

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Brinkløv, Signe; Surlykke, Annemarie

    2013-01-01

    will increase signal directionality in the field along with intensity thus increasing sonar range. During the last phase of prey pursuit, vespertilionid bats broaden their echolocation beam considerably, probably to counter evasive maneuvers of eared prey. We highlight how multiple call parameters (frequency......The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed "whispering" can emit calls with source levels up to 110 dB SPL at 10 cm......, duration, intensity, and directionality of echolocation signals) in unison define the search volume probed by bats and in turn how bats perceive their surroundings. Small changes to individual parameters can, in combination, drastically change the bat's perception, facilitating successful navigation...

  14. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  15. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  16. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  17. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  18. Phonocardiography Signal Processing

    CERN Document Server

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  19. Nichtperiodische zeitkontinuierliche Signale

    Science.gov (United States)

    Plaßmann, Wilfried

    Nichtperiodische Signale haben eine große Bedeutung für die Nachrichten- und Datenübertragung, weil Information nur in nichtdeterministischen Signalen enthalten ist (Teil "Nachrichtentechnik", Abschn. 92.4.1). Aber auch für die Energie- und Regelungstechnik sind sie von Interesse, weil sie entweder Ein- und Ausschaltvorgänge erfassen oder den Übergang von einem momentan stationären Zustand in einen neuen darstellen (Kurzschluss im Energieversorgungsnetz, Auftreten einer Störgröße im Regelsystem). Die Fourier- und die Laplacetransformation können bei nichtperiodischen zeitkontinuierlichen Signalen eingesetzt werden.

  20. Generation of earthquake signals

    International Nuclear Information System (INIS)

    Kjell, G.

    1994-01-01

    Seismic verification can be performed either as a full scale test on a shaker table or as numerical calculations. In both cases it is necessary to have an earthquake acceleration time history. This report describes generation of such time histories by filtering white noise. Analogue and digital filtering methods are compared. Different methods of predicting the response spectrum of a white noise signal filtered by a band-pass filter are discussed. Prediction of both the average response level and the statistical variation around this level are considered. Examples with both the IEEE 301 standard response spectrum and a ground spectrum suggested for Swedish nuclear power stations are included in the report

  1. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  2. A Serpentine Way to Signaling

    Indian Academy of Sciences (India)

    IAS Admin

    the cell. The receptor transfers the signal to intracellular proteins ... and molecular mechanisms of GPCR signaling and how this discovery impacts ..... stabilize GPCR–G-protein interaction and resolve dynamics of ... elucidation stages. Kobilka.

  3. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  4. Two-dimensional signal analysis

    CERN Document Server

    Garello, René

    2010-01-01

    This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

  5. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  6. Multidimensional signaling via wavelet packets

    Science.gov (United States)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  7. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  8. Reconstruction of ECG signals in presence of corruption.

    Science.gov (United States)

    Ganeshapillai, Gartheeban; Liu, Jessica F; Guttag, John

    2011-01-01

    We present an approach to identifying and reconstructing corrupted regions in a multi-parameter physiological signal. The method, which uses information in correlated signals, is specifically designed to preserve clinically significant aspects of the signals. We use template matching to jointly segment the multi-parameter signal, morphological dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template. In experiments carried out on the MIT-BIH Arrhythmia Database, a two-parameter database with many clinically significant arrhythmias, our method improved the classification accuracy of the beat type by more than 7 times on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 2.5 times.

  9. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  10. Fast digital recorders of signal shaping

    International Nuclear Information System (INIS)

    Meleshko, E.A.

    1997-01-01

    Methodology of fast digital registration and pulse signals through fast-action analog-to-digital converters is considered. Systems of digital recorders: sampling and storage devices and operational memory units are described. Main attention is paid to developing parallel analog-to-digital converters, making it possible to bring the conversion frequencies up to several gigahertzes are described. Parallel-sequential analog-to-digital converters, combining high action with increased accuracy are also considered. Concrete examples of designing universal and specialized digital signal recorders, applied in experimental physics, are presented. 44 refs., 12 figs

  11. Digital signal processing - growth of a technology

    International Nuclear Information System (INIS)

    Peek, J.B.H.

    1985-01-01

    The rapid development of microelectronics has led to an increasing extent in circuits and systems for digital signal processing. This happened first in professional applications, e.g. geophysics, astronomy and space flight, and now, with the Compact Disc player, these techniques have entered the consumer field. In the near future digital TV applications will undoubtedly follow. This article outlines a number of the developments behind the advancing 'digitization' of modern technology. The article also considers the main advantages and disadvantages of digital signal processing the main modules now used and some common applications. Particular attention is paid to medical applications. (Auth.)

  12. Signals and systems for dummies

    CERN Document Server

    Wickert, Mark

    2013-01-01

    Getting mixed signals in your signals and systems course? The concepts covered in a typical signals and systems course are often considered by engineering students to be some of the most difficult to master. Thankfully, Signals & Systems For Dummies is your intuitive guide to this tricky course, walking you step-by-step through some of the more complex theories and mathematical formulas in a way that is easy to understand. From Laplace Transforms to Fourier Analyses, Signals & Systems For Dummies explains in plain English the difficult concepts that can trip you up

  13. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  14. Multimodal signal variation in space and time : how important is matching a signal with its signaler?

    OpenAIRE

    Taylor, Ryan C.; Klein, Barrett; Stein, Joey; Ryan, Michael J.

    2011-01-01

    Multimodal signals (acoustic+visual) are known to be used by many anuran amphibians during courtship displays. The relative degree to which each signal component influences female mate choice, however, remains poorly understood. In this study we used a robotic frog with an inflating vocal sac and acoustic playbacks to document responses of female túngara frogs to unimodal signal components (acoustic and visual). We then tested female responses to a synchronous multimodal signal. Finally, we t...

  15. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    , and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.......The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...

  16. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  17. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  18. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  19. Wavelet analysis for nonstationary signals

    International Nuclear Information System (INIS)

    Penha, Rosani Maria Libardi da

    1999-01-01

    Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect

  20. Updating signal typing in voice: addition of type 4 signals.

    Science.gov (United States)

    Sprecher, Alicia; Olszewski, Aleksandra; Jiang, Jack J; Zhang, Yu

    2010-06-01

    The addition of a fourth type of voice to Titze's voice classification scheme is proposed. This fourth voice type is characterized by primarily stochastic noise behavior and is therefore unsuitable for both perturbation and correlation dimension analysis. Forty voice samples were classified into the proposed four types using narrowband spectrograms. Acoustic, perceptual, and correlation dimension analyses were completed for all voice samples. Perturbation measures tended to increase with voice type. Based on reliability cutoffs, the type 1 and type 2 voices were considered suitable for perturbation analysis. Measures of unreliability were higher for type 3 and 4 voices. Correlation dimension analyses increased significantly with signal type as indicated by a one-way analysis of variance. Notably, correlation dimension analysis could not quantify the type 4 voices. The proposed fourth voice type represents a subset of voices dominated by noise behavior. Current measures capable of evaluating type 4 voices provide only qualitative data (spectrograms, perceptual analysis, and an infinite correlation dimension). Type 4 voices are highly complex and the development of objective measures capable of analyzing these voices remains a topic of future investigation.

  1. ROS signalling – Specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian Max; Sweetlove, Lee J

    2011-01-01

    The production of reactive oxygen species (ROS) increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 may induce a general stress response, but it does...... messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. (This is a new project funded by FNU) References: Møller, I.M. & Sweetlove, L.J. 2010. ROS signalling – Specificity is required. Trends Plant Sci. 15: 370-374...... not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g., in chloroplasts or mitochondria. We here argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS...

  2. Acquirement and enhancement of remote speech signals

    Science.gov (United States)

    Lü, Tao; Guo, Jin; Zhang, He-yong; Yan, Chun-hui; Wang, Can-jin

    2017-07-01

    To address the challenges of non-cooperative and remote acoustic detection, an all-fiber laser Doppler vibrometer (LDV) is established. The all-fiber LDV system can offer the advantages of smaller size, lightweight design and robust structure, hence it is a better fit for remote speech detection. In order to improve the performance and the efficiency of LDV for long-range hearing, the speech enhancement technology based on optimally modified log-spectral amplitude (OM-LSA) algorithm is used. The experimental results show that the comprehensible speech signals within the range of 150 m can be obtained by the proposed LDV. The signal-to-noise ratio ( SNR) and mean opinion score ( MOS) of the LDV speech signal can be increased by 100% and 27%, respectively, by using the speech enhancement technology. This all-fiber LDV, which combines the speech enhancement technology, can meet the practical demand in engineering.

  3. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor.

    Science.gov (United States)

    Wu, Yao; Lai, Rebecca Y

    2017-09-19

    We report the first electrochemical cisplatin sensor fabricated with a thiolated and methylene blue (MB)-modified oligo-adenine (A)-guanine (G) DNA probe. Depending on the probe coverage, the sensor can behave as a signal-off or signal-on sensor. For the high-coverage sensor, formation of intrastrand Pt(II)-AG adducts rigidifies the oligo-AG probe, resulting in a concentration-dependent decrease in the MB signal. For the low-coverage sensor, the increase in probe-to-probe spacing enables binding of cisplatin via the intrastrand GNG motif (N = A), generating a bend in the probe which results in an increase in the MB current. Although both high-coverage signal-off and low-coverage signal-on sensors are capable of detecting cisplatin, the signal-on sensing mechanism is better suited for real time analysis of cisplatin. The low-coverage sensor has a lower limit of detection, wider optimal AC frequency range, and faster response time. It has high specificity for cisplatin and potentially other Pt(II) drugs and does not cross-react with satraplatin, a Pt(IV) prodrug. It is also selective enough to be employed directly in 50% saliva and 50% urine. This detection strategy may offer a new approach for sensitive and real time analysis of cisplatin in clinical samples.

  4. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  5. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  6. Seismic signals hard clipping overcoming

    Science.gov (United States)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  7. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  8. Pleiotrophin Signaling Through PTNR in Breast Cancer

    National Research Council Canada - National Science Library

    Powers, Ciaron

    2001-01-01

    ... of intracellular signaling cascades. The pleiotrophin signaling pathway is known to be important in angiogenesis and breast cancer growth, but the exact mechanisms of pleiotrophin signaling remain undefined...

  9. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  10. Surface light scattering: integrated technology and signal processing

    DEFF Research Database (Denmark)

    Lading, L.; Dam-Hansen, C.; Rasmussen, E.

    1997-01-01

    systems representing increasing levels of integration are considered. It is demonstrated that efficient signal and data processing can be achieved by evaluation of the statistics of the derivative of the instantaneous phase of the detector signal. (C) 1997 Optical Society of America....

  11. Analysis of signal acquisition in GPS receiver software

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-01-01

    Full Text Available This paper presents a critical analysis of the flow signal processing carried out in GPS receiver software, which served as a basis for a critical comparison of different signal processing architectures within the GPS receiver. It is possible to achieve Increased flexibility and reduction of GPS device commercial costs, including those of mobile devices, by using radio technology software (SDR, Software Defined Radio. The SDR application can be realized when certain hardware components in a GPS receiver are replaced. Signal processing in the SDR is implemented using a programmable DSP (Digital Signal Processing or FPGA (Field Programmable Gate Array circuit, which allows a simple change of digital signal processing algorithms and a simple change of the receiver parameters. The starting point of the research is the signal generated on the satellite the structure of which is shown in the paper. Based on the GPS signal structure, a receiver is realized with a task to extract an appropriate signal from the spectrum and detect it. Based on collected navigation data, the receiver calculates the position of the end user. The signal coming from the satellite may be at the carrier frequencies of L1 and L2. Since the SPS is used in the civil service, all the tests shown in the work were performed on the L1 signal. The signal coming to the receiver is generated in the spread spectrum technology and is situated below the level of noise. Such signals often interfere with signals from the environment which presents a difficulty for a receiver to perform proper detection and signal processing. Therefore, signal processing technology is continually being improved, aiming at more accurate and faster signal processing. All tests were carried out on a signal acquired from the satellite using the SE4110 input circuit used for filtering, amplification and signal selection. The samples of the received signal were forwarded to a computer for data post processing, i. e

  12. Digitally programmable signal generator

    International Nuclear Information System (INIS)

    Priatko, G.J.; Kaskey, J.A.

    1988-01-01

    A digitally programmable signal generator (DPSG) includes a first memory from which data is written into a second memory formed of n banks. Each bank includes four memories and a multiplexer, the banks being read once during each time frame, the read-out bits being multiplexed and fed out serially in synchronism with a plurality of clock pulses occuring during a time frame. The resulting serial bit streams may be fed in parallel to a digital-to-analog converter. The DPSG can be used in applications such as Atomic Vapor Laser Isotope Separation (AVLIS) to create an optimal match between the process laser's spectral profile and that of the vaporized material, optical telecommunications, non-optical telecommunication in the microwave and radio spectrum, radar, electronic countermeasures, high speed computer interconnects, local area networks, high definition video transport and the multiplexing of large quantities of slow digital memory into high speed data streams. This invention extends the operation of DPSGs into the GHz range. (author)

  13. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  14. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  15. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  16. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  17. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  18. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-12-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs. In this thesis, several methods for the extraction of respiratory process information from the ECG signal are presented. These methods allow an estimation of the lung volume and the lung pressure from the ECG signal. The potential benefit of this is to eliminate the corresponding sensors used to measure the respiration activity. A reduction of the number of sensors connected to patients will increase patients’ comfort and reduce the costs associated with healthcare. As a further result, the efficiency of diagnosing respirational disorders will increase since the respiration activity can be monitored with a common, widely available method. The developed methods can also improve the detection of respirational disorders that occur while patients are sleeping. Such disorders are commonly diagnosed in sleeping laboratories where the patients are connected to a number of different sensors. Any reduction of these sensors will result in a more natural sleeping environment for the patients and hence a higher sensitivity of the diagnosis.

  19. Pattern theory the stochastic analysis of real-world signals

    CERN Document Server

    Mumford, David

    2010-01-01

    Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis of new signals. This book treats the mathematical tools, the models themselves, and the computational algorithms for applying statistics to analyze six representative classes of signals of increasing complexity. The book covers patterns in text, sound

  20. Measurement of the contribution of neutrons to hadron calorimeter signals

    International Nuclear Information System (INIS)

    Akchurin, N.; Berntzon, L.; Cardini, A.; Ferrari, R.; Gaudio, G.; Hauptman, J.; Kim, H.; La Rotonda, L.; Livan, M.; Meoni, E.; Paar, H.; Penzo, A.; Pinci, D.; Policicchio, A.; Popescu, S.; Susinno, G.; Roh, Y.; Vandelli, W.; Wigmans, R.

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the dE/dx information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a time constant of ∼25ns. The relative contribution of neutrons to the signals increases with the distance from the shower axis. As expected, the neutrons do not contribute to the DREAM Cherenkov signals

  1. Streamlining digital signal processing a tricks of the trade guidebook

    CERN Document Server

    2012-01-01

    Streamlining Digital Signal Processing, Second Edition, presents recent advances in DSP that simplify or increase the computational speed of common signal processing operations and provides practical, real-world tips and tricks not covered in conventional DSP textbooks. It offers new implementations of digital filter design, spectrum analysis, signal generation, high-speed function approximation, and various other DSP functions. It provides:Great tips, tricks of the trade, secrets, practical shortcuts, and clever engineering solutions from seasoned signal processing professionalsAn assortment.

  2. Fundamentals of statistical signal processing

    CERN Document Server

    Kay, Steven M

    1993-01-01

    A unified presentation of parameter estimation for those involved in the design and implementation of statistical signal processing algorithms. Covers important approaches to obtaining an optimal estimator and analyzing its performance; and includes numerous examples as well as applications to real- world problems. MARKETS: For practicing engineers and scientists who design and analyze signal processing systems, i.e., to extract information from noisy signals — radar engineer, sonar engineer, geophysicist, oceanographer, biomedical engineer, communications engineer, economist, statistician, physicist, etc.

  3. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  4. Signal generation in gas detectors

    International Nuclear Information System (INIS)

    Stillman, A.

    1993-01-01

    This tutorial describes the generation of electrical signals in gas detectors. Ionization of the gas by the passage of charged particles generates these signals. Starting with the Bethe-Bloch equation, the treatment is a general introduction to the production of ion-pairs in gas devices. I continue with the characterization of the ionization as an electrical signal, and calculate the signal current in a simple example. Another example demonstrates the effect of space charge on the design of a detector. The AGS Booster ionization profile monitor is a model for this calculation

  5. Paracrine signaling in a bacterium.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-07-15

    Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.

  6. The Evolution of Covert Signaling.

    Science.gov (United States)

    Smaldino, Paul E; Flamson, Thomas J; McElreath, Richard

    2018-03-20

    Human sociality depends upon the benefits of mutual aid and extensive communication. However, diverse norms and preferences complicate mutual aid, and ambiguity in meaning hinders communication. Here we demonstrate that these two problems can work together to enhance cooperation through the strategic use of deliberately ambiguous signals: covert signaling. Covert signaling is the transmission of information that is accurately received by its intended audience but obscured when perceived by others. Such signals may allow coordination and enhanced cooperation while also avoiding the alienation or hostile reactions of individuals with different preferences. Although the empirical literature has identified potential mechanisms of covert signaling, such as encryption in humor, there is to date no formal theory of its dynamics. We introduce a novel mathematical model to assess when a covert signaling strategy will evolve, as well as how receiver attitudes coevolve with covert signals. Covert signaling plausibly serves an important function in facilitating within-group cooperative assortment by allowing individuals to pair up with similar group members when possible and to get along with dissimilar ones when necessary. This mechanism has broad implications for theories of signaling and cooperation, humor, social identity, political psychology, and the evolution of human cultural complexity.

  7. Thermal resonance in signal transmission

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems

  8. Thermal resonance in signal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-06-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.

  9. The role of neuroimmune signaling in alcoholism.

    Science.gov (United States)

    Crews, Fulton T; Lawrimore, Colleen J; Walter, T Jordan; Coleman, Leon G

    2017-08-01

    Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism". Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hypospadias and increased risk for neurodevelopmental disorders

    OpenAIRE

    Butwicka, Agnieszka; Lichtenstein, Paul; Landén, Mikael; Nordenvall, Anna; Nordenström, Anna; Nordenskjöld, Agneta; Frisén, Louise

    2014-01-01

    BACKGROUND: Hypospadias (aberrant opening of the urethra on the underside of the penis) occurs in 1 per 300 newborn boys. It has been previously unknown whether this common malformation is associated with increased psychiatric morbidity later in life. Studies of individuals with hypospadias also provide an opportunity to examine whether difference in androgen signaling is related to neurodevelopmental disorders. To elucidate the mechanisms behind ...

  11. Multiple running speed signals in medial entorhinal cortex

    Science.gov (United States)

    Hinman, James R.; Brandon, Mark P.; Climer, Jason R.; Chapman, G. William; Hasselmo, Michael E.

    2016-01-01

    Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus two speed signals are present in MEC that are differentially affected by disrupted MS input. PMID:27427460

  12. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission

    Science.gov (United States)

    Dake, Fumihiro; Yazawa, Hiroki

    2017-10-01

    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  13. Mincle Signaling Promotes Con-A Hepatitis

    Science.gov (United States)

    Greco, Stephanie H.; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R.; Nagaraj, Savitha V.; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E.; Katz, Steven C.; Miller, George

    2016-01-01

    Concanavalin-A (Con-A) hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor (CLR) that is critical in the immune response to mycobacteria and fungi, but does not have a well-defined role in pre-clinical models of non-pathogen mediated inflammation. Since Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con-A hepatitis. Acute liver injury was assessed in the murine Con-A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and HIF-1α signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con-A hepatitis. Most significantly, Mincle deletion or blockade protected against Con-A hepatitis whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other CLRs did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ related signaling intermediates, C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con-A hepatitis and inhibition of both C/EBPβ and HIF1-α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con-A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. PMID:27559045

  14. Mincle Signaling Promotes Con A Hepatitis.

    Science.gov (United States)

    Greco, Stephanie H; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R; Nagaraj, Savitha V; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E; Katz, Steven C; Miller, George

    2016-10-01

    Con A hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen-mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle(-/-), and Dectin-1(-/-) mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ-related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Evolutionary Interactions Between Visual and Chemical Signals: Chemosignals Compensate for the Loss of a Visual Signal in Male Sceloporus Lizards.

    Science.gov (United States)

    Pruett, Jake A; Zúñiga-Vega, J Jaime; Campos, Stephanie M; Soini, Helena A; Novotny, Milos V; Vital-García, Cuauhcihuatl; Martins, Emília P; Hews, Diana K

    2016-11-01

    Animals rely on multimodal signals to obtain information from conspecifics through alternative sensory systems, and the evolutionary loss of a signal in one modality may lead to compensation through increased use of signals in an alternative modality. We investigated associations between chemical signaling and evolutionary loss of abdominal color patches in males of four species (two plain-bellied and two colorful-bellied) of Sceloporus lizards. We conducted field trials to compare behavioral responses of male lizards to swabs with femoral gland (FG) secretions from conspecific males and control swabs (clean paper). We also analyzed the volatile organic compound (VOC) composition of male FG secretions by stir bar extraction and gas chromatography-mass spectrometry (GC-MS) to test the hypothesis that loss of the visual signal is associated with elaboration of the chemical signal. Males of plain-bellied, but not colorful-bellied species exhibited different rates of visual displays when exposed to swabs of conspecific FG secretions relative to control swabs. The VOC composition of male Sceloporus FG secretions was similar across all four species, and no clear association between relative abundances of VOCs and evolutionary loss of abdominal color patches was observed. The emerging pattern is that behavioral responses to conspecific chemical signals are species- and context-specific in male Sceloporus, and compensatory changes in receivers, but not signalers may be involved in mediating increased responsiveness to chemical signals in males of plain-bellied species.

  16. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  17. Smoke Signal or Smoke Screen?

    DEFF Research Database (Denmark)

    Vergne, Jean-Philippe; Wernicke, Georg; Brenner, Steffen

    This paper explains the amount of disapproval faced by firms that overpay their CEO by integrating signaling and categorization theories. We argue that, in contexts characterized by intense scrutiny, ambivalent signals sent by firms suspend categorization by stakeholders, leading to further disap...

  18. Signals and systems with MATLAB

    CERN Document Server

    Yang, Won Young; Song, Ik H; Cho, Yong S

    2009-01-01

    Covers some of the theoretical foundations and mathematical derivations that can be used in higher-level related subjects such as signal processing, communication, and control, minimizing the mathematical difficulty and computational burden. This book illustrates the usage of MATLAB and Simulink for signal and system analysis and design.

  19. Noisy signaling: theory and experiment

    NARCIS (Netherlands)

    de Haan, T.; Offerman, T.; Sloof, R.

    2011-01-01

    We introduce noise in the signaling technology of an otherwise standard wasteful signaling model (Spence, 1973). We theoretically derive the properties of the equilibria under different levels of noise and we experimentally test how behavior changes with noise. We obtain three main insights. First,

  20. Signals in Communication Engineering History

    Science.gov (United States)

    Consonni, Denise; Silva, Magno T. M.

    2010-01-01

    This paper is a study of various electric signals, which have been employed throughout the history of communication engineering in its two main landmarks: the telegraph and the telephone. The signals are presented in their time and frequency domain representations. The historical order has been followed in the presentation: wired systems, spark…

  1. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  2. Signal analysis of ventricular fibrillation

    NARCIS (Netherlands)

    Herbschleb, J.N.; Heethaar, R.M.; Tweel, L.H. van der; Zimmerman, A.N.E.; Meijler, F.L.

    Signal analysis of electro(cardio)grams during ventricular fibrillation (VF) in dogs and human patients indicates more organization and regularity than the official WHO definition suggests. The majority of the signal is characterized by a power spectrum with narrow, equidistant peaks. In a further

  3. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Cré peau, Emmanuelle; Sorine, Michel

    2012-01-01

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum

  4. Signaling a Change of Heart

    DEFF Research Database (Denmark)

    Schumacher, Gijs

    2011-01-01

    introduced welfare state retrenchment measures. Social Democrats can win votes and join coalitions by shifting rightwards. In contrast, they can pursue policy objectives by shifting leftwards. To communicate these shifts, in other words, ‘changes of heart’, parties send signals to voters and other parties...... after having signalled ‘a change of heart’....

  5. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  6. Algebraic Methods to Design Signals

    Science.gov (United States)

    2015-08-27

    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  7. Hippo signalling directs intestinal fate

    DEFF Research Database (Denmark)

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal...

  8. Overload Control in a SIP Signaling Network

    OpenAIRE

    Masataka Ohta

    2007-01-01

    The Internet telephony employs a new type of Internet communication on which a mutual communication is realized by establishing sessions. Session Initiation Protocol (SIP) is used to establish sessions between end-users. For unreliable transmission (UDP), SIP message should be retransmitted when it is lost. The retransmissions increase a load of the SIP signaling network, and sometimes lead to performance degradation when a network is overloaded. The paper proposes an overload control for a S...

  9. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  10. Decoding resistant hypertension signalling pathways.

    Science.gov (United States)

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  12. Signals that determine internationalisation

    OpenAIRE

    Aryee, Esmeralda Na Momo; Henriquez Parodi, Massiel Carolina

    2017-01-01

    Master's thesis Business Administration BE501 - University of Agder 2017 International franchising business model is extensively and increasingly being used by entrepreneurs and firms seeking growth through geographic expansion. Thus, continued research efforts are needed to help entrepreneurs make wise choices when attracting investors into the business. Two popular theories (agency and resource scarcity) have been the basis on which international franchising has been explaine...

  13. Signaling network of the Btk family kinases.

    Science.gov (United States)

    Qiu, Y; Kung, H J

    2000-11-20

    The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.

  14. Protein Translation and Signaling in Human Eosinophils

    Directory of Open Access Journals (Sweden)

    Stephane Esnault

    2017-09-01

    Full Text Available We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1 the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2 the mechanisms regulating mRNA binding proteins activity in EOS, and (3 the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.

  15. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  16. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  17. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  18. Cosmological information in Gaussianized weak lensing signals

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non

  19. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  20. Alternatives to Pyrotechnic Distress Signals; Additional Signal Evaluation

    Science.gov (United States)

    2017-06-01

    device performance standard that addresses Coast Guard project sponsor and stakeholders needs. 17. Key Words Visual Distress Signal Device (VDSD...devices. The report discussed the concept of “effective intensity,” as used by the International Association of Marine Aids to Navigation and Lighthouse...efficacy of Cyan as a signal color. In order to move forward, the RDC project team met with CG-ENG-4 and other Coast Guard stakeholders (Offices of

  1. Fast digitizing and digital signal processing of detector signals

    International Nuclear Information System (INIS)

    Hannaske, Roland

    2008-01-01

    A fast-digitizer data acquisition system recently installed at the neutron time-of-flight experiment nELBE, which is located at the superconducting electron accelerator ELBE of Forschungszentrum Dresden-Rossendorf, is tested with two different detector types. Preamplifier signals from a high-purity germanium detector are digitized, stored and finally processed. For a precise determination of the energy of the detected radiation, the moving-window deconvolution algorithm is used to compensate the ballistic deficit and different shaping algorithms are applied. The energy resolution is determined in an experiment with γ-rays from a 22 Na source and is compared to the energy resolution achieved with analogously processed signals. On the other hand, signals from the photomultipliers of barium fluoride and plastic scintillation detectors are digitized. These signals have risetimes of a few nanoseconds only. The moment of interaction of the radiation with the detector is determined by methods of digital signal processing. Therefore, different timing algorithms are implemented and tested with data from an experiment at nELBE. The time resolutions achieved with these algorithms are compared to each other as well as to reference values coming from analog signal processing. In addition to these experiments, some properties of the digitizing hardware are measured and a program for the analysis of stored, digitized data is developed. The analysis of the signals shows that the energy resolution achieved with the 10-bit digitizer system used here is not competitive to a 14-bit peak-sensing ADC, although the ballistic deficit can be fully corrected. However, digital methods give better result in sub-ns timing than analog signal processing. (orig.)

  2. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  3. Synthesis of digital locomotive receiver of automatic locomotive signaling

    Directory of Open Access Journals (Sweden)

    K. V. Goncharov

    2013-02-01

    Full Text Available Purpose. Automatic locomotive signaling of continuous type with a numeric coding (ALSN has several disadvantages: a small number of signal indications, low noise stability, high inertia and low functional flexibility. Search for new and more advanced methods of signal processing for automatic locomotive signaling, synthesis of the noise proof digital locomotive receiver are essential. Methodology. The proposed algorithm of detection and identification locomotive signaling codes is based on the definition of mutual correlations of received oscillation and reference signals. For selecting threshold levels of decision element the following criterion has been formulated: the locomotive receiver should maximum set the correct solution for a given probability of dangerous errors. Findings. It has been found that the random nature of the ALSN signal amplitude does not affect the detection algorithm. However, the distribution law and numeric characteristics of signal amplitude affect the probability of errors, and should be considered when selecting a threshold levels According to obtained algorithm of detection and identification ALSN signals the digital locomotive receiver has been synthesized. It contains band pass filter, peak limiter, normalizing amplifier with automatic gain control circuit, analog to digital converter and digital signal processor. Originality. The ALSN system is improved by the way of the transfer of technical means to modern microelectronic element base, more perfect methods of detection and identification codes of locomotive signaling are applied. Practical value. Use of digital technology in the construction of the locomotive receiver ALSN will expand its functionality, will increase the noise immunity and operation stability of the locomotive signal system in conditions of various destabilizing factors.

  4. ESR signals of irradiated insects

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Kameya, Hiromi; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Shimoyama, Yuhei

    2009-01-01

    Analysis of irradiated insects using Electron Spin Resonance (ESR) spectroscopy was reported. The insects were maize weevil, red flour beetle, Indian meal moth and cigarette beetle that are hazardous to crops. The ESR spectra were consisted of a singlet at g=2 and a sextet centered at the similar g-value. The singlet signal is due to an organic free radical. The sextet signal is attributable to the hyperfine interactions from Mn 2+ ions. Upon irradiation, new signals were not detected. The relaxation times, T 1 and T 2 , showed no variations before and after irradiation. (author)