WorldWideScience

Sample records for azurin-gold nanoparticle hybrid

  1. Long-Range Interfacial Electrochemical Electron Transfer of Pseudomonas aeruginosa Azurin-Gold Nanoparticle Hybrid Systems

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Zhang, Jingdong

    2009-01-01

    We have prepared a "hybrid" of the blue copper protein azurin (Pseudomonas aeruginosa) and a 3 nm gold nanoparticle (AuNP). The AuNP/azurin hybrid was assembled on a Au(111)-electrode surface in a two-step process. The AuNP was first attached to the Au(111) electrode via Au-S chemisorption of a 4......,4'-biphenyidithiol (4,4'-BPDT) monolayer. This was followed by 1-decanethiol modification of the bound AuNP and hydrophobic binding of azurin to the AuNP. The Au(111)/AuNP/azurin system was characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and in situ electrochemical scanning tunneling...... microscopy (in situ STM). AFM and STM point to the feasibility of preparing both dense and sparsely populated AuNP monolayers. CV shows two pairs of voltammetric peaks at high scan rates, both around the azurin equilibrium potential. One pair of redox peaks follows closely that of azurin hydrophobically...

  2. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  3. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  5. General and programmable synthesis of hybrid liposome/metal nanoparticles

    OpenAIRE

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P.; Choi, Jeong-Woo; Kang, Taewook

    2016-01-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetalli...

  6. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  7. General and programmable synthesis of hybrid liposome/metal nanoparticles.

    Science.gov (United States)

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P; Choi, Jeong-Woo; Kang, Taewook

    2016-12-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.

  8. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  9. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Katti, K.V.; Kannan, R.; Katti, K.; Kattumuri, V.; Pandrapragada, R.; Rahing, V.; Cutler, C.; Boote, E.; Casteel, S.W.; Smith, C.J.; Robertson, J.D.; Jurrison, S.

    2006-01-01

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularisation necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (β(max) = 0.96 MeV; t(1/2) = 2.7 d) and Au-199 (β(max) 0.46 MeV; t(1/2) = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumor cells

  10. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  11. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  12. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    Science.gov (United States)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  13. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  14. Recent progress in theranostic applications of hybrid gold nanoparticles.

    Science.gov (United States)

    Gharatape, Alireza; Salehi, Roya

    2017-09-29

    A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The Performance of Barium Sulfate Nanoparticles/polypropylene Hybrid Multifilament

    Science.gov (United States)

    Li, Ying; Wang, Xuanjun; Mu, Xiaoxi; Zhang, Shujuan

    2012-01-01

    Nanosize barium sulfate (BaSO4) particles prepared with dodecyl benzene sulfonic acid (DBSA) in ethanol-water reaction system are used to prepare BaSO4/polypropylene (PP) nanocomposites by melt mixing method. It is then made into hybrid fibers by melt spinning and subsequent drawing with different ratios. The hybrid fibers are characterized by rheology, morphology, thermal stability and mechanical properties, respectively. The results indicate that the DBSA-modified BaSO4 can improve the spinnability of BaSO4/PP hybrid multifilament even at high BaSO4 nanoparticles concentration. DBSA can be used as compatibilizer to enhance the interface interaction of BaSO4/PP nanocomposites, because DBSA contains both hydrophobicity long alkyl chain and hydrophilic sulfonic group. Therefore, it can improve the performances of BaSO4/PP hybrid multifilament.

  16. Hybrid plasmonic/semiconductor nanoparticle monolayer assemblies as hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, Tuncay; Mutlugun, Evren

    2014-01-01

    We show that hybrid nanostructures made of alternating colloidal semiconductor quantum dot and metal nanoparticle monolayers can function as multilayer hyperbolic meta-materials. By choosing the thickness of the spacer between the quantum dot and nanoparticle layers, one can achieve the indefinite...... effective permittivity tensor of the structure. This results in increased photonic density of states and strong enhancement of quantum dot luminescence, in line with recent experimental results. Our findings demonstrate that hyperbolic metamaterials can increase the radiative decay rate of emission centers...

  17. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  18. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  19. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben

    2015-03-23

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material

    Science.gov (United States)

    Drelich, Jaroslaw; Li, Bowen; Bowen, Patrick; Hwang, Jiann-Yang; Mills, Owen; Hoffman, Daniel

    2011-09-01

    Vermiculite decorated with copper nanoparticles is a new antibacterial material that was prepared in this study through ion-exchange process and hydrogen reduction. The replacement of magnesium ions in interlayer structure was carried out using concentrated copper sulfate solutions at elevated temperature. Copper ions were reduced to elemental copper at 400-600 °C using hydrogen as the reducing agent. During the reduction process copper diffused primarily to vermiculite surface regions and formed copper nanoparticles with a broad range of sizes, from ˜1 to 400 nm. Strong adhesion of copper nanoparticles to the vermiculite carrier makes this hybrid very stable and durable. The new vermiculite-metallic copper hybrid material shows strong antibacterial activity against Staphylococcus aureus at 37 °C. Vermiculite is an inexpensive mineral that is very stable under a wide range of industrial and environmental conditions, and extensively used as filler in fireproof materials, plastics, paints and lightweight concrete, so the addition of copper as an antibacterial agent opens new avenues for the application of vermiculite in consumer products and other areas.

  1. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  2. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  3. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles

    Science.gov (United States)

    Zhao, Lianhong; Yan, Xiufang; Jie, Zhiqiang; Yang, Hong; Yang, Shiping; Liang, Jie

    2014-07-01

    Regenerable antimicrobial N-halamine/silica hybrid nanoparticles (NPs) containing chlorinated 5,5-dimethylhydantoinyl (Cl-DMH) groups, Cl-DMH/SiO2 hybrid NPs, have been prepared by a co-condensation reaction between N-(3-triethoxysilylpropyl)-5,5-dimethylhydantoin (TS-DMH) and tetraethoxysilane (TEOS) and then a chlorination reaction in NaClO solution. The as-synthesized Cl-DMH/SiO2 NPs were characterized by transmission electron microscopy, Scanning electron microscopy, X-ray photoelectron spectra, Specific surface area, Differential scanning calorimetry, and Fourier transform infrared. Experimental results showed that the size of the as-synthesized Cl-DMH/SiO2 NPs could be well adjusted by changing the mass ratio of TS-DMH/TEOS and the volume ratio of 28 % NH4OH/H2O. Antimicrobial tests showed that the as-prepared Cl-DMH/SiO2 hybrid NPs had excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration values of the as-prepared Cl-DMH/SiO2 hybrid NPs are 15 and 20 μg/mL for S. aureus, 25 and 30 μg/mL for E. coli, respectively. Paper disk diffusion assay showed that smaller-sized Cl-DMH/SiO2 hybrid NPs have bigger inhibition zone diameters, indicating stronger antimicrobial efficacies. Also, the storage stability and regenerability of Cl-DMH/SiO2 hybrid NPs were investigated.

  4. Revealing the interparticle magnetic interactions of iron oxide nanoparticles-carbon nanotubes hybrid materials

    NARCIS (Netherlands)

    Douvalis, A.P.; Georgakilas, V.; Tsoufis, T.; Gournis, D.; Kooi, B.; Bakas, T.

    2010-01-01

    Spinel iron oxide nanoparticles capped with organic molecules have been successfully prepared and used to produce iron oxide nanoparticles-single wall carbon nanotubes hybrid materials, which were characterized by a number of experimental techniques. The nanoparticles in both samples have an average

  5. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  6. Graphene oxide chemically decorated with hybrid Ag-Ru/chitosan nanoparticles: fabrication and properties

    OpenAIRE

    Veerapandian, Murugan; Neethirajan, Suresh

    2015-01-01

    Hybridization of distinct materials into a single nanoplatform is relevant to advance material’s properties for functional application such as biosensor platform. We report the synthesis and characterization of nanosheets of graphene oxide decorated with hybrid nanoparticles of silver-ruthenium bipyridine complex (Ag@[Ru(bpy)3]2+) core and chitosan shell. Hybrid nanoparticles were first obtained through a sequential wet-chemical approach using in situ reduction, electrostatic and coordination...

  7. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  8. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles

    OpenAIRE

    Sotiriou, Georgios A.; Hirt, Ann M.; Lozach, Pierre-Yves; Teleki, Alexandra; Krumeich, Frank; Pratsinis, Sotiris E.

    2011-01-01

    Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, in vivo diagnosis and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO2-coated, Janus-like Ag/Fe2O3 nanoparticles are prepared by one-step, scalable flame aerosol technology. A nanothin SiO2 shell around these multifunctional nanoparticles leaves intact their morphology, magnetic and plasmonic properti...

  9. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-10-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  10. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  11. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    International Nuclear Information System (INIS)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  12. High Density Data Storage Systems by DNA Complexes and Nano-Particles from DNA Hybrid Materials

    National Research Council Canada - National Science Library

    Ogata, Naoya

    2006-01-01

    ...) In-situ Intercalation of Phtharocyanine dye (PC) into DNA and Polyamine Complex, (3) syntheses and characterization of Nano-particles derived from DNA-polymer Hybrid Materials Containing Optical Dyes, and (4...

  13. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids.

    Directory of Open Access Journals (Sweden)

    Christina Schütz

    Full Text Available The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.

  14. Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids

    Science.gov (United States)

    Schütz, Christina; Sort, Jordi; Bacsik, Zoltán; Oliynyk, Vitaliy; Pellicer, Eva; Fall, Andreas; Wågberg, Lars; Berglund, Lars; Bergström, Lennart; Salazar-Alvarez, German

    2012-01-01

    The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces. PMID:23049689

  15. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    Science.gov (United States)

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  16. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  17. Color-tunable magnetic and luminescent hybrid nanoparticles: Synthesis, optical and magnetic properties

    International Nuclear Information System (INIS)

    Lou Lei; Yu Ke; Wang Yiting; Zhu Ziqiang

    2012-01-01

    A facile method for synthesizing color-tunable magnetic and luminescent hybrid bifunctional nanoparticles is presented. A series of CdSe/ZnS core-shell quantum dots (QDs) with different sizes were successfully fabricated and self-assembled to Fe 3 O 4 magnetic nanoparticles (MNP), which were subsequently coated with a polyethyleneimine (PEI) layer to prevent large aggregates. The hydrophobic QDs capped with trioctylphosphine oxide (TOPO) formed a coating surrounding MNP, and were transferred into hydrophilic phase by PEI with high efficiency. The samples were characterized by TEM, FT-IR, XRD, EDS, UV-vis spectrophotometer, fluorescent spectrophotometer and PPMS. Results show that the original properties of the nanoparticles were well-preserved in the hybrid structure. All MNP-QDs hybrid nanoparticles showed paramagnetic behavior and the nanocomposites were still highly luminescent with no shift in the PL peak position.

  18. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  19. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hardt, Sebastian; Wiggers, Hartmut [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Reichenberger, Sven [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Lacke und Oberflächenchemie, Hochschule Niederrhein, 47798 Krefeld (Germany); Wagener, Philipp [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal processing of TiO{sub 2} and hybrid Au/TiO{sub 2} nanoparticles using continuous-wave lasers is demonstrated. • Processing of TiO{sub 2} nanoparticles at 355 nm results in a transition from anatase to rutile. • Decoration of TiO{sub 2} nanoparticles with Au nanoparticles results in an increased absorbance in the visible range. • Hybrid Au/TiO{sub 2} nanoparticles can be processed at 355 nm and 532 nm in a large laser parameter window. • Processing of hybrid Au/TiO{sub 2} nanoparticles at 532 nm can be carried out at low laser powers and short laser pulse lengths. - Abstract: Photothermal processing of thin anatase TiO{sub 2} and hybrid Au/anatase TiO{sub 2} nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO{sub 2} nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO{sub 2}-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  20. Air stable organic-inorganic nanoparticles hybrid solar cells

    Science.gov (United States)

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  1. Gold and gold-silver core-shell nanoparticle constructs with defined size based on DNA hybridization

    International Nuclear Information System (INIS)

    Steinbrueck, Andrea; Csaki, Andrea; Ritter, Kathrin; Leich, Martin; Koehler, J. Michael; Fritzsche, Wolfgang

    2009-01-01

    Nanoparticles represent versatile building blocks in material science and nanotechnology. Thereby, the defined assembly of nanostructures (13 and 56 nm in diameter, respectively) is of significant importance. Short DNA sequences can be bound to the nanoparticle surface thus enabling highly specific DNA hybridization-driven events that direct the formation of nanoparticle constructs.In this paper, examples for the defined formation of gold nanoparticle constructs are demonstrated. In addition, gold-silver core-shell nanoparticles are introduced as further building blocks for the hybridization-controlled formation of nanoparticle constructs.

  2. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes

    International Nuclear Information System (INIS)

    Liu, Zhiming; Wang, Xuefeng; Wu, Wenjian; Li, Mei

    2015-01-01

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose. The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations. The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10 −9 M after being loaded with CaM proteins. (paper)

  3. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  4. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell

    Science.gov (United States)

    Aquino Neto, S.; Almeida, T. S.; Palma, L. M.; Minteer, S. D.; de Andrade, A. R.

    2014-08-01

    We report the preparation of hybrid nanostructured bioanodes containing the enzyme alcohol dehydrogenase (ADH) with either Au, Pt, or Pt0.75Sn0.25 nanoparticles for use in ethanol/O2 hybrid biofuel cells. We describe two different methodologies for the preparation of the bioanodes: in a first case, multi walled carbon nanotubes (MWCNTs) were employed as a support for the metallic nanoparticles and TBAB-modified Nafion® aided enzyme immobilization. In the second case, we immobilized the enzymes using dendrimers-encapsulated nanoparticles as the agent for enzyme anchoring. The biofuel cell tests showed that the addition of metallic nanoparticles to the bioanode structure enhanced the overall biofuel cell performance. The bioelectrode containing Au nanoparticles displaying the best performance, with an open circuit potential of 0.61 ± 0.05 V and a maximum power density of 155 ± 11 μW cm-2. NADH cyclic voltammetric experiments indicated that Au nanoparticles behaved as a catalyst toward NADH oxidation. Comparing the two protocols we used to synthetized nanoparticles, the sample containing the Au nanoparticles supported on MWCNTs furnished fourfold higher values. Therefore, from the satisfactory results obtained, it can be inferred that the combination of small amounts of metallic nanoparticles with enzymes improve bioanode performance.

  5. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  6. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid.

    Science.gov (United States)

    Park, SungJun; Park, Hye Hun; Kim, Sung Yeon; Kim, Su Jung; Woo, Kyoungja; Ko, GwangPyo

    2014-04-01

    Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage ΦX174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The ΦX174 and MNV were reduced by more than 2 log10 after exposure to 4.6 × 10(9) Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.

  7. Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning

    KAUST Repository

    Li, Li

    2015-07-28

    © 2015 American Chemical Society. Hf-based hybrid photoresist materials with three different organic ligands were prepared by a sol-gel-based method, and their patterning mechanism was investigated in detail. All hybrid nanoparticle resists are patternable using UV exposure. Their particle sizes show a dramatic increase from the initial 3-4 nm to submicron size after exposure, with no apparent inorganic content or thermal property change detected. XPS results showed that the mass percentage of the carboxylic group in the structure of nanoparticles decreased with increasing exposure duration. The particle coarsening sensitivities of those hybrid nanoparticles are consistent with their EUV performance. The current work provides an understanding for the development mechanism and future guidance for the design and processing of high performance resist materials for large-scale microelectronics device fabrication.

  8. Conjugated Polymer Nanoparticle-Triplet Emitter Hybrids in Aqueous Dispersion: Fabrication and Fluorescence Quenching Behavior.

    Science.gov (United States)

    Bandyopadhyay, Sujoy; Métivier, Rémi; Pallavi, Pragyan; Preis, Eduard; Nakatani, Keitaro; Landfester, Katharina; Patra, Abhijit; Scherf, Ullrich

    2016-02-01

    Conjugated polymer nanoparticles based on poly[9,9-bis(2-ethylhexyl)fluorene] and poly[N-(2,4,6-trimethylphenyl)-N,N-diphenylamine)-4,4'-diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2'-bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye-coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle-dye hybrids. It is proposed that the excited state electron transfer from the electron-rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed-electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir-based triplet emitting dye as the guest. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process

    Energy Technology Data Exchange (ETDEWEB)

    Mezni, Amine [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Mlayah, Adnen; Serin, Virginie [Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Smiri, Leila Samia, E-mail: lsmiri@gmail.com [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia)

    2014-10-15

    In this work, we report on the synthesis of hybrid Au–ZnO nanoparticles using a one-pot chemical method that makes use of 1,3-propanediol as a solvent, a reducing agent and a stabilizing layer. The produced nanoparticles consisted of Au cores decorated with ZnO nanoparticles. The structure and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy. Optical extinction measurements, combined with numerical simulations, showed that the Au–ZnO nanoparticles exhibit a localized surface plasmon resonance (SPR) clearly red-shifted with respect to that of bare Au nanoparticles (AuNPs). This work contributes to the emergence of multi-functional nanomaterials with possible applications in surface plasmon resonance based biosensors, energy-conversion devices, and in water-splitting hydrogen production. - Highlights: • Hybrid Au–ZnO nanoparticles were synthesized by a novel one-pot synthesis method that makes use of 1,3-propanediol. • The polyol solvent 1,3-propanediol plays the roles of the reducing agent and the stabilizer layer. • The Au–ZnO nanoparticles exhibit a strong localized surface plasmon resonance.

  10. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    International Nuclear Information System (INIS)

    Murph, Simona Hunyadi; Searles, Emily

    2017-01-01

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  11. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine)

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Fernández, Asunción; Dunin-Borkowski, Rafal E.

    2014-01-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement...... as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons...

  13. Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports.

    Science.gov (United States)

    Kruss, Sebastian; Srot, Vesna; van Aken, Peter A; Spatz, Joachim P

    2012-01-17

    This paper describes a method to pattern surfaces with Au-Ag hybrid nanoparticles. We used block copolymer micelle lithography of Au nanoparticles and electroless deposition of Ag. The combination of these two methods enables independent tuning of nanoparticle spacing and Ag-shell size. For this purpose, 8 nm large patterned Au nanoparticle seeds served as nuclei for the electroless deposition of silver that is based on a modified Tollens process with glucose. By adjusting the reaction conditions, specific growth of Ag on top of the Au seeds has been accomplished and analyzed by SEM, HRTEM, XEDS, and UV-vis spectroscopy. We could show that this versatile and green method is feasible on glass as well as on biomedical-relevant polymers like poly(ethylene glycol) hydrogels and amorphous Teflon. In conclusion, this method provides a new route to pattern glass and polymeric surfaces with Au-Ag hybrid nanoparticles. It will have many uses in applications such as surface enhanced Raman spectroscopy (SERS) or antimicrobial coatings for which hybrid nanoparticle density, size, and morphology are important. © 2011 American Chemical Society

  14. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels

    OpenAIRE

    Rochelet-Dequaire, Murielle; Limoges, Benoit; Brossier, Pierre

    2006-01-01

    7 pages; International audience; After showing the failure of conventional gold-enhancement procedures to amplify the gold nanoparticle-based electrochemical transduction of DNA hybridization in polystyrene microwells, a new efficient protocol was developed and evaluated for the sensitive quantification of a 35 base-pair human cytomegalovirus nucleic acid target (tDNA). In this assay, the hybridization of the target adsorbed on the bottom of microwells with an oligonucleotide-modified Au nano...

  15. A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres

    International Nuclear Information System (INIS)

    Erisken, Cevat; Kalyon, Dilhan M; Wang Hongjun

    2008-01-01

    A new hybrid methodology that fully integrates the processing capabilities of the twin screw extrusion process (conveying solids, melting, dispersive and distributive mixing, pressurization, temperature profiling, devolatilization) with electrospinning is described. The hybrid process is especially suited to the dispersion of nanoparticles into polymeric binders and the generation of nanoparticle-incorporated fibres and nanofibres. The new technology base is demonstrated with the dispersion of β-tricalcium phosphate (β-TCP) nanoparticles into poly(ε-caprolactone) (PCL) to generate biodegradable non-woven meshes that can be targeted as scaffolds for tissue engineering applications. The new hybrid method yielded fibre diameters in the range of 200-2000 nm for both PCL and β-TCP/PCL (35% by weight) composite scaffolds. The degree of crystallinity of polycaprolactone meshes could be manipulated in the 35.1-41% range, using the voltage strength as a parameter. The electrospinning process, integrated with dispersive kneading disc elements, facilitated the decrease of the cluster sizes and allowed the continuous compounding of the nanoparticles into the biodegradable polymer prior to electrospinning. Thermogravimetric analysis (TGA) of the non-woven meshes validated the continuous incorporation of 35 ± 1.5% (by weight) β-TCP nanoparticles for a targeted concentration of 35%. Uniaxial tensile testing of the meshes with and without the nanoparticles indicated that the ultimate tensile strength at break of the meshes increased from 0.47 ± 0.04 to 0.79 ± 0.08 MPa upon the incorporation of the β-TCP nanoparticles. This demonstration study suggests that the new technology base is particularly suitable for the concomitant dispersion and electrospinning of nanoparticles in the generation of myriad types of functional nanofibres

  16. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  17. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  18. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    Science.gov (United States)

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment.

  19. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    Science.gov (United States)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  20. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids

    Science.gov (United States)

    Li, Haiqing; Cooper-White, Justin J.

    2013-03-01

    1-Pyrenemethanol initiated hyperbranched polyglycerol (PiHP) has been synthesized and utilized to non-covalently functionalize pristine multi-walled carbon nanotubes (CNTs) through π-π stacking interactions. Mediated with the PiHP coating, a variety of metal nanoparticles (Au, Ag, Pd and Pt) were in situ generated and randomly tethered on the CNT sidewalls, producing various water-soluble CNT/PiHP/metal hybrids. Particularly, the resulting CNT/PiHP/Pt hybrids possess improved metal coverage in comparison to the reported CNT/Pt nanohybrids obtained by the use of conventional non-covalent CNT surface-modifiers. Depending on the using concentration of Pt2+ precursor, Pt coverage in CNT/PiHP/Pt hybrids can be effectively controlled. In the meanwhile, Pt component on the CNT sidewalls can be either well isolated nanoparticles or loose ``nanoclusters''. To test the promising catalytic application of these obtained CNT/PiHP/Pt hybrids, a systematic investigation on their catalytic performance towards the reduction of 4-nitrophenol to produce 4-aminophenol was performed. Surprisingly, these hybrids exhibited significantly enhanced catalytic activity compared with the conventionally utilized Au and Ag nanoparticles. Moreover, they can be easily recovered and reused without significant loss in catalytic activity after running 6 circles.

  1. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins.

    Science.gov (United States)

    Mohanraj, Vellore J; Barnes, Timothy J; Prestidge, Clive A

    2010-06-15

    A hybrid silica-liposome nanocapsule system containing insulin has been developed and the encapsulation, protection and release properties are evaluated. The formulation strategy is based on using insulin-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol liposomes as a template for the deposition of inert silica nanoparticles. The influence of formulation and process variables on particle size, zeta potential and liposome entrapment of insulin is reported. The ability to protect against lipolytic degradation and sustain insulin release in vitro in simulated GI conditions is also reported. Depending on the concentration and charge ratio of liposomes and silica nanoparticles, nanoparticle coated liposomes with varied size and zeta potential were obtained with an insulin entrapment efficiency of 70%. The silica nanoparticle coating protected liposomes against degradation by digestive enzymes in vitro; the release rate of insulin from silica coated liposomes was reduced in comparison to uncoated liposomes. Thus the liposomal release kinetics and stability can be controlled by including a specifically engineered nanoparticle layer. Silica nanoparticle-liposomes hybrid nanocapsules show promise as a delivery vehicle for proteins and peptides. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  2. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T. (Center for Nanoscale Materials)

    2009-04-13

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  3. Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Shintaro Ueno

    2015-03-01

    Full Text Available Silver (Ag nanoparticle-loaded strontium titanate (SrTiO3 nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag+ and Sr2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO3 hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO3 nanoparticles is dendritic in the presence and absence of Ag+ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO3. From the field-emission transmission electron microscope observation of these Ag-SrTiO3 hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO3.

  4. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO2.

    Science.gov (United States)

    Maina, James W; Schütz, Jürg A; Grundy, Luke; Des Ligneris, Elise; Yi, Zhifeng; Kong, Lingxue; Pozo-Gonzalo, Cristina; Ionescu, Mihail; Dumée, Ludovic F

    2017-10-11

    Photocatalytic conversion of carbon dioxide (CO 2 ) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO 2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO 2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO 2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO 2 and Cu-TiO 2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO 2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO 2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO 2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 μg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.

  5. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    Science.gov (United States)

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2018-03-01

    The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) 3 · H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene. [Figure not available: see fulltext.

  7. Synthesis and field electron emission properties of hybrid carbon nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Ho, Y M; Yang, G M; Zheng, W T; Wang, X; Tian, H W; Xu, Q; Li, H B; Liu, J W; Qi, J L; Jiang, Q

    2008-01-01

    Hybrid ZnO-carbon nanotubes as well as nanodiamond-carbon nanotubes were synthesized via a straightforward process of plasma enhanced chemical vapor deposition. For the former, ZnO nanoparticles were instantly coated on the tube surface in the final growing process of carbon nanotubes, while for the latter diamond nanoparticles were grown using pretreatment of a silicon substrate with Ni(NO 3 ) 2 ·6H 2 O/Mg(NO 3 ) 2 ·6H 2 O alcohol solution prior to deposition and a high H 2 /CH 4 gas flow ratio in the deposition process. The morphology and microstructure of the obtained hybrid materials were characterized by transmission electron microscopy. Both hybrid ZnO-carbon nanotubes and nanodiamond-carbon nanotubes exhibited excellent field emission properties

  8. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  9. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  11. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    Science.gov (United States)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  12. Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Lilin [Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Yuan Weizhong; Sui Xiaofeng [Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Wu Sizhu [Key Laboratory of Science and Technology of Controlled Chemical Reactions, Beijing University of Chemical Technology, Beijing 100029 (China); Li Zhaolong [Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shen Dezhong [Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    The synthesis of magnetite nanoparticles coated with pH-sensitive poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) via atom transfer radical polymerization (ATRP) for use as novel potential carriers for targeted drug delivery and controllable release is reported. The organic/inorganic hybrid nanoparticles were obtained with a narrow molecular weight distribution. The pH-sensitivity of the nanoparticles was investigated by the measurement of the pH dependence of hydrodynamic radius and the superparamagnetism was illustrated by vibrating sample magnetometer (VSM). The behavior of model drug phenolphthalein released from the nanoparticles indicated that the rate of drug release could be effectively controlled by altering the pH values of the environment.

  13. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  14. Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Barani, Hossein, E-mail: barani@birjand.ac.ir

    2014-10-01

    Nanofibrous hybrid yarns of polyvinyl alcohol (PVA) and poly-L-lactide acid (PLLA) with the antibacterial activity were prepared that contains 0, 5, 10, 20, and 30 wt.% of silver nanoparticles according to the PVA polymer content. This was performed by electrospinning using distilled water and 2, 2, 2-trifluoroethanol as a solvent for PVA and PLLA respectively, and sodium borohydride was used as a reducing agent. The scanning electron microscope observation confirmed the formation of AgNPs into the PVA nanofiber structure, and they were uniform, bead free, cylindrical and smooth. The diameter of hybrid yarns and their nanofiber component was decreased as the silver nitrate concentration in electrospinning solutions was increased. The differential scanning calorimetry results indicated that the silver nanoparticles can form interactions with polymer chains and decrease the melting enthalpy. The mechanical analysis showed a lower stress and strain at break of the AgNP-loaded nanofibrous hybrid yarns than the unloaded hybrid yarn. However, there wasn't a statistically significant difference between the strain at break of electrospun nanofibrous hybrid yarns. Moreover, the bactericidal efficiency of all loaded samples was over 99.99%. - Highlights: • Nanofibrous hybrid yarns of PVA/PLLA with antibacterial activity were prepared. • The diameter of nanofibers was decreased as the AgNP concentration was increased. • AgNPs make interactions with amorphous phase of polymer and increase the Tg. • All loaded samples presented a good bactericidal and bacteriostatic efficiency.

  15. Preparation and Flame Retardant and Smoke Suppression Properties of Bamboo-Wood Hybrid Scrimber Filled with Calcium and Magnesium Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bin Fu

    2014-01-01

    Full Text Available The physical and mechanical properties of bamboo-wood hybrid scrimber filled with different loadings of nanoparticles were studied. The effects of nanoparticles on flame retardant and smoke suppression properties of bamboo-wood hybrid scrimber were studied by means of thermogravimetric analysis (TGA, cone calorimeter (CONE, and scanning electron microscope (SEM. The results showed that the physical and mechanical properties of bamboo-wood hybrid scrimber were improved by adding a moderate loading of nanoparticles; the optimal loading of nanoparticles was 10%. The heat transfer in bamboo-wood hybrid scrimber was prevented and the escaping channel of combustible gas was blocked by the uniformly filling effect of nanoparticles. The gas concentration was diluted by the noncombustible gas produced by pyrolysis of nanoparticles; the combustion chain reaction was suppressed by highly reactive free radicals produced by pyrolysis of nanoparticles. The residual mass of bamboo-wood hybrid scrimber filled with nanoparticles in thermogravimetric (TG curve at 900 s and burned by method of cone calorimeter (CONE at 600 s was increased compared to that of untreated one, which showed that inorganic mineral powder has the effect of catalytic charring.

  16. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  17. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  19. Effect of silver nanoparticles on luminescent properties of europium complex in di-ureasil hybrid materials

    International Nuclear Information System (INIS)

    Guo Xianmin; Fu Lianshe; Zhang Hongjie; Gao Shuyan; Yu Jiangbo

    2007-01-01

    Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta) 3 phen (tta=thenoyltrifluoroaceton, phen=1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state 29 Si magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta) 3 phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (>9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed

  20. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  1. Investigation of Performance of hybrid nanoparticles Tio2/Sio2 in removing of Mercury from industrial waste water

    Directory of Open Access Journals (Sweden)

    M Malakootian

    2014-09-01

    Conclusion: Due to high percentage of mercury removal at optimal conditions by hybrid nanoparticles, this method can be regarded as one of the effective ways to remove mercury compared with other methods.

  2. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels.

    Science.gov (United States)

    Rochelet-Dequaire, Murielle; Limoges, Benoît; Brossier, Pierre

    2006-08-01

    After showing the failure of conventional gold-enhancement procedures to amplify the gold nanoparticle-based electrochemical transduction of DNA hybridization in polystyrene microwells, a new efficient protocol was developed and evaluated for the sensitive quantification of a 35 base-pair human cytomegalovirus nucleic acid target (tDNA). In this assay, the hybridization of the target adsorbed on the bottom of microwells with an oligonucleotide-modified Au nanoparticle detection probe (pDNA-Au) was monitored by the anodic stripping detection of the chemically oxidized gold label at a screen-printed microband electrode (SPMBE). Thanks to the combination of the sensitive Au(III) determination at a SPMBE with the large amount of Au(III) released from each pDNA-Au, picomolar detection limits of tDNA can be achieved. Further enhancement of the hybridization signal based on the autocatalytic reductive deposition of ionic gold (Au(III)) on the surface of the gold nanoparticle labels anchored on the hybrids was first envisaged by incubating the commonly used mixture of Au(III) and hydroxylamine (NH(2)OH). However, due to a considerable nonspecific current response of poor reproducibility it was not possible to significantly improve the analytical performances of the method under these conditions. Complementary transmission electronic microscopy experiments indicated the loss of most of the grown gold labels during the post-enlargement rinsing step. To circumvent this drawback, a polymeric solute containing polyethyleneglycol and sodium chloride was introduced in the growth media to act as an aggregating agent during the catalytic process and thus retain the enlarged labels on the bottom of the microwell. This strategy, which led to an efficient increase of the hybridization response, allowed detection of tDNA concentrations as low as 600 aM (i.e., 10(4) lower than without amplification), and thus offers great promise for ultrasensitive detection of other hybridization

  3. Synthesis of Hybrid SiC/SiO2 Nanoparticles and Their Polymer Nanocomposites

    Science.gov (United States)

    Hassan, Tarig A.; Rangari, Vijaya K.; Baker, Fredric; Jeelani, Shaik

    2013-06-01

    In the present investigation, silicon carbide (β-SiC) nanoparticles ( 30 nm) were coated on silicon dioxide (SiO2) nanoparticles ( 200 nm) using sonochemical method. The resultant hybrid nanoparticles were then infused into SC-15 epoxy resin to enhance the thermal and mechanical properties of SC-15 epoxy for structural application. To fabricate an epoxy-based nanocomposite containing SiC/SiO2 hybrid nanoparticles, we have opted a two-step process. In the first step, the silica nanoparticles were coated with SiC nanoparticles using high intensity ultrasonic irradiation. In a second step, 1 wt.% of as-prepared SiC/SiO2 particles were dispersed in epoxy part-A (diglycidylether of bisphenol A) using a high intensity ultrasound for 30 min at 5°C. The part-B (cycloaliphatic amine hardener) of the epoxy was then mixed with part-A-SiC/SiO2 mixture using a high-speed mechanical stirrer for 10 min. The SiC/SiO2/epoxy resin mixture was cured at room temperature for 24 h. The SiC nanoparticles coating on SiO2 was characterized using X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). The as-prepared nanocomposite samples were characterized using thermo gravimetric analysis (TGA) and differential scanning calorimeter (DSC). Compression tests have been carried out for both nanocomposite and neat epoxy systems. The results indicated that 1 wt.% (SiC) + (SiO2) loading derived improvements in both thermal and mechanical properties when compared to the neat epoxy system.

  4. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated

  5. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    OpenAIRE

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2015-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-?-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average s...

  6. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    Science.gov (United States)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  7. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2008-01-01

    addition fragmentation chain transfer (RAFT polymerization as dispersant. Then, the resulting dispersion is engaged in a radical emulsion polymerization process whereby a hydrophobic organic monomer (styrene and butyl acrylate is polymerized to form the shell of the hybrid nanoparticle. This method is extremely versatile, allowing the preparation of a variety of nanocomposites with metal oxides (alumina, rutile, anatase, barium titanate, zirconia, copper oxide, metals (Mo, Zn, and even inorganic nitrides (Si3N4.

  8. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    Science.gov (United States)

    Jameel, Zainab N.; Haider, Adawiya J.; Taha, Samar Y.; Gangopadhyay, Shubhra; Bok, Sangho

    2016-07-01

    A coating with self-cleaning characteristics has been developed using a TiO2/SiO2 hybrid sol-gel, TiO2 nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO2 nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO2 nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO2 phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO2 NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  9. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    Energy Technology Data Exchange (ETDEWEB)

    Jameel, Zainab N., E-mail: zeinb76-alrekbe@yahoo.com; Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com [Nanotechnology and Advanced Materials Research Center, The University of Technology, Baghdad (Iraq); Taha, Samar Y., E-mail: samarjam2002@yahoo.com [College of Science for Women, University of Baghdad, Baghdad (Iraq); Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu; Bok, Sangho, E-mail: BokSa@missouri.edu [Department of Electrical and Computer, University of Missouri, Engineering, Building West, Columbia, Missouri 65211 (United States)

    2016-07-25

    A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  10. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    Science.gov (United States)

    2014-11-07

    vehicle head lights by replacing the filament bulbs for energy saving and lifetime, while the spectral purity is more important than the spectral...Dots for Hybrid Light Emitting Devices,” The 12th International Conference on Nano Science and Nano Technology, November 6-7, 2014, Mokpo, South Korea...of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff Inventions (DD882) Scientific Progress Please

  11. Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles.

    Science.gov (United States)

    Vogel, Nicolas; Fernández-López, Cristina; Pérez-Juste, Jorge; Liz-Marzán, Luis M; Landfester, Katharina; Weiss, Clemens K

    2012-06-19

    In this Article, we report on the assembly of hybrid Au@PNIPAM core-shell particles at the air/water interface, their transfer onto solid substrates, and the controlled combustion of the organic material to produce arrays of gold nanoparticles. A detailed investigation on the assembly behavior of such soft hybrid colloids at the air/water interface was performed by correlating the surface pressure-area isotherms with SEM and AFM images from samples transferred at different surface pressures. The hybrid particles display a complex behavior at the interface, and we could distinguish three distinct phases with varying interparticle spacings at different compression. The transfer process presented enables the decoration of topologically structured substrates with gold nanoparticle arrays, and the order of the initial monolayers is retained in the arrays of inorganic gold nanoparticles. The change in monolayer morphology upon compression can therefore be used to tailor the interparticle distance between approximately 650 and 300 nm without exchanging the colloids. More sophisticated gold nanostructures can be patterned into symmetric arrays using a similar protocol, which we demonstrate for nanostars and nanorods.

  12. Hybrid materials based on polymethylsilsesquioxanes containing Fe, Pt, and Fe-Pt metallic nanoparticles

    Science.gov (United States)

    Vasil'kov, A. Yu.; Migulin, D. A.; Naumkin, A. V.; Zubavichus, Ya. V.; Budnikov, A. V.; Ellert, O. G.; Maksimov, Yu. V.; Muzafarov, A. M.

    2017-11-01

    New hybrid materials based on Pt, Fe, and Pt-Fe nanoparticles stabilized in a matrix of polymethylsilsesquioxane nanogel and ultrahigh molecular weight polyethylene (UHMWPE) were prepared. Metal vapor synthesis was used to produce mono- and bimetallic nanoparticles. It was shown that organosilicon nanogel effectively stabilizes Pt nanoparticles with an average size of 0.9 nm. Using the nanogel results in the formation of superparamagnetic Fe particles 3-5 nm in size that consist of ferromagnetic Fe0 core and antiferromagnetic shells of Fe oxides. It is established that using an organosilicon matrix in the formation of Pt-Fe/UHMWPE systems helps reduce the average particle size of Fe in the material from 6.5 to 4.5 nm and narrow their particle size distribution. The composition, magnetic and electronic characteristics of the nanocomposites are studied via transmission electron microscopy, X-ray photoelectron spectroscopy, Mössbauer spectroscopy, XANES, and EXAFS.

  13. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances

    Science.gov (United States)

    Sharma, Yashna; Dhawan, Anuj

    2014-02-01

    We present hybrid nanoline-nanoparticle plasmonic substrates which allow easily achievable sub-5 nm gaps and a possibility of large-area fabrication. These substrates—based on plasmonic nanocavities formed by arrays of plasmonic nanoparticle (NP) dimers lying inside periodic metal nanolines (NLs)—can be used as tunable surface enhanced Raman scattering (SERS) substrates due to the tunability of cavity modes in the gap regions. Theoretical studies were conducted, using finite difference time domain (FDTD) modeling, to understand the plasmon resonance tunability as a function of gaps in these hybrid plasmonic substrates. The gaps forming the nanocavities include those between nanolines and nanoparticles (NL-NP) and between two nanoparticles (NP-NP). Our analysis reveals that these gaps play a combined role in tuning the resonance wavelength and the magnitude of electromagnetic field enhancement. Moreover, distinct structure-dependent plasmon resonance peaks are present in addition to material-dependent resonance peaks characteristic to the metal involved. Replacing the spherical particle arrays inside the nanolines with nanorod arrays revealed the possibility of tuning the plasmon resonance in the near-infrared regime. This indicates that there is a possibility of tuning the plasmon resonance wavelength to any region of the visible or near-infrared spectrum by changing the size or shape of the particles assembled inside these plasmonic nanolines.

  14. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Science.gov (United States)

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  15. Linear Viscoelasticity of Spherical SiO 2 Nanoparticle-Tethered Poly(butyl acrylate) Hybrids

    KAUST Repository

    Goel, Vivek

    2010-12-01

    The melt state linear viscoelastic properties of spherical silica nanoparticles with grafted poly(n-butyl acrylate) chains of varying molecular weight were probed using linear small amplitude dynamic oscillatory measurements and complementary linear stress relaxation measurements. While the pure silica-tethered-polymer hybrids with no added homopolymer exhibit solid-like response, addition of matched molecular weight free matrix homopolymer chains to this hybrid, at low concentrations of added homopolymer, maintains the solid-like response with a lowered modulus that can be factored into a silica concentration dependence and a molecular weight dependence. While the silica concentration dependence of the modulus is strong, the dependence on molecular weight is weak. On the other hand, increasing the amount of added homopolymer changes the viscoelastic response to that of a liquid with a relaxation time that scales exponentially with hybrid concentration. © 2010 American Chemical Society.

  16. One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids.

    Science.gov (United States)

    Liu, Chang-Hai; Chen, Xiao-Qi; Hu, Yong-Feng; Sham, Tsun-Kong; Sun, Qi-Jun; Chang, Jian-Bing; Gao, Xu; Sun, Xu-Hui; Wang, Sui-Dong

    2013-06-12

    A one-pot universal approach with simple metal sputtering onto room temperature ionic liquids has been developed to prepare bimetal-nanoparticle (NP)-graphene hybrids, and the process is environmentally friendly and completely free of additives and byproducts. The graphene-supported bimetallic NPs have an Ag-based core and an Au/Pd-rich shell, demonstrated by the scanning transmission electron microscopy. The X-ray absorption near-edge spectroscopy using synchrotron radiation reveals the occurrence of charge redistribution at both the Ag@Au and Ag@Pd core-shell interfaces. The as-prepared Ag@Au and Ag@Pd bimetal-NP-graphene hybrids are highly catalytically active for reduction of 4-nitrophenol, whose catalytic activity is superior to the corresponding monometallic hybrids. The catalytic superiority is ascribed to the electronic structure modification and morphological irregularity of the graphene-supported bimetallic NPs.

  17. Optical bistability and optical response of an infrared quantum dot hybridized to VO2 nanoparticle

    Science.gov (United States)

    Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza

    2017-08-01

    In this work, we theoretically investigate optical bistability and optical response of a hybrid system consisting of semiconductor quantum dot (SQD) coupled with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) regime. The VO2 material exists in semiconductor and metallic phases below and above the critical temperature, respectively where the particle optical properties dramatically change during this phase transition. In our calculations a filling fraction factor controls the VO2NP phase transition when the hybrid system interacts with a laser field. We demonstrate that the switch-up threshold for optical bistability is strongly controlled by filling fraction without changing the structure of the hybrid system. Also, it is shown that, the threshold of optical bistability increases when the VO2NP phases changes from semiconductor to metallic phase. The presented results have the potential to be applied in designing optical switching and optical storage.

  18. Theranostic Liposome–Nanoparticle Hybrids for Drug Delivery and Bioimaging

    Directory of Open Access Journals (Sweden)

    Muharrem Seleci

    2017-07-01

    Full Text Available Advanced theranostic nanomedicine is a multifunctional approach which combines the diagnosis and effective therapy of diseased tissues. Here, we investigated the preparation, characterization and in vitro evaluation of theranostic liposomes. As is known, liposome–quantum dot (L–QD hybrid vesicles are promising nanoconstructs for cell imaging and liposomal-topotecan (L-TPT enhances the efficiency of TPT by providing protection against systemic clearance and allowing extended time for it to accumulate in tumors. In the present study, hydrophobic CdSe/ZnS QD and TPT were located in the bilayer membrane and inner core of liposomes, respectively. Dynamic light scattering (DLS, zeta potential (ζ measurements and fluorescence/absorption spectroscopy were performed to determine the vesicle size, charge and spectroscopic properties of the liposomes. Moreover, drug release was studied under neutral and acidic pH conditions. Fluorescence microscopy and flow cytometry analysis were used to examine the cellular uptake and intracellular distribution of the TPT-loaded L–QD formulation. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was utilized to investigate the in vitro cytotoxicity of the formulations on HeLa cells. According to the results, the TPT-loaded L–QD hybrid has adequate physicochemical properties and is a promising multifunctional delivery vehicle which is capable of a simultaneous co-delivery of therapeutic and diagnostic agents.

  19. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  20. Novel lipid hybrid albumin nanoparticle greatly lowered toxicity of pirarubicin.

    Science.gov (United States)

    Zhou, Jing; Zhang, Xuanmiao; Li, Mei; Wu, Wenqi; Sun, Xun; Zhang, Ling; Gong, Tao

    2013-10-07

    Pirarubicin (THP) is an effective anthracycline for the treatment of solid tumor. However, its potential side effects are prominent and clinical use is restricted. We aimed to develop a novel pirarubicin-oleic acid complex albumin nanoparticle (THP-OA-AN) in order to reduce the toxicity of THP. Oleic acid, human serum albumin (HSA), and egg yolk lecithin E80 was used to prepare THP-OA-AN. Prepared THP-OA-AN was characterized and animal experiments were conducted to assess its tumor suppression effect, distribution, and toxicity. Comparison between THP and THP-OA-AN showed that, with retained antitumor efficiency, the toxicity of THP-OA-AN is significantly reduced regarding bone marrow suppression, cardiotoxicity, renal toxicity, and gastrointestinal toxicity. This study developed a safe and effective formulation of THP, which has greater potential for clinic use in the tumor therapy.

  1. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  2. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    Science.gov (United States)

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dumbbells, trikes and quads: organic-inorganic hybrid nanoarchitectures based on "clicked" gold nanoparticles.

    Science.gov (United States)

    Sander, Fabian; Fluch, Ulrike; Hermes, Jens Peter; Mayor, Marcel

    2014-01-29

    The controlled assembly of gold nanoparticles in terms of the spatial arrangement and number of particles is essential for many future applications like electronic devices, sensors and labeling. Here an approach is presented to build up oligomers of mono functionalized gold nanoparticles by the use of 1,3-bipolar azide alkyne cycloaddition click chemistry. The gold nanoparticles of 1.3 nm diameter are stabilized by one dendritic thioether ligand comprising an alkyne function. Together with di-, tri- and tetra-azide linker molecules the gold nanoparticle can be covalently coupled by a wet chemical protocol. The reaction is tracked with IR and UV-vis spectroscopy and the yielded organic-inorganic hybrid structures are analyzed by transmission electron microscopy. To evaluate the success of this click chemistry reaction statistical analysis of the formed oligomers is performed. The geometric and spatial arrangements of the found oligomers match perfectly the calculated values for the used linker molecules. Dimers, trimers and tetramers could be identified after the reaction with the corresponding linker molecule. The results of this model reaction suggest that the used click chemistry protocol is working well with mono functionalized gold nanoparticles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis

    Directory of Open Access Journals (Sweden)

    Allister Yingwei Tham

    2016-07-01

    Full Text Available Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH nanoparticles initiate human mesenchymal stem cells (MSCs proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM, contact angle and Fourier transform infrared spectroscopy (FT-IR. The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt MTS assay (Promega, Madison, WI, USA, FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP and mineralization was confirmed by using alizarin red (ARS. The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.

  5. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  6. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  7. Hybridization State Detection of DNA-Functionalized Gold Nanoparticles Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Richard C. Murdock

    2017-01-01

    Full Text Available Hyperspectral imaging has the unique ability of capturing spectral data for multiple wavelengths at each pixel in an image. This gives the ability to distinguish, with certainty, different nanomaterials and/or distinguish nanomaterials from biological materials. In this study, 4 nm and 13 nm gold nanoparticles (Au NPs were synthesized, functionalized with complimentary oligonucleotides, and hybridized to form large networks of NPs. Scattering spectra were collected from each sample (unfunctionalized, functionalized, and hybridized and evaluated. The spectra showed unique peaks for each size of Au NP sample and also exhibited narrowing and intensifying of the spectra as the NPs were functionalized and then subsequently hybridized. These spectra are different from normal aggregation effects where the LSPR and reflected spectrum broaden and are red-shifted. Rather, this appears to be dependent on the ability to control the interparticle distance through oligonucleotide length, which is also investigated through the incorporation of a poly-A spacer. Also, hybridized Au NPs were exposed to cells with no adverse effects and retained their unique spectral signatures. With the ability to distinguish between hybridization states at nearly individual NP levels, this could provide a new method of tracking the intracellular actions of nanomaterials as well as extracellular biosensing applications.

  8. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In ovo delivery of Newcastle disease virus conjugated hybrid calcium phosphate nanoparticle and to study the cytokine profile induction

    International Nuclear Information System (INIS)

    Viswanathan, Kaliyaperumal; Rathish, P.; Gopinath, V.P.; Janice, R.; Dhinakar Raj, G.

    2014-01-01

    In this report, the hybrid calcium phosphate (CaP) nanoparticles were synthesized and functionalized with Newcastle disease virus (NDV). These nanoparticles were synthesized by a combination of co-precipitation and polymerization process and functionalized with amino propyl triethoxy silane before coupling to NDV. The 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) assay of chicken spleen cells incubated with these nanoparticles indicated that, these particles did not exert any significant cytotoxicity. The effects of hybrid CaP nanoparticles on cell cycle were assayed using a flow cytometer. The results demonstrated that the cell viability and proliferation capacity of spleen cells were not affected by hybrid CaP nanoparticles compared with their control cells. The hybrid CaP nanoparticles were characterized by scanning/transmission electron microscopy (SEM/TEM); Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD), Raman spectroscopy and energy-dispersive X-ray spectroscopy (EDX). These methods revealed that NDV was successfully conjugated on nanoparticles. The ability of the hybrid CaP nanoparticles to induce different cytokine mRNAs in the spleen cells of 18-day old embryonated chicken eggs (ECEs) was studied by quantitative real time polymerase chain reaction (qRT-PCR). NDV conjugated particles induced a high expression of Th1 cytokines such as interferon (IFN)-α, tumor necrosis factor (TNF)-α of and Th2 cytokines, interleukin (IL) 6 and IL-10. Uncoupled NDV induced only Th1 cytokines, IFN-α, INF-γ and TNF-α. The hybrid particles alone did not induce any cytokines. This confirmed that nanoparticle coupling could induce differential cytokine profiles and hence can be used as an alternate strategy to direct favorable immune responses in animals or chickens using appropriate vaccination carrier. - Highlights: • NDV conjugated hybrid CaP NP induced differential cytokine profiles in embryonated chicken eggs.

  10. In ovo delivery of Newcastle disease virus conjugated hybrid calcium phosphate nanoparticle and to study the cytokine profile induction

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Kaliyaperumal [Translational Research Platform for Veterinary Biologicals (TRPVB), Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, Tamil Nadu (India); Rathish, P.; Gopinath, V.P.; Janice, R. [Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 007 (India); Dhinakar Raj, G., E-mail: dhinakarrajg@tanuvas.org.in [Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 007 (India); Translational Research Platform for Veterinary Biologicals (TRPVB), Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, Tamil Nadu (India)

    2014-12-01

    In this report, the hybrid calcium phosphate (CaP) nanoparticles were synthesized and functionalized with Newcastle disease virus (NDV). These nanoparticles were synthesized by a combination of co-precipitation and polymerization process and functionalized with amino propyl triethoxy silane before coupling to NDV. The 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) assay of chicken spleen cells incubated with these nanoparticles indicated that, these particles did not exert any significant cytotoxicity. The effects of hybrid CaP nanoparticles on cell cycle were assayed using a flow cytometer. The results demonstrated that the cell viability and proliferation capacity of spleen cells were not affected by hybrid CaP nanoparticles compared with their control cells. The hybrid CaP nanoparticles were characterized by scanning/transmission electron microscopy (SEM/TEM); Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD), Raman spectroscopy and energy-dispersive X-ray spectroscopy (EDX). These methods revealed that NDV was successfully conjugated on nanoparticles. The ability of the hybrid CaP nanoparticles to induce different cytokine mRNAs in the spleen cells of 18-day old embryonated chicken eggs (ECEs) was studied by quantitative real time polymerase chain reaction (qRT-PCR). NDV conjugated particles induced a high expression of Th1 cytokines such as interferon (IFN)-α, tumor necrosis factor (TNF)-α of and Th2 cytokines, interleukin (IL) 6 and IL-10. Uncoupled NDV induced only Th1 cytokines, IFN-α, INF-γ and TNF-α. The hybrid particles alone did not induce any cytokines. This confirmed that nanoparticle coupling could induce differential cytokine profiles and hence can be used as an alternate strategy to direct favorable immune responses in animals or chickens using appropriate vaccination carrier. - Highlights: • NDV conjugated hybrid CaP NP induced differential cytokine profiles in embryonated chicken eggs.

  11. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.

    Science.gov (United States)

    Fan, Wei; Lee, Yih Hong; Pedireddy, Srikanth; Zhang, Qi; Liu, Tianxi; Ling, Xing Yi

    2014-05-07

    Graphene oxide (GO) is an emerging material for surface-enhanced Raman scattering (SERS) due to its strong chemical enhancement. Studying the SERS performance of plasmonic nanoparticle/GO hybrid materials at the single particle level is crucial for direct probing of the chemical effect of GO on plasmonic nanoparticles. In this work, we integrate GO and shape-controlled Ag nanoparticles to create hybrid nanomaterials, and the chemical enhancement arising from GO is investigated using single-particle SERS measurements. Ag nanoparticle@GO hybrid nanostructures are prepared by assembling Ag nanoparticles, including spheres, cubes and octahedra with GO sheets. The SERS behaviors of the hybrid nanostructures are characterized, and 2-3 times enhanced SERS intensities are detected from the Ag nanoparticle@GO hybrid nanostructures as compared to pure Ag nanoparticles. Furthermore, we probe the mechanism of SERS enhancement in the hybrid nanostructures by changing the surface coverage of GO on Ag octahedra, by using reduced GO in place of GO as well as by using probe molecules of different electronegativities. This hybrid system is an excellent candidate for single-particle SERS sensors. Sub-nanomolar levels of aromatic molecules are detected using a single Ag/GO hybrid nanomaterial. This as-prepared GO and shape-controlled Ag nanoparticle hybrid is capable of serving as a high performance SERS platform, providing new opportunities for efficient chemical and biological sensing applications.

  12. Harnessing nonlinear rubber swelling for bulk synthesis of anisotropic hybrid nanoparticles.

    Science.gov (United States)

    Ding, Tao; Smoukov, Stoyan K; Baumberg, Jeremy J

    2014-11-07

    Asymmetric hybrid nanoparticles are at the forefront of colloidal chemistry as building blocks for novel structures and applications, as well as for exploring fundamental ways of breaking symmetry in physical systems. Current methods of synthesis have significant limitations in terms of control over synthesis, particle size ranges and polydispersity. We report a facile and scalable synthesis based on the anisotropic swelling of rubber to obtain metal-(polymer rubber) hybrid nanoparticles. Initial Au nanoparticle (NP) seeds are grown larger by reducing HAuCl 4 with divinyl benzene (DVB), while simultaneous radical polymerization of DVB forms a cross-linked rubber layer of PDVB on the Au NP surface. The propensity of rubber to swell nonlinearly in the presence of DVB monomers amplifies initial asymmetries to break the symmetry of the PDVB shell, causing growth of asymmetric protrusions on one side of the core-shell particles, which are fixed by further polymerization. Plasmonic absorption of Au allows us to follow the Au reduction reaction and also suggests potential applications of some of the asymmetric particles in plasmon-enhanced sensing. The polydispersity, determined statistically from TEM and SEM images, of the resulting particles is low (<10%) and their sizes, shapes and metal-polymer ratios are easily tunable.

  13. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    International Nuclear Information System (INIS)

    Strobel, Sebastian; Hernandez, Rocio Murcia; Hansen, Allan G; Tornow, Marc

    2008-01-01

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10 -18 farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology

  14. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian; Hernandez, Rocio Murcia [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Hansen, Allan G; Tornow, Marc [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)], E-mail: m.tornow@tu-bs.de

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10{sup -18} farad and asymmetric resistances of 30 and 300 M{omega}, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  15. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.

    Science.gov (United States)

    Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  16. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  18. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

    Directory of Open Access Journals (Sweden)

    Arpita Jana

    2017-03-01

    Full Text Available Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs. These graphene–NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO, a graphene-like material, can be easily prepared by reduction of graphene oxide (GO and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs, sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene–TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene–TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.

  19. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    Science.gov (United States)

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  20. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Science.gov (United States)

    Torrisi, Vanna; Ruffino, Francesco; Licciardello, Antonino; Grazia Grimaldi, Maria; Marletta, Giovanni

    2011-12-01

    We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly- n-butylacrylate- block-polyacrylic acid (P nBuA- b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the P nBuA- b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid P nBuA- b-PAA/Au NPs bilayer at T > T g. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer.

  1. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Directory of Open Access Journals (Sweden)

    Ruffino Francesco

    2011-01-01

    Full Text Available Abstract We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA were studied at the nanometric scale by using atomic force microscopy (AFM and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS. The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs, forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer.

  2. Nanoparticle-Programmed Surface for Drug Release and Cell Regulation via Reversible Hybridization Reaction.

    Science.gov (United States)

    Jiang, Pinliang; Li, Shihui; Lai, Jinping; Zheng, Hong; Lin, Changjian; Shi, Peng; Wang, Yong

    2017-02-08

    A surface directly connects the bulk of a material to its surroundings. The ability to dynamically regulate the surface without affecting the bulk of a material holds great potential for new applications. The purpose of this work was to demonstrate that the surface can be dynamically changed using nanoparticles and oligonucleotides (ODNs) in a reversible and reiterative manner. A dual-functional nanogel was synthesized as the model of nanoparticles using miniemulsion polymerization and click chemistry. The nanogel can not only adsorb drugs for sustained drug release but also bind a surface functionalized with complementary ODNs. Importantly, hybridization reaction and ODN degradation can drive reversible and reiterative nanogel binding to the surface for dynamic change, which in principle is unlimited. Moreover, nanogel-mediated dynamic change offers the surface with the drug-releasing function for inhibiting the growth of surrounding cells. Because nanogels can be replaced by any functional nanoparticles with a diverse array of properties, nanoparticle-programmed surface change constitutes a promising platform for various applications such as drug delivery and stent implantation.

  3. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors.

    Science.gov (United States)

    Paniagua, Sergio A; Kim, Yunsang; Henry, Katherine; Kumar, Ritesh; Perry, Joseph W; Marder, Seth R

    2014-03-12

    A phosphonic acid is used as a surface initiator for the growth of polystyrene and polymethylmethacrylate (PMMA) from barium titanate (BTO) nanoparticles through atom transfer radical polymerization with activators regenerated by electron transfer. This results in the barium titanate cores embedded in the grafted polymer. The one-component system, PMMA-grafted-BTO, achieves a maximum extractable energy density of 2 J/cm(3) at a field strength of ∼220 V/μm, which exhibits a 2-fold increase compared to that of the composite without covalent attachment or the neat polymer. Such materials have potential applications in hybrid capacitors due to the high permittivity of the nanoparticles and the high breakdown strength, mechanical flexibility, and ease of processability due to the organic polymer. The synthesis, processing, characterization, and testing of the materials in capacitors are discussed.

  4. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo

    2016-11-17

    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared with microcrystalline, thin-film, or bulk metal halides. Here we present a novel one-step synthesis of organolead bromide perovskite nanocrystals based on pulsed-laser irradiation in a liquid environment (PLIL). Starting from a bulk CHNHPbBr crystal, our PLIL procedure does not involve the use of high-boiling-point polar solvents or templating agents, and runs at room temperature. The resulting nanoparticles are characterized by high crystallinity and are completely free of any microscopic product or organic coating layer. We also demonstrate the straightforward inclusion of laser-generated perovskite nanocrystals in a polymeric matrix to form a nanocomposite with single- and two-photon luminescence properties.

  5. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  6. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  7. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application.

    Science.gov (United States)

    Prasad, A I; Parchur, A K; Juluri, R R; Jadhav, N; Pandey, B N; Ningthoujam, R S; Vatsa, R K

    2013-04-14

    Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.

  8. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  9. A general approach to synthesize asymmetric hybrid nanoparticles by interfacial reactions.

    Science.gov (United States)

    He, Jie; Perez, Maria Teresa; Zhang, Peng; Liu, Yijing; Babu, Taarika; Gong, Jinlong; Nie, Zhihong

    2012-02-29

    Asymmetric multicomponent nanoparticles (AMNPs) offer new opportunities for new-generation materials with improved or new synergetic properties not found in their individual components. There is, however, an urgent need for a synthetic strategy capable of preparing hybrid AMNPs with fine-tuned structural and compositional complexities. Herein, we report a new paradigm for the controllable synthesis of polymer/metal AMNPs with well-controlled size, shape, composition, and morphology by utilizing interfacial polymerization. The hybrid AMNPs display a new level of structural-architectural sophistication, such as controlled domain size and the number of each component of AMNPs. The approach is simple, versatile, cost-effective, and scalable for synthesizing large quantities of AMNPs. Our method may pave a new route to the design and synthesis of advanced breeds of building blocks for functional materials and devices. © 2012 American Chemical Society

  10. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures

    International Nuclear Information System (INIS)

    Kim, Suenne; Shafiei, Farbod; Ratchford, Daniel; Li Xiaoqin

    2011-01-01

    We demonstrate controlled manipulation of semiconductor and metallic nanoparticles (NPs) with 5-15 nm diameters and assemble these NPs into hybrid structures. The manipulation is accomplished under ambient environment using a commercial atomic force microscope (AFM). There are particular difficulties associated with manipulating NPs this small. In addition to spatial drift, the shape of an asymmetric AFM tip has to be taken into account in order to understand the intended and actual manipulation results. Furthermore, small NPs often attach to the tip via electrostatic interaction and modify the effective tip shape. We suggest a method for detaching the NPs by performing a pseudo-manipulation step. Finally, we show by example the ability to assemble these small NPs into prototypical hybrid nanostructures with well-defined composition and geometry.

  11. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-25

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  12. Fe2O3-Au hybrid nanoparticles for sensing applications via SERS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States)

    2017-07-27

    Multifunctional iron oxide-gold hybrid nanostructures have been produced via solution chemistries and investigated for analyte detection. Gold nanoparticles of various shapes have been used for probing surface-enhanced Raman scattering (SERS) effects as they display unique optical properties in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies. The “hot spots” were created by using a seeded reaction to increase the gold loading on the iron oxide support by 43% by weight. SERS Nanomaterials were evaluated for their ability to promote surface-enhanced Raman scattering of a model analyte, 4-mercaptophenol. The data shows an enhancement effect of the model analyte on gold decorated iron oxide nanoparticles.

  13. Self-assembled dipeptide-gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors.

    Science.gov (United States)

    Gong, Yufei; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-04-15

    Novel self-assembled dipeptide-gold nanoparticle (DP-AuNP) hybrid microspheres with a hollow structure have been prepared in aqueous solution by a simple one-step method. Diphenylalanine (FF) dipeptide was used as a precursor to form simultaneously peptide spheres and a reducing agent to reduce gold ions to gold nanoparticles in water at 60°C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that formed AuNPs were localized both inside and on the surface of the dipeptide spheres. Horseradish peroxidase (HRP) as a model enzyme was further immobilized on the dipeptide-AuNP hybrid spheres to construct a mediate H2O2 amperometric biosensor. UV-vis spectroscopy showed that the immobilized HRP retained its original structure. Cyclic voltammetry characterization demonstrated that the HRP/dipeptide-AuNP hybrid spheres modified glassy carbon electrode showed high electrocatalytic activity to H2O2. The proposed biosensor exhibited a wide linear response in the range from 5.0×10(-7) to 9.7×10(-4)M with a high sensitivity of 28.3µAmM(-1). A low detection limit of 1.0×10(-7)M was estimated at S/N=3. In addition, the biosensor possessed satisfactory reproducibility and long-term stability. These results indicated that the dipeptide-AuNP hybrid sphere is a promising matrix for application in the fabrication of electrochemical biosensors due to its excellent biocompatibility and good charge-transfer ability. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  15. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  16. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    Science.gov (United States)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  17. Fabrication, Light Emission, and Magnetism of Silica Nanoparticles Hybridized with AIE Luminogens and Inorganic Nanostructures

    Science.gov (United States)

    Faisal, Mahtab

    Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells

  18. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jie, E-mail: hujie@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Lian, Kun, E-mail: liankun@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); School of Nano-Science and Nano-Engineering, Suzhou & Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Center for Advanced Microstructures and Devices, Louisiana State University, LA, 70806 (United States)

    2017-02-28

    Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  19. Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power

    Science.gov (United States)

    DeJarnette, Drew; Brekke, Nick; Tunkara, Ebrima; Hari, Parameswar; Roberts, Kenneth; Otanicar, Todd

    2015-09-01

    A nanoparticle fluid filter used with concentrating hybrid solar/thermal collector design is presented. Nanoparticle fluid filters could be situated on any given concentrating system with appropriate customized engineering. This work shows the design in the context of a trough concentration system. Geometric design and physical placement in the optical path was modeled using SolTrace. It was found that a design can be made that blocks 0% of the traced rays. The nanoparticle fluid filter is tunable for different concentrating systems using various PV cells or operating at varying temperatures.

  20. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2013-08-15

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  1. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design.

    Science.gov (United States)

    Gajra, Balaram; Dalwadi, Chintan; Patel, Ravi

    2015-01-21

    The objective of the study was to formulate and to investigate the combined influence of 3 independent variables in the optimization of Polymeric lipid hybrid nanoparticles (PLHNs) (Lipomer) containing hydrophobic antifungal drug Itraconazole and to improve intestinal permeability. The Polymeric lipid hybrid nanoparticle formulation was prepared by the emulsification solvent evaporation method and 3 factor 3 level Box Behnken statistical design was used to optimize and derive a second order polynomial equation and construct contour plots to predict responses. Biodegradable Polycaprolactone, soya lecithin and Poly vinyl alcohol were used to prepare PLHNs. The independent variables selected were lipid to polymer ratio (X1) Concentration of surfactant (X2) Concentration of the drug (X3). The Box-Behnken design demonstrated the role of the derived equation and contour plots in predicting the values of dependent variables for the preparation and optimization of Itraconazole PLHNs. Itraconazole PLHNs revealed nano size (210 ± 1.8 nm) with an entrapment efficiency of 83 ± 0.6% and negative zeta potential of -11.7 mV and also enhance the permeability of itraconazole as the permeability coefficient (Papp) and the absorption enhancement ratio was higher. The tunable particle size, surface charge, and favourable encapsulation efficiency with a sustained drug release profile of PLHNs suggesting that it could be promising system envisioned to increase the bioavailability by improving intestinal permeability through lymphatic uptake, M cell of payer's patch or paracellular pathway which was proven by confocal microscopy.

  2. Novel Alginate-Gelatin Hybrid Nanoparticle for Drug Delivery and Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Eun Mi Lee

    2014-01-01

    Full Text Available Novel alginate-gelatin hybrid nanoparticles were fabricated using single oil in water (O/W emulsification techniques. Physicochemical property of the particle was characterized using scanning electron microscopy and Fourier’s transmission infrared spectroscopy. Particle size was determined using zeta potential metastasize analyzer and was found to be in range of 400–600 nm. AGNPs were used for culturing human keratinocytes for two weeks to check biocompatibility of synthesized AGNPs. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed increased metabolic activity of cells cultured on AGNPs in comparison to two-dimensional (2D system (control. Cellular attachment on nanoparticle was further confirmed using SEM and 4′,6-diamidino-2-phenylindole staining. The drug release profile shows possible electrostatic bond between alginate and gelatin resulting in controlled release of drug from AGNPs. For the first time alginate-gelatin hybrid nanosystem has been fabricated and all results showed it can be used as potential system for delivery of drug and therapeutical agents to cells and can also be used for regenerative medicine applications.

  3. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  5. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    . Such double-channel emission provides a broadening of the electroluminescence spectrum and a resultant yellow-green emission color of the device. We have realized an energy transfer from the exciplexes arranged by the interface between two organic layers and the spherical-shaped BaZrO3 nanoparticles randomly.......26%. In order to estimate the efficiency of the energy transfer from the exciplex to the BaZrO3 nanoparticles we have applied the Förster model for the dipole-dipole energy transfer accounting for the mutual overlap of the exciplex emission spectrum and the absorption spectrum of the BaZrO3 nanoparticles.......In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  6. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    Science.gov (United States)

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Control of electromagnetically induced transparency via a hybrid semiconductor quantum dot-vanadium dioxide nanoparticle system

    Science.gov (United States)

    Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza

    2017-07-01

    We numerically investigate the electromagnetically induced transparency (EIT) of a hybrid system consisting of a three-level quantum dot (QD) in the vicinity of vanadium dioxide nanoparticle (VO2NP). VO2NP has semiconductor and metallic phases where the transition between the two phases occurs around a critical temperature. When the QD-VO2NP hybrid system interacts with continuous wave laser fields in an infrared regime, it supports a coherent coupling of exciton-polariton and exciton-plasmon polariton in semiconductor and metal phases of VO2NP, respectively. In our calculations a filling fraction factor controls the VO2NP phase transition. A probe and control laser field configuration is studied for the hybrid system to measure the absorption of QD through the filling fraction factor manipulations. We show that for the VO2NP semiconductor phase and proper geometrical configuration, the absorption spectrum profile of the QD represents an EIT with two peaks and a clear minimum. These two peaks merge to one through the VO2NP phase transition to metal. We also show that the absorption spectrum profile is modified by different orientations of the laser fields with the axis of the QD-VO2NP hybrid system. The innovation in comparison to other research in the field is that robust variation in the absorption profile through EIT is due to the phase transition in VO2NP without any structural change in the QD-VO2NP hybrid system. Our results can be employed to design nanothermal sensors, optical nanoswitches, and energy transfer devices.

  8. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.

    Science.gov (United States)

    Ding, Qi; Liu, Dongfang; Guo, Dawei; Yang, Fang; Pang, Xingyun; Che, Renchao; Zhou, Naizhen; Xie, Jun; Sun, Jianfei; Huang, Zhihai; Gu, Ning

    2017-04-01

    Superparamagnetic Fe 3 O 4 nanoparticles (NPs)-based hyperthermia is a promising non-invasive approach for cancer therapy. However, the heat transfer efficiency of Fe 3 O 4 NPs is relative low, which hinders their practical clinical applications. Therefore, it is promising to improve the magnetic hyperthermia efficiency by exploring the higher performance magnetic NPs-based hybrid nanostructures. In the current study, it presents a straightforward in situ reduction method for the shape-controlled preparation of magnetite (Fe 3 O 4 ) silver (Ag) hybrid NPs designed as magnetic hyperthermia heat mediators. The magnetite silver hybrid NPs with core-shell (Fe 3 O 4 @Ag) or heteromer (Fe 3 O 4 -Ag) structures exhibited a higher biocompatibility with SMMC-7721 cells and L02 cells than the individual Ag NPs. Importantly, in the magnetic hyperthermia, with the exposure to alternating current magnetic field, the Fe 3 O 4 @Ag and Fe 3 O 4 -Ag hybrid NPs indicated much better tumor suppression effect against SMMC-7721 cells than the individual Fe 3 O 4 NPs in vitro and in vivo. These results demonstrate that the hybridisation of Fe 3 O 4 and Ag NPs could greatly enhance the magnetic hyperthermia efficiency of Fe 3 O 4 NPs. Therefore, the Fe 3 O 4 @Ag and Fe 3 O 4 -Ag hybrid NPs can be used to be as high performance magnetic hyperthermia mediators based on a simple and effective preparation approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles.

    Science.gov (United States)

    Kheirabadi, Malihe; Shi, Liyang; Bagheri, Reza; Kabiri, Kourosh; Hilborn, Jöns; Ossipov, Dmitri A

    2015-11-01

    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic modulus than those of the control single networks (either disulfide or hydrazone) and the three component formulations gave the softest hydrogels. Moreover, a hydrazone cross-linkage was designed to contain a 1,2-diol fragment. This allowed us to partially disassemble one type of network in the IPN leaving another one unaffected. In particular, treatment of the IPN with either sodium periodate or dithiothreitol resulted in disassembly of the hydrazone and disulfide networks respectively and thus softening of the hydrogel. Contrarily, the single network hydrogels completely dissolved under the corresponding conditions. In corroboration with this, enzymatic degradation of the IPN by hyaluronidase was also substantially slower than the degradation of the single networks. In order to further improve the mechanical properties of the elaborated injectable IPN, it has been in situ hybridized with iron oxide nanoparticles (IONPs). The mesh size of the IPN was smaller than the size of the IONPs resulting in the retention of nanoparticles in the matrix under equilibrium swelling conditions. However, these nanoparticles were released upon enzymatic degradation suggesting their use as MRI tags for non-invasive tracking of the hydrogel material in vivo. Additionally, this injectable hybridized

  10. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hybrid electrolytes based on ionic liquids and amorphous porous silicon nanoparticles: Organization and electrochemical properties

    KAUST Repository

    Tchalala, Mohammed

    2017-05-06

    Ionic liquids (ILs) and ionic liquid-nanoparticle (IL-NP) hybrid electrolytes have garnered a lot of interest due to their unique properties that stimulate their use in various applications. Herein, we investigate the electrochemical and photo-physical properties of organic-inorganic hybrid electrolytes based on three imidazolium-based ionic liquids, i.e., 1-buthyl-3-methylimidazolium thiocyanate ([bmim] [SCN]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] [BF4]) and 1-buthyl-3-methylimidazolium acetate ([bmim] [Ac]) that are covalently tethered to amorphous porous silicon nanoparticles (ap-Si NPs). We found that the addition of ap-Si NPs confer to the ILs a pronounced boost in the electrocatalytic activity, and in mixtures of ap-Si NPs and [bmim] [SCN], the room-temperature current transport is enhanced by more than 5 times compared to bare [bmim] [SCN]. A detailed structural investigation by transmission electron microscope (TEM) showed that the ap-Si NPs were well dispersed, stabilized and highly aggregated in [bmim] [SCN], [emim] [BF4] and [bmim] [Ac] ILs, respectively. These observations correlate well with the enhanced current transport observed in ap-Si NPs/[bmim] [SCN] evidenced by electrochemical measurements. We interpreted these observations by the use of UV–vis absorbance, photoluminescence (PL), FTIR and solid-state NMR spectroscopy. We found that the ap-Si NPs/[bmim] [SCN] hybrid stands out due to its stability and optical transparency. This behavior is attributed to the iron(III) thiocyanate complexion as per the experimental findings. Furthermore, we found that the addition of NPs to [emim] [BF4] alters the equilibrium of the IL, which consequently improved the stability of the NPs through intermolecular interactions with the two ionic layers (anionic and cationic layers) of the IL. While in the case of [bmim] [Ac], the dispersion of ap-Si NPs was restrained because of the high viscosity of this IL.

  12. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  13. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  14. Preparation of AgBr@SiO{sub 2} core@shell hybrid nanoparticles and their bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Yang, Lisu [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Henna Sports School, Zhengzhou 450045 (China); Zhao, Yanbao, E-mail: yanbaozhao@126.com [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie; Sun, Lei; Luo, Huajuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-04-01

    AgBr@SiO{sub 2} core@shell hybrid nanoparticles (NPs) were successfully prepared by sol-gel method. Their morphology and structure were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The hybrid NPs are predominantly spherical in shape, with an average diameter of 180–200 nm, and each NP contains one inorganic core. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the hybrid NPs were examined against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), respectively. Results indicated that the AgBr@SiO{sub 2} NPs had excellent antibacterial activity. - Highlights: ► Presents a novel antibacterial agent “AgBr@ SiO{sub 2} NPs”. ► AgBr@SiO{sub 2} hybrid NPs could provide long-term antimicrobial effect. ► AgBr@SiO{sub 2} hybrid NPs have excellent antibacterial activity.

  15. Effect of natural extracts pH on morphological characteristics of hybrid materials based on gold nanoparticles

    Science.gov (United States)

    Olenic, L.; Vulcu, A.; Chiorean, I.; Crisan, M.; Berghian-Grosan, C.; Dreve, S.; David, L.; Tudoran, L. B.; Kacso, I.; Bratu, I.; Neamtu, C.; Voica, C.

    2013-11-01

    In the present paper we have investigated the pH influence on the morphology of some new hybrid materials based on gold nanoparticles and natural extracts from fruits of Romanian native plants of Adoxaceae family (Viburnum opulus L. and Sambucus nigra L.). It is well known that the natural plants extracts are beneficial for humans thanks to their antioxidant, anti-inflammatory and immunomodulatory effects. The biological activity of these berries is mainly due to their high content of anthocyanins and other polyphenols. The nanoparticles facilitate the penetration of substances in skin, enhancing their antimitotic, anti-inflammatory and antibiotic properties. We have chosen the optimal method to get these materials in which gold nanoparticles of 10-80 nm were obtained. We characterized them by UV-Vis and FT-IR spectroscopy, by TEM and DSC. Creams prepared with the hybrid materials have been tested on psoriatic lesions and the medical results emphasized a remarkable improvement in this diseases.

  16. The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles.

    Science.gov (United States)

    Politi, Jane; De Stefano, Luca; Longobardi, Sara; Giardina, Paola; Rea, Ilaria; Methivier, Christophe; Pradier, Claire-Marie; Casale, Sandra; Spadavecchia, Jolanda

    2015-12-01

    We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles

    International Nuclear Information System (INIS)

    Tan, Licheng; Liu, Jian; Zhou, Weihua; Wei, Junchao; Peng, Zhiping

    2014-01-01

    A smart ZnO@PNIPAM hybrid was prepared by grafting thermal responsive poly(N-isopropylacrylamide) (PNIPAM) on zinc oxide (ZnO) nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). The thermal gravimetric analysis (TGA) shows that the grafting amount of PNIPAM was about 38%, and the SEM images show that the PNIPAM chains can prevent the aggregation of ZnO nanoparticles. The responsive properties of ZnO@PNIPAM were measured by photoluminescence spectra, and the results demonstrate that the PNIPAM chains grafted on ZnO surfaces can realize reversible thermal responsive and photoluminescence properties. An anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the hybrid nanoparticles, and an in vitro drug release test implied that ZnO@PNIPAM could work as a thermal responsive drug delivery system. Furthermore, pH sensitive drug releases were carried out in acetate buffer at pH 5.0 and pH 6.0 and in water at pH 7.0, and the results showed evident pH dependency, showing its pH responsive properties. - Graphical abstract: In this manuscript, thermal responsive poly(N-isopropylacrylamide) (PNIPAM) was grafted on the surface of ZnO nanoparticles. The obtained ZnO@PNIPAM hybrid showed reversible thermal responsive photoluminescent properties, and can also work as a thermal and pH responsive drug delivery system. - Highlights: • The ZnO@PNIPAM hybrid was prepared via ATRP. • The ZnO@PNIPAM hybrid showed thermal responsive properties. • The ZnO@PNIPAM hybrid can work as a thermal and pH responsive drug delivery system

  18. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Licheng; Liu, Jian; Zhou, Weihua [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wei, Junchao, E-mail: weijunchao@ncu.edu.cn [Department of Chemistry, Nanchang University, Nanchang 330031 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Peng, Zhiping [Department of Chemistry, Nanchang University, Nanchang 330031 (China)

    2014-12-01

    A smart ZnO@PNIPAM hybrid was prepared by grafting thermal responsive poly(N-isopropylacrylamide) (PNIPAM) on zinc oxide (ZnO) nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). The thermal gravimetric analysis (TGA) shows that the grafting amount of PNIPAM was about 38%, and the SEM images show that the PNIPAM chains can prevent the aggregation of ZnO nanoparticles. The responsive properties of ZnO@PNIPAM were measured by photoluminescence spectra, and the results demonstrate that the PNIPAM chains grafted on ZnO surfaces can realize reversible thermal responsive and photoluminescence properties. An anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the hybrid nanoparticles, and an in vitro drug release test implied that ZnO@PNIPAM could work as a thermal responsive drug delivery system. Furthermore, pH sensitive drug releases were carried out in acetate buffer at pH 5.0 and pH 6.0 and in water at pH 7.0, and the results showed evident pH dependency, showing its pH responsive properties. - Graphical abstract: In this manuscript, thermal responsive poly(N-isopropylacrylamide) (PNIPAM) was grafted on the surface of ZnO nanoparticles. The obtained ZnO@PNIPAM hybrid showed reversible thermal responsive photoluminescent properties, and can also work as a thermal and pH responsive drug delivery system. - Highlights: • The ZnO@PNIPAM hybrid was prepared via ATRP. • The ZnO@PNIPAM hybrid showed thermal responsive properties. • The ZnO@PNIPAM hybrid can work as a thermal and pH responsive drug delivery system.

  19. Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan

    2011-01-01

    In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.

  20. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  1. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  2. Current-dependent anisotropic conductivity of locally assembled silver nanoparticles in hybrid polymer films.

    Science.gov (United States)

    Goel, Pooja; Vinokur, Rostislav; Weichold, Oliver

    2010-12-15

    The electrical behaviour of hybrid poly(ethylene terephthalate) films containing localised, percolating networks of silver nanoparticles separated by pure polymer is studied. The films resemble an array of parallel wires in the submicron range and, thus, exhibit anisotropic conductivity. In the high-conductivity direction at low amplitudes, the films show Ohmic behaviour, while at moderate voltage, non-linearity and a decreasing resistance is observed. The samples were found to heat up during the measurements and the deviation from Ohm's law coincides with the Tg of the polymer. Microstructural analysis of the samples revealed an irreversible agglomeration of the particles at moderate voltages leading to the formation of filaments with higher metallic character than the random particle network. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    Science.gov (United States)

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  4. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles

    Science.gov (United States)

    João de Mello, Leônidas, Jr.; Rosa Souza, Gabriela Regina; Winter, Evelyn; Silva, Adny Henrique; Pittella, Frederico; Creczynski-Pasa, Tânia Beatriz

    2017-04-01

    Tumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in the promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells. However, there are some limitations for the application of siRNA such as the need for vectors to pass the cell membrane and deliver the nucleic acid. In this study CaP-siRNA-PEG-polyanion hybrid nanoparticles were developed to promote siRNA delivery to cultured human breast cancer cells (MCF-7) in order to evaluate whether the silencing of antiapoptotic genes BCL-2 and BCL-xL by siRNA would increase cancer cell death. After 48 h of incubation the expression of BCL-2 and BCL-xL genes decreased to 49% and 23%, respectively. The siRNA sequence used induced cancer cell death at a concentration of 200 nM siRNA after 72 h of incubation. As the targeted proteins are related to the resistance to chemotherapeutic drugs, the nanocarriers systems were also tested in the presence of doxorubicin (DOX). The results showed a significant reduction in the CC50 of the DOX, after silencing the antiapoptotic genes. In addition, an increase in apoptotic cell counts for both incubations conditions was observed as well. In conclusion, silencing antiapoptotic genes such as BCL-2 and BCL-xL through the use of siRNA carried by hybrid nanoparticles showed to be effective in vitro, and presents a promising strategy for pre-clinical analysis, especially when combined with DOX against breast cancer.

  5. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    Science.gov (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  6. Optical response of hybrid semiconductor quantum dot-metal nanoparticle system: Beyond the dipole approximation

    Science.gov (United States)

    Mohammadzadeh, Atefeh; Miri, MirFaez

    2018-01-01

    We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.

  7. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  8. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection

    Directory of Open Access Journals (Sweden)

    Ayaka Sato

    2018-03-01

    Full Text Available Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  9. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-09-01

    Full Text Available Bo Wu,1,2 Shu-Ting Lu,1 Kai Deng,2 Hui Yu,2 Can Cui,2 Yang Zhang,2 Ming Wu,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China Abstract: In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX. They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo. Keywords: redox-sensitive, tumor-targeted, gadolinium, contrast agents, PLGA

  10. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-06-01

    Full Text Available Abstract Background Iron oxide nanoparticles (IONPs have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic and gold (surface plasmon resonance result in a multimodal platform for use as MRI contrast agents and as a nano-heater. Results Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine intermediate layer. The final particles were coated in poly(ethylene glycol to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV–vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μgmL-1. The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex®. Conclusions The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery.

  11. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

    Science.gov (United States)

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  12. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.

    Science.gov (United States)

    Devrim, Burcu; Kara, Aslı; Vural, İmran; Bozkır, Asuman

    2016-11-01

    Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles. The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme. Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-ɛ-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity. The DLS measurement results showed that the particle size of LPNPs ranged from 58.04 ± 1.95 nm to 2009.00 ± 0.52 nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1 h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120 h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells. We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.

  13. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    Science.gov (United States)

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography.

    Science.gov (United States)

    Liu, Shengju; Peng, Jiaxi; Zhang, Hongyan; Li, Xin; Liu, Zheyi; Kang, Xiaohui; Wu, Minghuo; Wu, Ren'an

    2017-05-19

    An organic-silica hybrid monolithic capillary column was fabricated by crosslinking (3-aminopropyl)trimethoxysilane (APTMS) modified mesoporous carbon nanoparticles (AP-MCNs) with tetramethoxysilane (TMOS) and n-butyltrimethoxysilane (C4-TriMOS). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, mercury intrusion porosimetry and inverse size-exclusion chromatography characterization proved the successful immobilization of mesoporous carbon nanoparticles (MCNs). The crosslinking of AP-MCNs into the hybrid monolithic matrix has significantly increased the reversed-phase retention of alkylbenzenes and chromatographic performance for small molecules separations in comparison with the neat one without MCNs. The resulting column efficiency of the mesoporous carbon nanoparticle-based butyl-silica hybrid monolithic column (MCN-C4-monolith) was up to ca. 116,600N/m for the capillary liquid chromatography (cLC) separation of butylbenzene. Enhanced performance of proteins separation was achieved on the MCN-C4-monolith in comparison with the butyl-silica hybrid monolithic column without MCN (C4-monolith). The separation of peptides from bovine serum albumin (BSA) digest was carried out on the MCN-C4-monolith by capillary liquid chromatography-tandem mass spectrometry (cLC-MS/MS) with protein sequence coverage of 81.9%, suggesting its potential application in proteomics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

    International Nuclear Information System (INIS)

    Schneider, T.; Jahr, N.; Jatschka, J.; Csaki, A.; Stranik, O.; Fritzsche, W.

    2013-01-01

    The effect of DNA–DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).

  16. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents

    Science.gov (United States)

    Długosz, Maciej; Bulwan, Maria; Kania, Gabriela; Nowakowska, Maria; Zapotoczny, Szczepan

    2012-12-01

    We report here on synthesis and characterization of novel hybrid material consisting of silver nanoparticles (nAgs) embedded in calcium carbonate microparticles (μ-CaCO3) serving as carriers for sustained release. nAgs are commonly used as antimicrobial agents in many commercial products (textiles, cosmetics, and drugs). Although they are considered to be safe, their interactions with human organisms are still not fully understood; therefore it is important to apply them with caution and limit their presence in the environment. The synthesis of the new material was based on the co-precipitation of CaCO3 and nAg in the presence of poly(sodium 4-styrenesulfonate). Such designed system enables sustained release of nAg to the environment. This hybrid colloidal material (nAg/μ-CaCO3) was characterized by microscopic and spectroscopic methods. The release of nAg from μ-CaCO3 microparticles was followed in water at various pH values. Microbiological tests confirmed the effectiveness of these microparticles as an antibacterial agent. Importantly, the material can be stored as a dry powder and subsequently re-suspended in water without the risk of losing its antimicrobial activity. nAg/μ-CaCO3 was applied here to insure bacteriostatic properties of down feathers that may significantly prolong their lifetime in typical applications. Such microparticles may be also used as, e.g., components of coatings and paints protecting various surfaces against microorganism colonization.

  17. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents

    International Nuclear Information System (INIS)

    Długosz, Maciej; Bulwan, Maria; Kania, Gabriela; Nowakowska, Maria; Zapotoczny, Szczepan

    2012-01-01

    We report here on synthesis and characterization of novel hybrid material consisting of silver nanoparticles (nAgs) embedded in calcium carbonate microparticles (μ-CaCO 3 ) serving as carriers for sustained release. nAgs are commonly used as antimicrobial agents in many commercial products (textiles, cosmetics, and drugs). Although they are considered to be safe, their interactions with human organisms are still not fully understood; therefore it is important to apply them with caution and limit their presence in the environment. The synthesis of the new material was based on the co-precipitation of CaCO 3 and nAg in the presence of poly(sodium 4-styrenesulfonate). Such designed system enables sustained release of nAg to the environment. This hybrid colloidal material (nAg/μ-CaCO 3 ) was characterized by microscopic and spectroscopic methods. The release of nAg from μ-CaCO 3 microparticles was followed in water at various pH values. Microbiological tests confirmed the effectiveness of these microparticles as an antibacterial agent. Importantly, the material can be stored as a dry powder and subsequently re-suspended in water without the risk of losing its antimicrobial activity. nAg/μ-CaCO 3 was applied here to insure bacteriostatic properties of down feathers that may significantly prolong their lifetime in typical applications. Such microparticles may be also used as, e.g., components of coatings and paints protecting various surfaces against microorganism colonization.

  18. Structural Characterization of Self-Assembling Hybrid Nanoparticles for Bisphosphonate Delivery in Tumors.

    Science.gov (United States)

    Ristori, Sandra; Grillo, Isabelle; Lusa, Sara; Thamm, Jana; Valentino, Gina; Campani, Virginia; Caraglia, Michele; Steiniger, Frank; Luciani, Paola; De Rosa, Giuseppe

    2018-03-05

    Hybrid self-assembling nanoparticles (hsaNPs) encapsulating bisphosphonates (BPs) recently showed very promising results in preclinic experiments for the treatment of brain tumor. However, the poor knowledge on the architecture of hybrid nanovectors is certainly one of the main reasons hampering further clinical and industrial development of these technologies. Here we propose to combine different techniques, that is, small angle neutron scattering (SANS) and X-ray Sscattering (SAXS), with cryo-electron transmission microscopy (cryo-TEM) to study the architecture of the final hsaNPs as well as of the four components before the assembling process. Data analysis based on SANS and SAXS experiments suggested a multiple compartment architecture of the final product, consisting of two bilayers sourrounding a core. Structures consisting of two shells surrounding an internal core were also observed in the cryo-TEM analysis. Such high resolution insight, also combined with size distribution and zeta potential of the NPs, provides exhaustive characterization of hsaNPs encapsulating BPs, and it is aimed at supporting further their clinical and industrial development.

  19. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    Science.gov (United States)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2017-05-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance ( ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  20. Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

    Science.gov (United States)

    Lopez, Aitziber; Degrandi-Contraires, Elise; Canetta, Elisabetta; Creton, Costantino; Keddie, Joseph L; Asua, José M

    2011-04-05

    Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.

  1. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-05-01

    Full Text Available In this study, the nanosphere lithography (NSL method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz and 1.68 (SF5 glass, the nanoparticle arrays would have better refractive index sensitivity (RIS and figure of merit (FOM. Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  2. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles.

    Science.gov (United States)

    Petkova, Petya; Francesko, Antonio; Fernandes, Margarida M; Mendoza, Ernest; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2014-01-22

    Textiles are good substrates for growth of microorganisms especially under moisture and temperature conditions found in hospitals. Microbial shedding from the body occurs continuously at contact of the patient with textile materials used in medical practices, contributing to the occurrence of hospital acquired infections. Thus, the use of efficient antimicrobial textiles is necessary to prevent the transfer of pathogens and the infection incidence. In this work, hybrid antimicrobial coatings were generated on cotton fabrics by means of a one-step simultaneous sonochemical deposition of ZnO nanoparticles (NPs) and chitosan. The process was further optimized in terms of reagents concentration and processing time in order to improve the antibacterial properties of the fabric and ensure their biocompatibility. The highest antibacterial activity of the fabrics against two medically relevant bacterial species was achieved in a 30 min sonochemical coating process using 2 mM ZnO NPs suspension. When chitosan was simultaneously deposited with the same amount of ZnO, the obtained hybrid NPs coating displayed higher by 48 and 17% antibacterial activity against Staphylococcus aureus and Escherichia coli, respectively. The presence of biopolymer also improved the durability of the antimicrobial effect of the coatings by 21% for Staphylococcus aureus and 40% for Escherichia coli, evaluated after applying multiple washing cycles at hospital laundering regimes. Finally, 87% biocompatibility improvement supported by fibroblast viability was observed for the hybrid ZnO/chitosan coating compared to the steady decrease of cells viability over one week in contact with the fabrics coated with ZnO alone.

  3. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    Science.gov (United States)

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  4. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation.

    Science.gov (United States)

    Egawa, Edgar Y; Kitamura, Narufumi; Nakai, Ryusuke; Arima, Yusuke; Iwata, Hiroo

    2015-06-01

    Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20-oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20-SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully

  5. Cyto/hemocompatible magnetic hybrid nanoparticles (Ag2S-Fe3O4) with luminescence in the near-infrared region as promising theranostic materials.

    Science.gov (United States)

    Hocaoglu, Ibrahim; Asik, Didar; Ulusoy, Gulen; Grandfils, Christian; Ojea-Jimenez, Isaac; Rossi, François; Kiraz, Alper; Doğan, Nurcan; Acar, Havva Yagci

    2015-09-01

    Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25μg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation

    DEFF Research Database (Denmark)

    Tung, L.M.; Cong, N.X.; Huy, L.T.

    2016-01-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial...... with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment....

  7. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    Science.gov (United States)

    Pate, Ryan; Lantz, Kevin R.; Dhawan, Anuj; Vo-Dinh, Tuan; Stiff-Roberts, Adrienne D.

    2010-10-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate) (PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  8. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-01-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  9. Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel.

    Science.gov (United States)

    Li, Xiaojing; Ji, Na; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2017-09-13

    Starch nanoparticles were potential texture modifiers. However, they have strong tendency to aggregate and poor water dispersibility, which limited their application. The interaction between glucan (prepared from starch by enzymatic modification) and protein could significantly improve the dispersity of starch nanoparticles and, thus, enhance the rheological properties of food gels. In this work, glucan/protein hybrid nanoparticles were successfully developed for the first time using short linear glucan (SLG) and edible proteins [soy protein isolate (SPI), rice protein (RP), and whey protein isolate (WPI)]. The results showed that the SLG/SPI hybrid nanoparticles exhibited hollow structures, of which the smallest size was approximately 10-20 nm when the SLG/SPI ratio was 10:5. In contrast, SLG/RP nanoparticles displayed flower-like superstructures, and SLG/WPI nanoparticles presented stacked lamellar nanostructures with a width of 5-10 nm and a length of 50-70 nm. In comparison to bare SLG nanoparticles, SLG/SPI and SLG/WPI hybrid nanoparticles had higher melting temperatures. The addition of all nanoparticles greatly increased the storage modulus of corn starch gels and decreased loss tangent values. Importantly, the G' value of starch gels increased by 567% with the addition of flower-like SLG/RP superstructures.

  10. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): structure and electron irradiation effects.

    Science.gov (United States)

    Gontard, Lionel C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Kasama, Takeshi; Lozano-Pérez, Sergio; Lucas, Stéphane

    2014-12-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT : PCBM/ZnO nanorod array hybrid solar cells

    NARCIS (Netherlands)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A.; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-01-01

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the

  12. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties.

    Science.gov (United States)

    Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I

    2016-05-04

    Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.

  13. Fabrication and characterization of antibacterial nanoparticles supported on hierarchical hybrid substrates

    Science.gov (United States)

    Karumuri, Anil K.; Maleszewski, Adam A.; Oswal, Dhawal P.; Hostetler, Heather A.; Mukhopadhyay, Sharmila M.

    2014-04-01

    The effectiveness of many nanomaterial-based devices depends upon their available surface area. Isolated nanoparticles (NPs) can offer high-surface area, but are prone to environmental loss and pollution. Whereas those supported on solid substrates are limited by the specific surface area (SSA) of the support. The SSA limitation of traditional supports can be addressed by attaching NPs on specially designed hierarchical structures having unusually high SSA, thereby maximizing the nanomaterial advantage without the risks of using loose nano-powders. In this research, hierarchical structures were fabricated by grafting carbon nanotubes (CNT) on carbon and subsequently decorated with strongly attached silver nanoparticles (AgNP) via controlled reduction of silver salts in the presence of reducing and capping agents. Microstructure characterization revealed that along with other processing parameters, reduction temperature can be used to control NP morphology. For this substrate morphology, fine and uniformly dispersed AgNP were obtained at 60 °C, whereas significant particle coalescence and increase in particle size occurred at 80 °C. Mechanical durability of AgNP-CNT attachments on the substrate was tested in harsh ultrasonic conditions and found to be impressive, with no detectable AgNP loss even when the larger substrate begins to fail. The antibacterial effectiveness of these structures was tested in multiple testing modes against Gram-negative Escherichia coli ( E. coli, JM109). It was seen in each case that AgNP attached on CNT-grafted hierarchical substrates showed significantly higher reduction of E. coli compared to AgNP attached directly on the starting porous supports without CNT grafting. These results indicate that AgNP attached to hierarchal hybrid supports can lead to compact and powerful antibacterial devices for chemical-free disinfection devices of the future.

  14. Genotoxicity evaluation of asymmetric lipid polymer hybrid nanoparticles of doxycycline hydrochloride following intravenous administration.

    Science.gov (United States)

    Soni, Maheshkumar P; Mahajan, Madhuvanti V; Dhumal, Rohit V; Bhagat, Sharad; Tiwari, Dinesh; Gaikwad, Rajiv V; Samad, Abdul; Devarajan, Padma V; Vanage, Geeta R

    2013-10-01

    Nanoparticles, being small (hybrid nanoparticles of doxycycline hydrochloride (DH lipomer) following intravenous route. DH lipomer was prepared by modified nano-precipitation method as reported earlier. Doxycyline loading was found to be 20 ± 2.5 %. Average particle size of DH lipomer and blank lipomer was 512 ± 8 and 520 ± 6 nm, respectively. Micronucleus (MN) assay was performed in adult healthy Swiss mice whereas chromosomal aberration (CA) test and comet assay were performed in healthy Holtzman rats following intravenous administration. Animals were divided into two sets, male and female, each set comprising of six groups (n = 5/group), viz., three test groups, blank lipomer (BL), vehicle control (VC), and positive control. Groups treated with 1.5 mg/kg BW DH lipomer did not show micronuclei formation in bone marrow cell, DNA damage, and CA, respectively, as compared with VC, suggesting no genotoxicity. On the other hand 3 and 6 mg/kg BW revealed significant (P > 0.001) increase in micronuclei formation, DNA damage, and chromosomal aberrations. Furthermore, BL (6 mg/kg BW) did not reveal genotoxic response in any of the tests, suggesting lipomer components as non-genotoxic. No sex-dependent variation in genotoxicity was observed. This study therefore suggests the potential safety of the proposed dose of DH lipomer at 1 mg/kg BW. An interesting highlight of the study is safety of lipomer matrix which could be exploited for other biomedical application.

  15. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  16. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    Science.gov (United States)

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles.

    Science.gov (United States)

    Mekawy, Moataz M; Yamaguchi, Akira; El-Safty, Sherif A; Itoh, Tetsuji; Teramae, Norio

    2011-03-15

    One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    Science.gov (United States)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  19. Synthesis and application of hybrid polymer composites based on silver nanoparticles as corrosion protection for line pipe steel.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdurrahman O

    2014-05-16

    A facile method was developed to synthesize in high yield dispersed silver nanoparticles (AgNPs) with small particle sizes of less than 10 nm. Silver nitrate was reduced to silver nanoparticles by p-chloroaniline in the presence of polyoxyethylene maleate 4-nonyl-2-propylene-phenol (NMA) as a stabilizer. The produced AgNPs were used to prepare hybrid polymer based on N-isopropylacrylamide (NIPAm), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N-methylenebisacrylamide (MBA) and potassium persulfate (KPS) using a semi-batch solution polymerization method. The prepared AgNPs and hybrid polymer were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM). The corrosion inhibition activity of the AgNPs and hybrid polymer towards steel corrosion in the presence of hydrochloric acid has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that the AgNPs and hybrid polymer acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

  20. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  1. The enhanced longevity and liver targetability of Paclitaxel by hybrid liposomes encapsulating Paclitaxel-conjugated gold nanoparticles.

    Science.gov (United States)

    Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya

    2014-12-30

    Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    Science.gov (United States)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  3. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    Science.gov (United States)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  4. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  5. Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform.

    Science.gov (United States)

    Dervisevic, Muamer; Dervisevic, Esma; Çevik, Emre; Şenel, Mehmet

    2017-07-01

    The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan-polypyrrole-gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1-200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements. Copyright © 2017. Published by Elsevier B.V.

  6. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform

    Directory of Open Access Journals (Sweden)

    Muamer Dervisevic

    2017-07-01

    Full Text Available The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.

  7. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  8. Antibacterial Nanocomposites Based on Fe3O4–Ag Hybrid Nanoparticles and Natural Rubber-Polyethylene Blends

    Directory of Open Access Journals (Sweden)

    Thanh Dung Ngo

    2016-01-01

    Full Text Available For the vulcanized natural rubber (NR, incorporation of silver nanoparticles (AgNPs into the NR matrix did not exhibit the bactericidal property against Escherichia coli (E. coli. However, incorporation of AgNPs into polyethylene (PE matrix showed good antibacterial activities to both Gram-negative and Gram-positive bacteria. In the present work, NR/PE (85/15 blends have been prepared by melt blending with presence of compatibilizer in an internal mixer. To possess antibacterial property, AgNPs (5–10 nm or Fe3O4–Ag hybrid nanoparticles (FAgNPs, 8 nm/16 nm were added into PE matrix before its blending with NR component. The tensile test indicated that the presence of compatibilizer in NR/PE blend significantly enhanced the tensile strength and elongation at break (up to 35% and 38% increases, resp.. The antibacterial activity test was performed by monitoring of the bacterial lag-log growth phases with the presence of nanocomposites in the E. coli cell culture reactor. The antibacterial test showed that the presence of FAgNPs in NR/PE blend had a better antibacterial activity than that obtained with the lone AgNPs. Two similar reasons were proposed: (i the faster Ag+ release rate from the Fe3O4–Ag hybrid nanoparticles due to the electron transfer from AgNP to Fe3O4 nanoparticle and (ii the fact that the ionization of AgNPs in hybrid nanostructure might be accelerated by Fe3+ ions.

  9. Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids.

    Science.gov (United States)

    Altay, Cansu; Senay, R Hilal; Eksin, Ece; Congur, Gulsah; Erdem, Arzum; Akgol, Sinan

    2017-03-01

    In our study, the development of amino functionalized carbon coated magnetic nanoparticles (NH 2 -CC-MNPs) and their usage for electrochemical detection of hybridization of nucleic acids have been aimed. Firstly, NH 2 -CC-MNPs were prepared by coating of pristine Fe 3 O 4 nanoparticles with two layers via caramelization and silanization processes respectively. After the morphological characterization with scanning electron microscopy (SEM) it was seen that NH 2 -CC-MNPs was spherical shaped and in 28nm sized. Investigation of chemical composition with the help of scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and fourier transform infrared spectroscopy (FTIR) was showed incorporation of carbon and APTES to the structure of NH 2 -CC-MNPs. Magnetic property of NH 2 -CC-MNPs after two layered coatings was demonstrated with electron spin resonance (ESR) technique and g factor was calculated as 2.6. In the second part of this study, optimization studies have carried out onto the surface of NH 2 -CC-MNPs prepared in saltless phosphate-tween 20 buffer (PBTw) for the analysis of DNA hybridization. The thiol linked DNA probe sequence representing to the Hepatitis B virus (HBV) concentration, target DNA sequence concentration, the most productive hybridization time and the selection of the nanoparticle surfaces have been researched. The electrochemical detection of DNA hybridization was investigated using PGE in combination with differential pulse voltammetry (DPV) technique by measuring the guanine oxidation signal. The detection limit was calculated in the linear target DNA concentration range of 5-25µg/mL and it was found to be 1.15µg/mL (20pmol in 110µL solution). It has been intended to be more reproducible, more sensitive and faster results with developed biosensor technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  11. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  12. Interaction of ZnII porphyrin with TiO2 nanoparticles: from mechanism to synthesis of hybrid nanomaterials.

    Science.gov (United States)

    Spadavecchia, Jolanda; Méthivier, Christophe; Landoulsi, Jessem; Pradier, Claire-Marie

    2013-08-05

    The mechanism of interaction of Zn porphyrin (ZnPP) with TiO2 surfaces is investigated with a view to optimizing the synthesis of hybrid nanomaterials. The strategy consists of studying the adsorption of ZnPP on TiO2 flat surfaces by taking advantage of complementary surface characterization techniques. Combining a detailed X-ray photoelectron spectroscopic analysis with AFM imaging allows ZnPP-surface and ZnPP intermolecular interactions to be discriminated. Probing the adsorption of ZnPP on TiO2 nanoparticles (NPs) reveals the dominant role of ZnPP-mediated interactions, which are associated with the formation of ZnPP multilayers and/or with the state of aggregation of NPs. These preliminary investigations provide a guideline to synthesizing a novel ZnPP-TiO2 hybrid nanomaterial in a one-step protocol. In this material, ZnPP molecules are presumably involved in the TiO2 lattice rather than on the NP surface. Furthermore, ZnPP molecules preserve their electronic properties within the TiO2 NPs, and this makes the ZnPP-TiO2 hybrid nanomaterial an excellent candidate for nanomedicine and related applications, such as localization of nanoparticles in cells and tissues or in photodynamic therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Science.gov (United States)

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  14. Energy/hole transfer phenomena in hybrid α-sexithiophene (α-STH) nanoparticle-CdTe quantum-dot nanocomposites.

    Science.gov (United States)

    Bhattacharyya, Santanu; Paramanik, Bipattaran; Kundu, Simanta; Patra, Amitava

    2012-12-21

    Considerable attention has been paid to hybrid organic-inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole-transporting α-sexithiophene (α-STH) nanoparticle-CdTe quantum dot (QD) nanocomposites using steady-state and time-resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α-sexithiophene molecule due to the formation of polymer nanoparticles. Upon photoexcitation at 370 nm, a nonradiative energy transfer (73 %) occurs from the hole-transporting α-STH nanoparticles to the CdTe nanoparticles with a rate of energy transfer of 6.13×10(9) s(-1). However, photoluminescence quenching of the CdTe QDs in the presence of the hole-transporting α-STH nanoparticles is observed at 490 nm excitation, which is due to both static-quenching and hole-transfer-based dynamic-quenching phenomena. The calculated hole-transporting rate is 7.13×10(7) s(-1) in the presence of 42×10(-8)  M α-STH nanoparticles. Our findings suggest that the interest in α-sexithiophene (α-STH) nanoparticle-CdTe QD hybrid nanocomposites might grow in the coming years because of various potential applications, such as solar cells, optoelectronic devices, and so on. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybrid metal-organic conductive network with plasmonic nanoparticles and fluorene (Conference Presentation)

    Science.gov (United States)

    Fontana, Laura; Fratoddi, Ilaria; Matassa, Roberto; Familiari, Giuseppe; Venditti, Iole; Batocchio, Chiara; Magnano, Elena; Nappini, Silvia; Leahu, Grigore; Belardini, Alessandro; Li Voti, Roberto; Sibilia, Concita

    2017-05-01

    For the development of new generation portable electronic devices, the realization of thin and flexible electrodes have a crucial role. Conductive organic systems can address this issue in different ways. Indeed, conductance in organic molecules were studied in different papers starting from seminal papers in last 70's [1] up to recent ones [2]. Among organic species, conduction and electronic characteristics of Fluorene derivatives were studied in different configurations [3,4]. Unfortunately, the conductance of organic materials is limited by charge transport mechanism [5]. Hybrid system with organic conductive compounds covalently linked with metal centres can lead to enhanced conductivity [6]. Here we synthesized gold and silver nanoparticles (AuNPs and AgNPs) stabilized with a fluorene thiolate derivative, namely 9,9-Didodecyl-2,7-bis(acetylthio)fluorene (FL). In the synthesis process the metal nanoparticles (MNPs) size results to be around 5 nm in diameter [7]. When deposited on a planar substrate, the hybrid compound form a regular network of MNPs separated each other by fluorene spacers covalently linked by thiol groups [8]. We deposited the network on substrate with two interdigitated electrodes in order to measure conductive properties (I-V characteristics). In I-V measurements it results to be that AgNPs based network is 200 times more conductive than AuNPs one. Selective oxidation of AgNPs network close to positive electrodes gives rise to a Schottky diode behavior in the I-V characteristic that could find potential applications in nano-electronics devices. The fluorescence and extinction spectra of FL-AgNPs and FL-AuNPs where characterised. References [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977). [2] Hylke B. Akkerman, Paul W. M. Blom, Dago M. de Leeuw and Bert de Boer, Nature 441, 69 (2006). [3] Rajendra Prasad Kalakodimi, Aletha M. Nowak

  16. Synthesis, Characterization, and Functionalization of Hybrid Au/CdS and Au/ZnS Core/Shell Nanoparticles.

    Science.gov (United States)

    Tobias, Andrew; Qing, Song; Jones, Marcus

    2016-03-02

    Plasmonic nanoparticles are an attractive material for light harvesting applications due to their easily modified surface, high surface area and large extinction coefficients which can be tuned across the visible spectrum. Research into the plasmonic enhancement of optical transitions has become popular, due to the possibility of altering and in some cases improving photo-absorption or emission properties of nearby chromophores such as molecular dyes or quantum dots. The electric field of the plasmon can couple with the excitation dipole of a chromophore, perturbing the electronic states involved in the transition and leading to increased absorption and emission rates. These enhancements can also be negated at close distances by energy transfer mechanism, making the spatial arrangement of the two species critical. Ultimately, enhancement of light harvesting efficiency in plasmonic solar cells could lead to thinner and, therefore, lower cost devices. The development of hybrid core/shell particles could offer a solution to this issue. The addition of a dielectric spacer between a gold nanoparticles and a chromophore is the proposed method to control the exciton plasmon coupling strength and thereby balance losses with the plasmonic gains. A detailed procedure for the coating of gold nanoparticles with CdS and ZnS semiconductor shells is presented. The nanoparticles show high uniformity with size control in both the core gold particles and shell species allowing for a more accurate investigation into the plasmonic enhancement of external chromophores.

  17. Iodinated silica/porphyrin hybrid nanoparticles for X-ray computed tomography/fluorescence dual-modal imaging of tumors

    Directory of Open Access Journals (Sweden)

    Koichiro Hayashi

    2014-12-01

    Full Text Available Silica nanoparticles containing covalently linked iodine and a near-infrared (NIR fluorescence dye, namely porphyrin, have been synthesized through a one-pot sol–gel reaction. These particles are called iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs. The ISP HNPs have both high X-ray absorption coefficient and NIR fluorescence. The ISP HNPs modified with folic acid (FA and polyethylene glycol (PEG, denoted as FA-PEG-ISP HNPs, enabled the successful visualization of tumors in mice by both X-ray computed tomography (CT and fluorescence imaging (FI. Thus, the FA-PEG-ISP HNPs are useful as contrast agents or probes for CT/FI dual-modal imaging.

  18. Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater

    Directory of Open Access Journals (Sweden)

    Marta A. Bavio

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe3O4 obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs surfaces. These HMNPs were used for arsenic removal from groundwater. The adsorption process variables were optimized (concentration of NPs, contact time, and pH, and these systems could remove 39.93 mg As/g adsorbent. Therefore, these nanoparticles appear as a good alternative for removing arsenic from water samples.

  19. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  20. Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Satbir Singh

    2016-01-01

    Full Text Available The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3 to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3 metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc of 0.70 V, a short circuit current density (Jsc of 11.6 mA/cm2, and a fill factor (FF of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5 simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated and polymer dye A (diluted capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and

  1. Silver Nanoparticles Influence on Photocatalytic Activity of Hybrid Materials Based on TiO2 P25

    Directory of Open Access Journals (Sweden)

    Tomkouani Kodom

    2015-01-01

    Full Text Available The aim of the present study consists in the obtaining of a hybrid material film, obtained using TiO2 P25 and silver nanoparticles (AgNPs. The film manufacturing process involved realization of physical mixtures of TiO2 P25 and AgNPs dispersions. The size distribution of the AgNPs proved to be a key factor determining the photodegradation activity of the materials measured using methyl orange. The best result was 33% degradation of methyl orange (MO after 150 min. The second approach was the generation of AgNPs on the surface of TiO2 P25. The obtained hybrid material presents photocatalytic activity of 45% MO degradation after 150 min. The developed materials were characterized by UV-VIS, SEM, and DLS analyses.

  2. Nano-Protrusive Gold Nanoparticle-Hybridized Polymer Thin Film as a Sensitive, Multipatternable, and Antifouling Biosensor Platform.

    Science.gov (United States)

    Lee, Jeong-Hoon; Park, Byung-Soo; Ghang, Hyun-Gu; Song, Hyunjoon; Yang, Sung Yun

    2018-04-25

    Hybrid films consisting of anisotropic octahedral gold nanoparticles (AuNPs) and polymers had their surfaces functionalized and were immobilized on surface plasmon resonance (SPR) sensors for biomolecule detection. Specifically, carboxylated octahedral AuNPs (C-Oh-AuNPs) and poly(allylamine hydrochloride) (PAH) were assembled as ultrathin films by using a layer-by-layer process. The ionic strength generated from the functional groups of C-Oh-AuNP and PAH influenced the composition, its surface morphology, and the reactivity of the film toward further chemical reactions such as the synthesis of spherical AuNPs (S-AuNPs). We were thus able to control the size and the structure of the C-Oh-AuNP and S-AuNPs converted to nano-raspberry-shaped particles. This hierarchical AuNP hybrid film exhibits much more sensitive and stable detection of biomolecules than regular flat chip systems, and this result may be due to the SPR of the AuNP at its surface being able to markedly enhance the local optical field of the chip. The micropatterning of the hybrid coating was also studied by using a soft lithographic patterning method. We, in particular, worked on creating multiplex patterns having different combinations of shapes and fluorescent colors. We expect our hybrid coating system with multicode biomolecular arrays to be used as a powerful platform for biosensor applications.

  3. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route

    Science.gov (United States)

    Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho

    2017-11-01

    Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.

  5. Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles.

    Science.gov (United States)

    Pereira, C; Alves, C; Monteiro, A; Magén, C; Pereira, A M; Ibarra, A; Ibarra, M R; Tavares, P B; Araújo, J P; Blanco, G; Pintado, J M; Carvalho, A P; Pires, J; Pereira, M F R; Freire, C

    2011-07-01

    This work reports the synthesis and characterization of mesoporous silica nanoparticles (MSNs) functionalized with tridecafluorooctyltriethoxysilane (F13) and their in situ incorporation onto cotton textiles. The hybrid MSNs and the functional textiles were prepared by a one-pot co-condensation methodology between tetraethylorthosilicate (TEOS) and F13, with hexadecyltrimethylammonium chloride (CTAC) as the template and triethanolamine as the base. The influence of the F13 to TEOS molar ratio (1:10, 1:5 and 1:3) on the nanoparticle morphology, porosity, degree of functionalization, and hydro/oleophobic properties is discussed. The hybrid nanosilicas presented high colloidal stability and were spherical and monodispersed with average particle size of ∼45 nm. They also showed high surface areas, large pore volumes, and a wormhole-type mesoporous structure. The increase in the organosilane proportion during the co-condensation process led to a more radially branched wormhole-like mesoporosity, a decrease in the surface area, pore volume, and amount of surface silanol groups, and an enrichment of the surface with fluorocarbon moieties. These changes imparted hydrophobic and oleophobic properties to the materials, especially to that containing the highest F13 loading. Cotton textiles were coated with the F13-MSNs through an efficient and less time-consuming route. The combination between surface roughness and mesoporosity imparted by the MSNs, and the low surface energy provided by the organosilane resulted in superhydrophobic functional textiles. Moreover, the textile with the highest loading of fluorocarbon groups was superamphiphobic.

  6. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    Science.gov (United States)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  7. Preparation of composite PMMA microbeads hybridized with fluorescent YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akisada, K; Noguchi, Y; Isobe, T, E-mail: isobe@applc.keio.ac.jp [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-10-29

    Poly(methyl methacrylate) (PMMA) microbeads are hybridized with fluorescent YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanoparticles using the layer-by-layer adsorption technique. The composite beads A are prepared by adsorbing negatively-charged YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanoparticles onto positively-charged PMMA beads modified with poly(allylamine hydrochloride) (PAH). The composite beads B are prepared by adsorbing nanoparticles onto PMMA beads with multiple alternate layers of PAH and poly(sodium 4-styrenesulfonate) (PSS), i.e., with (PAH/PSS){sub 4}/PAH layers. The composite beads C are prepared by adsorbing 300 deg. C heated nanoparticles with negative charge onto PMMA beads with single PAH layer. These three kinds of composite beads are compared in terms of the amount of adsorbed nanoparticles and the fluorescent intensity.

  8. Molecular-like Redox Activity and Size-dependent Electrocatalysis of Inorganic Hybrid Nanoparticles

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhu, Nan; Ulstrup, Jens

    of nanoparticles that have intrinsic electroactivity. One of representative examples is the nanoparticles composed of Prussian Blue or/and its analogues. This type of nanoparticles has advantages over classic electrocatalysts in several regards. In this communication, we present some of our recent efforts......The development of low-cost, robust and high-efficient nanoscale electrocatalysts is arguably a dream approach to the use of nanomaterials as key building blocks in design and construction of chemical and biological sensing devices as well as fuel cells. Electroactive nanoparticles are a type...... on synthesis, characterization, and electrocatalytic function of Prussian Blue nanoparticles (PBNPs). Molecule-like redox activity and size-dependent electrocatalysis are clearly revealed, which could offer crucial clues for further optimization of design of nanoscale electrocatalysts and their applications...

  9. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherbiny, Ibrahim M., E-mail: ielsherbiny@Zewailcity.edu.eg; Salih, Ehab [Zewail City of Science and Technology, Center for Materials Science (Egypt); Yassin, Abdelrahman M. [Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Biopharmaceutical Product Research Department (Egypt); Hafez, Elsayed E. [City of Scientific Research and Technology Applications, Plant Protection and Biomolecular Diagnosis Department (Egypt)

    2016-07-15

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract.

  10. Improving the Efficiency of DASC by Adding CeO2/CuO Hybrid Nanoparticles in Water

    Science.gov (United States)

    Midhun Mohan, V.; Sajeeb, A. M.

    Solar energy is the abundantly available source of renewable energy with least impact on environment. Direct absorption solar collector (DASC) is the commonly used device to absorb heat directly from sun and make use of it for different heating applications. In the past, many experiments have been done to increase the efficiency of DASC using nanofluids. In this paper, an examination of solar collector efficiency for hybrid CeO2/CuO-water (0.1% by volume) nanofluid under various flow rates and proportions of CeO2/CuO nanoparticles is investigated. The experiments were conducted at flow rates spanning from 20cc/min to 100cc/min and with CeO2/CuO nanoparticles proportions of 1:0, 1:0.5, 1:1, 0.5:1 and 0:1. The efficiency increases from 16.5% to 51.6% when the flow rate is increased from 20cc/min to 100cc/min for hybrid CeO2/CuO (1:1)-water nanofluid. The results also showed an increase in efficiency of 13.8%, 18.1%, 24.3%, 24.9% and 26.1% with hybrid combination of CeO2/CuO at ratios 1:0, 1:0.5, 1:1, 0.5:1 and 0:1, respectively, in comparison with water at a flow rate of 100cc/min.

  11. Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes

    International Nuclear Information System (INIS)

    Li, Fan; Du, Yanhui; Chen, Yiwang

    2012-01-01

    We report the investigation of the hybrid bulk heterojunction solar cells based on the blend of poly(3-hexylthiophene) (P3HT) and ZnO nanoparticles modified by side-chain thiol functional poly(3-thiophenehexanethiol) (P3HT-SH). Grafting of P3HT-SH onto ZnO nanoparticles can promote the dispersion of ZnO nanoparticles within P3HT matrix and facilitate electron injection process into ZnO nanoparticles, resulting in a more efficient photoinduced charge transfer than that in simple physical mixture of P3HT and non-modified ZnO nanoparticles (P3HT/ZnO). Furthermore, the performance of hybrid photovoltaic device based on P3HT/P3HT-SH-modified ZnO blend exhibits an improved device efficiency compared with P3HT/ZnO even before thermal treatment. After being annealed at 80 °C, the P3HT/P3HT-SH-modified ZnO device shows the power conversion efficiency as high as 0.68%, with the short-circuit current density of 1.89 mA/cm 2 , the open-circuit voltage of 0.599 V and a fill factor of 60.5% under AM 1.5 G illumination with 100 mW/cm 2 light intensity. - Highlights: ► Hybrid solar cells based on poly(3-hexylthiophene) and modified ZnO nanoparticles ► ZnO nanoparticles modified by side-chain functional polythiophenes ► Uniform dispersion and intimate contact between polymers and nanoparticles ► Efficient charge transfer leading to the improvement of device efficiency

  12. Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures.

    Science.gov (United States)

    Li, Yun-Fei; Feng, Jing; Dong, Feng-Xi; Ding, Ran; Zhang, Zhen-Yu; Zhang, Xu-Lin; Chen, Yang; Bi, Yan-Gang; Sun, Hong-Bo

    2017-12-14

    Organic single crystals have attracted great attention because of their advantages such as high carrier mobility and high thermal stability. Amplified spontaneous emission (ASE) is an important parameter for the optoelectronic applications of organic single crystals. Here, surface plasmon-enhanced ASE from the organic single crystals has been demonstrated by integrating graphene/copper nanoparticle (Cu NP) hybrid nanostructures. Graphene is fully accommodating to the topography of Cu NPs by the transfer-free as-grown method for the configuration of the hybrid nanostructures, which makes full electrical contact and strong interactions between graphene and the local electric field of surface plasmon resonances. The enhanced localized surface plasmon resonances induced by the hybrid nanostructures result in an enhanced intensity and lowered threshold of ASE from the organic single crystals. Moreover, the as-grown graphene sheets covering fully and uniformly on the Cu NPs act as a barrier against oxidation, and results in an enhanced stability of the fluorescence from the crystals.

  13. High-performance Cu nanoparticles/three-dimensional graphene/Ni foam hybrid for catalytic and sensing applications

    Science.gov (United States)

    Zhu, Long; Guo, Xinli; Liu, Yuanyuan; Chen, Zhongtao; Zhang, Weijie; Yin, Kuibo; Li, Long; Zhang, Yao; Wang, Zengmei; Sun, Litao; Zhao, Yuhong

    2018-04-01

    A novel hybrid of Cu nanoparticles/three-dimensional graphene/Ni foam (Cu NPs/3DGr/NiF) was prepared by chemical vapor deposition, followed by a galvanic displacement reaction in Ni- and Cu-ion-containing salt solution through a one-step reaction. The as-prepared Cu NPs/3DGr/NiF hybrid is uniform, stable, recyclable and exhibits an extraordinarily high catalytic efficiency for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with a reduction rate constant K = 0.056 15 s-1, required time ˜30 s and excellent sensing properties for the non-enzymatic amperometric hydrogen peroxide (H2O2) with a linear range ˜50 μM-9.65 mM, response time ˜3 s, detection limit ˜1 μM. The results indicate that the as-prepared Cu NPs/3DGr/NiF hybrid can be used to replace expensive noble metals in catalysis and sensing applications.

  14. A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells.

    Science.gov (United States)

    Gai, Panpan; Song, Rongbin; Zhu, Cheng; Ji, Yusheng; Chen, Yun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-10-11

    A novel ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles was prepared and used as robust substrate electrodes for fabricating membrane-less glucose/O2 enzyme biofuel cells (EBFCs), and a remarkably improved power output was observed for the prepared EBFC.

  15. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  16. Modification of graphene with silica nanoparticles for use in hybrid network formation from epoxy, novolac, and epoxidized novolac resins by sol-gel method: Investigation of thermal properties

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2018-03-01

    Full Text Available Thermal stability of hybrid composites prepared from epoxy, novolac, and epoxidized-novolac resins and also modified graphene oxide (SFGO was studied. SFGO was prepared by covering graphene oxide with silica nanoparticles and a bifunctional silane modifier. The first hybrid was prepared from SFGO and silane-modified epoxy resin. The second one was prepared from SFGO, and silane-modified epoxy and novolac resins. The third hybrid was formed from SFGO, silane-modified novolac, and epoxidized novolac resins. Fourier transform infrared (FT-IR, X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, and thermogravimetric analysis (TGA results showed that modification of graphene oxide was carried out successfully. TGA results show that degradation temperature and char residue of resins were increased through their incorporation into hybrid network with SFGO. In addition, the most increase of char residue was observed for the hybrid composites formed from SFGO and modified novolac and epoxy resins.

  17. Janus nanoparticles inside polymeric materials : Interfacial arrangement toward functional hybrid materials

    NARCIS (Netherlands)

    Yang, Qiuyan; Loos, Katja

    2017-01-01

    Control of the location and spatial organization of nanoparticles (NPs) inside polymers is essential to generate highly ordered NP-based functional devices including plasmonic waveguides, photonic crystals, optical lenses, memory storage devices, nanoelectronic circuits, photovoltaics, and

  18. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  19. Magnetic and optical properties of Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Ning [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Monnier, Virginie, E-mail: virginie.monnier@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); Salvia, Marie-Virginie; Chevolot, Yann; Souteyrand, Eliane [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France)

    2014-03-15

    Highlights: • New magnetic/fluorescent nanoparticles were synthesized. • The silver core led to a maximum 4-fold enhanced fluorescence of fluorophore. • Maximum enhancement factor was obtained when metal-fluorophore distance is 5 nm. • Magnetism and fluorescence appeared simultaneously for nanoparticles in solution. -- Abstract: Nanoparticles composed of a silver core coated with a silica shell (Ag@SiO{sub 2}) were prepared. A dye, fluorescein isothiocyanate (FITC), was further encapsulated during the growth of a second silica shell onto Ag@SiO{sub 2} nanoparticles. The proximity of silver nanoparticles led to a 4-fold maximal enhancement in the fluorescence of FITC when the first silica shell thickness was set at 5 nm. After amino-functionalization of Ag@SiO{sub 2}-FITC nanoparticles, iron oxide nanoparticles were bonded to their surface. The magnetic and metal-enhanced fluorescence properties appeared simultaneously when Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles were dispersed in a solution.

  20. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  1. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-08-01

    Full Text Available In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs. First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77 by observing the wavelength to reveal the maximum extinction efficiency (λmax. We show that the adhesion of β-cyclodextrins (SH-β-CD on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs.

  2. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Duc Nghia; Ngo Trinh Tung [Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: ducnghia264@fpt.vn

    2009-09-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  3. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    International Nuclear Information System (INIS)

    Nguyen Duc Nghia; Ngo Trinh Tung

    2009-01-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  4. Novel folic acid conjugated Fe3O4-ZnO hybrid nanoparticles for targeted photodynamic therapy.

    Science.gov (United States)

    Patel, Kunal; Raj, Behin Sundara; Chen, Yan; Lou, Xia

    2017-02-01

    A novel folic acid conjugated core-shell hybrid iron oxide-zinc oxide nanoparticle was developed for applications as a photosensitier (PS) in photodynamic therapy. Photodegradation studies on methylene blue demonstrated significantly enhanced photophysical properties of the produced nano-PSs, due to the charge recombination via electron trapping by dissolved Fe 3+ . A time and dose dependant toxicity associated with the nano-PSs was observed upon exposure to human epithelial colorectal adenocarcinoma (Caco-2) cells in the dark. UV irradiation of the synthesised nano-PSs resulted in a significant photo-killing effect with drastic reduction in Caco-2 cell viability to as low as 6%. Reduction in viability upon exposure was due fundamentally to cellular interactions with light irradiated PSs as the influence of radiation alone was subtracted. FA conjugation further enhanced the photo-killing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach.

    Science.gov (United States)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-11

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  6. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    International Nuclear Information System (INIS)

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  7. Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM-gold nanoparticle

    Science.gov (United States)

    Morones, J. Ruben; Frey, Wolfgang

    2010-05-01

    Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly- N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.

  8. Discovery and in Vivo Evaluation of Novel RGD-Modified Lipid-Polymer Hybrid Nanoparticles for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinbo Zhao

    2014-09-01

    Full Text Available In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs modified by Arg–Gly–Asp(RGD peptide, loaded with curcumin (Cur, were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD–lpNPs could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid–mPEG (methoxyl poly(ethylene- glycol, RGD–polyethylene glycol (PEG–cholesterol (Chol copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD–lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD–lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD–lpNPs was increased for human umbilical vein endothelial cells (HUVEC. Furthermore, Cur loaded RGD–lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD–lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD–lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD–lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  9. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization

    KAUST Repository

    Park, Youngjune

    2011-01-01

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.

  10. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation.

    Science.gov (United States)

    Ma, Pengju; Li, Ting; Xing, Huaixin; Wang, Suzhen; Sun, Yingui; Sheng, Xiugui; Wang, Kaiguo

    2017-05-01

    There is a compelling need for prolonged local anesthetic that would be used for analgesia with a single administration. However, due to the low molecular weight of local anesthetics (LA) (lidocaine, bupivacaine, procaine, dibucaine, etc), they present fast systemic absorption. The aim of the present study was to develop and evaluate bupivacaine lipid-polymer hybrid nanoparticles (BVC LPNs), and compared with BVC loaded PLGA nanoparticles (BVC NPs). Their morphology, particle size, zeta potential and drug loading capacity were evaluated. In vitro release study, stability and cytotoxicity were studied. In vivo evaluation of anesthetic effects was performed on animal models. A facile nanoprecipitation and self-assembly method was optimized to obtain BVC LPNs, composed of PLGA, lecithin and DSPE-PEG 2000 , of ∼175nm particle size. Compared to BVC NPs, BVC LPNs exhibited prolonged in vitro release in phosphate-buffered saline (pH=7.4). Further, BVC LPNs displayed enhanced in vitro stability in 10% FBS and lower cytotoxicity (the concentration of BVC ranging from 1.0μM to 20μM). In addition, BVC LPNs exhibited significantly prolonged analgesic duration. These results demonstrate that the LPNs could function as promising drug delivery system for overcoming the drawbacks of poor stability and rapid drug leakage, and prolonging the anesthetic effect with slight toxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid.

    Science.gov (United States)

    Cui, Jiandong; Cui, Lili; Jia, Shiru; Su, Zhiguo; Zhang, Songping

    2016-09-28

    Highly stable and easily recyclable hybrid magnetic cross-linked lipase aggregates (HM-CSL-CLEAs) were prepared by coaggregation of lipase aggregates with nonfunctionalized magnetic nanoparticles and subsequent chemical cross-linking with glutaraldehyde. Analysis by SEM and CLSM indicated that the CLEAs were embedded in nanoparticle aggregates instead of covalently immobilized. The resulting HM-CSL-CLEAs exhibited higher thermostability, storage stability, and reusability than standard CLEAs. For example, HM-CSL-CLEAs maintained >60% of their initial activity after 40 min of incubation at 60 °C, whereas standard CLEAs lost most of their activities. The HM-CSL-CLEAs can be easily recovered from the reaction mixture by an external magnetic field. Moreover, the H2O2 tolerance of the lipase in HM-CSL-CLEAs was also enhanced, which could relieve the inhibitory effect on lipase activity. A high conversion yield (55%) for the epoxidation of oleic acid using H2O2 as oxidizing agent was achieved by HM-CSL-CLEAs.

  12. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille

    2012-01-12

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  13. Engineering of a hybrid nanoparticle-based nicotine nanovaccine as a next-generation immunotherapeutic strategy against nicotine addiction: A focus on hapten density.

    Science.gov (United States)

    Zhao, Zongmin; Powers, Kristen; Hu, Yun; Raleigh, Michael; Pentel, Paul; Zhang, Chenming

    2017-04-01

    Although vaccination is a promising way to combat nicotine addiction, most traditional hapten-protein conjugate nicotine vaccines only show limited efficacy due to their poor recognition and uptake by immune cells. This study aimed to develop a hybrid nanoparticle-based nicotine vaccine with improved efficacy. The focus was to study the impact of hapten density on the immunological efficacy of the proposed hybrid nanovaccine. It was shown that the nanovaccine nanoparticles were taken up by the dendritic cells more efficiently than the conjugate vaccine, regardless of the hapten density on the nanoparticles. At a similar hapten density, the nanovaccine induced a significantly stronger immune response against nicotine than the conjugate vaccine in mice. Moreover, the high- and medium-density nanovaccines resulted in significantly higher anti-nicotine antibody titers than their low-density counterpart. Specifically, the high-density nanovaccine exhibited better immunogenic efficacy, resulting in higher anti-nicotine antibody titers and lower anti-carrier protein antibody titers than the medium- and low-density versions. The high-density nanovaccine also had the best ability to retain nicotine in serum and to block nicotine from entering the brain. These results suggest that the hybrid nanoparticle-based nicotine vaccine can elicit strong immunogenicity by modulating the hapten density, thereby providing a promising next-generation immunotherapeutic strategy against nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  15. High-performance porous carbon/CeO2 nanoparticles hybrid super-capacitors for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Islam, Md. T.; Rodriguez, Gerardo; Nandasiri, Manjula I.; Schwarz, Ashleigh M.; Devaraj, Arun; Noveron, Juan C.; Vijayakumar, Murugesan; Lin, Yirong

    2015-03-01

    Increasing demand for energy storage devices has propelled researchers for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein we report a new approach to improve the SC performance utilizing porous carbon /Cerium oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via low temperature hydrothermal method and tetraethyl ammonium tetrafluroborate in acetonitrile as organic electrolyte. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 NPs. The excellent electrode-electrolyte interaction due to the electrochemical properties of the ionic electrolyte provides a better voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) measurements were used for the initial characterization of this PC/CeO2 NPs hybrid material system. Electrochemical measurements of SCs was performed using a potentio-galvanostat. It is found that the specific capacitance was improved by 30% using PC-CON system compared with pristine PC system.

  16. Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag.

    Science.gov (United States)

    Ge, Yanqiu; Wu, Jie; Ju, Huangxian; Wu, Shuo

    2014-03-01

    An ultrasensitive enzyme-free electrochemical immunoassay was developed for detection of the fg/mL level carcinoembryonic antigen (CEA) by using a double strand DNA@Au nanoparticle (dsDNA@AuNP) tag and hexaammineruthenium(III) chloride (RuHex) as the electroactive indicator. The dsDNA@AuNP was synthesized by one-pot hybrid polymerization of dsDNA on initiator DNA modified AuNPs via hybridization chain reaction. The immunosensor was prepared by covalently cross-linking capture antibody on chitosan/AuNP nanocomposite modified glass carbon electrode. The AuNPs accelerated the electron transfer and led to high detection sensitivity. With a sandwich-type immunoreaction and a biotin-streptavidin affinity reaction, the dsDNA@AuNP tag was conjugated on the immunocomplex to bring a high amount of RuHex to the electrode surface via electrostatic interaction, resulting in an amplified electrochemical signal. Under optimal conditions, the proposed sensing platform showed a wide linear detection range from 10 fg/mL to 10 ng/mL along with a detection limit of 3.2 fg/mL for CEA. The immunosensor exhibited high sensitivity and good stability, showing a promising application in early cancer diagnosis and could be extended to sensitive electrochemical biosensing of other analytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Polymer Hydrogel/Polybutadiene/Iron Oxide Nanoparticle Hybrid Actuators for the Characterization of NiTi Implants

    Directory of Open Access Journals (Sweden)

    Aleksandra Jeličić

    2009-03-01

    Full Text Available One of the main issues with the use of nickel titanium alloy (NiTi implants in cardiovascular implants (stents is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes.

  18. Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles

    International Nuclear Information System (INIS)

    Barnett, C. M.; Gueorguieva, M.; Lees, M. R.; McGarvey, D. J.; Darton, R. J.; Hoskins, C.

    2012-01-01

    Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T 2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T 2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T 2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

  19. Poly(BCB)/Au-nanoparticles hybrid film modified electrode: Preparation, characterization and its application as a non-enzymatic sensor

    International Nuclear Information System (INIS)

    Kumar, S. Ashok; Wang, Sea-Fue; Chang, Yu-Tsern

    2010-01-01

    We report electrochemical preparation and characterization of poly-brilliant cresyl blue (Poly(BCB))/gold nanoparticles (Au-NPs) modified electrode. The Poly(BCB)/Au-NPs modified electrode has been used as an electrochemical sensor for the detection of hydrogen peroxide (H 2 O 2 ) at lower potential (- 0.2 V). The Poly(BCB)/Au-NPs film was characterized by scanning electron microscopy, Uv-visible spectroscopy (Uv-vis) and cyclic voltammetry. We have observed that, Au-NPs attached glassy carbon electrode (Au-NPs/GCE) significantly enhanced the polymerization of BCB compared to bare GCE. The Poly(BCB) film was irreversibly attached onto the Au-NPs modified electrode, the resulting hybrid film modified electrode was electrochemically active in the pH range from 2 to 11. Attachment of Poly(BCB)/Au-NPs hybrid film on the electrode surface was confirmed by Uv-vis spectra. In addition, electrocatalytic properties of the Poly(BCB)/Au-NPs/GCE towards reduction of H 2 O 2 have been investigated, and it was found that the sensitivity, reduction potential as well as the corresponding detection limit were improved as compared to the voltammetric response of the Poly(BCB)/GCE and Au-NPs/GCE. Based on this study, a non-enzymatic electrochemical sensor for the determination of H 2 O 2 has been reported. Moreover, analysis of commercial H 2 O 2 samples was performed using the proposed method and satisfactory results were obtained.

  20. Femtomolar detection of single mismatches by discriminant analysis of DNA hybridization events using gold nanoparticles.

    Science.gov (United States)

    Ma, Xingyi; Sim, Sang Jun

    2013-03-21

    Even though DNA-based nanosensors have been demonstrated for quantitative detection of analytes and diseases, hybridization events have never been numerically investigated for further understanding of DNA mediated interactions. Here, we developed a nanoscale platform with well-designed capture and detection gold nanoprobes to precisely evaluate the hybridization events. The capture gold nanoprobes were mono-laid on glass and the detection probes were fabricated via a novel competitive conjugation method. The two kinds of probes combined in a suitable orientation following the hybridization with the target. We found that hybridization efficiency was markedly dependent on electrostatic interactions between DNA strands, which can be tailored by adjusting the salt concentration of the incubation solution. Due to the much lower stability of the double helix formed by mismatches, the hybridization efficiencies of single mismatched (MMT) and perfectly matched DNA (PMT) were different. Therefore, we obtained an optimized salt concentration that allowed for discrimination of MMT from PMT without stringent control of temperature or pH. The results indicated this to be an ultrasensitive and precise nanosensor for the diagnosis of genetic diseases.

  1. Enzymatically Degradable Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for In-Vitro Imaging

    KAUST Repository

    Fatieiev, Yevhen

    2015-06-30

    Non-aggregated dense bridged silsesquioxane (BS) nanoparticles based on nature-inspired oxamide bridges are shown to degrade in simulated biological media upon cleavage with endopeptidase. Fluorescent BS nanoprobes with incorporated fluorescein dyes were applied for in-vitro imaging in cancer cells.

  2. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    Science.gov (United States)

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  3. Compartmentalization in hybrid metallacarborane nanoparticles formed by block copolymers with star-like architecture

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Zhigunov, Alexander; Nykänen, A.; Ruokolainen, J.; Matějíček, P.

    2014-01-01

    Roč. 3, č. 11 (2014), s. 1151-1155 ISSN 2161-1653 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : nanoparticles * block copolymers * star-like architecture Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.764, year: 2014

  4. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    Directory of Open Access Journals (Sweden)

    Lee H

    2015-08-01

    Full Text Available Haisung Lee,1 Dongkyung Sung,2 Jinhoon Kim,3 Byung-Tae Kim,3 Tuntun Wang,4 Seong Soo A An,5 Soo-Won Seo,6 Dong Kee Yi4 1Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, 2Department of Life Sciences, Graduate School of Korea University, 3Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, 4Department of Chemistry, Myongji University, Seoul, 5Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, 6Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea Abstract: In this study, fluorescent dye-conjugated magnetic resonance (MR imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. Keywords: dual bioimaging, MR imaging, silica colloid, T1 contrast imaging, nanohybrid

  5. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  6. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes

    DEFF Research Database (Denmark)

    Jin, Lina; Zhao, Xiaoshuang; Qian, Xinye

    2018-01-01

    Nickel nanoparticles encapsulated in porous carbon/carbon nanotube hybrids (Ni/PC-CNT) were successfully prepared by a facile carbonization process using Ni/Zn-MOF as the precursor. Distinct from previous studies, Ni/Zn-MOF precursors were prepared via a direct precipitation method at room...... temperature for only 5 min. After the carbonization, magnetic Ni nanoparticles were well embedded in the porous carbon and carbon nanotube. The obtained Ni/PC-CNT composites had a high surface area (999 m(2) g(-1) Marge pore volume (0.86 cm(3) g(-1)) and well-developed graphitized wall. The Ni...

  7. Exploiting energy transfer in hybrid metal and semiconductor nanoparticle systems for biosensing and energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Mayilo, Sergiy

    2009-06-19

    In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here. A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%. A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca{sup 2+} cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. The shade of the white light can be controlled by annealing the particles. Evidence for intra

  8. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  9. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Wern, Jeanette Erbo; Ingvarsson, Pall Thor

    2015-01-01

    were engineered using an oil-in-water single emulsion method and a quality-by-design approach was adopted to define the optimal operating space (OOS). Four critical process parameters (CPPs) were identified, including the acetone concentration in the water phase, the stabilizer [polyvinylalcohol (PVA......The purpose of this study was to design a novel and versatile adjuvant intended for mucosal vaccination based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with the cationic surfactant dimethyldioctadecylammonium (DDA) bromide and the immunopotentiator...... followed by multiple linear regression analysis. The size, PDI, enthalpy of the phase transition and yield were successfully modeled, whereas the models for the zeta-potential and the stability were poor. Cryo-transmission electron microscopy revealed that the main structural effect on the nanoparticle...

  10. Internalisation of hybrid titanium dioxide/para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions.

    Science.gov (United States)

    Migdal, Camille; Rahal, Raed; Rubod, Alain; Callejon, Sylvie; Colomb, Evelyne; Atrux-Tallau, Nicolas; Haftek, Marek; Vincent, Claude; Serres, Mireille; Daniele, Stéphane

    2010-11-10

    Nanoparticles (NPs) have been reported to penetrate into human skin through lesional skin or follicular structures. Therefore, their ability to interact with dendritic cell (DC) was investigated using DCs generated from monocytes (mono-DCs). Hybrid titanium dioxide/para-amino benzoic acid (TiO(2)/PABA) NPs did not induce any cell toxicity. NPs were internalised into DCs through macropinocytosis and not by a receptor-mediated mechanism. Confocal microscopy showed that NPs were not detected in the nucleus. These data are confirmed by electronic microscopy which demonstrated that hybrid NPs were rapidly in contact with cellular membrane and localised into cytoplasmic vesicles without colocalisation with clathrin-coated vesicles. Hybrid NPs did not induce CD86 or HLA-DR overexpression or cytokine secretion (IL-8 and TNF-α) indicating no DC activation. Internalisation of hybrid NPs did not modify DC response towards sensitisers such as nickel and thimerosal or LPS used as positive controls. Moreover, hybrid NPs did not induce any oxidative stress implicated in DC activation process. After mono-DC irradiation by ultraviolet A (UVA), hybrid NP-treated cells did not produce UVA-induced reactive oxygen species (ROS) and exhibited a better cell viability compared with UVA-irradiated control cells, suggesting a protecting effect of hybrid TiO(2)/PABA NPs against UVA-induced ROS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis

    Directory of Open Access Journals (Sweden)

    Luiza A. Mercante

    2015-01-01

    Full Text Available The use of gold nanoparticles combined with other organic and inorganic materials for designing nanostructured films has demonstrated their versatility for various applications, including optoelectronic devices and chemical sensors. In this study, we reported the synthesis and characterization of gold nanoparticles stabilized with poly(allylamine hydrochloride (Au@PAH NPs, as well as the capability of this material to form multilayer Layer-by-Layer (LbL nanostructured films with metal tetrasulfonated phthalocyanines (MTsPc. Film growth was monitored by UV-Vis absorption spectroscopy, atomic force microscopy (AFM, and Fourier transform infrared spectroscopy (FTIR. Once LbL films have been applied as active layers in chemical sensors, Au@PAH/MTsPc and PAH/MTsPc LbL films were used in an electronic tongue system for milk analysis regarding fat content. The capacitance data were treated using Principal Component Analysis (PCA, revealing the role played by the gold nanoparticles on the LbL films electrical properties, enabling this kind of system to be used for analyzing complex matrices such as milk without any prior pretreatment.

  12. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  13. Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells.

    Science.gov (United States)

    Yang, Hong; Kozicky, Lisa; Saferali, Aabida; Fung, Shan-Yu; Afacan, Nicole; Cai, Bing; Falsafi, Reza; Gill, Erin; Liu, Mingyao; Kollmann, Tobias R; Hancock, R E W; Sly, Laura M; Turvey, Stuart E

    2016-12-01

    Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many inflammatory conditions. Currently there are no specific TLR inhibitors in clinical use. To overcome this challenge, we have developed a nano-based TLR inhibitor (peptide-gold nanoparticle hybrids) that inhibits a broad spectrum of TLR responses. Through mechanistic studies, we established that specific peptide decorated-gold nanoparticles that display high cellular uptake in phagocytic immune cells modulate endosomal pH, leading to significant attenuation of signaling through multiple TLRs. Using a global transcriptomic approach, we defined the broad anti-inflammatory activity of the nanoparticle in human peripheral blood mononuclear cells. In vivo studies confirmed the beneficial immunomodulatory activity since treatment with the nanoparticle significantly reduced weight loss, improved the disease activity index, and ameliorated colonic inflammation in a murine model of intestinal inflammation. This work enhances our fundamental understanding of the role of peptide coatings on the nanoparticle surface in regulating innate immune signaling, and identifies specific peptide decorated nanoparticles that may represent a novel class of anti-inflammatory therapeutics for human inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hybrid organic-inorganic coatings and films containing conducting polyaniline nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Stejskal, Jaroslav; Prokeš, J.

    2004-01-01

    Roč. 212, č. 1 (2004), s. 343-348 ISSN 1022-1360. [Electrical and Related Properties of Polymers and Other Organic Solids /9./. Prague, 14.07.2002-18.07.2002] R&D Projects: GA AV ČR KSK4050111; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913 Keywords : atomic force microscopy * films * hybrid networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.691, year: 2004

  15. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ju Seong Kim

    2015-01-01

    Full Text Available We report TiO2 nanobranches/nanoparticles (NBN hybrid architectures that can be synthesized by a facile solution phase method. The hybrid architecture simultaneously improves light harvesting and charge collection performances for a dye-sensitized solar cell. First, TiO2 nanorods with a trunk length of 2 μm were grown on a fluorine-doped tin oxide (FTO/glass substrate, and then nanobranches and nanoparticles were deposited on the nanorods’ trunks through a solution method using an aqueous TiCl3 solution at 80°C. The relative amount of nanobranches and nanoparticles can be controlled by multiplying the number of TiCl3 treatments to maximize the amount of surface area. We found that the resultant TiO2 NBN hybrid architecture greatly improves the amount of dye adsorption (five times compared to bare nanorods due to the enhanced surface area, while maintaining a fast charge collection, leading to a three times higher current density and thus tripling the maximum power conversion efficiency for a dye-sensitized solar cell.

  16. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes.

    Science.gov (United States)

    Huang, Kang; Chen, Juhong; Nugen, Sam R; Goddard, Julie M

    2016-06-29

    Controlling formation, establishment, and proliferation of microbial biofilms on surfaces is critical for ensuring public safety. Herein, we report on the synthesis of antimicrobial nanoparticles and their co-deposition along with fluorinated nanoparticles during electroless nickel plating of stainless steel. Plating bath composition is optimized to ensure sufficiently low surface energy to resist fouling and microbial adhesion as well as to exert significant (>99.99% reduction) antimicrobial activity against Listeria monocytogenes. The resulting coatings present hybrid antifouling and antimicrobial character, can be applied onto stainless steel, and do not rely on leaching or migration of the antimicrobial nanoparticles to be effective. Such coatings can support reducing public health issues related to microbial cross-contamination in areas such as food processing, hospitals, and water purification.

  17. Magnetic hybrid magnetite/metal organic framework nanoparticles: facile preparation, post-synthetic biofunctionalization and tracking in vivo with magnetic methods

    Science.gov (United States)

    Tregubov, A. A.; Sokolov, I. L.; Babenyshev, A. V.; Nikitin, P. I.; Cherkasov, V. R.; Nikitin, M. P.

    2018-03-01

    Multifunctional hybrid nanocomposites remain to be of great interest in biomedicine as a universal tool in a number of applications. As a promising example, the nanoparticles with magnetic core and porous shell have a potential as theranostic agents combining both the diagnostics probe and drug delivery vehicle properties. However, reported methods of the nanostructure preparation are complex and include tedious time-consuming growth of porous shell by means of layer by layer assembly technique. In this study, we develop new way of fabrication of the superparamagnetic magnetite core @ porous metal organic framework shell nanoparticles and demonstrate their application both as a multimodal (MRI contrasting, magnetometric and optical labeling) and multifunctional (in vivo bioimaging, biotargeting by coupled receptors, lateral flow assay) agents. The easiness of fabrication, controllable bioconjugation properties and low level of non-specific binding indicate high potential of the nanoparticles to be employed as multifunctional agents in theranostics, advanced biosensing and bioimaging.

  18. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  19. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques.

    Science.gov (United States)

    Rampino, A; Borgogna, M; Bellich, B; Blasi, P; Virgilio, F; Cesàro, A

    2016-03-10

    The preparation of chitosan nanoparticles in combination with pectins, as additional mucoadhesive biopolymers, was investigated. Pectins from apple and from citrus fruit were considered; polygalacturonic acid was taken as a reference. Tripolyphosphate was used as an anionic cross-linker. Two different techniques were compared, namely the coating and the blending. Coated nanoparticles (NPs) in the ratio pectin:NPs from 2:1 to 5:1 evidenced that the size of NPs increased as the amount of pectin (both from apple and citrus fruit) was increased. In particular, for NPs coated with pectin from citrus fruit the size ranges from 200 to 260nm; while for NPs coated with pectin from apple the size ranges from 330 to 450nm. A minimum value of Z-potential around -35mV was obtained for the ratio pectin:NPs 4:1, while further addition of pectin did not decrease the Z-potential. Also blended NPs showed a dependence of the size on the ratio of the components: for a given ratio pectin:tripolyphosphate the size increases as the fraction of chitosan increases; for a low ratio chitosan:pectin a high amount of tripolyphosphate was needed to obtain a compact structure. The effect of the additional presence of loaded proteins in chitosan-pectin nanoparticles was also investigated, since proteins contribute to alter the electrostatic interactions among charged species. FT-IR and DSC characterization are presented to confirm the interactions between biopolymers. Finally, the biocompatibility of the used materials was assessed by the chorioallantoic membrane assay, confirming the safety of the materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B

    DEFF Research Database (Denmark)

    Jain, Sanyog; Valvi, Pankaj U; Swarnakar, Nitin K

    2012-01-01

    found to have particle size 253 ± 8 nm, polydispersity index (PDI) 0.274 ± 0.008, and entrapment efficiency 50.61 ± 2.20% at 6% w/w of initial theoretical drug loading. Scanning electron microscopy (SEM) revealed spherical shaped nanoparticles whereas confocal laser scanning electron microscopy (CLSM......) and fluorescent resonance energy transfer (FRET) analysis confirmed the orientation of the lecithin (located in the core) and gelatin (exterior coat) within the system. The developed formulation exhibited a sustained drug release profile with a release pattern best fitted to Higuchi kinetics. Experiments on Caco...

  2. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes.

    Science.gov (United States)

    Christau, Stephanie; Möller, Tim; Yenice, Zuleyha; Genzer, Jan; von Klitzing, Regine

    2014-11-04

    The effect of the brush grafting density on the loading of 13 nm gold nanoparticles (AuNPs) into stimuli-responsive poly(N,N-(dimethylamino ethyl) methacrylate) (PDMAEMA) brushes anchored to flat impenetrable substrates is reported. Atom-transfer radical polymerization (ATRP) is used to grow polymer brushes via a "grafting from" approach from a 2-bromo-2-methyl-N-(3-(triethoxysilyl) propyl) propanamide (BTPAm)-covered silicon substrate. The grafting density is varied by using mixtures of initiator and a "dummy" molecule that is not able to initiate polymerization. A systematic study is carried out by varying the brush grafting density while keeping all of the other parameters constant. X-ray reflectivity is a suitable tool for investigating the spatial structure of the hybrid, and it is combined with scanning electron microscopy and UV/vis spectroscopy to study the particle loading and interpenetration of the particles within the polymer brush matrix. The particle uptake increases with decreasing grafting density and is highest for an intermediate grafting density because more space between the polymer chains is available. For very low grafting densities of PDMAEMA brushes, the particle uptake decreases because of a lack of the polymer matrix for the attachment of particles. The structure of the surface-grafted polymer chains changes after particle attachment. More water is incorporated into the brush matrix after particle immobilization, which leads to a swelling of the polymer chains in the hybrid material. Water can be removed from the brush by decreasing the relative humidity, which leads to brush shrinking and forces the AuNPs to get closer to each other.

  3. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution

    Science.gov (United States)

    Lin, Yan; Zhang, Jun; Pan, Yuan; Liu, Yunqi

    2017-11-01

    The design of efficient and robust Ni2P-based hybrid catalysts for hydrogen evolution reaction (HER) is still in challenge. In this work, a hybrid catalyst composed of monodispersed Ni2P nanoparticles (NPs) and N, P co-doped porous carbon (NPPC) was synthesized through a facile thermal decomposition and used as an efficient electrocatalyst for the HER in 0.5 M H2SO4 solution. Series technologies including X-ray diffraction, Raman, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 sorption are used to characterize the as-synthesized catalysts. The electrochemisty experiments suggested that the as-synthesized Ni2P/NPPC displayed efficient electrocatalytic performance with a low onset overpotential (51 mV), small Tafel slope (74 mV dec-1), high exchange current density (0.12 mA cm-2), large electrochemical double-layer capacitance (21.97 mF cm-2) and high conductivity for the HER. The needed overpotentials are 159 and 184 mV to reach to the current density of 10 and 20 mA cm-2, respectively. Simultaneously, Ni2P/NPPC also displayed good stability in acid solution. The more defects and active sites on the porous carbon which are offered by the co-doped N and P atoms as well as the synergistic effect between NPPC and Ni2P NPs are contributed to the excellent catalytic performance for HER. The current study suggests that introducing the N, P heteroatoms co-doped carbon materials to the Ni2P-based catalysts could enhance HER electrocatalytic performance efficiently.

  4. Electrochemical H2O2biosensor composed of myoglobin on MoS2nanoparticle-graphene oxide hybrid structure.

    Science.gov (United States)

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    Directory of Open Access Journals (Sweden)

    Cristian Petcu

    2017-02-01

    Full Text Available Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS and tetramethoxysilane (TMOS (1:4 molar ratio as precursors. After coating, silica nanoparticles (SiO2 NPs functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR. The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8 has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°, compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness.

  6. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    Science.gov (United States)

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles

    Directory of Open Access Journals (Sweden)

    Aruna P. Wanninayake

    2015-12-01

    Full Text Available In this study, to enhance the power conversion efficiency (PCE of the polymer solar cells (PSCs, Gold (Au and Copper oxide nanoparticles (CuO-NPs are incorporated into the PEDOT:PSS and P3HT/PCBM active layers respectively. PSCs with a constant CuO-NP content were fabricated with varying amounts of Au NPs. Addition of Au NPs increased the power conversion efficiency by up to 18% compared to a reference cell without Au-NPs. The short circuit current(Jsc of the cells containing 0.06 mg of Au NPs was measured at 7.491 mA/cm2 compared to 6.484 mA/cm2 in the reference cells with 0.6 mg of CuO nanoparticles; meanwhile, the external quantum efficiency(EQE increased from 53% to 61%, showing an enhancement of 15.1%. Au-NPs improved the charge collection at the anode, which results in higher short circuit current and fill factor. However, the strong near field surrounding Au-NPs due to localized surface plasmonic resonance (LSPR effect is not distributed into the active layer. Instead, it is spread horizontally through the PEDOT:PSS layer, thus minimizing the light absorption in the active layer.

  8. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  9. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  10. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Cheisy D.F.; Carvalho, Sandhra M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br; Pereira, Marivalda M., E-mail: mpereira@demet.ufmg.br

    2016-01-01

    Recently, stimuli-responsive nanocomposite-derived hydrogels have gained prominence in tissue engineering because they can be applied as injectable scaffolds in bone and cartilage repair. Due to the great potential of these systems, this study aimed to synthesize and characterize novel thermosensitive chitosan-based composites, chemically modified with collagen and reinforced by bioactive glass nanoparticles (BG) on the development of injectable nanohybrids for regenerative medicine applications. Thus, the composite hydrogels were extensively characterized by structural, morphological, rheological, and biological testing. The composites showed thermosensitive response with the gelation temperature at approximately 37 °C, which is compatible with the human body temperature. In addition, scanning electron microscopy (SEM) analysis indicated that the chitosan hydrogels exhibited 3D-porous structures, and the incorporation of collagen in the system caused increase on the average pore size. Fourier transform infrared spectroscopy (FTIR) analysis indicated the main functional groups of each component of the composite system and their chemical interactions forming the scaffold. Moreover, rheological measurements were employed to assess the viscoelastic behavior of the hydrogels as a function of the temperature. The results demonstrated that the addition of collagen and bioactive glass increases the mechanical properties after the gelation process. The addition of 2 wt.% of BG nanoparticles caused an increase of approximately 39% on stiffness compared to pure chitosan and the addition of 30 wt.% collagen caused a further increase on the stiffness by 95%. The cytotoxicity and cell viability of the hydrogels were assessed by MTT and LIVE/DEAD® assays, where the results demonstrated no toxic effect of the composites on the human osteosarcoma cell culture (SAOS) and kidney cells line of human embryo (HEK 293T). Hence, it can be stated that innovative composites were

  11. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    Science.gov (United States)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of

  12. An alternative choice of lidocaine-loaded liposomes: lidocaine-loaded lipid-polymer hybrid nanoparticles for local anesthetic therapy.

    Science.gov (United States)

    Wang, Jianguo; Zhang, Laizhu; Chi, Huimin; Wang, Shilei

    2016-05-01

    The skin permeation enhancement of local anesthetics by newer innovative nanotechnologies has been an appealing field recently. However, which nanocarrier is better for drug loading and has better stability? Therefore, the aim of our study was to compare two kinds of nanocarriers: liposomes and lipid-polymer hybrid nanoparticles (LPNs) for lidocaine (LA) delivery. LA-loaded liposomes (LA-LPs) and LPNs (LA-LPNs) were prepared. Two kinds of nanocarriers were characterized in terms of particle size, zeta potential, drug encapsulation efficiency (EE), drug release, and stability. Their in vitro skin permeation was studied using a Franz diffusion cell mounted with depilated mouse skin in vitro. In vivo local anesthetic effects of LA containing formulations were evaluated by tail flick latency (TFL) test using a tail-flick measuring device. Compared with LA-LPs, LA-LPNs showed significantly better in vitro skin permeation ability and in vivo local anesthetic effects. The results demonstrated that LPNs could improve the efficacy of drugs to higher levels than LPs and free drugs, thus could serve as an effective drug system for LA loading for local anesthetic therapy.

  13. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH

    International Nuclear Information System (INIS)

    Tiwari, Ida; Gupta, Mandakini

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated a nanostructured hybrid material of GNPs/neutral red/MWCNTs. • GNPs decorated on MWCNT template by using neutral red as interlinker for first time. • Nanocomposite modified electrode employed successfully as sensor for NADH. • The electrode has high stability as it does not involve any biological entity. - Abstract: A novel nanocomposite of gold nanoparticles/neutral red/MWCNTs was prepared which was used to modify glassy carbon electrode. The prepared nanocomposite was physically characterized by scanning electron microscopy, transmission electron microscopy, zeta potential measurement, energy dispersive X-ray, FTIR spectroscopy, UV–visible spectroscopy. Electrochemical characterization was done using cyclic voltammetry technique. The modified glassy carbon electrode showed electrocatalytic activity toward the oxidation of NADH in 0.1 M phosphate buffer solution, pH 5.0. The modified electrode has better adhesion over the electrode surface, good stability as no leaching of neutral red based nanocomposite was observed. The oxidation of NADH started at 0.37 V and reached maxima at 0.52 V at the modified electrode surface. So the prepared composite modified electrode can be applied as electrochemical sensor for NADH. The sensitivity and detection limits of the modified glassy carbon electrode were found to be 0.588 μA/mM and 5 × 10 −7 at signal to noise ratio 3

  14. Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates.

    Science.gov (United States)

    Padbury, Richard P; Halbur, Jonathan C; Krommenhoek, Peter J; Tracy, Joseph B; Jur, Jesse S

    2015-01-27

    The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.

  15. Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin.

    Science.gov (United States)

    Gu, Lianshuai; Shi, Tianyi; Sun, Yu; You, Chaoqun; Wang, Senlin; Wen, Gaoju; Chen, Lan; Zhang, Xiangyang; Zhu, Jin; Sun, Baiwang

    2017-05-01

    Cisplatin is a potent antitumor drug, which is widely applied in clinical cancer treatment. However, cisplatin can hardly distinguish between healthy tissue and tumor tissue, resulting in serious toxic side effects. Indocyanine green (ICG) is a FDA-approved near-infrared (NIR) fluorescence dye which has been used in photothermal therapy and optically mediated diagnostic, but the application of ICG is limited by its concentration-dependent aggregation, poor aqueous stability in vitro, lack of target specificity and rapid elimination from the body. Herein, to overcome these limitations of cisplatin and ICG, we fabricated folate-modified, cisplatin, ICG-loaded lipid-polymer hybrid nanoparticles (FCINPs) using a single-step sonication method. The FCINPs exhibited well-defined monodispersity, significant stability and excellent NIR penetration ability. The intracellular uptake experiment showed that the targeting efficacy of the FCINPs was more effective in folate receptors (FRs) over-expressing MCF-7 cells than FRs negative A549 cells. In addition, compared with chemo or photothermal treatment alone, the treatment of FCINPs in combination with 808 nm NIR laser irradiation can significantly induce the apoptosis and necrosis of MCF-7 cells. These findings indicated that the FCINPs would be a promising nanosized drug formulation for tumor-targeted therapy in the future.

  16. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings

    Science.gov (United States)

    Li, Yingzhan; Wang, Bijia; Sui, Xiaofeng; Xie, Ruyi; Xu, Hong; Zhang, Linping; Zhong, Yi; Mao, Zhiping

    2018-03-01

    Durable flame retardant and antibacterial hybrid coatings were developed for cotton fabrics via simultaneous polymerization of dopamine and hydrolytic condensation of N3P3[NH(CH2)3Si(OC2H5)3]6. Silver nanoparticles were also introduced to the coatings by in situ reaction of AgNO3 with catechol moieties on polydopamine (PDA) in the absence of any external reducing agents. Energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to study the morphology and constitution of the coatings. Thermal stability and combustion behaviors were characterized with thermogravimetric analysis (TGA) and vertical flammability tests. Considerable flame retardancy was obtained for the modified cotton fabrics, which also exhibited decent antibacterial activities (99.99%) against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli. The modification was durable with largely intact flame retardancy and antimicrobial properties after 30 washing cycles.

  17. Mechanical properties of composites made of hybrid fabric impregnated with silica nanoparticles and epoxy resin

    Science.gov (United States)

    Kordani, N.; Alizadeh, M.; Lohrasby, F.; Khajavi, R.; Baharvandi, H. R.; Rezanejad, M.; Ahmadzadeh, M.

    2017-09-01

    In this study, the mechanical properties of composites will be examined which were made from Kenaf and hybrid fabric with a simple structure that was coated with epoxy resin and nano silica particles. This fabric cotton has a different situation in terms of yarn score and the type of fiber that is used in textiles. Nano silica particles of 200 nm, polyethylene glycol with 200 molecular weights and ethanol with mechanical weight molecular with ratio of 6:1 will be mixed. Suspension of 60% was chosen according to the silica particles. The D6264 standard test for concentrated force was carried out through the cone edge to determine the strength of each of the samples. Increasing of resistance against penetration in the Kenaf samples from the raw until impregnated with the shear thickening fluid is less than the hybrid samples. Slippage of the fibers with the change of round edge indenter to cone edge indenter has changed. Penetration by cone edge to the cloth is done with lower force and it shows the effect of slippage of fibers on the resistance of the penetration. Samples impregnated with the shear thickening fluid in comparison with epoxy resin have lower resistance. Slippage of natural fibers in comparison with synthetic fibers is lower and on the other hand the average of friction between fibers in the natural fibers is more than synthetic fibers.

  18. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  19. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.

    Science.gov (United States)

    Gao, Shi; Wang, Guohao; Qin, Zainen; Wang, Xiangyu; Zhao, Guoqing; Ma, Qingjie; Zhu, Lei

    2017-01-01

    Photodynamic therapy (PDT) is a promising tumor treatment modality that can convert oxygen into cytotoxic singlet oxygen (SO) via photosensitizer to ablate tumor growth. However, the uncontrolled cancer cell proliferation during tumor development and the oxygen consumption during PDT always result in an insufficient oxygen level in tumors, which can adversely affect the PDT efficiency in turn. We designed an oxygen-generating PDT nanocomplex by encapsulating a manganese dioxide nanoparticle (MnO 2 NP) in an indocyanine green (ICG) modified hyaluronic acid nanoparticle (HANP) to overcome this limitation. Because of the excellent fluorescent and photoacoustic properties, the tumor accumulation of the ICG-HANP/MnO 2 (IHM) nanocomplex was monitored by fluorescent imaging and photoacoustic imaging after intravenous administration into the SCC7 tumor-bearing mouse model. Both high fluorescent and photoacoustic signals were detected and found peak at 6 h post-injection (tumor-muscle ratio: 4.03 ± 0.36 for fluorescent imaging and 2.93 ± 0.13 for photoacoustic imaging). In addition, due to the high reactivity of MnO 2 NP to H 2 O 2 , an unfavorable tumor cell metabolic, the oxygen content in the tumor is elevated 2.25 ± 0.07 times compared to that without IHM treatment as ultrasound imaging confirmed. After laser irradiation, significant tumor growth inhibition was observed in the IHM-treated group compared to the ICG-HANP-treated group, attributed to the beneficial oxygen-generating property of IHM for PDT. It is expected that the design of IHM will provide an alternative way of improving clinical PDT efficacy and will be widely applied in cancer theranostics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fabrication of SWCNT-Ag nanoparticle hybrid included self-assemblies for antibacterial applications.

    Directory of Open Access Journals (Sweden)

    Sayanti Brahmachari

    Full Text Available The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT included silver nanoparticles (AgNPs having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes. The SWCNT dispersions showed moderate killing ability (40-60% against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90% against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher -SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films.

  1. Towards the development of a novel bioinspired functional material: Synthesis and characterization of hybrid TiO{sub 2}/DHICA-melanin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pezzella, Alessandro; Capelli, Luigia [Dept. of Chemical Sciences, Via Cintia 4, 80126 Napoli (Italy); Costantini, Aniello [Dept. of Materials and Production Engineering, Piazzale Tecchio 80, 80125 Napoli (Italy); Luciani, Giuseppina, E-mail: luciani@unina.it [Dept. of Materials and Production Engineering, Piazzale Tecchio 80, 80125 Napoli (Italy); Tescione, Fabiana; Silvestri, Brigida [Dept. of Materials and Production Engineering, Piazzale Tecchio 80, 80125 Napoli (Italy); Vitiello, Giuseppe [Dept. of Chemical Sciences, Via Cintia 4, 80126 Napoli (Italy); Branda, Francesco [Dept. of Materials and Production Engineering, Piazzale Tecchio 80, 80125 Napoli (Italy)

    2013-01-01

    A large number of recent literature data focus on modification/modulation of surface chemistry of inorganic materials in order to improve their functional properties. Melanins, a wide class of natural pigments, are recently emerging as a powerful organic component for developing bioinspired active material for a large number of applications from organoelectronics to bioactive compounds. Here we report the use of the approach referred as 'chimie douce', involving in situ formation of the hybrids through reactions of precursors under mild conditions, to prepare novel hybrid functional architectures based on eumelanin like 5,6 dihydroxyindole-2-carboxylic acid (DHICA) polymer and TiO{sub 2}. Two synthesis procedures were carried out to get DHICA-melanin coated TiO{sub 2} nanoparticles as well as mixed DHICA/TiO{sub 2} hybrid nanostructures. Such systems were characterized through EPR, FT-IR and fluorescence spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and TEM microscopy in order to assess the effect of synthesis path as well as of DHICA content on structural, morphological and optical properties of TiO{sub 2} nanostructures. In particular, EPR, FT-IR spectra and TGA analysis confirmed the presence of DHICA-melanin in these samples. TEM measurements indicated the formation of the nanoparticles having relatively narrow size distribution with average particle size of about 10 nm. DHICA-melanin does act as a morphological agent affecting morphology of hybrid nanostructures. XRD analysis proved that TiO{sub 2} hybrid nanoparticles kept anatase structures for DHICA-melanin contents within the range of investigated compositions, i.e. up to 50% wt/wt. - Highlights: Black-Right-Pointing-Pointer TiO{sub 2}/DHICA melanin blends are novel hybrid functional architectures. Black-Right-Pointing-Pointer Two synthetic approaches were explored to produce TiO{sub 2}/DHICA nanostructures. Black-Right-Pointing-Pointer TiO{sub 2} nanorods prepared

  2. A facile green approach to prepare core-shell hybrid PLGA nanoparticles for resveratrol delivery.

    Science.gov (United States)

    Kumar, Sandeep; Lather, Viney; Pandita, Deepti

    2016-03-01

    Green approach has revolutionized the area of nanoparticles (NPs) synthesis by virtue of eco and health friendly protocols. Advancing this further, the study proposes a captivating solvent free method for the preparation of green PLGA-oil nanohybrids (G-PONHs) using acrysol oil and encapsulation of resveratrol therein. G-PONHs were structurally similar to the standard PONHs, but had larger particle size of 375 nm. Avoidance of organic solvents resulted in the formation of smooth NPs which showed a considerable improvement in drug release profile and antioxidant properties. G-PONHs exhibited superior biocompatibility with normal Vero cells, while the cytotoxicity on breast cancer cells was moderate in comparison to standard NPs owing to their large size. The size of NPs was found to be a critical factor governing the amplitude of cytotoxicity. The comparative high stability of G-PONHs further favors the tremendous potential of this novel preparation method and delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Samyn, Pieter, E-mail: Pieter.Samyn@fobawi.uni-freiburg.de [Albert-Luedwigs-University Freiburg, Institute for Forest Utilization (Germany); Schoukens, Gustaaf [Ghent University, Department of Textiles (Belgium); Stanssens, Dirk; Vonck, Leo; Van den Abbeele, Henk [Topchim N.V. (Belgium)

    2012-08-15

    Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene-maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core-shell nanoparticles with 20-60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

  5. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  6. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    Science.gov (United States)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  7. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  8. Physical-chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes.

    Science.gov (United States)

    Liu, Weilin; Kong, Youyu; Tu, Piaohan; Lu, Junmeng; Liu, Chengmei; Liu, Wei; Han, Jianzhong; Liu, Jianhua

    2017-04-19

    Hybrid nanoparticles were fabricated by the electrostatic deposition of positive bovine serum albumin (BSA) and negative lactoferrin (LF) onto the surface of anionic nanoliposomes (NLs). The resulting particles had a cumulative size of 156.27 ± 11.0 nm and decreased in negative charge. Transmission electron microscopy (TEM) revealed that the hybrid particles formed a smooth and spherical polyelectrolyte complex after globular protein deposition. Observations in size distribution and surface charge after heat treatment, pH alteration and long-term storage found that the particles coated with layers of polyelectrolytes, BSA and LF, had obviously better stability than the bare liposomes. In an in vitro gastrointestinal digestion study, monolayer coated NLs (LF-NLs) and double-layer coated NLs (BSA-LF-NLs) had similar changes in microstructure (TEM) and the release rate of model cargos (calcein), which were superior to the uncoated NLs. These results indicated that hybrid nanoparticles coated with the polyelectrolytes of BSA and LF on the surface of liposomes by electrostatic interaction may improve liposomal stability, and showed some implications for the fabrication of functional molecular delivery systems to control physical-chemical and digestion stability in food and nutrition areas.

  9. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications

    International Nuclear Information System (INIS)

    Rangari, Vijaya K; Mohammad, Ghouse M; Jeelani, Shaik; Hundley, Angel; Vig, Komal; Singh, Shree Ram; Pillai, Shreekumar

    2010-01-01

    Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of ∼ 80 μm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 μg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 ± 6.72 mm, 19.4 ± 3.64 mm, 21.9 ± 4.33 mm, and 24.1 ± 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 ± 2.13 mm, 28.6 ± 4.27 mm, 22.6 ± 1.27 mm, and 27.0 ± 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 μg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial strains tested. Further, the

  10. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Rangari, Vijaya K; Mohammad, Ghouse M; Jeelani, Shaik [Materials Science and Engineering, Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Hundley, Angel; Vig, Komal; Singh, Shree Ram; Pillai, Shreekumar, E-mail: rangariv@tuskegee.edu [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104 (United States)

    2010-03-05

    Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of {approx} 80 {mu}m size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 {mu}g demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 {+-} 6.72 mm, 19.4 {+-} 3.64 mm, 21.9 {+-} 4.33 mm, and 24.1 {+-} 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 {+-} 2.13 mm, 28.6 {+-} 4.27 mm, 22.6 {+-} 1.27 mm, and 27.0 {+-} 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 {mu}g were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial

  11. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.

    Science.gov (United States)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-08-14

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT:PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer.

  12. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Siqi Huang

    2016-06-01

    Full Text Available A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR and 1H nuclear magnetic resonance (NMR. The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, ultraviolet-visible (UV-Vis, transmission electron microscopy (TEM, and field emission scanning electron microscope (FESEM analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag were also explored. The results revealed that (1 QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH2 sites on C2 position of the pyranoid ring; (2 uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3 Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17–31 nm without aggregation; and (4 due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC.

  13. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  14. Organic-inorganic hybrid supermicroporous iron(III) phosphonate nanoparticles as an efficient catalyst for the synthesis of biofuels.

    Science.gov (United States)

    Pramanik, Malay; Bhaumik, Asim

    2013-06-24

    Here we report a novel family of crystalline, supermicroporous iron(III) phosphonate nanomaterials (HFeP-1-3, HFeP-1-2, and HFeP-1-4) with different Fe(III)-to-organophosphonate ligand mole ratios. The materials were synthesized by using a hydrothermal reaction between benzene-1,3,5-triphosphonic acid and iron(III) chloride under acidic conditions (pH ≈ 4.0). Powder X-ray diffraction, N2 sorption, transmission and scanning electron microscopy (TEM and SEM) image analysis, thermogravimetric and differential thermal analysis (TGA-DTA), and FTIR spectroscopic tools were used to characterize the materials. The triclinic crystal phase [P1(2) space group] of the hybrid iron phosphonate was established by a Rietveld refinement of the PXRD analysis of HFeP-1-3 by using the MAUD program. The unit cell parameters are a = 8.749(1), b = 8.578(1), c = 17.725(3) Å; α = 104.47(3), β = 97.64(1), γ = 113.56(3)°; and V = 1013.41 Å(3). With these crystal parameters, we proposed an 24-membered-ring open framework structure for HFeP-1. Compound HFeP-1-3, with an starting Fe/ligand molar ratio of 3.0, shows the highest Brunauer-Emmett-Telller (BET) surface area of 556 m(2) g(-1) and uniform supermicropores of approximately 1.1 nm. The acidic surface of the porous iron(III) phosphonate nanoparticles was used in a highly efficient and recyclable catalytic transesterification reaction for the synthesis of biofuels under mild reaction conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângelo M. L. Denadai

    2012-11-01

    Full Text Available Organic–inorganic magnetic hybrid materials (MHMs combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn were used as an adsorbent system for Cr3+ and Cr2O72− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions from aqueous solutions compared to that of Fe-Ni/Zn.

  16. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  17. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune

    2012-01-12

    Novel nanoparticle organic hybrid materials (NOHMs), which are comprised of organic oligomers or polymers tethered to an inorganic nanosized cores of various sizes, have been synthesized, and their solvating property for CO 2 was investigated using attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported at temperatures of (298, 308, 323 and 353) K and CO 2 pressure conditions ranging from (0 to 5.5) MPa. The polymeric canopy, or polymer bound to the nanoparticle surface, showed significantly less swelling behavior with enhanced or comparable CO 2 capture capacity compared to pure unbound polyetheramine. © 2011 American Chemical Society.

  18. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    International Nuclear Information System (INIS)

    Chen, S-H; Chuang, Y-C; Lu, Y-C; Lin, H-C; Yang, Y-L; Lin, C-S

    2009-01-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml -1 and a linear correlation (R 2 = 0.987) of ΔF versus virus titration from 2 x 10 0 to 2 x 10 6 PFU ml -1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  19. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    Science.gov (United States)

    Chen, Sz-Hau; Chuang, Yao-Chen; Lu, Yi-Chen; Lin, Hsiu-Chao; Yang, Yun-Liang; Lin, Chih-Sheng

    2009-05-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml-1 and a linear correlation (R2 = 0.987) of ΔF versus virus titration from 2 × 100 to 2 × 106 PFU ml-1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  20. MoS{sub 2}/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wen-chao, E-mail: wenchao.peng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Chen, Ying [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Li, Xiao-yan, E-mail: xlia@hkucc.hku.hk [Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China)

    2016-05-15

    Highlights: • MoS{sub 2}/rGO hybrid is synthesized using a one-step hydrothermal method. • MoS{sub 2}/rGO hybrid is used as the support and cocatalyst for CdS nanoparticles. • CdS-MoS{sub 2}/rGO composite is effective photocatalyst for 4-NP reduction in visible light. • Ammonium formate is an effective sacrificial agent for 4-NP photocatalytic reduction. - Abstract: Photocatalytic reduction of nitroaromatic compounds to aromatic amines using visible light is an attractive process that utilizes sunlight as the energy source for the chemical conversions. Herewith we synthesized a composite material consisting of CdS nanoparticles grown on the surface of MoS{sub 2}/reduced graphene oxide (rGO) hybrid as a novel photocatalyst for the reduction of 4-nitrophenol (4-NP). The CdS-MoS{sub 2}/rGO composite is shown as a high-performance visible light-driven photocatalyst. Even without a noble-metal cocatalyst, the catalyst exhibited a great activity under visible light irradiation for the reduction of 4-NP to much less toxic 4-aminophenol (4-AP) with ammonium formate as the sacrificial agent. Composite CdS-0.03(MoS{sub 2}/0.01rGO) was found to be the most effective photocatalyst for 4-NP reduction. The high photocatalytic performance is apparently resulted from the synergetic functions of MoS{sub 2} and graphene in the composite, i.e. the cocatalysts serve as both the active adsorption sites for 4-NP and electron collectors for the separation of electron-hole pairs generated by CdS nanoparticles. The laboratory results show that the CdS-MoS{sub 2}/rGO composite is a low-cost and stable photocatalyst for effective reduction and detoxification of nitroaromatic compounds using solar energy.

  1. Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification

    International Nuclear Information System (INIS)

    Song, Lixin; Du, Pingfan; Xiong, Jie; Ko, Frank; Cui, Can

    2015-01-01

    ZnO nanoparticles (ZNPs) and ZnO nanowires (ZNWs) were fabricated via electrospinning and calcination. The ZNPs and ZNWs were blended with different mass ratio by varying ZNWs from 0% to 100% and serviced as photoanodic film of dye-sensitized solar cells (DSSCs) via spin coating. The efficiency of these DSSCs reached a maximum of 2.6% at 20 wt% ZNWs. In order to improve the photovoltaic properties of ZNWs/ZNPs hybrid photoanodic film, the ZNWs/ZNPs hybrid film was modified by the incorporation of multi-walled carbon nanotubes (MWCNTs) into ZnO matrix including both ZNPs and ZNWs combined with TiCl 4 post-treatment. As a result, the efficiency of DSSCs increased from 2.6% to 3.8%, which is mainly attributed to the increased dye loading, faster electron transport, and less electron loss

  2. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    Science.gov (United States)

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) - Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Tijing, Leonard D., E-mail: ltijing@jbnu.ac.kr [Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ruelo, Michael Tom G. [Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Amarjargal, Altangerel [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar (Mongolia); Pant, Hem Raj [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Park, Chan-Hee [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-06-15

    The one-step electrospinning fabrication of novel materials with added functionalities is being widely studied because of their wide array of applications. Here, the fabrication of a hybrid, bimodal nanofibrous mat made of two polymeric nanofibers: polyurethane (PU) and silver (Ag) nanoparticle (NP) -in situ - decorated poly(ethylene oxide) (PEO) utilizing an angled dual-spinneret electrospinning system is reported. Silver nitrate (AgNO{sub 3}) is in-situ reduced in high-molecular weight PEO, and Ag NPs with sizes from 6 to 90 nm as checked by scanning electron microscoy and transmission electron microscopy, are subsequently formed on the surface of PEO nanofibers depending on the reduction time. Successful fabrication of bicomponent polymer matrices (PU and PEO) in the hybrid mat is confirmed by Fourier transform infrared spectroscopy. Metallic Ag NPs are verified to be present in the hybrid mats by energy dispersive X-ray spectroscopy and ultraviolet-vis spectroscopy, showing plasmon resonance band peaks at 415 and 425 nm. The hybrid nanofibrous mat containing Ag NPs with an average size of 8 nm (i.e., reduction time of 3 h) exhibits strong antibacterial activity. - Graphical abstract: Black-Small-Square Highlights: Black-Right-Pointing-Pointer We have fabricated a bicomponent nanofibrous mat by dual-spinneret electrospinning. Black-Right-Pointing-Pointer The hybrid mat was composed of PU and PEO nanofibers with bimodal fiber sizes. Black-Right-Pointing-Pointer The PEO nanofibers are selectively decorated with Ag NPs without the use of chemicals. Black-Right-Pointing-Pointer High MW PEO was used as both reductant and template for the formed Ag NPs. Black-Right-Pointing-Pointer The hybrid mat containing Ag NPs exhibits strong antibacterial activity.

  4. One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) – Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning

    International Nuclear Information System (INIS)

    Tijing, Leonard D.; Ruelo, Michael Tom G.; Amarjargal, Altangerel; Pant, Hem Raj; Park, Chan-Hee; Kim, Cheol Sang

    2012-01-01

    The one-step electrospinning fabrication of novel materials with added functionalities is being widely studied because of their wide array of applications. Here, the fabrication of a hybrid, bimodal nanofibrous mat made of two polymeric nanofibers: polyurethane (PU) and silver (Ag) nanoparticle (NP) –in situ – decorated poly(ethylene oxide) (PEO) utilizing an angled dual-spinneret electrospinning system is reported. Silver nitrate (AgNO 3 ) is in-situ reduced in high-molecular weight PEO, and Ag NPs with sizes from 6 to 90 nm as checked by scanning electron microscoy and transmission electron microscopy, are subsequently formed on the surface of PEO nanofibers depending on the reduction time. Successful fabrication of bicomponent polymer matrices (PU and PEO) in the hybrid mat is confirmed by Fourier transform infrared spectroscopy. Metallic Ag NPs are verified to be present in the hybrid mats by energy dispersive X-ray spectroscopy and ultraviolet-vis spectroscopy, showing plasmon resonance band peaks at 415 and 425 nm. The hybrid nanofibrous mat containing Ag NPs with an average size of 8 nm (i.e., reduction time of 3 h) exhibits strong antibacterial activity. - Graphical abstract: ▪ Highlights: ► We have fabricated a bicomponent nanofibrous mat by dual-spinneret electrospinning. ► The hybrid mat was composed of PU and PEO nanofibers with bimodal fiber sizes. ► The PEO nanofibers are selectively decorated with Ag NPs without the use of chemicals. ► High MW PEO was used as both reductant and template for the formed Ag NPs. ► The hybrid mat containing Ag NPs exhibits strong antibacterial activity.

  5. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  6. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer

    Science.gov (United States)

    Zhou, Feng; Noor, M. Omair; Krull, Ulrich J.

    2015-01-01

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation. PMID:28347081

  7. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    Science.gov (United States)

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  8. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance

    Science.gov (United States)

    Rajender, Gone; Choudhury, Biswajit; Giri, P. K.

    2017-09-01

    This work spotlights the development of a plasmonic photocatalyst showing surface plasmon induced enhanced visible light photocatalytic (PC) performance. Plasmonic Au nanoparticles (NPs) are decorated over the hybrid nanosystem of graphitic carbon nitride (GCN) and graphene quantum dots (GQD) by citrate reduction method. Surface plasmon resonance (SPR) induced enhancement of Raman G and 2D band intensity is encountered on excitation of the Plasmonic hybrid at 514.5 nm, which is near to the 532 nm absorption band of Au NPs. Time-resolved photoluminescence and XPS studies show charge transfer interaction between GQD-GCN and Au NPs. Plasmonic hybrid exhibits an enhanced PC activity over the other catalysts in the photodegradation of methylene blue (MB) under visible light illumination. Plasmonic photocatalyst displays more than 6 fold enhancement in the photodecomposition rate of MB over GQD and nearly 2 fold improvement over GCN and GQD-GCN. GQD-GCN absorbs mostly in the near visible region and can be photoexcited by visible light of wavelength (λ ) carbon based hybrid photocatalyst for solar energy conversion.

  9. Surface Modifier-Free Organic-Inorganic Hybridization to Produce Optically Transparent and Highly Refractive Bulk Materials Composed of Epoxy Resins and ZrO2 Nanoparticles.

    Science.gov (United States)

    Enomoto, Kazushi; Kikuchi, Moriya; Narumi, Atsushi; Kawaguchi, Seigou

    2018-04-02

    Surface modifier-free hybridization of ZrO 2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO 2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A glycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC) are used to produce transparent viscous dispersions. The resulting ZrO 2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), FT-IR, and solid state 13 C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO 2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid state 13 C CP/MAS NMR measurements. Epoxy-based hybrid materials with a high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO 2 NPs and methylhexahydrophthalic anhydride (MHHPA) in the presence of a phosphoric catalyst (PX). The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO 2 in the epoxy networks. The refractive index at 594 nm ( n 594 ) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization provides a

  10. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    Science.gov (United States)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor

  11. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles.

    Science.gov (United States)

    Ahmed, Syed Rahin; Takemeura, Kenshin; Li, Tian-Cheng; Kitamoto, Noritoshi; Tanaka, Tomoyuki; Suzuki, Tetsuro; Park, Enoch Y

    2017-01-15

    A hybrid structure of graphene-gold nanoparticles (Grp-Au NPs) was designed as a new nanoprobe for colorimetric immunoassays. This hybrid structure was prepared using chloroauric acid, sodium formate and Grp flakes at room temperature. Au NPs attached strongly onto the Grp surface, and their size was controlled by varying the sodium formate concentration. The Raman intensity of the Grp-Au NP hybrids was significantly enhanced at 1567cm -1 and 2730cm -1 compared with those of pristine Grp because of the electronic interaction between Au NPs and Grp. The Grp-Au NPs with a hybrid structure catalyzed the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) with H 2 O 2 , developing a blue color in aqueous solution. This catalytic activity was utilized to detect norovirus-like particles (NoV-LPs) in human serum. The enhanced colorimetric response was monitored using Ab-conjugated-Grp-Au NPs and found to depend on the NoV-LP concentration, exhibiting a linear response from 100pg/mL to 10μg/mL. The limit of detection (LOD) of this proposed method was 92.7pg/mL, 112 times lower than that of a conventional enzyme-linked immunosorbent assay (ELISA). The sensitivity of this test was also 41 times greater than that of a commercial diagnostic kit. The selectivity of the Grp-Au NPs was tested with other viruses, and no color changes were observed. Therefore, the proposed system will facilitate the utilization of the intrinsic peroxidase-like activity of Grp-Au NPs in medical diagnostics. We believe that the engineered catalytic Grp-Au NP hybrids could find potential applications in the future development of biocatalysts and bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Enhanced infrared transmittance properties in ultrafine MgAl2O4 nanoparticles synthesised by a single step combustion method, followed by hybrid microwave sintering

    Science.gov (United States)

    Mathew, C. T.; Vidya, S.; Koshy, Jacob; Solomon, Sam; Thomas, Jijimon K.

    2015-09-01

    Infrared transparent ceramics found to have potential applications as infrared windows and domes in strategic defence and space missions. Synthesis of ultrafine nanostructured MgAl2O4 ceramics by a modified single step auto-igniting combustion technique, followed by sintering of the sample by resistive and resistive-microwave hybrid heating to high density and their excellent infrared transmission characteristics are presented in this paper. Structural characterisations of MgAl2O4 nanoparticles reveal that the as prepared powder is phase pure, with average crystallite size ∼15 nm and possess a cubic structure. Optical band gap calculated using the Kubelka-Munk method is 5.75 eV. The thermal stability of the nanopowder at elevated temperatures has been studied using thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). Hybrid heating yield a substantial reduction in sintering temperature and soaking time relative to the conventional resistive heating, and the samples achieved >99% density by microwave-resistive hybrid heating. Scanning electron micrograph (SEM) showed that the pellets are well sintered. The pellet sintered by hybrid heating showed a better transmittance of ∼79% in the UV-Visible region and ∼82% in the mid IR region compared to pellet sintered by resistive heating which has ∼68% in the UV-Visible region and ∼66% in the mid IR region. The results confirm the effective use of nanocrystalline powders from modified combustion synthesis as starting material for the development of high quality IR transparent windows and domes. In addition the microwave hybrid sintering technique employed in the present study also contributes to the results of better transmittance characteristics in highly densified MgAl2O4 ceramic pellets.

  13. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26, Polytechnicheskaya Str., St Petersburg 194021 (Russian Federation)], E-mail: aleshin@transport.ioffe.ru

    2009-05-21

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at {approx}420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  14. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fuyi [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Gao, Fenglei, E-mail: jsxzgfl@sina.com [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Wang, Po, E-mail: wangpo@jsnu.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2017-05-29

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH{sub 4} oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10{sup −15} to 10{sup −11} g mL{sup −1} and a detection limit of 0.43 × 10{sup −15} g mL{sup −1}. Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10{sup −16} g mL{sup −1}. And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10{sup −16} g mL{sup −1} level with a dynamic range spanning 5 orders of magnitude.

  15. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  16. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  17. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Science.gov (United States)

    Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun

    2017-04-01

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  18. Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures

    Czech Academy of Sciences Publication Activity Database

    Toušková, J.; Toušek, J.; Rohovec, Jan; Růžička, A.; Polonskyi, O.; Urbánek, P.; Kuřitka, I.

    2014-01-01

    Roč. 16, č. 3 (2014), Art. 2314 ISSN 1388-0764 Institutional support: RVO:67985831 Keywords : CdS * energy conversion * MEH-PPV * nanoparticles * photovoltage spectra * transmission electron microscopy * ZnO Subject RIV: DD - Geochemistry Impact factor: 2.184, year: 2014

  19. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach

    DEFF Research Database (Denmark)

    Leng, Donglei; Thanki, Kaushik; Fattal, Elias

    2018-01-01

    with small interfering RNA (siRNA) for COPD management. Lipid-modified PLGA nanoparticles (LPNs) based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) and the cationic lipid dioleyltrimethylammonium propane (DOTAP) were prepared using a double emulsion solvent evaporation method. A quality...... efficiency. A response surface methodology (RSM) was applied for the experimental design to evaluate the influence of the CFPs on the CQAs, and to identify the optimal operation space (OOS). All nanoparticle dispersions displayed monodisperse size distributions (PDI

  20. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  1. Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors.

    Science.gov (United States)

    Villalonga, Reynaldo; Díez, Paula; Eguílaz, Marcos; Martínez, Paloma; Pingarrón, José M

    2012-08-01

    Glassy carbon electrodes modified with single-walled carbon nanotubes and a three-dimensional network of electropolymerized Au nanoparticles capped with 2-mercaptoethanesulfonic acid, p-aminothiophenol, and 1-adamantanethiol were used as hybrid electrochemical platforms for supramolecular immobilization of a synthesized artificial neoglycoenzyme of xanthine oxidase and β-cyclodextrin through host-guest interactions. The ensemble was further employed for the bioelectrochemical determination of xanthine. The biosensor showed fast amperometric response within 5 s and a linear behavior in the 50 nM to 9.5 μM xanthine concentration range with high sensitivity, 2.47 A/(M cm(2)), and very low detection limit of 40 nM. The stability of the biosensor was significantly improved and the interferences caused by ascorbic and uric acids were noticeably minimized by coating the electrode surface with a Nafion thin film.

  2. Preparation and Structural Studies on Hybrid Core-Shell Nanoparticles Consisting of Silica Core and Conjugated Block Copolymer Shell Prepared by Surface-Initiated Polymerization

    Science.gov (United States)

    Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni

    Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.

  3. Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2011-08-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.

  4. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    Science.gov (United States)

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  5. Multifunctional Fe{sub 3}O{sub 4}@C@Ag hybrid nanoparticles: Aqueous solution preparation, characterization and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hongxia [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Niu, Helin, E-mail: niuhelin@ahu.edu.cn [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Li, Ping; Tao, Zhiyin; Mao, Changjie; Song, Jiming; Zhang, Shengyi [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2013-07-15

    Highlights: ► Ag-loaded Fe{sub 3}O{sub 4}@C magnetic-optical bifunctional materials have been investigated. ► The magnetism was studied at the room temperature. ► The photocatalytic activity was evaluated under visible light irradiation. ► Ag-loaded Fe{sub 3}O{sub 4}@C nanocomposites show superior magnetism and photocatalytic activity. ► A simple synthetic process was discussed. - Abstract: The paper describes a kind of multifunctional Fe{sub 3}O{sub 4}@C@Ag hybrid nanoparticles, which can be successfully synthesized using a simple route based on directly adsorption and spontaneous reduction of silver ions onto the surface shell of carbon-coated magnetic nanoparticles. The as-prepared samples have been characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectrum, vibrating sample magnetometer (VSM) and UV–vis spectrum (UV–vis). The Ag nanocrystals loaded on the surface shell of carbon-coated magnetic nanoparticles are nearly spherical with an average diameter of 10 nm. And the carbonaceous polysaccharides shell obtained using an glucose hydrothermal reaction act as a role of a bridge between magnetic Fe{sub 3}O{sub 4} core and noble metallic Ag nanocrystals. The as-prepared samples can be used as an effective catalyst for the photodegradation of organic dyes (neutral red) under the exposure of visible light. Results show that the as-prepared samples have a degradation rate of 93.7% for dyes within 30 min, which indicates their high-efficiency and rapid photocatalytic activity.

  6. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode.

    Directory of Open Access Journals (Sweden)

    Md Faruk Hossain

    Full Text Available A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx onto multi-layer reduced graphene oxide (MRGO sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997, and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3, short response time (3 s, high sensitivity (17.85 μA/mMcm2, and a wide linear range (0.01-8 mM for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications.

  7. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    Science.gov (United States)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification.

    Science.gov (United States)

    Wang, Jing; Han, Heyou; Jiang, Xiaochun; Huang, Liang; Chen, Lina; Li, Na

    2012-06-05

    Near-infrared electrochemiluminescence (NIR ECL) from quantum dots (QDs) has aroused particular attention. However, whether it is possible to achieve NIR ECL sensing has remained an open question. In this article, we reported a NIR ECL immunosensor with amplification techniques for ultrasensitive and selective determination of biomarker. In this sensing platform, NIR-emitting CdTe/CdS core(small)/shell(thick) QDs were first selected as NIR ECL emitters. The NIR ECL nanoprobe (SiO(2)-QD-Ab2) was designed by covalent assembly of goat antihuman IgG antibody (Ab2) on CdTe/CdS QDs tagged silica nanospheres. Gold nanoparticle-graphene nanosheet (Au-GN) hybrids were prepared by a sonication-induced self-assembly and served as an effective matrix for initial antibodies (Ab1) attachment. After a sandwich immunoreaction, the functionalized silica nanosphere labels were captured onto the glass carbon electrode surface. Integrating the dual amplification from the promoting electron transfer rate of Au-GN hybrids and the increasing QD loading of SiO(2)-QD-Ab2 labels, the NIR ECL response from CdTe/CdS QDs enhanced 16.8-fold compared to the unamplified protocol and successfully fulfilled the ultrasensitive detection of human IgG (HIgG) with a detection limit of 87 fg mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor HIgG level in human serum with satisfactory results obtained.

  9. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode.

    Science.gov (United States)

    Hossain, Md Faruk; Park, Jae Y

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01-8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications.

  10. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  11. Elaboration of hybrid materials by templating with mineral liquid crystals stabilization of a mixed sol of YSZ nanoparticles and V2O5 ribbon-like colloids

    International Nuclear Information System (INIS)

    Guiot, C.

    2009-01-01

    The purpose of this PhD was to investigate innovative soft chemistry ways to prepare hybrid materials with ordered nano-structures. Concretely, research were conducted on the development of a hybrid material made of an yttria-stabilized zirconia (YSZ) matrix templated by a mineral liquid crystal, namely V 2 O 5 . In aqueous solutions, vanadium oxide exhibits ribbon-like colloids of typical dimensions 1 nm x 25 nm x 500 nm, stabilized by a strong negative surface charge. Above a critical concentration, the anisotropic colloids assemble into a nematic liquid crystal, whose domains can be oriented within the same direction over a macroscopic range under a weak magnetic field. The idea is to use V 2 O 5 anisotropic colloids as a template for a hybrid material, taking advantage of their ordering behavior. Preliminary experiments revealed a strong reactivity between molecular compounds of zirconium and vanadium oxide. Therefore, the studies were directed toward the preparation of a mixed colloidal sol containing YSZ nanoparticles and vanadium oxide ribbon-like colloids, as a precursor sol for the intended hybrid material. The YSZ nanoparticles are obtained through an outstanding hydrothermal synthesis leading to a stable suspension of nanocrystalline particles of ca. 5 nm, in pure water. Providing a mixed sol of YSZ and V 2 O 5 is a key challenge for it implies the co-stabilization of two types of colloids having different shape, size and surface properties. Besides, the existence of V 2 O 5 in its ribbon-like form requires acidic conditions and very low ionic strength. The first part of this work was then dedicated to the study of electro-steric stabilization of zirconia suspension by addition of acidic poly-electrolytes. Different polymers with carboxylic and/or sulfonic acidic functions were investigated. Based on zeta potential measurements and adsorption isotherms, the influence of molecular weight and polymer charge were discussed. Among the studied polymers, poly

  12. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Assembly of individual TiO2-C60/porphyrin hybrid nanoparticles for enhancement of photoconversion efficiency

    International Nuclear Information System (INIS)

    Jang, Jae Kwon; Park, Se Ho; Song, Hyunjoon; Park, Joon T; Kim, Chulwoo; Ko, Jaejung; Seo, Won Seok

    2011-01-01

    Rational organization of porphyrin and C 60 on the electrode surface in photovoltaic structures is essential to yield high quantum efficiency. In the present work, individual TiO 2 nanoparticles were modified by introducing C 60 and porphyrin units on the surface, and then electrophoretically deposited on an ITO/SnO 2 electrode. The morphology of the photoactive layer on the electrode was significantly different from that of the layer produced as a result of separate deposition of C 60 and porphyrin. The maximum incident photon to current efficiency of the resulting electrode approached 88% at 410 nm, which is the highest value among molecule-based photovoltaic cells reported to date. This indicates that molecular assembly of the C 60 and porphyrin units on the individual nanoparticles through strong chemical attachment is a key factor in improving effective electron transfer between the photoactive units and the electrodes.

  14. Hybrid core shell nanoparticles entrapping Gd-DTPA and18F-FDG for simultaneous PET/MRI acquisitions.

    Science.gov (United States)

    Vecchione, Donatella; Aiello, Marco; Cavaliere, Carlo; Nicolai, Emanuele; Netti, Paolo Antonio; Torino, Enza

    2017-09-01

    Although there has been an improvement in the hardware and software of the PET/MRI system, the development of the nanoprobes exploiting the simultaneous acquisition of the bimodal data is still under investigation. Moreover, few studies on biocompatible and clinically relevant probes are available. This work presents a core-shell polymeric nanocarrier with improved relaxometric properties for simultaneous PET/MRI acquisitions. Core-shell nanoparticles entrapping the Gd-DTPA and 18 F-FDG are obtained by a complex coacervation. The boosting of r 1 of the entrapped Gd-DTPA up to five-times compared with 'free Gd-DTPA', is confirmed by the PET/MRI scan. The sorption of 18 F-FDG into the nanoparticles is studied and designed to be integrated downstream for the production of the tracer.

  15. Hybrid nanocomposite from aniline and CeO2 nanoparticles: Surface protective performance on mild steel in acidic environment

    Science.gov (United States)

    Sasikumar, Y.; Kumar, A. Madhan; Gasem, Zuhair M.; Ebenso, Eno E.

    2015-03-01

    This present work contributes to the development of a new generation of active corrosion inhibitors composed of CeO2 nanoparticles covered with polyaniline that are able to release entrapped nanoparticles in acidic medium. Nanocomposites of aniline and CeO2 nanoparticles have been chemically synthesized by in-situ polymerization. The structural evolutions and morphological characteristics of PANI/CeO2 nanocomposite (PCN) have performed using various techniques such as XRD, IR, XPS, SEM and TEM analysis. It was illustrated from SEM and TEM observation that the PCN has globular particle with core-shell structure. The inhibition properties of synthesized PCN on mild steel (MS) corrosion in 0.5 M HCl were estimated using weight loss and electrochemical techniques. Potentiodynamic polarization results revealed PCN to be a mixed-type inhibitor, while impedance results indicate the adsorption of the PCN film on the MS surface. The inhibition efficiency of PCN was found to increase almost linearly with concentration. Moreover, an increase in the water contact-angle with PCN indicated its adsorption at the MS surface, and ATR-IR, SEM/EDAX and AFM visualization confirmed the formation of a protective film adsorbed on a MS surface. Finally, it was concluded that the PCN is a potential inhibitor for mild steel in HCl medium.

  16. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chao [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Dan; Yang, Chi [Department of Pharmacy, Nantong University, Nantong 226001 (China); Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2016-05-05

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  17. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Hou, Chao; Liu, Hongying; Zhang, Dan; Yang, Chi; Zhang, Mingzhen

    2016-01-01

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  18. Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid-polymer hybrid nanoparticles: In vitro and in silico studies.

    Science.gov (United States)

    Seedat, Nasreen; Kalhapure, Rahul S; Mocktar, Chunderika; Vepuri, Suresh; Jadhav, Mahantesh; Soliman, Mahmoud; Govender, Thirumala

    2016-04-01

    Nano-drug delivery systems are being widely explored to overcome the challenges with existing antibiotics to treat bacterial infections [1]. Lipid-polymer hybrid nanoparticles (LPNs) display unique advantages of both liposomes and polymeric nanoparticles while excluding some of their limitations, particularly the structural integrity of the polymeric particles and the biomimetic properties of the liposome [1]. The use of helper lipids and polymers in LPNs has not been investigated, but has shown potential in other nano-drug delivery systems to improve drug encapsulation, antibacterial activity and drug release. Therefore, LPNs using co-excipients were prepared using vancomycin (VCM), glyceryl triplamitate and Eudragit RS100 as the drug, lipid and polymer respectively. Oleic acid (OA), Chitosan (CHT) and Sodium alginate (ALG) were explored as co-excipients. Results indicated rod-shaped LPNs with suitable size, PDI and zeta potential, while encapsulation efficiency (%EE) increased from 27.8% to 41.5%, 54.3% and 69.3% with the addition of OA, CHT and ALG respectively. Drug release indicated that VCM-CHT had the best performance in sustained drug release of 36.1 ± 5.35% after 24h. The EE and drug release were further corroborated by in silico and release kinetics data. In vitro antibacterial studies of all formulations exhibited better activity against bare VCM and sustained activity up to day 5 against both Staphylococcus aureus and MRSA, with VCM-OA and VCM-CHT showing better activity against MRSA. Therefore, this LPN proves to be a promising system for delivery of VCM as well as other antibiotics. Copyright © 2015. Published by Elsevier B.V.

  19. cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo.

    Science.gov (United States)

    Zhong, Yinan; Wang, Chao; Cheng, Ru; Cheng, Liang; Meng, Fenghua; Liu, Zhuang; Zhong, Zhiyuan

    2014-12-10

    cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles (cRGD-HNs) were designed and developed for targeted chemotherapy of human glioma xenografts in mice. As expected, cRGD-HNs had excellent colloidal stability. The in vitro release studies showed that drug release from DOX-loaded cRGD-HNs (cRGD-HN-DOX) was minimal under physiological conditions but markedly accelerated upon NIR irradiation at a low power density of 0.2 W/cm2, due to photothermally induced phase transition of PCL regime. MTT assays showed that the antitumor activity of cRGD-HN-DOX in αvβ3 integrin over-expressed human glioblastoma U87MG cells was greatly boosted by mild NIR irradiation, which was significantly more potent than non-targeting HN-DOX counterpart under otherwise the same conditions and was comparable or superior to free DOX, supporting receptor-mediated endocytosis mechanism. The in vivo pharmacokinetics studies showed that cRGD-HN-DOX had much longer circulation time than free DOX. The in vivo imaging and biodistribution studies revealed that cRGD-HN-DOX could actively target human U87MG glioma xenograft in nude mice. The therapeutic studies in human U87MG glioma xenografts exhibited that cRGD-HN-DOX in combination with NIR irradiation completely inhibited tumor growth and possessed much lower side effects than free DOX. The Kaplan-Meier survival curves showed that all mice treated with cRGD-HN-DOX plus NIR irradiation survived over an experimental period of 48 days while control groups treated with PBS, cRGD-HN-DOX, cRGD-HNs with NIR irradiation, free DOX, or HN-DOX with NIR irradiation (non-targeting control) had short life spans of 15-40 days. Ligand-directed AuNR/PEG-PCL hybrid nanoparticles with evident tumor-targetability as well as superior spatiotemporal and rate control over drug release have emerged as an appealing platform for cancer chemotherapy in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery

    Directory of Open Access Journals (Sweden)

    Prabhakar N

    2016-12-01

    Full Text Available Neeraj Prabhakar,1,2 Jixi Zhang,3 Diti Desai,1 Eudald Casals,1 Tina Gulin-Sarfraz,1 Tuomas Näreoja,2,4 Jukka Westermarck,5,6 Jessica M Rosenholm1 1Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 2Laboratory of Biophysics, Faculty of Medicine, University of Turku, Turku, Finland; 3College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China; 4Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; 5Centre for Biotechnology, University of Turku and Åbo Akademi, 6Department of Pathology, University of Turku, Turku, Finland Abstract: Small interfering RNA (siRNA is a highly potent drug in gene-based therapy with the challenge being to deliver it in a sustained manner. The combination of mesoporous silica nanoparticles (MSNs and polycations in the confined pore space allows for incorporation and controlled release of therapeutic siRNA payloads. We hereby constructed MSNs with expanded mesopores and pore-surface-hyperbranched poly(ethyleneimine (PEI tethered with redox-cleavable linkers that could carry a high payload of siRNA (120 mg·g-1. The developed nanocarriers were efficiently taken up by cancer cells and were subsequently able to escape to the cytoplasm from the endosomes, most likely owing to the integrated PEI. Triggered by the intracellular redox conditions, the siRNA was sustainably released inside the cells over a period of several days. Functionality of siRNAs was demonstrated by using cell-killing siRNA as cargo. Despite not being the aim of the developed system, in vitro experiments using cell-killing siRNAs showed that the efficacy of siRNA transfection was comparable to the commercial in vitro transfection agent Lipofectamine. Consequently, the developed MSN-based delivery system offers a potential approach to hybrid nanocarriers for more efficient and long-term siRNA delivery and, in a longer perspective, in vivo gene silencing for RNA

  1. Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    2015-01-01

    is achieved as reflected by a large electron transfer (ET) rate constant (ks) of 200 s-1, and the possible electron propagation mechanisms in the polymer network are discussed. This surface/interfacial nanocomposite can be further used in the accommodation of enzymes for electrochemical bio-catalysis. Glucose......-S units. The PEI polymer was then covalently immobilized onto the DTSP layer, leaving free primary amine groups acting as a 3D skeleton for high loading of electroactive enzyme-size Prussian blue nanoparticles (PBNPs, 6 nm) via electrostatic trapping. Atomic force microscopy was used to disclose...

  2. Effect of ethanethiolate spacer on morphology and optical responses of Ag nanoparticle array-single layer graphene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Sutrová, Veronika; Šloufová, I.; Melníková Komínková, Zuzana; Kalbáč, Martin; Pavlova, Ewa; Vlčková, B.

    2017-01-01

    Roč. 33, č. 50 (2017), s. 14414-14424 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : Ag nanoparticle * single layer graphene * ethanethiol Subject RIV: JI - Composite Materials; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Physical chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  3. Plasmon-enhanced phosphorescence of hybrid thin films of metal-free purely organic phosphor and silver nanoparticles

    Science.gov (United States)

    Seo, Changwon; Lee, Jubok; Kim, Min Su; Lee, Yongjun; Jung, Jaehun; Shin, Hee-Won; Ahn, Tae Kyu; Sun, Greg; Kim, Jinsang; Kim, Jeongyong

    2017-05-01

    We present phosphorescence enhancement of 2,5-dihexyloxy-4-bromobenzaldehyde (Br6A), a metal-free organic phosphor, by means of Ag nanoparticles (NPs) through surface plasmon excitation. The emission enhancement and lifetime reduction was observed in the fluorescence and phosphorescence suggesting that the phosphorescence enhancement can be achieved in the same manner as in fluorescence, through the increase of photoabsorption and the enhanced emission rate by the field enhancement around the metal nanostructures. Our results help to improve the understanding of the phosphorescence enhancement mechanism of a new class of purely organic phosphors.

  4. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles.

    Science.gov (United States)

    Wang, Hui; Cao, Guixin; Gai, Zheng; Hong, Kunlun; Banerjee, Probal; Zhou, Shuiqin

    2015-05-07

    This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe3O4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag(+)) loaded in the porous carbon shell and a subsequent replacement of Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl4 as a precursor. The Fe3O4@PC-CDs-Au NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe3O4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g(-1)) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe3O4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g(-1) produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe3O4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.

  5. Catalytic properties of graphene–metal nanoparticle hybrid prepared using an aromatic amino acid as the reducing agent

    International Nuclear Information System (INIS)

    Adhikari, Bimalendu; Banerjee, Arindam

    2013-01-01

    An easy and single step process of making reduced graphene oxide nanosheet from graphene oxide (GO) in water medium has been demonstrated by using a naturally occurring non-proteinaceous amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent and stabilizing agent. This amino acid has also been used to reduce the noble metal salt (AuCl 3 /AgNO 3 ) to produce the corresponding noble metal nanoparticles (MNP) without using any external reducing and stabilizing agents. So, this amino acid has been used to reduce simultaneously GO to RGO and noble metal salts to produce corresponding MNP to form RGO–MNP nanohybrid system in a single step in water medium and also in absence of any external toxic reducing and stabilizing agents. Different techniques UV–Visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy and others have been used to characterize the reduction of GO to RGO, metal salts to produce corresponding MNPs and the formation of RGO–MNP nanohybrid systems. Moreover, this metal nanoparticle containing RGO–MNP nanohybrid system acts as a potential catalyst for the reduction of aromatic nitro to aromatic amino group. - Graphical abstract: This study demonstrates an easy, single step and eco-friendly method to make RGO and Au/AgNP simultaneously from respective precursors to form a RGO–Au/AgNP nanohybrid system using an aromatic amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent as well as stabilizing agent in water medium. Highlights: ► Synthesis of reduced graphene oxide (RGO) nanosheet using an amino acid. ► The amino acid (Dopa) can reduce noble metal salt (Au 3+ /Ag + ) to metal nanoparticle (MNP). ► Single step and eco-friendly synthesis of RGO-MNP nanohybrid using Dopa. ► Characterization of RGO, MNP and RGO–MNP nanohybrid. ► RGO-MNP nanohybrid acts as a catalyst for the reduction of aromatic nitro

  6. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The catalytic activities of water-dispersable Au@Pd core-shell nanoparticles (NPs) and Au-Pd alloy NPs were examined. There is growing interest in Au-Pd hybridized NPs in a supported matrix or non-supported forms as catalysts in various reactions that are not limited to conventional Pd-related reactions. Four different Au@Pd core-shell NPs in this study were prepared at room temperature with help from the emulsion phase surrounding the Au core NPs. Au-Pd alloy NPs were prepared over 90 °C, and underwent phase transfer to aqueous medium for their catalytic use. Au@Pd core-shell NPs show catalytic activity in ethanol oxidation reactions as electrocatalysts, and both core-shell and alloy NPs are good to excellent catalysts in various Suzuki-Miyaura and Heck reactions as heterogeneous catalysts. Specifically, Au@Pd core-shell NPs with sharp branched arms show the highest yield in the reactions tested in this study. A relatively small amount (0.25 mol%) was used throughout the catalytic reactions. © 2012 The Royal Society of Chemistry.

  7. Effect of water on the physical properties and carbon dioxide capture capacities of liquid-like Nanoparticle Organic Hybrid Materials and their corresponding polymers

    KAUST Repository

    Petit, Camille

    2013-10-01

    Binary systems composed of liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) and the secondary fluid (i.e., water) were prepared, and their thermal stabilities, densities, viscosities, and CO2 absorption capacities were investigated. Recent work has suggested NOHMs as an alternative CO2 capture media with interesting chemical and physical tunability. Anhydrous CO2 capture solvents often degrade when they are exposed to water, while flue gas generally contains about 8-16% water. Thus, this study was conducted to investigate the effect of water on the NOHMs\\' properties relevant to CO2 capture as well as the chemical and thermal stabilities of H2O-loaded NOHMs. It was found that water acted as an antisolvent of NOHMs, and therefore, caused a decreased CO2 capture capacity. On the other hand, the results indicated that while water did not affect the NOHMs\\' thermal stability, it significantly helped lowering their density and viscosity. In order to investigate the effect of intermolecular interactions among two fluids on the density and viscosity, the excess volumes and viscosity deviations were calculated and correlated with Redlich-Kister equations. The trends revealed the existence of strong intermolecular interactions between water molecules and the poly(ethlyne glycol) component of NOHMs, which may have caused the drastic decrease in the NOHMs\\' viscosity with the addition of water. © 2013 Elsevier Inc.

  8. Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe.

    Science.gov (United States)

    Watthanapanpituck, Khanistha; Kiatpathomchai, Wansika; Chu, Eric; Panvisavas, Nathinee

    2014-11-01

    A DNA test based on loop-mediated isothermal amplification (LAMP) and colorimetric gold nanoparticle (AuNP) hybridization probe to detect the presence of human DNA in forensic evidence was developed. The LAMP primer set targeted eight regions of the human cytochrome b, and its specificity was verified against the DNA of 11 animal species, which included animals closely related to humans, such as chimpanzee and orangutan. By using the AuNP probe, sequence-specific LAMP product could be detected and the test result could be visualized through the change in color. The limit of detection was demonstrated with reproducibility to be as low as 718 fg of genomic DNA, which is equivalent to approximately 100 plasmid DNA copies containing the cytochrome b DNA target region. A simple DNA extraction method for the commonly found forensic biological samples was also devised to streamline the test process. This LAMP-AuNP human DNA test showed to be a robust, specific, and cost-effective tool for the forensic identification of human specimens without requiring sophisticated laboratory instruments.

  9. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  10. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  11. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders.

    Science.gov (United States)

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J

    2015-02-01

    This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Screening of lipid carriers and characterization of drug-polymer-lipid interactions for the rational design of polymer-lipid hybrid nanoparticles (PLN).

    Science.gov (United States)

    Li, Yongqiang; Taulier, Nicolas; Rauth, Andrew M; Wu, Xiao Yu

    2006-08-01

    The thermodynamics and solid state properties of components and their interactions in a formulation for polymer-lipid hybrid nanoparticles (PLN) were characterized for screening lead lipid carriers and rational design of PLN. Verapamil HCI (VRP) was chosen as a model drug and dextran sulfate sodium (DS) as a counter-ionic polymer. Solubility parameters of VRP, VRP-DS complex, and various lipids were calculated and partition of VRP and VRP-DS in lipids was determined. Thermodynamics of VRP binding to DS was determined by isothermal titration calorimetry (ITC). The solid state properties of individual components and their interactions were characterized using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Dodecanoic acid (DA) was identified as the best lipid carrier among all lipids tested based on the solubility parameters and partition coefficients. VRP-DS complexation was a thermodynamically favorable process. Maximum binding capacity of DS and the highest drug loading capacity of DA were obtained at an equal ionic molar ratio of DS to VRP. In the PLN formulation, DA remained its crystal structure but had a slightly lower melting point, while VRP-DS complex was in an amorphous form. Drug loading efficiency and capacity of a lipid matrix depend on the VRP-DS binding and the interactions of the complex with the lipid. A combined analysis of solubility parameters and partition coefficients is useful for screening lipid candidates for PLN preparation.

  13. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.

    Science.gov (United States)

    Veerapandian, Murugan; Seo, Yeong-Tai; Yun, Kyusik; Lee, Min-Ho

    2014-08-15

    A direct electrochemical detection of quercetin based on functionalized graphene oxide modified on gold-printed circuit board chip was demonstrated in this study. Functionalized graphene oxide materials are prepared by the covalent reaction of graphene oxide with silver@silica-polyethylene glycol nanoparticles (~12.35nm). Functionalized graphene oxide electrode shows a well-defined voltammetric response in phosphate buffered saline and catalyzes the oxidation of quercetin to quinone without the need of an enzyme. Significantly, the functionalized graphene oxide modified electrode exhibited a higher sensitivity than pristine gold-printed circuit board and graphene oxide electrodes, a wide concentration range of 7.5 to 1040nM and detection limit of 3.57nM. Developed biosensor platform is selective toward quercetin in the presence of an interferent molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems

    International Nuclear Information System (INIS)

    Sadeghi, S M

    2009-01-01

    We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in terms of optical Bloch equations with a plasmically normalized Rabi frequency. We show that in the weak-field regime plasmonic effects can suppress the interband transitions, inhibiting exciton generation. In the strong-field regime these effects delay the response of the quantum dot to the laser field and enhance Rabi flopping. We relate these to the conversion of Rabi frequency from a real quantity into a complex and strongly frequency-dependent quantity as plasmonic effects become significant. We show that, within the strong-field regime, in the wavelength range where real and imaginary parts of this frequency reach their maxima, a strongly frequency-dependent enhancement of carrier excitation can happen.

  15. New magnetically responsive polydicarbazole-magnetite nanoparticles.

    OpenAIRE

    Lellouche, Jean-Paul; Perlman, Nurit; Joseph, Augustine; Govindaraji, Senthil; Buzhansky, Ludmila; Yakir, Aline; Bruce, Ian J.

    2004-01-01

    Magnetically responsive COOH-polydicarbazole-magnetite nanocomposites have been prepared by chemical oxidation of three COOH-dicarbazole monomers and - in the presence of magnetite nanoparticles. These functionalized nanoparticles have been tested for DNA hybridization experiments.

  16. The effect of atomic disorder at the core-shell interface on stacking fault formation in hybrid nanoparticles.

    Science.gov (United States)

    Mangel, Shai; Houben, Lothar; Bar Sadan, Maya

    2016-10-14

    On the atomic scale, the exact engineering of interfaces affects the overall properties of functional nanostructures. One factor that is considered both fundamental and practical in determining the structural features of interfaces is the lattice mismatch, but zooming into the atomic scale reveals new data, which suggest that this paradigm should be reconsidered. Here, we used advanced transmission electron microscopy techniques to image, with atomic resolution, the core-shell interfaces of a strain-free system (CdSe@CdSe) and of a strain-induced system (CdSe@CdS). Then, we analyzed the pattern of stacking fault formation in these particles and correlated the location of the stacking faults with the synthetic procedure. We found that, in the strain-free system, the formation of stacking faults is substantial and the faults are located mostly at the core-shell interface, in a pattern that was surprisingly similar to that observed in the strain-induced system. Therefore, we conclude that the formation of faults within the nanoparticles results mainly from the interaction between the last atomic layer and the growth solution, and it is only weakly correlated with lattice mismatch. This finding is important for the design of defect-engineering in multi-step syntheses.

  17. Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detection.

    Science.gov (United States)

    Oliveira, Thiago M B F; Barroso, M Fátima; Morais, Simone; Araújo, Mariana; Freire, Cristina; de Lima-Neto, Pedro; Correia, Adriana N; Oliveira, Maria B P P; Delerue-Matos, Cristina

    2014-08-01

    A bi-enzymatic biosensor (LACC-TYR-AuNPs-CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC-TYR-AuNPs-CS/GPE exhibited an improved Michaelis-Menten kinetic constant (26.9±0.5M) when compared with LACC-AuNPs-CS/GPE (37.8±0.2M) and TYR-AuNPs-CS/GPE (52.3±0.4M). Using 4-aminophenol as substrate at pH5.5, the device presented wide linear ranges, low detection limits (1.68×10(-9)±1.18×10(-10)-2.15×10(-7)±3.41×10(-9)M), high accuracy, sensitivity (1.13×10(6)±8.11×10(4)-2.19×10(8)±2.51×10(7)%inhibitionM(-1)), repeatability (1.2-5.8% RSD), reproducibility (3.2-6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8±0.3% (lemon) to 97.8±0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  19. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.

    Science.gov (United States)

    Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A

    2017-07-01

    Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.

  20. A hybrid biocatalyst consisting of silver nanoparticle and naphthalenethiol self-assembled monolayer prepared for anchoring glucose oxidase and its use for an enzymatic biofuel cell

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Do-Heyoung; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    A novel hybrid biocatalyst is synthesized by the enzyme composite consisting of silver nanoparticle (AgNP), naphthalene-thiol based couplers (Naph-SH) and glucose oxidase (GOx), which is then bonded with the supporter consisting of polyethyleneimine (PEI) and carbon nanotube (CNT) (CNT/PEI/AgNPs/Naph-SH/GOx) to facilitate glucose oxidation reaction (GOR). Here, the AgNPs play a role in obstructing denaturation of the GOx molecules from the supporter because of Ag-thiol bond, while the PEIs have the AgNPs keep their states without getting ionized by hydrogen peroxide produced during anodic reaction. The Naph-SHs also prevent ionization of the AgNP by forming self-assembled monolayer on their surface. Such roles of each component enable the catalyst to form (i) hydrophobic interaction between the GOx molecules and supporter and (ii) π-conjugated electron pathway between the GOx molecules and AgNP, promoting electron transfer. Catalytic nature of the catalyst is characterized by measuring catalytic activity and performance of enzymatic biofuel cell (EBC) using the catalyst. Regarding the catalytic activity, the catalyst leads to high electron transfer rate constant (9.6 ± 0.4 s-1), low Michaelis-Menten constant (0.51 ± 0.04 mM), and low charge transfer resistance (7.3 Ω cm2) and high amount of immobilized GOx (54.6%), while regarding the EBC performance, high maximum power density (1.46 ± 0.07 mW cm-2) with superior long-term stability result are observed.

  1. Chemical Valence-Dependent Electrocatalytic Activity for Oxygen Evolution Reaction: A Case of Nickel Sulfides Hybridized with N and S Co-Doped Carbon Nanoparticles.

    Science.gov (United States)

    Yang, Hongchao; Wang, Changhong; Zhang, Yejun; Wang, Qiangbin

    2018-02-01

    Exploration of the relationship between electrocatalytic activities and their chemical valence is very important in rational design of high-efficient electrocatalysts. A series of porous nickel sulfides hybridized with N and S co-doped carbon nanoparticles (Ni x S y -NSCs) with different chemical valences of Ni, Ni 9 S 8 -NSCs, Ni 9 S 8 -NiS 1.03 -NSCs, and NiS 1.03 -NSCs are successfully fabricated, and their electrocatalytic performances as oxygen evolution reaction electrocatalysts are systematically investigated. The Ni x S y -NSCs are obtained via a two-step reaction including a low-temperature synthesis of Ni-Cys precursor followed by thermal decomposing of the precursor in Ar atmosphere. By controlling the sulfidation process during the formation of Ni x S y -NSCs, Ni 9 S 8 -NSCs, Ni 9 S 8 -NiS 1.03 -NSCs, and NiS 1.03 -NSCs are obtained, respectively, giving rise to the increase of high-valence Ni component, and resulting in gradually enhanced oxygen evolution reaction electrocatalytic activities. In particular, the NiS 1.03 -NSCs show an exceptional low overpotential of ≈270 mV versus reversible hydrogen electrode at a current density of 10 mA cm -2 and a small Tafel slope of 68.9 mV dec -1 with mass loading of 0.25 mg cm -2 in 1 m KOH and their catalytic activities remained for at least 10 h, which surpass the state-of-the-art IrO 2 , RuO 2 , and Ni-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2014-01-01

    Polymeric nanoparticles are highly attractive as drug delivery vehicles due to their high structural integrity, stability during storage, ease of preparation and functionalization, and controlled release capability. Similarly, lipid-polymer hybrid nanoparticles, which retain the benefits of polymeric nanoparticles plus the enhanced biocompatibility and prolonged circulation time owed to the lipids, have recently emerged as a superior alternative to polymeric nanoparticles. Drug nanoparticle complex prepared by electrostatic interaction of oppositely charged drug and polyelectrolytes represents another type of polymeric nanoparticle. This chapter details the preparation, characterization, and antibiofilm efficacy testing of antibiotic-loaded polymeric and hybrid nanoparticles and antibiotic nanoparticle complex.

  3. Palygorskite Hybridized Carbon Nanocomposite as a High ...

    African Journals Online (AJOL)

    A nanocomposite, in which acid-treated palygorskite was hybridized with carbon, was prepared and designed as an efficient support for electrocatatlysts. Pd nanoparticles were deposited on the hybrid support as an electrocatalyst for formic acid oxidation. The hybrid supports and electrocatalysts were characterized by ...

  4. Rational design on controlled release ion-exchange polymeric microspheres and polymer-lipid hybrid nanoparticles for the delivery of water-soluble drugs through a multidisciplinary approach

    Science.gov (United States)

    Li, Yongqiang

    Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of

  5. Tuning the collective switching behavior of azobenzene/Au hybrid materials: flexible versus rigid azobenzene backbones and Au(111) surfaces versus curved Au nanoparticles.

    Science.gov (United States)

    Liu, Chunyan; Zheng, Dong; Hu, Weigang; Zhu, Qiang; Tian, Ziqi; Zhao, Jun; Zhu, Yan; Ma, Jing

    2017-11-09

    The combination of photo-responsive azobenzene (AB) and biocompatible Au nanomaterials possesses potential applications in diverse fields such as biosensing and thermotherapy. To explore the influence of azobenzene moieties and Au substrates on the collective switching behavior, two different azobenzene derivatives (rigid biphenyl-controlled versus flexible alkoxyl chain-linked) and three different Au substrates (a planar Au(111) surface, curved Au 102 (SR) 44 and Au 25 (SR) 18 clusters) were chosen to form six Au@AB combinations. A reactive molecular dynamics (RMD) model considering both the torsion and inversion path was implemented to simulate the collective photo-induced cis-to-trans switching process of AB monolayers on Au substrates. The major driving force for isomerization is demonstrated to be the torsion of the C-N[double bond, length as m-dash]N-C dihedral angle, in addition to the minor contribution from an inversion pathway. The isomerization process can be divided into the preliminary conformation switching stage and the later relaxation stage, in which a gradual self-organization is observed for 40 ps. The Au substrate affects the packing structure of the AB monolayer, while the choice of different kinds of ABs tunes the intermolecular interaction in the monolayer. Flexible alkoxyl-linked F-AB may achieve much faster conversion on Au clusters than on the surface. For rigid biphenyl-based R-AB anchored on Au nanoparticles (AuNPs), a competitive torsion between the biphenyl and C-N[double bond, length as m-dash]N-C dihedral may delay the C-N[double bond, length as m-dash]N-C dihedral torsion and the following isomerization process. After the R-AB molecules were anchored on the Au(111) surface, the strong π-π stacking between biphenyl units accelerates the collective isomerization process. A curvature-dependent effect is observed for R-AB SAMs on different-sized substrates. The cooperation between functional AB monolayers and the Au substrate

  6. Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell

    Science.gov (United States)

    Heidarzadeh, Hamid

    2018-03-01

    Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.

  7. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  8. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Zeng, Xianghui; Justesen, Sarah

    2017-01-01

    used and poorly tolerated cationic lipids might be replaced with more efficacious and safe lipidoids as the lipid component of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) for achieving more efficient gene silencing at lower and safer doses. However, formulation design of such a complex......), eventually resulting in the identification of a robust, highly efficacious and safe formulation. A 17-run design of experiment with an I-optimal approach was performed to systematically assess the effect of selected variables on critical quality attributes (CQAs), i.e. physicochemical properties...... in siRNA loading as compared to reference LPNs modified with the commonly used cationic lipid dioleyltrimethylammonium propane (DOTAP). Thus, lipidoid-modified LPNs show highly promising prospects for efficient and safe intracellular delivery of siRNA....

  9. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  10. A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode

    Science.gov (United States)

    Tang, Gang; Cao, Liujun; Xiao, Peng; Zhang, Yunhuai; Liu, Hao

    2017-07-01

    Lithium ion capacitors (LICs) are considered to be high-performance energy storage devices that have stimulated intense attention to bridge the gap between lithium ion battery and supercapacitor. Currently, the major challenge for LICs has been to improve the energy density without sacrificing the high rate of power output performance. Herein, we designed a three-dimensional (3D) hierarchical porous nanostructure of hydrogen-treated TiO2 nanoparticles wrapped conducting polymer polypyrrole (PPy) framework with single-walled carbon nanotubes (SWCNTs) hybrid (denoted as, H-TiO2/PPy/SWCNTs) anode material for LICs through a conventional and green approach. Such a unique network can offer continuous electron transport and reduce the diffusion length of lithium ions. A greatly lithium storage specific capacity is achieved with reversible discharge capacity ∼213 mA h g-1 (based on the mass of TiO2) over 50 cycles (@ 0.1 A g-1), which is almostly three times compared with raw TiO2 (a commercial TiO2 nanoparticles powder). In addition, coupled with commercial activated carbon (AC) cathode, the fully assembled H-TiO2/PPy/SWCNTs//AC LICs delivers a maximum energy and power densities of 31.3 Wh kg-1 and 4 kW kg-1, a reasonably good cycling stability (∼77.8% retention after 3000 cycles) within the voltage range of 1.0-3.0 V.

  11. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  12. Enhanced performance of NiMoO4 nanoparticles and quantum dots and reduced nanohole graphene oxide hybrid for supercapacitor applications

    Science.gov (United States)

    Jinlong, Lv; Meng, Yang; Tongxiang, Liang

    2017-10-01

    NiMoO4 nanoparticles and quantum dots were uniformly distributed on the surface of reduced nanohole graphene oxide (rNHGO). NiMoO4@rNHGO exhibited a higher specific capacitance and better cycling stability than NiMoO4@reduced graphene oxide (rGO), which were attributed to the large surface area and high electrical conductivity. NiMoO4 nanoparticles and quantum dots (QDs) had high surface to volume ratio, which would not result in change in volume during the electro-chemical operation and induced better supercapacitor performance. Moreover, synergistic effect between NiMoO4 and the rNHGO also improved undoubtedly high specific capacitance and cycle stability.

  13. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.

    Science.gov (United States)

    Majouga, Alexander; Sokolsky-Papkov, Marina; Kuznetsov, Artem; Lebedev, Dmitry; Efremova, Maria; Beloglazkina, Elena; Rudakovskaya, Polina; Veselov, Maxim; Zyk, Nikolay; Golovin, Yuri; Klyachko, Natalia; Kabanov, Alexander

    2015-01-01

    The possibility of remotely inducing a defined effect on NPs by means of electromagnetic radiation appears attractive. From a practical point of view, this effect opens horizons for remote control of drug release systems, as well as modulation of biochemical functions in cells. Gold-coated magnetite nanoparticles are perfect candidates for such application. Herein, we have successfully synthesized core-shell NPs having magnetite cores and gold shells modified with various sulphur containing ligands and developed a new, simple and robust procedure for the purification of the resulting nanoparticles. The carboxylic groups displayed at the surface of the NPs were utilized for NP conjugation with a model enzyme (ChT). In the present study, we report the effect of the low-frequency AC magnetic field on the catalytic activity of the immobilized ChT. We show that the enzyme activity decreases upon exposure of the NPs to the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings

    International Nuclear Information System (INIS)

    Reyes-Acosta, M.A.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Flores-Vela, A.I.; Dorantes-Rosales, H.J.; Ramírez-Meneses, E.

    2015-01-01

    Highlights: • PMMA/ZrO 2 nanocomposites were prepared by melt blending in a single screw extruder. • The nanoparticles of m-, t-ZrO 2 were successfully synthesized using sol–gel technique. • The prepared PMMA/ZrO 2 nanocomposites have better UV protection than pure PMMA. • The thermal stability of the PMMA increases with low amount of ZrO 2 nanoparticles. • PMMA/ZrO 2 nanocomposites show superior values of elastic modulus and hardness. - Abstract: In this work, ZrO 2 nanoparticles were synthesized by the sol–gel method, treated thermally at different temperatures (400, 600 and 800 °C), and added to a polymer matrix in two different weight percentages (0.5 and 1) by single screw extrusion in order to determine the influence of these parameters on the thermal stability and UV radiation resistance of PMMA/ZrO 2 composites. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), ultraviolet–visible spectroscopy (UV–Vis), thermogravimetric analysis (TGA) and nanoindentation techniques were used to evaluate the structural, morphological, optical, thermal and mechanical properties of as-prepared composites. The average crystallite sizes for ZrO 2 sintered at 600 and 800 °C were about 17 and 26 nm, respectively. It was found that the incorporation of a low percentage of ZrO 2 nanoparticles increased the thermal properties of PMMA as well as its hardness and elastic modulus. The degradation temperature at 10 wt.% loss of the PMMA/ZrO 2 (0.5 wt.%, 400 °C) nanocomposite was approximately 48 °C higher than that of pure PMMA. The absorption in the UV region was increased according to the ZrO 2 heat treatment temperature and amount added to the polymer matrix

  15. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility.

    Science.gov (United States)

    Xiang, Yiming; Li, Jun; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, K W K; Pan, Haobo; Wu, Shuilin

    2017-10-01

    Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Strong Enhancement of Photoelectric Conversion Efficiency of Co-hybridized Polymer Solar Cell by Silver Nanoplates and Core-Shell Nanoparticles.

    Science.gov (United States)

    Shen, Wenfei; Tang, Jianguo; Wang, Yao; Liu, Jixian; Huang, Linjun; Chen, Weichao; Yang, Lanlan; Wang, Wei; Wang, Yanxin; Yang, Renqiang; Yun, Jungheum; Belfiore, Laurence A

    2017-02-15

    A new way was meticulously designed to utilize the localized surface plasmon resonance (LSPR) effect and the light scattering effect of silver nanoplate (Ag-nPl) and core-shell Ag@SiO 2 nanoparticles (Ag@SiO 2 -NPs) to enhance the photovoltaic performances of polymer solar cells (PSCs). To prevent direct contact between silver nanoparticles (Ag-NPs) and photoactive materials which will cause electrons quenching, bare Ag-nPl were spin-coated on indium tin oxide and silica capsulated Ag-NPs were incorporated to a PBDTTT-C-T:PC 71 BM active layer. As a result, the devices incorporated with Ag-nPl and Ag@SiO 2 -NPs showed great enhancements. With the dual effects of Ag-nPl and Ag@SiO 2 -NPs in devices, all wavelength sensitization in the visible range was realized; therefore, the power conversion efficiency (PCE) of PSCs showed a great enhancement of 14.0% to 8.46%, with an increased short-circuit current density of 17.23 mA·cm -2 . The improved photovoltaic performances of the devices were ascribed to the LSPR effect and the light scattering effect of metallic nanoparticles. Apart from optical effects, the charge collection efficiency of PSCs was improved after the incorporation of Ag-nPl.

  17. Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite.

    Science.gov (United States)

    Avelino, Karen Y P S; Frias, Isaac A M; Lucena-Silva, Norma; Gomes, Renan G; de Melo, Celso P; Oliveira, Maria D L; Andrade, César A S

    2016-12-01

    In the last ten years, conjugated polymers started to be used in the immobilization of nucleic acids via non-covalent interactions. In the present study, we describe the construction and use of an electrochemical DNA biosensor based on a nanostructured polyaniline-gold composite, specifically developed for the detection of the BCR/ABL chimeric oncogene. This chromosome translocation is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The working principle of the biosensor rests on measuring the conductivity resulting from the non-covalent interactions between the hybrid nanocomposite and the DNA probe. The nanostructured platform exhibits a large surface area that enhances the conductivity. Positive cases, which result from the hybridization between DNA probe and targeted gene, induce changes in the amperometric current and in the charge transfer resistance (R CT ) responses. Atomic force microscopy (AFM) images showed changes in the genosensor surface after exposure to cDNA sample of patient with leukemia, evidencing the hybridization process. This new hybrid sensing-platform displayed high specificity and selectivity, and its detection limit is estimated to be as low as 69.4 aM. The biosensor showed excellent analytical performance for the detection of the BCR/ABL oncogene in clinical samples of patients with leukemia. Hence, this electrochemical sensor appears as a simple and attractive tool for the molecular diagnosis of the BCR/ABL oncogene even in early-stage cases of leukemia and for the monitoring of minimum levels of residual disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. From silicon to organic nanoparticle memory devices.

    Science.gov (United States)

    Tsoukalas, D

    2009-10-28

    After introducing the operational principle of nanoparticle memory devices, their current status in silicon technology is briefly presented in this work. The discussion then focuses on hybrid technologies, where silicon and organic materials have been combined together in a nanoparticle memory device, and finally concludes with the recent development of organic nanoparticle memories. The review is focused on the nanoparticle memory concept as an extension of the current flash memory device. Organic nanoparticle memories are at a very early stage of research and have not yet found applications. When this happens, it is expected that they will not directly compete with mature silicon technology but will find their own areas of application.

  19. Hybrid Warfare

    Science.gov (United States)

    2013-08-01

    Office, Title 10, U.S. Code ; Act of 5 May 1960. 3. 2010 Quadrennial Defense Review Report, February 2010, 8. 4. Hybrid Warfare, Global Accountability...Rise of Hybrid Wars.” Proceedings 132 (November 2005); William J. Nemeth , Future War and Chechnya: A Case for Hybrid War- fare (master’s thesis, U.S...William J. Nemeth which represents the earliest scholarly work on the subject, in which the emergence of devolved hybrid societies gives rise to hybrid

  20. Influence of ZrO{sub 2} nanoparticles and thermal treatment on the properties of PMMA/ZrO{sub 2} hybrid coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Acosta, M.A. [Instituto Politécnico Nacional, CICATA-Altamira, CIAMS (Mexico); Instituto Politécnico Nacional, CICATA-Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps. (Mexico); Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [Instituto Politécnico Nacional, CICATA-Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps. (Mexico); Domínguez-Crespo, M.A. [Instituto Politécnico Nacional, CICATA-Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps. (Mexico); Flores-Vela, A.I. [Instituto Politécnico Nacional, CMP+L, Av. Acueducto s/n, Barrio La Laguna, Col. Ticomán, C.P. 07340 México D.F. (Mexico); Dorantes-Rosales, H.J. [Instituto Politécnico Nacional, SEPI-ESIQIE, Departamento de Metalurgia, C.P. 07738 México D.F. (Mexico); Ramírez-Meneses, E. [Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Distrito Federal C.P. 01219 (Mexico)

    2015-09-15

    Highlights: • PMMA/ZrO{sub 2} nanocomposites were prepared by melt blending in a single screw extruder. • The nanoparticles of m-, t-ZrO{sub 2} were successfully synthesized using sol–gel technique. • The prepared PMMA/ZrO{sub 2} nanocomposites have better UV protection than pure PMMA. • The thermal stability of the PMMA increases with low amount of ZrO{sub 2} nanoparticles. • PMMA/ZrO{sub 2} nanocomposites show superior values of elastic modulus and hardness. - Abstract: In this work, ZrO{sub 2} nanoparticles were synthesized by the sol–gel method, treated thermally at different temperatures (400, 600 and 800 °C), and added to a polymer matrix in two different weight percentages (0.5 and 1) by single screw extrusion in order to determine the influence of these parameters on the thermal stability and UV radiation resistance of PMMA/ZrO{sub 2} composites. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), ultraviolet–visible spectroscopy (UV–Vis), thermogravimetric analysis (TGA) and nanoindentation techniques were used to evaluate the structural, morphological, optical, thermal and mechanical properties of as-prepared composites. The average crystallite sizes for ZrO{sub 2} sintered at 600 and 800 °C were about 17 and 26 nm, respectively. It was found that the incorporation of a low percentage of ZrO{sub 2} nanoparticles increased the thermal properties of PMMA as well as its hardness and elastic modulus. The degradation temperature at 10 wt.% loss of the PMMA/ZrO{sub 2} (0.5 wt.%, 400 °C) nanocomposite was approximately 48 °C higher than that of pure PMMA. The absorption in the UV region was increased according to the ZrO{sub 2} heat treatment temperature and amount added to the polymer matrix.

  1. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522

    DEFF Research Database (Denmark)

    Rose, Fabrice; Erbo Wern, Jeanette; Gavins, Francesca

    2018-01-01

    Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entrance directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world......)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating...

  2. The Challenge of Colloidal Nanoparticle Synthesis

    NARCIS (Netherlands)

    Groeneveld, Esther; de Mello-Donega, Celso

    2014-01-01

    Inorganic nanoparticles have developed into one of the main pillars of Nanoscience. Colloidal nanoparticles are particularly attractive as they consist of inorganic particles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures greatly expands the

  3. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    Science.gov (United States)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  4. Hybrid mesoporous silica nanoparticles with pH-operated and complementary H-bonding caps as an autonomous drug-delivery system.

    Science.gov (United States)

    Théron, Christophe; Gallud, Audrey; Carcel, Carole; Gary-Bobo, Magali; Maynadier, Marie; Garcia, Marcel; Lu, Jie; Tamanoi, Fuyuhiko; Zink, Jeffrey I; Wong Chi Man, Michel

    2014-07-21

    Mesoporous silica nanoparticles (MSNPs) are functionalized with molecular-recognition sites by anchoring a triazine or uracil fragment on the surface. After loading these MSNPs with dyes (propidium iodide or rhodamine B) or with a drug (camptothecin, CPT) they are capped by the complementary fragments, uracil and adenine, respectively, linked to the bulky cyclodextrin ring. These MSNPs are pH-sensitive and indeed, the dye release was observed at acidic pH by continuously monitored fluorescence spectroscopy studies. On the other hand, no dye leakage occurred at neutral pH, hence meeting the non-premature requirement to minimize side effects. In vitro studies were performed and confocal microscopy images demonstrate the internalization of the MSNPs and also dye release in the cells. To investigate the drug-delivery performance, the cytotoxicity of CPT-loaded nanoparticles was tested and cell death was observed. A remarkably lower amount of loaded CPT in the MSNPs (more than 40 times less) proved to be as efficient as free CPT. These results not only demonstrate the drug release after pore opening under lysosomal pH, but they also show the potential use of these MSNPs to significantly decrease the amount of the administered drug. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hybrid response surface methodology-genetic algorithm optimization of ultrasound-assisted transesterification of waste oil catalysed by immobilized lipase on mesoporous silica/iron oxide magnetic core-shell nanoparticles.

    Science.gov (United States)

    Karimi, Mahmoud; Keyhani, Alireza; Akram, Asadolah; Rahman, Masoud; Jenkins, Bryan; Stroeve, Pieter

    2013-01-01

    The production ofbiodiesel by transesterification of waste cooking oil (WCO) to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy demand. An environmentally benign process for the enzymatic transesterification using immobilized lipase has attracted considerable attention for biodiesel production. Here, a superparamagnetic, high surface area substrate for lipase immobilization is evaluated. These immobilization substrates are composed of mesoporous silica/superparamagnetic iron oxide core-shell nanoparticles. The effects of methanol ratio to WCO, lipase concentration, water content and reaction time on the synthesis of biodiesel were analysed by utilizing the response surface methodology (RSM). A quadratic response surface equation for calculating fatty acid methyl ester (FAME) content as the objective function was established based on experimental data obtained in accordance with the central composite design. The RSM-based model was then used as the fitness function for genetic algorithm (GA) to optimize its input space. Hybrid RSM-GA predicted the maximum FAME content (91%) at the optimum level of medium variables: methanol ratio to WCO, 4.34; lipase content, 43.6%; water content, 10.22%; and reaction time, 6h. Moreover, the immobilized lipase could be used for four times without considerable loss of the activity.

  6. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries

    Science.gov (United States)

    Yuan, Wei; Wang, Boya; Wu, Hao; Xiang, Mingwu; Wang, Qiong; Liu, Heng; Zhang, Yun; Liu, Huakun; Dou, Shixue

    2018-03-01

    Free-standing electrodes have stood out from the electrode pack, owing to their advantage of abandoning the conventional polymeric binder and conductive agent, thus increasing the specific capacity of lithium-ion batteries. Nevertheless, their practical application is hampered by inferior electrical conductivity and complex manufacturing process. To this end, we report here a facile approach to fabricate a flexible 3D N-doped carbon foam/carbon nanotubes (NCF@CNTs) hybrid to act as the current collector and host scaffold for TiO2 particles, which are integrated into a lightweight free-standing electrode (NCF@CNTs-TiO2). In the resulting architecture, ultra-fine TiO2 nanoparticles are homogeneously anchored in situ into the N-doped NCF@CNTs framework with macro- and meso-porous structure, wrapped by a dense CNT layer, cooperatively enhances the electrode flexibility and forms an interconnected conductive network for electron/ion transport. As a result, the as-prepared NCF@CNTs-TiO2 electrode exhibits excellent lithium storage performance with high specific capacity of 241 mAh g-1 at 1 C, superb rate capability of 145 mAh g-1 at 20 C, ultra-long cycling stability with an ultra-low capacity decay of 0.0037% per cycle over 2500 cycles, and excellent thermal stability with ∼94% capacity retention over 100 cycles at 55 °C.

  7. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management.

    Science.gov (United States)

    Yang, Hu; Leffler, Christopher T

    2013-03-01

    Glaucoma therapy typically begins with topical medications, of which there are 4 major classes in common use in the United States: beta-adrenergic antagonists, alpha-agonists, carbonic anhydrase inhibitors, and prostaglandin analogs. Unfortunately, all 4 classes require at least daily dosing, and 3 of the 4 classes are approved to be administered 2 or 3 times daily. This need for frequent dosing with multiple medications makes compliance difficult. Longer-acting formulations and combinations that require less frequent administration might improve compliance and therefore medication effectiveness. Recently, we developed an ocular drug delivery system, a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform for delivering glaucoma therapeutics topically. This platform is designed to deliver glaucoma drugs to the eye efficiently and release the drug in a slow fashion. Furthermore, this delivery platform is designed to be compatible with many of the glaucoma drugs that are currently approved for use. In this article, we review this new delivery system with in-depth discussion of its structural features, properties, and preclinical application in glaucoma treatment. In addition, future directions and translational efforts for marketing this technology are elaborated.

  8. Hybrid silica nanoparticles for sequestration and luminescence detection of trivalent rare-earth ions (Dy3+ and Nd3+) in solution

    Science.gov (United States)

    Topel, Seda Demirel; Legaria, Elizabeth Polido; Tiseanu, Carmen; Rocha, João; Nedelec, Jean-Marie; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2014-12-01

    New hybrid material-based adsorbents acting also as luminescent probes upon uptake of trivalent rare-earth (RE) ions Nd3+ and Dy3+ have been developed. SiO2 NPs functionalized by three different organic ligands, N-aminopropylen-amido-iminodiacetic acid (L1), pyridine-α,β-dicarboxylic acid bis(propylenamide) (L2), and N-propylen-iminodiacetic acid (L3), have been produced and fully characterized by 13C, 1H, and 29Si solid-state NMR, FTIR, TGA, XRD, TEM, nitrogen gas adsorption, and also by NTA and DLS in solution. The synthesized hybrid materials are well dispersible and stable in aqueous solutions according to NTA and consist of spheres with diameters less than 100 nm. Their affinities to the lanthanide ions Dy3+ and Nd3+ have been investigated in aqueous solution and characterized by SEM-EDS and complexometric titration, demonstrating that they can be successfully used as adsorbents for sequestration of trivalent RE ions. The adsorbed RE ions can efficiently be desorbed from saturated nanoadsorbents by addition of hydrochloric acid. The produced nanomaterials may also be used as luminescent probes for Dy3+ and Nd3+ ions in solution.

  9. Novel silicon nanoparticles with nitrogen-doped carbon shell dispersed in nitrogen-doped graphene and CNTs hybrid electrode for lithium ion battery

    Science.gov (United States)

    Tang, Xiaofu; Wen, Guangwu; Zhang, Yong; Wang, Dong; Song, Yan

    2017-12-01

    A Si-rGO/NCT composite, in which Si nanoparticles (SiNPs) are enwrapped with N-doped carbon and combine with N-doped graphene and CNTs as conductive matrices synthesized by simple solution-mixing and carbonization process with pyrolyzing melamine formaldehyde resin (MFR) is developed as a promising candidate anode material for lithium ion batteries (LIBs). The N-doped carbon outside SiNPs can not only improve the electrical conductivity of the composite, but also buffer the stress causing by huge volume change of SiNPs during the lithiation/delithiation process. The Si-rGO/NCT composite exhibits high specific capacity and good cycling stability (892.3 mAh g-1 at 100 mA g-1 up to 100 cycles), as well as improved rate capability. This approach provides a very facile route to obtain silicon-based anode materials.

  10. Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy

    Science.gov (United States)

    Wang, Jiasi; Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    We developed a novel telomere complementary (TC) oligonucleotide modified AuNP probe (TC-AuNPs) for colorimetric analysis of telomerase activity. The mechanism of this method is that the telomerase reaction products (TRP), which can hybridize with the TC-AuNPs, are able to protect the AuNPs from the aggregation induced by salt. It is demonstrated that the colorimetric method enabled the analysis of the telomerase activity in 1000 HeLa cells with the naked eye, and down to 100 HeLa cells with the aid of UV-Vis spectroscopy. This strategy is not only convenient and sensitive, but also has a tunable dynamic range. The platform is also applicable for the initial screening of a telomerase inhibitor to discover new anticancer drugs.We developed a novel telomere complementary (TC) oligonucleotide modified AuNP probe (TC-AuNPs) for colorimetric analysis of telomerase activity. The mechanism of this method is that the telomerase reaction products (TRP), which can hybridize with the TC-AuNPs, are able to protect the AuNPs from the aggregation induced by salt. It is demonstrated that the colorimetric method enabled the analysis of the telomerase activity in 1000 HeLa cells with the naked eye, and down to 100 HeLa cells with the aid of UV-Vis spectroscopy. This strategy is not only convenient and sensitive, but also has a tunable dynamic range. The platform is also applicable for the initial screening of a telomerase inhibitor to discover new anticancer drugs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05185d

  11. Catalysis by metallic nanoparticles in solution: Thermosensitive microgels as nanoreactors

    OpenAIRE

    Roa, Rafael; Angioletti-Uberti, Stefano; Lu, Yan; Dzubiella, Joachim; Piazza, Francesco; Ballauff, Matthias

    2018-01-01

    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g., dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic ...

  12. One-pot deposition of gold on hybrid TiO{sub 2} nanoparticles and catalytic application in the selective oxidation of benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Mehri, Afef [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Kochkar, Hafedh, E-mail: h_kochkar@yahoo.fr [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherches en Sciences des Matériaux, Technopôle de Borj-Cedria, 2050 Hammam-Lif (Tunisia); Berhault, Gilles [Institut de Recherches sur la Catalyse et de l' Environnement de Lyon, CNRS-Université Lyon I, 69100 Villeurbanne (France); Cómbita Merchán, Diego Fernando; Blasco, Teresa [Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos, s/n, Valencia (Spain)

    2015-01-15

    One-pot deposition of Au onto TiO{sub 2} has been achieved through directly contacting gold (III) salt with nanosized functionalized TiO{sub 2} support initially obtained by sol–gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Au salt avoiding any further reducing treatment. Various gold salts (NaAuCl{sub 4}·2H{sub 2}O or HAuCl{sub 4}·3H{sub 2}O) and titanium to citrate (Ti/Cit) molar ratios (20, 50 and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Au particle size and catalytic properties of the as-obtained Au/TiO{sub 2} materials. Au/(TiO{sub 2}){sub x}(Cit){sub 1} catalysts characterization was performed using N{sub 2} adsorption–desorption, ICP-AES, X-ray diffraction and TEM. The effect of the Ti/Cit molar ratio and of the gold precursor was evaluated. The selective oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) was studied as a model reaction. Kinetic analysis showed that the catalytic reaction rate was pseudo first-order and the values of activation energy have been reported. Results showed that the functionalization of TiO{sub 2} by citrate allows tuning the size of the Au nanoparticles deposited onto TiO{sub 2} as well as their morphology. Citrate also strongly enhances the benzyl alcohol oxidation through the control of the size and morphology of gold nanoparticles. - Highlights: • One-pot deposition of Au onto TiO{sub 2} has been achieved. • Citrates act as active sites for selective deposition and reduction of gold. • The presence of citrates influences the size and the morphology of gold NPs. • Au NPs with well-defined morphologies were obtained for Cit/Ti molar ratio of 100. • The selective oxidation of benzyl alcohol was studied as a model reaction.

  13. New ZrO2/Al2O3 Nanocomposite Fabricated from Hybrid Nanoparticles Prepared by CO2 Laser Co-Vaporization

    Science.gov (United States)

    Bartolomé, José F.; Smirnov, Anton; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A.

    2016-02-01

    Alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) are currently the materials of choice to meet the need for tough, strong, and bioinert ceramics for medical devices. However, the mechanical properties of ZrO2/Al2O3 dispersion ceramics could be considerably increased by reducing the corresponding grain sizes and by improving the homogeneity of the phase dispersion. Here, we prepare nanoparticles with an intraparticular phase distribution of Zr(1-x)AlxO(2-x/2) and (γ-, δ-)Al2O3 by the simultaneous gas phase condensation of laser co-vaporized zirconia and alumina raw powders. During subsequent spark plasma sintering the zirconia defect structures and transition alumina phases transform to a homogeneously distributed dispersion of tetragonal ZrO2 (52.4 vol%) and α-Al2O3 (47.6 vol%). Ceramics sintered by spark plasma sintering are completely dense with average grain sizes in the range around 250 nm. Outstanding mechanical properties (flexural strength σf = 1500 MPa, fracture toughness KIc = 6.8 MPa m1/2) together with a high resistance against low temperature degradation make these materials promising candidates for next generation bioceramics in total hip replacements and for dental implants.

  14. Enhanced Optoelectronic Properties of PFO/Fluorol 7GA Hybrid Light Emitting Diodes via Additions of TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bandar Ali Al-Asbahi

    2016-09-01

    Full Text Available The effect of TiO2 nanoparticle (NP content on the improvement of poly(9,9′-di-n-octylfluorenyl-2,7-diyl (PFO/Fluorol 7GA organic light emitting diode (OLED performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO2 NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO2 NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO2/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO2 NPs, while maximum luminance efficiency was achieved with 15 wt % TiO2 NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO2 NP content.

  15. Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows.

    Science.gov (United States)

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2013-10-09

    Gold nanoparticles (Au-NPs) with surfaces covered with a self-assembled monolayer of azobenzene derivatives were prepared at the interface of dielectric insulator SiO2 and pentacene thin film. Transistors constructed with these composite channel materials exhibited electric bistability upon different gate biases, with the monolayer serving as a barrier layer, a work function modulator, as well as additional charge trapping sites at the Au-NPs/semiconductor interface at the same time. In comparison with simple alkanethiol monolayer-covered Au-NPs, the CH3-substituted azobenzene-functionalized Au-NPs result in a transistor memory device with about 70% more charges trapped, much faster response time as well as higher retention time. Besides, depending on the substituent on the azobenzene moieties (CH3, H, or CF3) and the tethering alkyl chain length, the speed at which the carriers are trapped (affecting switching response) and the stability of the carriers that are trapped (affecting memory retention) can be modulated to improve the device performance. The structural characterization and electronic characteristics of these devices will be detailed.

  16. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.

    Science.gov (United States)

    Rezaei, Behzad; Khalili Boroujeni, Malihe; Ensafi, Ali A

    2014-10-15

    In the present study, a novel sensitive and selective nanocomposite imprinted electrochemical sensor for the indirect determination of caffeine has been prepared. The imprinted sensor was fabricated on the surface of pencil graphite electrode (PGE) via one-step electropolymerization of the imprinted polymer composed of conductive polymer, sol-gel, gold nanoparticles (AuNPs), and caffeine. Due to such combination like the thin film of molecularly imprinted polymer (MIP) with specific binding sites, the sensor responded quickly to caffeine. AuNPs were introduced for the enhancement of electrical response by facilitating charge transfer processes of [Fe(CN)6](3-)/[Fe(CN)6](4-) which was used as an electrochemical active probe. The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Several important parameters controlling the performance of the sensor were investigated and optimized. The imprinted sensor has the advantages of high porous surface structure, inexpensive, disposable, excellent stability, good reproducibility and repeatability. The linear ranges of the MIP sensor were in the range from 2.0 to 50.0 and 50.0 to 1000.0 nmol L(-1), with the limit of detection (LOD) of 0.9 nmol L(-1) (S/N=3). Furthermore, the proposed method was successfully intended for the determination of caffeine in real samples (urine, plasma, tablet, green tea, energy and soda drink). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Non-Enzymatic Electrochemical Sensing of Malathion Pesticide in Tomato and Apple Samples Based on Gold Nanoparticles-Chitosan-Ionic Liquid Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Gulcin Bolat

    2018-03-01

    Full Text Available Malathion (MLT is an organophosphorous type pesticide and having seriously high toxicity and electrochemical platforms for rapid, simple, inexpensive and sensitive determination of pesticides is still a special concern. This paper describes a simple preparation of a composite film consisting of ionic liquid (IL, chitosan (CS and electrochemically synthesized gold nanoparticles (AuNPs on single use pencil graphite electrodes (PGEs. The microscopic and electrochemical characterization of AuNP-CS-IL/PGE was studied using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. This fabricated surface was then explored for the first time as a sensing matrix for the non-enzymatic electrochemical sensing of malathion by cyclic voltammetry and square wave voltammetry measurements. The proposed AuNP-CS-IL/PGE showed excellent characteristics and possessed remarkable affinity for malathion. The voltammetric current response exhibited two linear dynamic ranges, 0.89–5.94 nM and 5.94–44.6 nM reflecting two binding sites, with a detection limit of 0.68 nM. The method was applied in real sample analysis of apple and tomato. The results demonstrate the feasibility of AuNP-CS-IL-modified electrodes for simple, fast, ultrasensitive and inexpensive detection of MLT.

  18. Sulphur and nitrogen dual-doped mesoporous carbon hybrid coupling with graphite coated cobalt and cobalt sulfide nanoparticles: Rational synthesis and advanced multifunctional electrochemical properties.

    Science.gov (United States)

    Zhu, Anquan; Tan, Pengfei; Qiao, Lulu; Liu, Yi; Ma, Yongjin; Pan, Jun

    2018-01-01

    Doping-type carbon matrixes not only play a vital role on their electrochemical properties, but also are capable of suppressing the crush and aggregation phenomenon in the electrode reaction process for pristine metallic compound. Herein, graphite coated cobalt and cobalt sulfide nanoparticles decorating on sulphur and nitrogen dual-doped mesoporous carbon (Co@Co 9 S 8 /S-N-C) was fabricated by a combined hydrothermal reaction with pyrolysis method. Benefited from g-C 3 N 4 template and original synthetic route, as-obtained Co@Co 9 S 8 /S-N-C possessed high specific surface area (751.7m 2 g -1 ), large pore volume (1.304cm 3 g -1 ), S and N dual-doped component and relative integrated graphite skeleton, as results it was developed as decent oxygen reduction electro-catalyst and ultra-long-life Li-ion battery anode. Surprisingly, compared with commercial Pt/C, it displayed a higher half-wave potential (0.015V positive) and lower Tafel slop (66mVs -1 ), indicating its superior ORR activities. Moreover, the ultra-long-life cyclic performances were revealed for lithium ion battery, exhibiting the retention capacities of 652.1mAhg -1 after 610 cycles at 0.2Ag -1 , 432.1 and 405.7mAhg -1 at 5 and 10Ag -1 after 1000 cycles, respectively. We propose that the synergistic effect of structure and chemical component superiorities should be responsible for the remarkable electrochemical behaviors of the Co@Co 9 S 8 /S-N-C. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    Science.gov (United States)

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  20. Gold nanoparticle/nickel oxide/poly(pyrrole-N-propionic acid hybrid multilayer film: Electrochemical study and its application in biosensing

    Directory of Open Access Journals (Sweden)

    T. Karazehir

    2017-06-01

    Full Text Available The present study describes the fabrication of Indium Tin Oxide /gold nanoparticles/nickel oxide/poly(Pyrrole-N-propionic acid (ITO/GNPs/NiO/poly(PPA multilayered film, and its modification with Tyrosinase (Ty. The ITO/GNPs/NiO/poly(PPA electrode was fabricated by sequential electrochemical assembly onto ITO substrate which electrochemical deposition provides a facile, inexpensive technique for synthesis of multilayered film within the adherent morphology with controllable film thickness. Cyclic voltammetry (CV, Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR, scanning electron microcopy (SEM, and atomic force microcopy (AFM were used to characterize the film assembly processes. The properties of a semiconductor/electrolyte interface were investigated based on the Mott–Schottky (M-S approach for the modified electrodes, with the flat band potential (EFB according to the potential intercept and the carrier density (ND according to the linear slopes. The ND and EFB of ITO/GNPs/NiO/poly(PPA were obtained as 2.48·1021 cm–3 and 0.26 V, respectively. Tyrosinase was immobilized using carbodiimide coupling reaction. The bioelectrode was characterized by FTIR-ATR, SEM, AFM, electrochemical impedance spectroscopy (EIS. A Randles equivalent circuit was introduced for modeling the performance of impedimetric biosensing for the detection of the dopamine (DP and the interface of bioelectrode/electrolyte. The EIS of the ITO/GNPs/NiO/poly(PPA-Ty exhibited significant changes in the charge transfer resistance (RCT value toward the detection of dopamine over a linear range of 80 µM to 0.2 mM with a limit of detection (LOD of 5.46 µM.

  1. Intimately coupled hybrid of graphitic carbon nitride nanoflakelets with reduced graphene oxide for supporting Pd nanoparticles: A stable nanocatalyst with high catalytic activity towards formic acid and methanol electrooxidation

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Yao, Qiushi; Wu, Xiaodong; Fu, Yongsheng; Deng, Kaiming; Wang, Xin

    2016-01-01

    Highlights: • Intimately coupled hybrid of g-C 3 N 4 nanoflakelets with rGO is fabricated via an in situ chemical synthesis approach. • The detailed forming process of CNNF-G composite is carefully investigated. • The Pd-CNNF-G composite exhibits exceptional catalytic activity and durability. • The real fuel cells have been assembled to evaluate the performance of the electrocatalysts. • The effects of g-C 3 N 4 nanoflakelets on Pd atom were investigated by DFT computations. - Abstract: A novel nitrogen-rich support material (CNNF-G) consisting of graphitic carbon nitride (g-C 3 N 4 ) nanoflakelets (CNNF) and reduced graphene oxide (rGO) is designed and fabricated for loading Pd nanoparticles. Structural characterizations indicates that the CNNF is formed via splitting decomposition of the g-C 3 N 4 polymer on rGO at higher temperatures and the resulting CNNF is intimately coupled to the rGO sheets. The CNNF can provide more exposed edge sites and active nitrogen species for the high dispersion of Pd NPs. It is found that the Pd NPs with an average diameter of 3.92 nm are uniformly dispersed on CNNF-G sheets. DFT computations reveal that CNNF can trap Pd adatom and thus act as a Pd nucleation site at which Pd atoms tend to accumulate to form Pd clusters. The Pd-CNNF-G nanocatalyst exhibits excellent electrocatalytic activity for both formic acid and methanol oxidation reactions, including large electrochemically active surface area (ECSA) values, significantly high forward peak current densities, and reliable stability and durability, far outperforming the Pd-graphene, commercial activated carbon-supported Pd catalyst or Pd-carbon nanotubes. Such a stable Pd/CNNF-G nanocatalyst may bring new design opportunities for high-performance direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) in the future.

  2. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  3. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  4. Strong coupling effects in hybrid plexitonic systems

    Science.gov (United States)

    Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.

    2017-08-01

    We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states

  5. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  6. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach.

    Science.gov (United States)

    Thanki, Kaushik; Zeng, Xianghui; Justesen, Sarah; Tejlmann, Sarah; Falkenberg, Emily; Van Driessche, Elize; Mørck Nielsen, Hanne; Franzyk, Henrik; Foged, Camilla

    2017-11-01

    Safety and efficacy of therapeutics based on RNA interference, e.g., small interfering RNA (siRNA), are dependent on the optimal engineering of the delivery technology, which is used for intracellular delivery of siRNA to the cytosol of target cells. We investigated the hypothesis that commonly used and poorly tolerated cationic lipids might be replaced with more efficacious and safe lipidoids as the lipid component of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) for achieving more efficient gene silencing at lower and safer doses. However, formulation design of such a complex formulation is highly challenging due to a strong interplay between several contributing factors. Hence, critical formulation variables, i.e. the lipidoid content and siRNA:lipidoid ratio, were initially identified, followed by a systematic quality-by-design approach to define the optimal operating space (OOS), eventually resulting in the identification of a robust, highly efficacious and safe formulation. A 17-run design of experiment with an I-optimal approach was performed to systematically assess the effect of selected variables on critical quality attributes (CQAs), i.e. physicochemical properties (hydrodynamic size, zeta potential, siRNA encapsulation/loading) and the biological performance (in vitro gene silencing and cell viability). Model fitting of the obtained data to construct predictive models revealed non-linear relationships for all CQAs, which can be readily overlooked in one-factor-at-a-time optimization approaches. The response surface methodology further enabled the identification of an OOS that met the desired quality target product profile. The optimized lipidoid-modified LPNs revealed more than 50-fold higher in vitro gene silencing at well-tolerated doses and approx. a twofold increase in siRNA loading as compared to reference LPNs modified with the commonly used cationic lipid dioleyltrimethylammonium propane (DOTAP). Thus, lipidoid-modified LPNs show highly

  7. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  8. Nanoparticle aggregation controlled by desalting kinetics

    OpenAIRE

    Fresnais, J.; Lavelle, C.; Berret, J. -F.

    2010-01-01

    We report the formation of stable nanoparticle-polymer clusters obtained by electrostatic complexation. The nanoparticles placed under scrutiny are nanoceria (CeO2) coated by short poly(acrylic acid) moieties, whereas the polymers are cationic-neutral block copolymers. The cluster formation was monitored using different formulation pathways, including direct mixing, dialysis, dilution and quenching. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nano...

  9. Shape-Controlled Gold Nanoparticle Synthesis

    Science.gov (United States)

    2013-09-01

    Shankar, S. S.; Bhargava, S.; Sastry, M. Synthesis of Gold Nanospheres and Nanotriangles by the Turkevich Approach. Journal of Nanoscience and...Accounts of Chemical Research 2008, 41, 1587–1595. 22. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold And Silver Nanoparticles. Science...N.; Griep, M. H.; and Karna, S. P. Chemical vs. Sonochemical Synthesis and Characterization of Silver , Gold, and Hybrid Nanoparticles; ARL-TR-5764

  10. Conjugated polymer P3HT-Au hybrid nanostructures for enhancing photocatalytic activity.

    Science.gov (United States)

    Jana, Bikash; Bhattacharyya, Santanu; Patra, Amitava

    2015-06-21

    Metal-semiconductor nanostructures have been the subject of great interest, mainly due to their interesting optical properties and their potential applications in light harvesting, photocatalysis and photovoltaic devices. Here, we have designed raspberry type organic-inorganic hybrid nanostructures of the poly-3-hexylthiophene (P3HT)-Au nanoparticle (NP) composite by a simple solution based synthetic method. The electronic interaction of semiconducting P3HT polymer nanoparticles with Au nanoparticles exhibits a bathochromic shift of absorption bands and significant photoluminescence quenching of P3HT nanoparticles in this organic-inorganic hybrid system. The photocatalytic activity of this raspberry type hybrid nanostructure is demonstrated under the visible light irradiation and the degradation efficiency is found to be 90.6%. Such organic-inorganic hybrid nanostructures made of a semiconducting polymer and plasmonic nanoparticles could pave the way for designing new optical based materials for applications in photocatalytic and light harvesting systems.

  11. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  12. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    Science.gov (United States)

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  13. Metal nanoparticle doped coloured coatings on glasses and plastics ...

    Indian Academy of Sciences (India)

    Pt) nanoparticles in SiO2, Au in mixed SiO2–TiO2 and SiO2–ZrO2, Au and Ag nanoparticles in inorganic–organic hybrid film matrices etc. This investigation leads to the development of tailor-made coloured coatings by tuning the surface ...

  14. Phase Transition of DNA-Linked Gold Nanoparticle

    OpenAIRE

    Kiang, Ching-Hwa

    2001-01-01

    Melting and hybridization of DNA-capped gold nanoparticle networks are investigated with optical absorption spectroscopy. Single-stranded, 12-base DNA-capped gold nanoparticles are linked with complementary, single-stranded, 24-base linker DNA to form particle networks. Compared to free DNA, a sharp melting transition is seen in these networked DNA-nanoparticle systems. The sharpness is explained by percolation transition phenomena.

  15. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  16. Sol–gel synthesis of palladium nanoparticles supported on reduced ...

    Indian Academy of Sciences (India)

    glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of ... Reduced graphene oxide; palladium nanoparticles; hybrid; hydrogen evolution reaction. 1. Introduction ... emission-free electric vehicles, preparation of an active elec- trocatalyst is still ...

  17. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  18. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  19. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  20. Silver Nanoparticles

    Science.gov (United States)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  1. "Chemical transformers" from nanoparticle ensembles operated with logic.

    Science.gov (United States)

    Motornov, Mikhail; Zhou, Jian; Pita, Marcos; Gopishetty, Venkateshwarlu; Tokarev, Ihor; Katz, Evgeny; Minko, Sergiy

    2008-09-01

    The pH-responsive nanoparticles were coupled with information-processing enzyme-based systems to yield "smart" signal-responsive hybrid systems with built-in Boolean logic. The enzyme systems performed AND/OR logic operations, transducing biochemical input signals into reversible structural changes (signal-directed self-assembly) of the nanoparticle assemblies, thus resulting in the processing and amplification of the biochemical signals. The hybrid system mimics biological systems in effective processing of complex biochemical information, resulting in reversible changes of the self-assembled structures of the nanoparticles. The bioinspired approach to the nanostructured morphing materials could be used in future self-assembled molecular robotic systems.

  2. A facile route to synthesize nanogels doped with silver nanoparticles

    Science.gov (United States)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  3. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail

    NARCIS (Netherlands)

    Gill, Ron; Göeken, Kristian L; Subramaniam, Vinod

    2013-01-01

    Fast modification of large gold nanoparticles with DNA is achieved by using DNA with a polycationic tail. The conjugated DNA is available for specific hybridization, and therefore can be used for DNA-based assays or for constructing nanoparticle superstructures based on DNA hybridization.

  4. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  5. Nanoparticle-functionalized microcapsules for in vitro delivery and sensing

    Science.gov (United States)

    Carregal-Romero, Susana; Ochs, Markus; Parak, Wolfgang J.

    2012-11-01

    Inorganic nanoparticles such as magnetic nanoparticles, fluorescent quantum dots, and plasmonic nanoparticles can be used as building blocks for designing multifunctional systems based on polymeric capsules. The properties of the inorganic nanoparticles hereby are harnessed to provide additional functionality to the polymer capsules. Biological applications towards in vitro sensing and delivery are discussed. Examples will be given in which magnetic nanoparticles are used to direct capsules with magnetic field gradients, colloidal quantum dots are used to identify capsules via the formation of optical barcodes, and gold nanoparticles are used as light-controlled heat-sources for opening capsules and releasing macromolecules from their cavity upon optical excitation. This demonstrates that combination of inorganic nanoparticles and organic/polymeric molecules as carrier matrices allow for tailoring multifunctional hybrid particles for practical applications.

  6. Hybrid stars

    Indian Academy of Sciences (India)

    physics pp. 753-756. Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... be composed of normal nuclear matter with hyperons and/or condensed mesons. The matter at ...

  7. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available balance between the inherent advantages and disadvantages. Also, using a hybrid composite that contains two or more types of fibre, the advantages of one type of fibre could complement with what are lacking in the other. As a consequence, a balance in cost...

  8. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...

  9. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  10. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  11. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  12. Hybrid organic/inorganic silicon-based sol-gel materials: A modification for scale-up conversion in anti-corrosion applications, and, A modification for in-situ synthesis of cadmium sulfide nanoparticles in optical applications

    Science.gov (United States)

    Tran, Tuan Thanh

    Sol-gel chemistry has been used for many years in many applications. In this thesis, an application for anti-corrosion product and a method of using sol-gel chemistry in synthesis of CdS nanoparticles are introduced. Strategies for industrial synthesis of this anti-corrosion material are also discussed. In addition, fillers and corrosion inhibitors are successfully introduced into these anti-corrosion materials to decrease producing costs while still maintaining its anti-corrosion properties. For the CdS nanopartic1es, we were able to synthesize nanoparticles with a narrow size distribution. These CdS nanopartic1es are bound tightly to the host network and have an average diameter of 1.79 nanometers. Keywords: Sol-gel, Anti-corrosion, Fillers, Inhibitors, Paint, Nanoparticles.

  13. Monofunctional gold nanoparticles: synthesis and applications

    International Nuclear Information System (INIS)

    Huo Qun; Worden, James G.

    2007-01-01

    The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review

  14. Polymer Grafted Nanoparticle-based Oil Dispersants

    Science.gov (United States)

    Kim, Daehak; Krishnamoorti, Ramanan

    2015-03-01

    Particle-based oil dispersants mainly composed of inorganic nanoparticles such as silica nanoparticles are considered as environmentally friendly oil dispersants due to their biocompatibility and relatively low toxicity. The oil-water interfacial tension is reduced when nanoparticles segregate to the oil-water interface and this segregation is improved by grafting interfacially active polymer brushes. In this study, surfactant-like amphiphilic block copolymers were grafted from silica nanoparticles using an atom transfer radical polymerization (ATRP) method in order to increase their interfacial activity. We have studied the interfacial activity of such hybrid nanoparticles using pendant drop interfacial tension measurements, and their structure using small angle X-ray scattering. Amphiphilic copolymer grafted nanoparticles significantly reduced oil-water interfacial tension compared to the interfacial tension reduction induced by homopolymer grafted nanoparticles or the corresponding free ungrafted copolymer. Moreover, hard and stable oil-water emulsions were formed by applying the block copolymer grafted nanoparticles due to the formation of interparticle network structures, which were observed by cryo-scanning electron microscopy (SEM) and small angle neutron scattering (SANS)

  15. Metal enhanced fluorescence with gold nanoparticles

    Science.gov (United States)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  16. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  17. Highly magnetic nanoporous carbon/iron-oxide hybrid materials.

    Science.gov (United States)

    Alam, Sher; Anand, Chokkalingam; Lakhi, Kripal Singh; Choy, Jin-Ho; Cha, Wang Soo; Elzhatry, Ahmed; Al-Deyab, Salem S; Ohya, Yutaka; Vinu, Ajayan

    2014-11-10

    The preparation of size-controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non-linear magnetic properties and a magnetic moment of approximately 229 emu g(-1), which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  19. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current...

  20. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  1. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  2. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots

    KAUST Repository

    Markova, Zdenka

    2012-01-01

    Fluorescent core-shell nanohybrids with the shells derived from carbon dots and cores differing in the chemical nature and morphology were synthesized. Hybrid nanoparticles combine fluorescence with other functionalities such as magnetic response on a single platform. These hybrids can be used in various bioapplications as demonstrated with labeling of stem cells. © The Royal Society of Chemistry 2012.

  3. Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability.

    Science.gov (United States)

    Rizzi, Vito; Vurro, Davide; Placido, Tiziana; Fini, Paola; Petrella, Andrea; Semeraro, Paola; Cosma, Pinalysa

    2018-01-01

    The stability of Chlorophyll a in water during prolonged exposure, at room temperature, to a neon lamp has been investigated by means of UV-vis and fluorescence spectroscopies. In addition, the Chlorophyll a (photo)stability evaluation in presence of suitable carriers has been performed in order to investigate its reactivity under the same conditions, for possible and future applications in Antimicrobial Photodynamic Therapy. Cetyltrimethylammonium chloride was chosen to solubilize Chlorophyll a in water. While, cetyltrimethylammonium chloride-capped gold nanoparticles offer a great opportunity because combine the Chlorophyll a action, used as a photosensitizer in Antimicrobial Photodynamic Therapy, with gold nanoparticles effect used in photothermal therapy. Indeed, the latter ones have exhibited an interesting rise of temperature if irradiated with visible light. Overall, both examined systems, cetyltrimethylammonium chloride/Chlorophyll a and gold nanoparticles/Chlorophyll a, were able to induce the Reactive Oxygen Species formation fundamental for a potential application in Antimicrobial Photodynamic Therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Taromi, Faramarz Afshar [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed by FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.

  5. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  6. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  7. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  8. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  9. What controls the hybridization thermodynamics of spherical nucleic acids?

    Science.gov (United States)

    Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A

    2015-03-18

    The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.

  10. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this s