WorldWideScience

Sample records for azotobacter

  1. Impact of Azotobacter exopolysaccharides on sustainable agriculture.

    Science.gov (United States)

    Gauri, Samiran S; Mandal, Santi M; Pati, Bikas R

    2012-07-01

    Recently, increasing attention have lead to search other avenue of biofertilizers with multipurpose activities as a manner of sustainable soil health to improve the plant productivity. Azotobacter have been universally accepted as a major inoculum used in biofertilizer to restore the nitrogen level into cultivated field. Azotobacter is well characterized for their profuse production of exopolysaccharides (EPS). Several reviews on biogenesis and multifunctional role of Azotobacter EPS have been documented with special emphasis on industrial applications. But the impact of Azotobacter EPS in plant growth promotion has not received adequate attention. This review outlines the evidence that demonstrates not only the contribution of Azotobacter EPS in global nutrient cycle but also help to compete successfully in different adverse ecological and edaphic conditions. This also focuses on new insights and concepts of Azotobacter EPS which have positive effects caused by the biofilm formation on overall plant growth promotion with other PGPRs. In addition, their potentials in agricultural improvement are also discussed. Recent data realized that Azotobacter EPS have an immense agro-economical importance including the survivability and maintenance of microbial community in their habitat. This leads us to confirm that the next generation Azotobacter inoculum with high yielding EPS and high nitrogen fixing ability can be utilized to satisfy the future demand of augmented crop production attributed to increase plant growth promoting agents.

  2. Molecular characterization of Azotobacter spp. nifH gene Isolated ...

    African Journals Online (AJOL)

    The nifH gene sequence of the nitrogen-fixing bacterium Azotobacter spp. was determined with the use of polymerase chain reaction (PCR). The Azotobacter species was isolated from marine source in two different seasons. They were cultivated under laboratory conditions using Nitrogen free Azotobacter specific medium.

  3. Molecular characterization of Azotobacter spp. nifH gene Isolated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... The nifH gene sequence of the nitrogen-fixing bacterium Azotobacter spp. was determined with the use of polymerase chain reaction (PCR). The Azotobacter species was isolated from marine source in two different seasons. They were cultivated under laboratory conditions using Nitrogen free Azotobacter.

  4. Optimising carbon and nitrogen sources for Azotobacter ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... The present work deals with selecting and optimization of carbon and nitrogen sources for producing biomass from Azotobacter chroococcum. Four carbon sources (glucose, sucrose, manitol and sodium benzoate) and four nitrogen sources (yeast extract, meat extract, NH4Cl and (NH4)2SO4) were ...

  5. Cultivation of the bacterium Azotobacter chroococcum for ...

    African Journals Online (AJOL)

    ... increase of bioprocess efficiency parameters (yield coefficient and productivity) were observed compared with the batch cultivation. On the basis of the obtained results, repeated batch technique appeared to be the most suitable for the bacterial biomass production at industrial scale. Key words: Azotobacter chroococcum, ...

  6. Optimising carbon and nitrogen sources for Azotobacter ...

    African Journals Online (AJOL)

    The present work deals with selecting and optimization of carbon and nitrogen sources for producing biomass from Azotobacter chroococcum. Four carbon sources (glucose, sucrose, manitol and sodium benzoate) and four nitrogen sources (yeast extract, meat extract, NH4Cl and (NH4)2SO4) were evaluated during the first ...

  7. Cultivation of the bacterium Azotobacter chroococcum for ...

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... affected by temperature that has to be in the range of 28 to 32°C .... The partial pressure of oxygen (pO2) was maintained at approximately 30% of ..... REFERENCES. Bakulin MK, Grudtsyna AS, Pletneva AY (2007). Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid.

  8. Effect of Selected Azotobacter Bacterial Strains on the Enrichment of ...

    African Journals Online (AJOL)

    Target Audience: Local farmers, Livestock researchers, microbiologist. The effect of three different strains of Azotobacter bacteria in solid substrate fermentation on cassava waste was evaluated. The substrate was incubated at 300c for 10 days inoculation with the Azotobacter bacteria species. One non-inoculated batch ...

  9. Stimulation of Agrobacterium tumefaciens Growth by Azotobacter vinelandii Ferrisiderophores

    OpenAIRE

    Page, William J.; Dale, Phyllis L.

    1986-01-01

    Azotobacter vinelandii stimulated the growth of Agrobacterium tumefaciens H2, H23, H24, H27, and ATCC 15955 on media containing insoluble iron sources. The Azotobacter vinelandii siderophores appeared to promote Agrobacterium tumefaciens growth by solubilizing mineral iron, and the ferrisiderophores so formed then acted as iron sources for Agrobacterium tumefaciens. Agrobactin, the Agrobacterium siderophore, appeared to be inefficient in solubilizing mineral iron directly.

  10. Comparative study of impact of Azotobacter and Trichoderma with other fertilizers on maize growth

    Directory of Open Access Journals (Sweden)

    Sanjay Mahato

    2017-12-01

    Full Text Available Biofertilizers may be a better eco-friendly option to maintain soil fertility. The study was conducted to investigate the effect of Azotobacter and Trichoderma on the vegetative growth of maize (Zea mays L. plants. The experiment was carried out in medium sized pots, at IAAS, Lamjung (Feb 2017 - May 2017 in completely randomized design (CRD, consisting eight treatments and three replications. Treatments were namely T1 (control, T2 (Azotobacter, T3 (Trichoderma, T4 (Azotobacter + Trichoderma, T5 (NPK, T6 (Azotobacter + Trichoderma + FYM, T7 (Azotobacter + Trichoderma + FYM + NPK, T8 (FYM. Azotobacter showed a positive increase in plant height, stem girth, dry shoot weight, root length and width, and root weight while Trichoderma displayed either negative or minimal impact. Effect of FYM was lower than Azotobacter but considerably higher than Trichoderma. Trichoderma seriously inhibited the expression of Azotobacter when used together. Trichoderma even suppressed the outcome (except shoot weight of FYM when used together. Root length was the longest in Azotobacter inoculation. The highest number of leaves was in T7 followed by Azotobacter (T2 and NPK (T5. Unlike leaf width, Azotobacter showed a negligible increase in leaves length while Trichoderma wherever present showed the negative impact. Minimum chlorophyll content was found in Azotobacter or Trichoderma after 73 days. Azotobacter treatment showed early tasseling than Trichoderma. The association of Azotobacter and Trichoderma increased the biomass. Azotobacter has significant effects on growth parameters of maize and can supplement chemical fertilizer, while Trichoderma was found to inhibit most of the growth parameters.

  11. Bioremediation of crude oil waste contaminated soil using petrophilic consortium and Azotobacter sp.

    Directory of Open Access Journals (Sweden)

    M. Fauzi

    2016-01-01

    Full Text Available This study was aimed to determine the effect Petrophilic and Azotobacter sp. consortium on the rate of degradation of hydrocarbons, Azotobacter growth, and Petrophilic fungi growth in an Inceptisol contaminated with crude oil waste originating from Balongan refinery, one of Pertamina (Indonesia’s largest state-owned oil and gas company units in Indramayu – West Java. This study was conducted from March to April 2014 in the glasshouse of research station of the Faculty of Agriculture, Padjadjaran University at Ciparanje, Jatinangor District, Sumedang Regency of West Java. This study used a factorial completely randomized design with two treatments. The first treatment factor was Petrophilic microbes (A consisting of four levels (without treatment, 2% Petrophilic fungi, 2% Petrophilic bacteria, and the 2% Petrophilic consortium, and Azotobacter sp. The second treatment factor was Azotobacter sp. (B consisting of four levels (without treatment, 0.5%, Azotobacter sp., 1% Azotobacter sp., and 1.5% Azotobacter sp. The results demonstrated interaction between Petrophilic microbes and Azotobacter sp. towards hydrocarbon degradation rate, but no interaction was found towards the growth rate of Azotobacter sp. and Petrophilic fungi. Treatments of a1b3 (2% consortium of Petrophilic fungi with 1.5% Azotobacter sp. and a3b3 (2% Petrophilic consortium and 1.5% Azotobacter sp. had hydrocarbon degradation rate at 0.22 ppm/day for each treatment, showing the highest hydrocarbon degradation rate.

  12. Production of extra-cellular polymer in Azotobacter and biosorption ...

    African Journals Online (AJOL)

    Two Azotobacter strains were isolated from alkaline and acid soils. The production of alginate and exopolymer from these two strains showed that, strain AC2 produced high polymer in 2% beet molasses or 1% sucrose broth and addition of nitrogen sources (yeast extract) reduced production of this polymer. The optimum ...

  13. Nitrogen fixation and nitrogenase activity of Azotobacter chroococcum

    NARCIS (Netherlands)

    Brotonegoro, S.

    1974-01-01

    The purpose of the present investigation was to study the effect of some chemical, physical and biological factors on growth, efficiency of nitrogen fixation and nitrogenase activity of Azotobacter chroococcum.

    From biochemical studies with cell-free

  14. PATTERNS OF OXIDATIVE ASSIMILATION IN STRAINS OF ACETOBACTER AND AZOTOBACTER

    Science.gov (United States)

    Tomlinson, Geraldine A.; Campbell, J. J. R.

    1963-01-01

    Tomlinson, Geraldine A. (The University of British Columbia, Vancouver, B.C., Canada), and J. J. R. Campbell. Patterns of oxidative assimilation in strains of Acetobacter and Azotobacter. J. Bacteriol. 86:1165–1172. 1963.—Oxidative assimilation of glucose-U-C14 was studied with washed-cell suspensions of Acetobacter aceti, A. xylinum, Azotobacter vinelandii, and A. agilis. The suggestion that oxidative assimilation is largely the incorporation of endogenously produced ammonia is tenable. A. aceti did not exhibit oxidative assimilation and it did not incorporate ammonia in the presence of glucose, α-ketoglutarate, or pyruvate. A. xylinum, A. vinelandii, and A. agilis incorporated C14 into the nitrogenous fractions of the cell. The level of assimilation into A. xylinum was low due to the accumulation of extracellular cellulose, and the level of assimilation into the Azotobacter was low presumably because of the requirement of energy for nitrogen fixation. The Azotobacter were characterized by the presence of a high level of radioactivity in the cold trichloroacetic acid-soluble pool. None of the organisms accumulated compounds in the supernatant fluid that might be considered pacemakers in glucose oxidation, and this could be a contributing factor in the low level of assimilation. PMID:14086085

  15. Effect of Azotobacter croococcum on productive traits and microorganisms in sugar beet rhizosphere

    Directory of Open Access Journals (Sweden)

    Kuzevski Janja

    2011-01-01

    Full Text Available The aim of this study was to determine the effects of three different inoculation methods with selected Azotobacter chroococcum strains on productive and technological traits of sugar beet, as well as on the total number of microorganisms and azotobacter in rhizosphere. The results of this two-year study showed that effectiveness of the tested inoculation methods in increasing root yield and sugar content varies greatly, depending on year and azotobacter strains. Effectiveness of inoculation methods was not largely impacted by year on granulated sugar. Achieved granulated sugar yield was significantly higher by using pre-sowing azotobacter application, than by using seed inoculation. A significantly increased number of microorganisms in sugar beet rhizosphere was determined, not only by using pre-sowing azotobacter application but also by using sugar beet seed inoculation. Pre-sowing azotobacter application and inter-row cultivation both caused an equal increase in the number of these bacteria in sugar beet rhizosphere (42.2% and 46.9%. Use of sugar beet seed inoculation caused an increase of 33.7% in the number of azotobacter. In order to achieve higher effectiveness in applying azotobacter on productive and technological traits of sugar beet, and considering determined interaction between a certain year, an inoculation method and a strain, it is necessary for future research to focus on determining efficiency of these strains when they are in a mixture.

  16. Pengaruh penambahan kultur azotobacter pada feses kambing terhadap kualitas media dan produktivitas cacing tanah (Lumbricus rubellus

    Directory of Open Access Journals (Sweden)

    Nur Cholis

    2016-08-01

    Full Text Available The purposes of this research were to determine the effect of addition of Azotobacter bacterial culture into media of goat faeces on medium quality and earthworm productivity; and also to examine the best dose of Azotobacter bacterial cultures addition. The research material was 800 g earthworm aged 3 months old. The research method was experimental with Completely Randomized Design using 4 treatments and 4 replications. The results show that addition of Azotobacter bacterial culture had a significant effect (P<0.01 on the medium quality and earthworm productivity (coccoon production, the number of juvenils per coccoon, coccoon hatching percentage, the numbers and weight of earthworm. The bacterial culture addition of 350 cc/100 kg goat faeces was found the best. We suggest to follow the study with observation about the effect of the length of fermentation to the medium quality and earthworm productivity. Keywords: Azotobacter, goat faeces, earthworm

  17. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

    Science.gov (United States)

    Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.

    2015-01-01

    The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479

  18. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  19. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source.

    Science.gov (United States)

    García-Esquivel, Gabriela; Calva-Calva, Graciano; Ferrera-Cerrato, Ronald; Fernández-Linares, Luis Carlos; Vázquez, Refugio Rodríguez; Esparza-García, Fernando José

    2009-03-01

    Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-beta-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-beta-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.

  20. Growth of Avicennia marina and Ceriops decandra seedlings inoculated with halophilic azotobacters.

    Science.gov (United States)

    Ravikumar, S; Kathiresan, K; Alikhan, S Liakath; Williams, G Prakash; Gracelin, N Anitha Anandha

    2007-07-01

    Inoculation of azotobacter has significant positive effects on the growth characteristics and pigments in mangrove seedlings of Avicennia marina and Ceriops decandra. The bacterial inoculation significantly increased the root dry biomass at the maximum of 75.8% at 30 gl(-1) salinity in Ceriops decandra. But in Avicennia marina, the shoot dry biomass was increased significantly at the maximum of 56.12% at 30 gl(-1) salinity in general, the Azotobacter beijerinkii improved the growth characteristics better in both species of mangroves preferably at higher salinity levels in A. marina and at a range of salinity in C. decandra. The results recommend this forraising vigorous seedlings under nursery conditions.

  1. Potential of Azotobacter vinelandii Khsr1 as bio-inoculant | Naz ...

    African Journals Online (AJOL)

    The present study deals with the isolation and characterization of Azotobacter vinelandii Khsr1 from roots of the weed, Chrysopogon aucheri, commonly known as golden beard grass indigenous to Khewra salt range, Pakistan and its evaluation as bio-inoculant. The population of the isolate varied from 107 to 108 cfu/g fresh ...

  2. Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter?

    DEFF Research Database (Denmark)

    Özen, Asli Ismihan; Ussery, David

    2012-01-01

    The genus Pseudomonas has gone through many taxonomic revisions over the past 100 years, going from a very large and diverse group of bacteria to a smaller, more refined and ordered list having specific properties. The relationship of the Pseudomonas genus to Azotobacter vinelandii is examined...

  3. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  4. Formation of on- and off-pathway intermediates in the folding kinetics of Azotobacter vinelandii apoflavodoxin.

    NARCIS (Netherlands)

    Bollen, Y.J.M.; Sanchez, I.E.; Mierlo, van C.P.M.

    2004-01-01

    The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding

  5. Formation of on- and off-pathway intermediates in the folding kinetics of azotobacter vinelandii apoflavodoxin.

    NARCIS (Netherlands)

    Bollen, Y.J.M.; Sanchez, I.E.; Van Mierlo, C.P.M.

    2004-01-01

    The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an α-β parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics

  6. Energy supply for dinitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Laane, N.C.M.

    1980-01-01

    The central issue of this thesis is how obligate aerobes, such as Rhizobium leguminosarum bacteroids and Azotobacter vinelandii, generate and regulate the energy supply (in the form of ATP and reducing equivalents) for nitrogenase.
    In an effective

  7. Catalytic mechanism of hydrogenase from Azotobacter vinelandii. Final technical report, August 1, 1994--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.

    1997-10-01

    This project is focused on investigations of the catalytic mechanism of the hydrogenase found in the aerobic, N{sub 2}-fixing microorganism Azotobacter vinelandii. This report summarizes the progress during the first two years of the current project and include the anticipated course of the research for the remaining year of the current project. Because the current proposal represents a change in direction, the authors also include a brief progress report of prior DOE-sponsored research dealing with hydrogenases.

  8. EFFECT OF HEAVY METAL IONS ON THE NUMBER AND ACTIVITY OF Azotobacter AND MELANINSYNTHESIZING MICROMYCETES

    OpenAIRE

    Malynovska I. M.

    2017-01-01

    The aim of the work was to determine the possibility of using the number and activity of Azotobacter cells and melanin-synthesizing micromycetes as indicators of gray forest soils of different types (fallow, extensive and intensive agrosoil) pollution with heavy metal ions. For this purpose, there were used laboratory-analytical, microbiological and statistical methods. As a result of research of increasing doses of heavy metals (zinc + lead) influence on the number of microorganisms in the g...

  9. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii.

    OpenAIRE

    Groseclose, E E; Ribbons, D W

    1981-01-01

    We present evidence to document a third pathway for the microbial catabolism of resorcinol. Resorcinol is converted to pyrogallol by resorcinol-grown cells of Azotobacter vinelandii. Pyrogallol is the substrate for one of two ring cleavage enzymes induced by growth with resorcinol. Oxalocrotonate, CO2, pyruvate, and acetaldehyde have been identified as products of pyrogallol oxidation catalyzed by extracts of resorcinol-grown cells. The enzymes pyrogallol 1,2-dioxygenase, oxalocrotonate tauto...

  10. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  11. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  12. EFFECT OF HEAVY METAL IONS ON THE NUMBER AND ACTIVITY OF Azotobacter AND MELANINSYNTHESIZING MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Malynovska I. M.

    2017-06-01

    Full Text Available The aim of the work was to determine the possibility of using the number and activity of Azotobacter cells and melanin-synthesizing micromycetes as indicators of gray forest soils of different types (fallow, extensive and intensive agrosoil pollution with heavy metal ions. For this purpose, there were used laboratory-analytical, microbiological and statistical methods. As a result of research of increasing doses of heavy metals (zinc + lead influence on the number of microorganisms in the gray forest soils it was found that the number and activity of Azotobacter and the number and part of melanin-synthesizing micromycetes in their total number may be fit into indicators of pollution with heavy metals. Azotobacter cells activity index may be considered indicative at contamination levels of 5-100 of maximum permissible concentration in the absence of vegetation, at contamination levels of 10–100 – for soils with phytocenosis. The number and proportion of melaninsynthesizing micromycetes in total guantity may serve as diagnostic sign of gray forest soils pollution with high doses of heavy metals, but only for the period of contamination up to 2 years. It was shown that nature of the effect of heavy metals on the number of microorganisms of indicative groups depended on the presence of plants in the monitoring system, on doses of heavy metals, on the term of contamination and on the type of soil usage.

  13. Uji Kemampuan Bakteri Azotobacter S8 dan Bacillus subtilis untuk Menyisihkan Trivalent Chromium (Cr3+ pada Limbah Cair

    Directory of Open Access Journals (Sweden)

    Muhammad Fauzul Imron

    2016-04-01

    Full Text Available Penggunaan kromium dalam berbagai industri telah menyebabkan pencemaran pada lingkungan. Limbah kromium yang sering ditemukan pada badan air dalam bentuk Cr3+ dan Cr6+. Bakteri diketahui mampu menyisihkan logam berat kromium sehingga dapat digunakan sebagai agen bioremediasi. Azotobacter S8 dan Bacillus subtilis merupakan bakteri yang mampu menyisihkan logam berat kromium. Tujuan dari penelitian ini adalah untuk menentukan komposisi optimum dan persentase penyisihan logam berat kromium oleh bakteri Azotobacter S8 dan Bacillus subtilis baik secara tunggal ataupun konsortium. Hasil penelitian ini menunjukkan bahwa persentase penyisihan tertinggi dilakukan oleh bakteri tunggal Azotobacter S8 yaitu 10,53% pada konsentrasi 50 mg/L dengan waktu 4 jam dan pH 8,35 serta jumlah koloni akhir yang terukur adalah 4 x 109 CFU/ml.

  14. Investigation on Strain Development of Azotobacter chroococcum through Chemical Mutagenesis for Indole Acetic Acid Production

    International Nuclear Information System (INIS)

    Ye Lin Win; Myo Myint Han; Myo Myint

    2010-12-01

    Two wild strains of Azotobacter chroococcum were mutagenized by various concentration of NTG (.005% , .0075% and .01%) for 1 hour. The IAA producing activity of 12 effective mutagenized strains were quantitatively measured by UV spectroscopic method. Mutagenized strains M1 and M2 from W1, and M8 and M9 from W2 were selected. Their IAA productivities were 300.498, 216.290, 238.436 and 190.856 ppm, respectively. M1and M9 were higher IAA productivity with greater quality. In germination, M1, M8 and M9 can promote the plant growth compare with commercial IAA.

  15. [Isolation and characterization of Azotobacter sp. for the production of poly-beta-hydroxyalkanoates].

    Science.gov (United States)

    Quagliano, J C; Alegre, P; Miyazaki, S S

    1994-01-01

    A microorganism (Azotobacter sp.) was isolated from soil samples from the Agronomy Faculty campus and its ability to accumulate poly-beta-hydroxyalkanoate (PHAs) polymers was analyzed. The isolated strain (named No 8) accumulated 8 micrograms PHA/m of culture media as intracytoplasmic granules. The following properties of the strain were analyzed: utilization of different carbon sources, antibiotic resistance, optimal pH and temperature, pigment production, nitrogen fixation, proteolytic activity, acid and hydrogen sulphide production, optimal growth temperature, cyst formation, growth on phenol and sodium fluoride, catalase, pleomorfism and mobility. The synthesized polymer showed valuable properties respect to organic solvents resistance.

  16. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  17. Alginate Biosynthesis in Azotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability

    Directory of Open Access Journals (Sweden)

    Ivette Pacheco-Leyva

    2016-01-01

    Full Text Available The Gram-negative bacterium Azotobacter vinelandii can synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.

  18. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  19. Pengaruh pupuk kandang dan NPK terhadap populasi bakteri Azotobacter dan Azospirillum dalam tanah pada budidaya cabai (Capsicum annum

    Directory of Open Access Journals (Sweden)

    MUJIYATI

    2009-11-01

    Full Text Available Mujiyati, Supriyadi. 2009. Pengaruh pupuk kandang dan NPK terhadap populasibakteri Azotobacter dan Azospirillum dalam tanah pada budidaya cabai (Capsicumannum. Bioteknologi 6: 63-69. Tujuan penelitian ini adalah mengetahui peningkatan populasi bakteri Azotobacter dan Azospirillum akibat pemberian pupuk kandang. Percobaan menggunakan rancangan acak kelompok dengan perlakuan: (i tanpa pupuk sebagai kontrol, (ii dengan pupuk kandang, (iii dengan pupuk NPK. Data dikumpulkan secara eksperimen dengan menanam cabai pada beberapa petak percobaan dengan perlakuan penggunaan pupuk sebanyak tiga kali ulangan. Data yang dikumpulkan terdiri atas jumlah populasi Azotobacter dan Azospirillum, kandungan nitrogen dalam tanah dan hasil cabai. Percobaan lapangan dilakukan di Desa Gathak, Kecamatan Karangnongko, Kabupaten Klaten, Jawa Tengah. Data primer dari hasil penelitian di analisis dengan uji ANAVA dan dilanjutkan dengan uji BNT dengan tingkat kepercayaan 95%. Hasil penelitian menunjukkan bahwa menggunakan pupuk kandang dapat meningkatkan populasi bakteri Azotobacter (0,02% dan Azospirillum (0,46% apabila dibandingkan kontrol, sehingga dapat meningkatkan kesuburan tanah dalam waktu yang cukup lama yaitu dengan meningkatkan ketersediaan hara dalam tanah. Kandungan nitrogen total tanah setelah diberi pupuk kandang juga meningkat dan sangat bermanfaat untuk bahan penyusun tubuh tumbuhan.

  20. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.

    Directory of Open Access Journals (Sweden)

    Asia eNosheen

    2016-02-01

    Full Text Available Protein is an essential part of human diet. The aim of present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR in combination with conventional nitrogen and phosphate (NP fertilizers. The seeds of two safflower cultivar Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis and SDS-PAGE. Seed crude protein and amino acids (metheonine, phenylanine and glutamic acid showed significant improvement (55%–1250% by Azotobacter supplemented with quarter dose of fertilizers (BTQ at P≤0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with half dose of fertilizers respectively. The Azospirillum in combination with half dose of fertilizers (SPH and BTQ enhanced the indole acetic acid (90% and gibberellic acid (23%–27% contents in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75% use of NP fertilizers improved the quality and quantity of safflower seed protein.

  1. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  2. Cloning of the sth gene from Azotobacter vinelandii and construction of chimeric soluble pyridine nucleotide transhydrogenases.

    Science.gov (United States)

    Boonstra, B; Björklund, L; French, C E; Wainwright, I; Bruce, N C

    2000-10-01

    The gene encoding the soluble pyridine nucleotide transhydrogenase (STH) of Azotobacter vinelandii was cloned and sequenced. This is the third sth gene identified and further defines a new subfamily within the flavoprotein disulfide oxidoreductases. The three STHs identified all lack one of the redox active cysteines that are characteristic for this large family of enzymes, and instead they contain a conserved threonine residue at this position. The recombinant A. vinelandii enzyme was purified to homogeneity and shown to form filamentous structures different from those of Pseudomonas fluorescens and Escherichia coli STH. Chimeric STHs were constructed which showed that the C-terminal region is important for polymer formation. The A. vinelandii STH containing the C-terminal region of P. fluorescens or E. coli STH showed structures resembling those of the STH contributing the C-terminal portion of the protein.

  3. PRODUCTION AND RECOVERY OF POLY-Β-HYDROXYBUTYRATE FROM WHEY DEGRADATION BY AZOTOBACTER

    Directory of Open Access Journals (Sweden)

    A. Khanafari , A. Akhavan Sepahei, M. Mogharab

    2006-07-01

    Full Text Available Three strains of Azotobacter chroococcum were studied to produce poly-β hydroxybutyrate as a inclusion body by whey degradation. Optimum degradation whey results were obtained when using whey broth as a fermentation medium without extra salt, temperature at 35 °C and pH 7 (P<0.05. Lambda max for whey broth medium was determined probably about 400 nm. The effect of different nitrogenous rich compounds (NH4NO3, Bactopeptone, Casein, Yeast extract, Meat extract, Protease peptone and Tryptone on whey degradation showed that incorporation of nitrogenous compounds into the medium did not increase whey degradation by Azotobacter chroococcum 1723 (P<0.05. But poly-β hydroxyl-butyrate production was increased in presence Meat extract up to 75% of the cell dry weight after 48h. The addition of nitrogenous sourced (except ammonium nitrate had a positive effect on poly-β hydroxyl-butyrate production as it peaked in the presence of Meat extract and 4.43 g/L was accumulated in comparison to 0.5g at diazotrophically growing cells. Increasing the O2 values resulted by shaking at 122 rpm in decreased poly-β hydroxyl-butyrate yield form 4.43 to 0.04 g/L. The results show that this medium supports the growth of strain 1735 and also that this waste could be utilized as a carbon and nitrogen source. Production of poly-β hydroxyl-butyrate by using whey as a medium looks promising, since the use of inexpensive feed-stocks for poly-β hydroxyl-butyrate is essential if bioplastics are to become competitive products.

  4. Influence of N-15 labelled urea and azotobacter on corn yield and nitrogen budget as affected by organic matter

    International Nuclear Information System (INIS)

    Soliman, S.M.; Abdelmonem, M.A.

    1995-01-01

    As sandy soils of Egypt are poor in their chemical and physical properties, their fertilization with chemical or biological fertilizer is essential. The reported greenhouse experiment was conducted, using sandy soil of Egypt to evaluate the impact of urea fertilizer, applied alone combined with nitrification inhibitors (DCD) or (N-serve) on (corn yield and N-losses) as compared with inoculation with azotobacter under organic matter treatment as soil amendment. Total dry matter was recorded, while N-uptake by corn, and N-recovery due to inoculation with azotobacter was determined using N-15 dilution technique. Data obtained indicated that, application of DCD or N-serve with urea increased corn dry matter weight as well N-15 recovery. Significant increase in N-recovery was obtained due to nitrification inhibitor application and azotobacter inoculation. N-15 losses were reduced due to application of DCD and N-serve from 45% and respectively. Use of bio fertilizers and nitrification inhibitors could play an important role in corn production in sandy soil, as well as decrease the losses of applied N-fertilizers. fig., 3 tabs

  5. The effect of inoculation with Azotobacter chroococcum on microorganisms in rhizosphere and sugar beet yield in organic farming

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija B.

    2016-01-01

    Full Text Available The effect on sugar beet yield parameters and microbiological soil status was studied using two techniques of sugar beet inoculation with strains of Azotobacter chroococcum. Cultivar “Drena” was used in the study, and field trial was set under the conditions of organic farming system in Bački Petrovac. A mixture of three strains of Azotobacter chroococcum was used as microbial fertilizer. Inoculation was performed by: (A incorporation of strains into soil before sowing; and (B repeated incorporation of strains into soil two weeks after sowing. PGP characterization of the strains confirmed the ability of producing indole-3-acetic acid (IAA from 12.63 μg ml-1 to 14.95 μg ml-1, nitrogen fixation, and P-solubilization. Positive effects on the number of azotobacter and free nitrogen fixers in rhizosphere were obtained by inoculation, as well as positive effects on the tested sugar beet yield parameters. The largest increase in root yield, yield of crystal sugar, and yield of polarised sugar compared with the control was obtained by repeated soil inoculation, ranging from 22 to 23%.

  6. Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement.

    Science.gov (United States)

    Sahoo, Ranjan K; Ansari, Mohammad W; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra

    2014-05-01

    Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4 mg(-1) bacteria h(-1)). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.

  7. Study the concentration of macroelements in forage mays (Zea mays L. (SC 704 as effected by inoculation with mycorrhizal fungi and Azotobacter chroococcum under different levels of nitrogen

    Directory of Open Access Journals (Sweden)

    M. Amirabadi

    2016-05-01

    Full Text Available Nitrogen and phosphorus are two necessary macronutrients for plant growth and yield. These two elements now will be added to soil by chemical fertilizers. This research has been carried out based on randomized completely block design with three replications at Markazi Provience Agricultural Research Station, Iran, during growing season of 2004-2005 to evaluate the effects of Azotobacter chroococcum and Mycorrhiza (Glomus intraradices as biofertilizers and urea as chemical fertilizers on concentrations of N, P, K, Na, Ca and crude protein (% in corn (Zea mays L. shoot tissues and dry matter of corn. Azotobacter chroococcum used as two levels (inoculated and uninoculated, mycorrhiza (Glomus intraradices in two levels (inoculated and uninoculated and urea in four levels (0, 75, 150 and 300 kg.ha-1. Results showed that Azotobacter chroococcum affected significantly all studied criteria except of K shoot concentration, but mycorrhizan (Glomus intraradices only had a increasing significantly effect on N, K, Na and Crude protein. The interaction between Azotobacter chroococcum and Mycorrhiza (Glomus intraradices had the most increasing effect on dry matter, N, Na and Crude protein. Therefore, based on our results it can be concluded that in order to prevent polluting the agricultural soil, environmental and other water supplies from nitrogen chemical fertilizers, application of Azotobacter chroococcum or combined with mycorrhizal fungi with 150 kg.ha-1 Urea is recommended.

  8. Effects of Chemical Components on the Growth of Azotobacter vinelandii Mutant and PHB Production

    International Nuclear Information System (INIS)

    Nur Izzah Mohd Razak; Safiyyah Zainuddin; Ying, P.L.W.; Chyan, J.B.; Elly Ellyna Rashid

    2016-01-01

    Polyhydroxy butyrate (PHB) is a non-toxic biodegradable polymer produced by some bacteria and can be applied in medical, pharmacology and food industry. Eight types of chemical components acting as supplements were added to culture medium as nutrient pulses. The growth of bacteria was monitored by recording the absorbance value at 600 nm for every 24 hours of cultivation. PHB was extracted using chloroform. Reading at 235 nm was recorded to determine the PHB concentration. By observing the dry cell weight, we observed the addition of sucrose increased the biomass of Azotobacter vinelandii mutant from 1.5 mg/ mL to 5.6 mg/ mL and 8.4 mg/ mL after 3, 4 and 7 days of cultivation, respectively. The highest PHB concentration of 859.27 μg/ mL was obtained after seven days of cultivation in the medium which was supplied with urea sequentially, With sucrose, the PHB concentration increased from 25.45 μg/ ml to 99.59 μg/ ml and 655.56 μg/ ml after 3, 4 and 7 days of cultivation, respectively. The PHB concentrations obtained with sucrose-pulses were the second highest after urea. As a conclusion, sucrose and urea are the two major factors in the growth and PHB production by A. vinelandii mutant. (author)

  9. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    Science.gov (United States)

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  10. Physiology and biochemistry of polysaccharide production by Azotobacter vinelandii and Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Annison, G.

    1985-01-01

    The extracellular production and the composition of the acetylated alginates of Azotobacter vinelandii and Pseudomonas aeruginosa were investigated. A reverse-phase HPLC method to determine D-mannuronate/L-guluronate (M/G) ratios in alginates was developed. Comparison between the HPLC procedure and a /sup 1/H-NMR method was made. Growth and alginate production by A. vinelandii in batch and continuous culture were studied. Polysaccharide production was favored in batch culture by reduced aeration rates by by intermediate aeration rates in continuous culture. The partitioning of Ca/sup 45/ in solution and associated with alginates during the growth cycle of A. vinelandii was studied. The change in the composition of polysaccharide produced during growth of A. vinelandii was related to the level of free Ca/sup + +/ which fell rapidly during initial stages of incubation. The degree of acetylation of the polyuronate was shown to be variable. Production of alginates with high O-acetate contents was observed in cultures maintained at high growth rates and high Ca/sup + +/ levels. The degree of acetylation of the polyuronate was not related to the level of epimerization in vivo although in vitro studies demonstrated that chemical acetylation of the alginate inhibited epimerization. Alginate production by clinical isolates of Pseudomonas aeruginosa was shown to be unstable and no polyguluronate was isolated from cultures. It was also noted that Ca/sup + +/ played a less important role in the composition of the polysaccharide.

  11. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    Science.gov (United States)

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  12. ACCUMULATION OF POLYHYDROXYALKANOIC ACIDS BY AZOTOBACTER CHROOCOCCUM MAL-201 FROM ORGANIC WASTE

    Directory of Open Access Journals (Sweden)

    Soma Pal Saha

    2013-08-01

    Full Text Available Azotobacter chroococcum MAL-201 (MTCC 3853, a free-living nitrogen-fixing bacterium accumulated intracellular poly(3-hydroxybutyric acid [P(3HB] accounting 69% of cell dry weight (CDW when grown in nitrogrn-free Stockdale medium containing 2% (w/v glucose. It also produced copolymer of poly(3-hydroxybutyrate co-3-hydroxyvalerate [P(3HB-co-3HV] using glucose as primary carbon source and valerate cas cosubstrate. To make the polymer production cost effective four types of waste material of different origin were tested for growth and polymer production. Stockdale medium supplemented with 1% (w/v waste materials failed to yield good growth and polymer accumulation. Two–step cultivation was adopted for better growth and enhanced polymer accumulation. The candy factory waste was most suitable for synthesis of P(3HB accounting 17.8 and 40.58% using single and two-step cultivation conditions respectively. Wastes of domestic and poultry origin produced P(3HB-co-3HV with 3HV content 28.8 and 21.5 mol% respectively in two-step cultivation. Increase concentration of these wastes resulted in further upliftment of 3HV content of polymer with reduced growth and polymer accumulation. However, at optimum incubation the strain MAL-201 cells accumulated P(3HB 48.5% of CDW (at 40h from candy factory waste and P(3HB-co-3HV 24.75 % of CDW with 3HV 34.65 mol % from domestic waste. Intrinsic viscosity, molecular weight and thermal degradation of the polymers accumulated in the cells grown in glucose, glucose with valerate and glucose with waste were compared.

  13. Structural Basis for Cyclization Specificity of Two Azotobacter Type III Polyketide Synthases

    Science.gov (United States)

    Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu

    2013-01-01

    Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase. PMID:24100027

  14. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii

    Directory of Open Access Journals (Sweden)

    Espín Guadalupe

    2007-02-01

    Full Text Available Abstract Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.

  15. The involvement of the fixABCX genes and the respiratory chain in the electron transport to nitrogenase in Azotobacter vinelandii

    NARCIS (Netherlands)

    Wientjens, R.

    1993-01-01

    Introduction.
    The work in this thesis is mainly focused on the electron transport route to nitrogenase in the free-living, obligate aerobic, nitrogen fixing organism Azotobacter vinelandii. For many years now, this topic has been the subject of

  16. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  17. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement

    International Nuclear Information System (INIS)

    Martin, A.E.; Burgess, B.K.; Stout, C.D.; Cash, V.L.; Dean, D.R.; Jensen, G.M.; Stephens, P.J.

    1990-01-01

    Azotobacter vinelandii ferredoxin I is a small protein that contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. Recently the x-ray crystal structure has been redetermined and the fdxA gene, which encodes the protein, has been cloned and sequenced. Here the authors report the site-directed mutation of Cys-20, which is a ligand of the [4Fe-4S] cluster in the native protein, to alanine and the characterization of the protein product by x-ray crystallographic and spectroscopic methods. The data show that the mutant protein again contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. The new [4Fe-4S] cluster obtains its fourth ligand from Cys-24, a free cysteine in the native structure. The formation of this [4Fe-4S] cluster drives rearrangement of the protein structure

  18. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils.

    Science.gov (United States)

    Jiménez, Diego Javier; Montaña, José Salvador; Martínez, María Mercedes

    2011-07-01

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA). After digestion of 16S rDNA Y1-Y3 PCR products (1487pb) with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum) grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708) and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis) grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91%) with A. nigricans (AB175651) sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  19. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    2011-09-01

    Full Text Available With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA. After digestion of 16S rDNA Y1-Y3 PCR products (1487pb with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708 and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91% with A. nigricans (AB175651 sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  20. Co-inoculation with Mesorhizobium ciceri and Azotobacter chroococcum for improving growth, nodulation and yield of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    M.A. Qureshi

    2009-05-01

    Full Text Available Rhizobia have the exceptional ability to form nodules on roots or stems of leguminous plants. Free living diazotrophs promote the rhizobial efficiency by altering root architecture providing more niches for nodulation and thus enhance the N2-fixing ability of legumes. Field experiment was conducted to assess the co-inoculation potential of symbiotic i.e. Mesorhizobium ciceri and non-symbiotic diazotrophs i.e. Azotobacter chroococcum on the yield of chickpea. Chickpea seeds (cv. Bittle-98 were inoculated with peat-based inocula and sown following randomized complete block design with three replications. Two levels of nitrogen i.e. 30 (recommended and 15 kg ha-1 were applied as urea while P was applied at 60 kg ha-1 to all the treatments as single super phosphate. Results revealed that introduction of A. chroococcum had positive impact on chickpea with and without rhizobial inoculation and the effect was more prominent when applied in combination as compared to non-inoculated control at low nitrogen level. It was observed that inoculation with M. ciceri or A. chroococcum produced significant increase in biomass and grain yield but the response was more pronounced with co-inoculation i.e. 3456 and 1772 kg ha-1, respectively, as compared to control (2903 and 1489 kg ha-1, respectively at 15 kg N ha-1. Higher nodule number plant-1 and nodular mass was observed with co-inoculation (42 and 0.252 g plant-1. Percent N and P content in chickpea plant were higher in the co-inoculated treatments (1.683 and 0.283% than that of their respective controls. Similar trend was observed in grains except the rhizobial inoculation alone which produced higher N content (3.62% than coinoculation (3.59%. Percent N and available P in soil were also higher in the inoculated treatments. The results imply that co-inoculation with Mesorhizobium and Azotobacter could be a useful approach for improving growth, nodulation and yield of chickpea by reducing dependence on chemical

  1. EFECTO DE AGROQUÍMICOS PELETIZADOS EN SEMILLAS DE ALGODÓN SOBRE EL BIOFERTILIZANTE MONIBAC® CON BASE EN Azotobacter chroococcum EFEITO DE AGROQUÍMICOS PELETIZADOS EM SEMENTES DE ALGODÃO SOBRE 0 BIOLFERTILIZANTE MONIBAC® CONTENDO Azotobacter chroococcum EFFECT OF AGROCHEMICALS IN COTTON SEED PELLETS ON MONIBAC® BIOFERTILISER BASED ON Azotobacter chroococcum

    Directory of Open Access Journals (Sweden)

    DIEGO RIVERA

    2011-12-01

    Full Text Available En la presente investigación, se analizó la influencia in vitro de los plaguicidas peletizados simultáneamente con el fungicida (principios activos: carboxin: 5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3 carboxamide y tiram: tetramethylthioperoxydicarbonic diamide y un insecticida (principio activo: malatión: S-1,2-Bis(ethoxycarbonylethyl-0,0 imethylthiophosphate en las semillas de algodón sobre la viabilidad del biofertilizante Monibac®-Corpoica con base en Azotobacter chroococcum AC1, cuando fueron aplicados conjuntamente en bandejas experimentales. Se analizó la práctica de recubrir las semillas con los agroquímicos como posible causa de descenso poblacional de la bacteria bajo este modelo de aplicación. Los resultados obtenidos por el Test de Duncan (pNo presente trabalho foi analisado a influencia in vitro dos plaguicidas peletizados simultáneamente com os fungicidas carboxin (5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-Z carboxamide e tiram (tetramethylthioperoxydicarbonic diamide alem do inseticida malation (S-1,2 Bis(ethoxycarbonylethyl-0,0 imethylthiophosphate nas sementes de algodÃo sobre a viabilidade do biofertilizante Monibac - Corpoica contendo Azotobacter chroococcum, estirpe AC1, quando foram aplicados conjuntamente em bandejas experimentais. Foi analisado a pratica de recobrimento das sementes com os agroquímicos como possível causa da diminuição populacional das bacterias submetidas a este modelo de aplicação. Os resultados obtidos pelo teste Duncan (pIn this study, we analyzed the influence of pesticides in vitro pellet simultaneously with the fungicide (active ingredient: carboxin: 5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-Z carboxamide and tiram: tetramethylthioperoxydicarbonic diamide and an insecticide (active ingredient: Malathion: S-1,2-Bis (ethoxycarbonyl ethyl-0, O-dimethylthiophosphate in cotton seeds on the viability of biofertiliser Monibac® -based Corpoica Azotobacter chroococcum ACT, when

  2. Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer.

    Science.gov (United States)

    Maheshwari, D K; Dubey, R C; Aeron, Abhinav; Kumar, Bhavesh; Kumar, Sandeep; Tewari, Sakshi; Arora, Naveen Kumar

    2012-10-01

    Azotobacter chroococcum TRA2, an isolate of wheat rhizosphere displayed plant growth promoting attributes including indole acetic acid, HCN, siderophore production, solubilization of inorganic phosphate and fixation of atmospheric nitrogen. In addition, it showed strong antagonistic effect against Macrophomina phaseolina and Fusarium oxysporum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. Fertilizer adaptive variant strain of A. chroococcum TRA2 was studied with Tn5 induced streptomycin resistant transconjugants of wild type tetracycline-resistant TRA2 (designated TRA2(tetra+strep+)) after different durations. The strain was significantly competent in rhizosphere, as its population increased by 15.29 % in rhizosphere of Sesamum indicum. Seed bacterization with the strain TRA2 resulted in significant increase in vegetative growth parameters and yield of sesame over the non-bacterized seeds. However, application of TRA2 with half dose of fertilizers showed sesame yield almost similar to that obtained by full dose treatment. Moreover, the oil yield increased by 24.20 %, while protein yield increased by 35.92 % in treatment receiving half dose of fertilizer along with TRA2 bacterized seeds, as compared to untreated control.

  3. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  4. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    Science.gov (United States)

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation.

    Directory of Open Access Journals (Sweden)

    Chul Ho Jang

    Full Text Available Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.

  6. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications

    Science.gov (United States)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis

    2017-07-01

    Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.

  7. The Effect of Inoculation with Azotobacter and Nitrogen Levels on Grain and Corn Yield Components at Simultaneous Cropping System with Legumes

    Directory of Open Access Journals (Sweden)

    mohammad mirzakhani

    2017-09-01

    Full Text Available Introduction: Corn has been regarded as one of the important crops from the view point of both human and animal feeding resource. Intercropping defined as cultivation of two or more species together. The advantages of intercropping can be included: efficient use of water and sunlight, exchange of nutrients, weed competition reduction, reduction of pathogens and the increase of soil fertility. Research shows that intercropping combinations of legume–grass will increase forage quality. Because, grasses Grains have a lot of carbohydrates and legumes are rich in protein and vitamins. This study was conducted to evaluate the effect of inoculation with azotobacter and nitrogen levels on grain and corn yield components at simultaneous cropping system with legumes under the weather conditions of Markazi province. Materials and methods: This study was carried out at agricultural research field of Payame Noor University, Arak Branch during 2011. A factorial arrangement of treatment in a randomized complete block design with three replications was used. Methods of plant nutrition (M0= inoculation with azotobacter, M1= inoculation with azotobacter + 37/5 Kg ha-1 of rare nitrogen with foliar application method, M2= inoculation with azotobacter + 150 Kg ha-1 of rare nitrogen mix with soil and simultaneous cropping treatment of legumes, [S1= corn + alfalfa (Medicago sativa L., S2= corn + bitter vetch (Lathyrus sativus L., S3= corn + mung bean (Vigna radiata L., S4= corn + chickpea (Cicer arientinum L., S5= corn + vetch (Vicia ervillia L. ] were assigned in plots. Each sub plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows and S.C Apex hybrid was used. In this study characteristics such as: plant height, earing height, the number of grains per m-2, the number of rows per ear, the number of grains per row, surface of ear leaf, grain yield of corn, 1000 grain weight, harvest index of corn, nitrogen use

  8. THE CATALYTIC DOMAIN OF THE DIHYDROLIPOYL TRANSACETYLASE COMPONENT OF THE PYRUVATE-DEHYDROGENASE COMPLEX FROM AZOTOBACTER-VINELANDII AND ESCHERICHIA-COLI - EXPRESSION, PURIFICATION, PROPERTIES AND PRELIMINARY-X-RAY ANALYSIS

    NARCIS (Netherlands)

    SCHULZE, E; WESTPHAL, AH; OBMOLOVA, G; MATTEVI, A; HOL, WGJ; DEKOK, A

    1991-01-01

    Partial sequences of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli, containing the catalytic domain, were cloned in pUC plasmids and over-expressed in E. coli TG2. A high expression of a homogeneous protein was

  9. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.

  10. Effect of Nitrogen and Zinc Sulphate Fertilizers and Azotobacter and Azospirillum Biofertilizer on Yield and Growth Traits of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    N. Jafari

    2013-06-01

    Full Text Available In order to study the effects of simultaneous application of nitrogen (N and ZnSO4 fertilizers and biofertilizer (Azotobacter and Azospirillum on grain yield and growth traits of rapeseed, Hyola308 cultivar, a field experiment, with split plot factorial layout based on randomized complete blocks design with three replications, was conducted at Research Field of Faculty of Agriculture, University of Guilan, Rasht, Iran, during 2007-2008 growing season. Nitrogen fertilizer at four levels (0, 50, 100 and 150 kg/ha were the main plot and ZnSO4 fertilizer at two levels (0 and 50 kg/ha and biofertilizer at two levels (with and without biofertilizer were arranged in sub-plots. Results showed that maximum and minimum leaf area indices at flowering stage (average of 1.29 and 0.95, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and in 50 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Maximum and minimum crop growth rates at flowering stage (average of 5.89 and 3.19 g/m2.GDD, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and control treatments. Maximum and minimum grain yields (2568, 2468 and 543 kg/ha, respectively were obtained in 150 kg/ha N+ with/without ZnSO4+ biofertilizer and control (no fertilizer treatments. Maximum and minimum oil yields (42.8 and 37.3%, respectively were measured in 0 kg/ha N+ZnSO4+ biofertilizer and 150 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Since there was no significant difference between 150 and 100 kg/ha N+ZnSO4+ biofertilizer treatments in terms of impact on canola grain yield and growth traits, it seems that application of biofertilizer (Azotobacter and Azospirillum, without any reduction in yield, increased grain production and oil content and saved 50 kg/ha of N fertilizer. Biofertilizer (Azotobacter and Azospirillum, along with zinc and sulfur, produced phytohormones, and N fertilizer increased dry matter accumulation and leaf area index (by increasing carbohydrate conversion

  11. Caracterización de cepas nativas de Azotobacter spp. y su efecto en el desarrollo de Lycopersicon esculentum Mill. “tomate” en Lambayeque

    Directory of Open Access Journals (Sweden)

    Cynthia Escobar

    2011-01-01

    Full Text Available El objetivo de la presente investigación fue caracterizar y determinar el efecto de cepas nativas de Azotobacter spp. en el desarrollo vegetativo de Lycopersicon esculentum Mill. “tomate”, como una alternativa al uso indiscriminado de fertilizantes químicos. Se tomaron muestras de raíces y suelo rizosférico de hortalizas con las que se realizaron diluciones (10-4 en caldo Ashby-Sacarosa y se incubaron a 30 ºC hasta observar un color amarillo, turbidez y película superficial. El género Azotobacter se identificó en agar mineral sin nitrógeno y Ashby-Benzoato, obteniéndose 96 cepas con una producción de 7.10 a 57.99 mgL-1 de ácido indolacético, 0.13 a 1.64 mgL-1 de nitrógeno fijado como amonio y hasta 1.61 % de eficiencia en la solubilización de roca fosfórica de Bayóvar. Se obtuvo una suspensión celular (108 de cada una de las cuatro cepas con los mayores valores y se inocularon independientemente y en consorcio, así como una combinación con 50 % de urea-100 % de roca fosfórica, en la rizósfera de tomate cv. Río Grande, en un diseño experimental completamente aleatorio. Todas las cepas nativas incrementaron la altura, volumen radicular, materia seca total, parte aérea y radicular frente al testigo absoluto.

  12. Effects of Azotobacter and Azospirillum and Levels of Manure on Quantitative and Qualitative Traits of Safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    maryam shahraki

    2016-07-01

    Full Text Available Introduction The demand for food and agricultural products are increasing in a line of population increasing in the world (Alexandratos, 2003. It is possible to increase the quality and quantity of agricultural products via extending the farms and producing more products (Astaaraei and Koocheki, 1995. Environmental problems caused by synthetic fertilizers and the high levels of producing and introducing such chemicals, have been encouraged the researchers to apply bio-fertilizers for increasing the production in a frame of sustainable agriculture (Rajendran and Devarj, 2004. In this study, the economical yield and agronomy index of Safflower (Carthamus tinctorius L. in manure and bio fertilizers treatments was studied. Materials and method This study was conducted in Agricultural Research Institute, University of Zabol during winter season, 2013. Safflower seeds were planted in sandy loam with pH 8.2. The experimental design was factorial in a frame on randomized completely blocks with three replications. The manure as a first factor had three levels, including no treatment (control, 20 and 30 t.ha-1, while second factor was bio-fertilizer treatment with 4 levels, including no treatment (control, Azosprilium (Azo, Azotobacter (Azt and combined treatment of Azo+Azt. The processed manure and bacteria obtained from local farmers were used in this study. Populations of 108 bacteria were prepared and 24 hours before sowing, seeds were soaked in bacteria. After land preparation, experimental plots were (2.5 × 2 m2 created and treated seeds were planted (40 plants.m-2 manually and plantation was watered immediately. In this study plant height, number of heads in bush, number of seeds per head, seed weight per head, seed weight, grain and biological yield, harvest index, leaf chlorophyll, protein and oil percent were studied. Economical yield and agronomy indices of Safflower were calculated at the end of the season and data were analyzed using SAS

  13. Determinación del potencial promotor del crecimiento vegetal de Azotobacter spp. aislados de la rizósfera de malezas en cultivos de maíz (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Luis H. León

    2015-01-01

    Full Text Available Los fertilizantes químicos representan entre 20% y 30% de los costos de producción de un cultivo, utilizados correctamente incrementan la productividad y rentabilidad; sin embargo, cada año aumenta la cantidad de fertilizantes por aplicar, debido a la deficiencia de adsorción en el suelo y absorción por la planta. Siendo el maíz el tercer cultivo de importancia en Perú, con un impacto significativo en la actividad económica y social, en el 2014, solo el 40% del maíz ofertado correspondió a la producción nacional. En busca de alternativas para disminuir el uso de fertilizantes químicos se realizan investigaciones con denominadas rizobacterias promotoras del crecimiento vegetal (PGPR, por sus siglas en ingles. Se identificaron 37 malezas en cultivos de maíz procedentes de campos agrícolas de los distritos de Monsefú y Reque, Región Lambayeque, siendo dicotiledóneas predominantes con 68 % con respecto a monocotiledóneas con 32%. Las bacterias se aislaron de la rizósfera de malezas, obteniendo 305 cultivos puros de bacterias, de los cuales 133 cultivos puros (43,7% se identificaron como Azotobacter spp., investigándose su reacción bioquímica en reducción de nitratos, utilización de sacarosa, glucosa, maltosa, manitol, ramnosa, glicerol y sorbitol, identificándose A. vinelandii (58%, A. paspali (13%, A. armeniacus (8%, A. nigricans (8% y en 13 cultivos no se identificó la especie. Con los cultivos Azotobacter spp. se cuantificó hasta 36,03 ppm de nitrógeno fijado como amonio; 60,75 ppm de ácido indol acético y 6,06 ppm de fósforo solubilizado, se determinó actividad antagónica contra Fusarium verticillioides, proteolítica y quitinolítica y. El 20% de Azotobacter spp. no afectó la emergencia de maíz amarillo duro hibrido simple AGRI- 144, el 33 % la afectó positivamente y el 47% la afectó negativamente. A su vez, ningún Azotobacter spp. afectó la sobrevivencia. Demostrándose el potencial promotor del

  14. Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using Extended X-ray Absorption fine Structure (EXAFS)

    International Nuclear Information System (INIS)

    Rohrer, J.S.; Islam, Q.T.; Sayes, D.E.; Theil, E.C.; Watt, G.D.

    1990-01-01

    The iron core of proteins in the ferritin family displays structural variations that includes phosphate content was well as the number and the degree of ordering of the iron atoms. Earlier studies had shown that ferritin iron cores naturally high in phosphate, e.g., Azotobacter vinelandii (AV) ferritin had decreased long-range order. Here, the influence of phosphate on the local structure around iron in ferritin cores is reported, comparing the EXAFS of AV ferritin, reconstituted ferritin and native horse spleen ferritin. In contrast, when the phosphate content was high in AV ferritin and horse spleen ferritin reconstituted with phosphate, the average iron atom had five to six phosphorus neighbors at 3.17 angstrom. Moreover, the number of detectable iron neighbors was lower when phosphate was high or present during reconstitution and the interatomic distance was longer indicating that some phosphate bridges neighboring iron atoms. However, the decrease in the number of detectable iron-iron neighbors compared to HSF and the higher number of Fe-P interactions relative to Fe-Fe interactions suggest that some phosphate ligands were chain termini, or blocked crystal growth, and/or introduced defects which contributed both to the long-range disorder and to altered redox properties previously observed in AV ferritin

  15. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  16. Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass.

    Science.gov (United States)

    Adaya, Libertad; Millán, Modesto; Peña, Carlos; Jendrossek, Dieter; Espín, Guadalupe; Tinoco-Valencia, Raunel; Guzmán, Josefina; Pfeiffer, Daniel; Segura, Daniel

    2018-03-01

    A novel poly-3-hydroxybutyrate depolymerase was identified in Azotobacter vinelandii. This enzyme, now designated PhbZ1, is associated to the poly-3-hydroxybutyrate (PHB) granules and when expressed in Escherichia coli, it showed in vitro PHB depolymerizing activity on native or artificial PHB granules, but not on crystalline PHB. Native PHB (nPHB) granules isolated from a PhbZ1 mutant had a diminished endogenous in vitro hydrolysis of the polyester, when compared to the granules of the wild-type strain. This in vitro degradation was also tested in the presence of free coenzyme A. Thiolytic degradation of the polymer was observed in the nPHB granules of the wild type, resulting in the formation of 3-hydroxybutyryl-CoA, but was absent in the granules of the mutant. It was previously reported that cultures of A. vinelandii OP grown in a bioreactor showed a decrease in the weight average molecular weight (Mw) of the PHB after 20 h of culture, with an increase in the fraction of polymers of lower molecular weight. This decrease was correlated with an increase in the PHB depolymerase activity during the culture. Here, we show that in the phbZ1 mutant, neither the decrease in the Mw nor the appearance of a low molecular weight polymers occurred. In addition, a higher PHB accumulation was observed in the cultures of the phbZ1 mutant. These results suggest that PhbZ1 has a role in the degradation of PHB in cultures in bioreactors and its inactivation allows the production of a polymer of a uniform high molecular weight.

  17. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity.

    Science.gov (United States)

    Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu

    2013-11-22

    Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.

  18. The GacS/A-RsmA Signal Transduction Pathway Controls the Synthesis of Alkylresorcinol Lipids that Replace Membrane Phospholipids during Encystment of Azotobacter vinelandii SW136.

    Directory of Open Access Journals (Sweden)

    Yanet Romero

    Full Text Available Azotobacter vinelandii is a soil bacterium that undergoes a differentiation process that forms cysts resistant to desiccation. During encystment, a family of alkylresorcinols lipids (ARs are synthesized and become part of the membrane and are also components of the outer layer covering the cyst, where they play a structural role. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded in the arsABCD operon. The expression of this operon is activated by ArpR, a LysR-type transcriptional regulator whose transcription occurs during encystment and is dependent on the alternative sigma factor RpoS. In this study, we show that the two component response regulator GacA, the small RNA RsmZ1 and the translational repressor protein RsmA, implicated in the control of the synthesis of other cysts components (i.e., alginate and poly-ß-hydroxybutyrate, are also controlling alkylresorcinol synthesis. This control affects the expression of arsABCD and is exerted through the regulation of arpR expression. We show that RsmA negatively regulates arpR expression by binding its mRNA, repressing its translation. GacA in turn, positively regulates arpR expression through the activation of transcription of RsmZ1, that binds RsmA, counteracting its repressor activity. This regulatory cascade is independent of RpoS. We also show evidence suggesting that GacA exerts an additional regulation on arsABCD expression through an ArpR independent route.

  19. The production, molecular weight and viscosifying power of alginate produced by Azotobacter vinelandii is affected by the carbon source in submerged cultures

    Directory of Open Access Journals (Sweden)

    Mauricio A. Trujillo-Roldán

    2015-01-01

    Full Text Available El alginato es un polímero lineal compuesto por ácidos 1,4 manurónico y su epímero, -L- gulurónico y con frecuencia se extrae de algas marinas, como también de bacterias como Azotobacter y Pseudomonas. En este trabajo, se presenta el impacto de diferentes fuentes de carbono convencionales y no convencionales en el crecimiento de A. vinelandii, producción de alginato, su peso molecular promedio (PMP y su capacidad viscosificante. Todos los experimentos se iniciaron con 20 g/L de azúcares totales, donde la más alta concentración de biomasa se obtuvo utilizando suero de leche hidrolizado y desproteinizado (6.67±0.72 g/L, y jugo de caña de azúcar (6.68±0.45 g/L. Sin embargo, la producción máxima de alginato se logró utilizando sacarosa (5.11±0.37 g/L, así como el más alto rendimiento de alginato y productividad específica. Por otra parte, el mayor PMP de alginato se obtuvo con jugo de caña de azúcar (1203±120 kDa. Además, la capacidad viscosificante más alta se obtuvo utilizando suero de leche desproteinizado e hidrolizado (23.8±2.6 cpsL/galg. Esta información sugiere que es posible manipular la productividad y las características moleculares de alginatos como función de la fuente de carbono utilizada. En conjunto con el conocimiento de los efectos de las condiciones ambientales se lograrían altos rendimientos de biopolímeros de alto valor agregado.

  20. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum.

    Science.gov (United States)

    Rizvi, Asfa; Khan, Mohd Saghir

    2018-03-29

    Heavy metals are one of the major abiotic stresses that adversely affect the quantity and nutritive value of maize. Microbial management involving the use of plant growth promoting rhizobacteria (PGPR) is a promising inexpensive strategy for metal clean up from polluted soils. Considering these, metal tolerant plant growth promoting nitrogen fixing rhizobacterial strain CAZ3 identified by 16SrRNA gene sequence analysis as Azotobacter chroococcum was recovered from metal polluted chilli rhizosphere. When exposed to varying levels of metals, A. chroococcum survived up to 1400 and 2000 µg mL -1 of Cu and Pb, respectively and expressed numerous plant growth promoting activities even under metal stress. Strain CAZ3 secreted 65.5 and 60.8 µg mL -1 IAA at 400 µg mL -1 each of Cu and Pb, respectively and produced siderophores, ammonia and ACC deaminase under metal pressure. The melanin extracted from A. chroococcum revealed metal chelating ability under EDX. Following application, strain CAZ3 enhanced growth and yield of maize grown both in the presence of Cu and Pb. The dry biomass of roots of inoculated plants grown with 2007 mg Cu kg -1 and 585 mg Pb kg -1 was increased by 28% and 20%, respectively. At 585 mg Pb kg -1 , the bioinoculant also increased the kernel attributes. At 2007 mg Cu kg -1 strain CAZ3 enhanced the number, yield and protein of kernels by 10%, 45% and 6%, respectively. Interestingly, strain CAZ3 significantly reduced the levels of proline, malondialdehyde and antioxidant enzymes in foliage. The roots of inoculated plants accumulated greatest amounts of metals compared to other organs. In kernels, the concentration of Pb was more as compared to Cu. The metal concentrations in roots, shoots and kernels, however, declined following CAZ3 inoculation. Copper and lead had substantial distortive impact on root and leaf morphology while cell death were visible under CLSM and SEM. Conclusively, A. chroococcum CAZ3 could be a most

  1. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    Science.gov (United States)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  2. A metodologia de superfície de resposta como ferramenta para a avaliação da produção de alginato e poli-hidroxibutirato pela Azotobacter vinelandii = The response surface methodology as a tool for assessing the production of alginate and polyhydroxybutirate by Azotobacter vinelandii

    Directory of Open Access Journals (Sweden)

    Adriana Navarro da Silva

    2010-07-01

    Full Text Available O alginato é um polissacarídeo normalmente extraído de paredes celulares de algas marrons e utilizado nas indústrias de alimentos, farmacêuticas e biotecnológicas. A produção é concentrada no cultivo de algas marinhas marrons, mas várias bactérias do gênero Pseudomonas e Azotobacter produzem alginato. A estrutura química dos alginatosproduzidos por algas é similar a dos sintetizados pela A. vinelandii. Esta bactéria também produz polímeros intracelulares como o poli-hidroxibutirato (PHB, conhecido como bioplástico. Neste trabalho, estudou-se a produção simultânea do alginato e PHB pela A.vinelandii, utilizando-se sacarose e diferentes parâmetros de fermentação em agitador orbital rotatório. Os valores ótimos para produção destes compostos foram determinados pela MSR. O 1º experimento foi um planejamento fatorial fracionado 26-2. O 2º foi baseado nas variáveis significativas do 1º experimento, resultando em um planejamento fatorial completo 33-0. Verificou-se, do primeiro para o segundo, aumento na produtividade do PHB de 12 para 45 mg g-1 de célula h-1 e do alginato de 100 para 1.600 mg g-1 de célula h-1. Aprodutividade de ambos os compostos foi máxima na temperatura de incubação de 62ºC, no menor tempo de incubação (18h e na concentração de sacarose de 11 g L-1. Em ambos os experimentos, o PHB extraído apresentou pureza de 94%.Alginate is a polysaccharide extracted from cell walls of brown algae and used in the food, pharmaceuticals and biotech industries. Production is concentrated on the cultivation of brown seaweed, but several bacteria of the genus Pseudomonas and Azotobacter producealginate. The chemical structure of alginates produced by algae is similar to those synthesized by A. vinelandii. The bacteria also produce intracellular polymers such as polyhydroxybutyrate (PHB, known as bioplastic. This work studied the simultaneous alginate and PHB production by A. vinelandii using sucrose and

  3. Mobile sequences in the pyruvate dehydrogenase complex, the E2 component, the catalytic domain and the 2-oxogluturate dehydrogenase complex of Azotobacter vinelandii, as detected by 600 MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Hanemaaijer, R.; Vervoort, J.; Westphal, A.H.; Kok, A. de.; Veeger, C.

    1988-01-01

    600 MHz 1 H-NMR spectroscopy demonstrates that the pyruvate dehydrogenase complex of Azotobacter vinelandii contains regions of the polypeptide chain with intramolecular mobility. This mobility is located in the E 2 component and can probably be ascribed to alanine-proline-rich regions that link the lipoyl sibdiomains to each other as well as to the E 1 and E 3 binding domain. In the catalytic domain of E 2 which is thought to form a compact, rigid core, also conformational flexibility is observed. It is conceivable that the N-terminal region of the catalytic domain, which contains many alanine residues, is responsible for the observed mobility. In the low-field region of the 1 H-NMR spectrum of E 2 specific resonances are found, which can be ascribed to mobile phenylalanine, histidine and/or tyrosine residues which are located in the E 1 and E 3 binding domain that links the lipoyl domain to the catalytic domain. In the 1 H-NMR spectrum of the intact complex, these resonances cannot be observed, indicating a decreased mobility of the E 1 and E 3 binding domain. (author). 24 refs.; 2 figs

  4. Kinetics of nitrogenase from Azotobacter vinelandii

    NARCIS (Netherlands)

    Duyvis, M.G.

    1997-01-01

    Nitrogenase has been the subject of many investigations since the early 1960's. The catalytic mechanism of nitrogenase is unique because it couples the transfer of electrons with the hydrolysis of MgATP. The details of the mechanism are still to be revealed. The work described in this

  5. A metodologia de superfície de resposta como ferramenta para a avaliação da produção de alginato e poli-hidroxibutirato pela Azotobacter vinelandii - doi: 10.4025/actascitechnol.v32i2.1792

    Directory of Open Access Journals (Sweden)

    Adriana Navarro da Silva

    2010-07-01

    Full Text Available O alginato é um polissacarídeo normalmente extraído de paredes celulares de algas marrons e utilizado nas indústrias de alimentos, farmacêuticas e biotecnológicas. A produção é concentrada no cultivo de algas marinhas marrons, mas várias bactérias do gênero Pseudomonas e Azotobacter produzem alginato. A estrutura química dos alginatos produzidos por algas é similar a dos sintetizados pela A. vinelandii. Esta bactéria também produz polímeros intracelulares como o poli-hidroxibutirato (PHB, conhecido como bioplástico. Neste trabalho, estudou-se a produção simultânea do alginato e PHB pela A. vinelandii, utilizando-se sacarose e diferentes parâmetros de fermentação em agitador orbital rotatório. Os valores ótimos para produção destes compostos foram determinados pela MSR. O 1º experimento foi um planejamento fatorial fracionado 26-2. O 2º foi baseado nas variáveis significativas do 1º experimento, resultando em um planejamento fatorial completo 33-0. Verificou-se, do primeiro para o segundo, aumento na produtividade do PHB de 12 para 45 mg g-1 de célula h-1 e do alginato de 100 para 1.600 mg g-1 de célula h-1. A produtividade de ambos os compostos foi máxima na temperatura de incubação de 62ºC, no menor tempo de incubação (18h e na concentração de sacarose de 11 g L-1. Em ambos os experimentos, o PHB extraído apresentou pureza de 94%.

  6. Characterization of Azotobacter from roots of a weed growing in ...

    African Journals Online (AJOL)

    asdf

    2012-06-05

    Jun 5, 2012 ... Khewra salt range, Pakistan and its evaluation as bio-inoculant. The population of the isolate ... basis of carbon/nitrogen source utilization pattern as revealed by QTS-24 miniaturized identification system test which .... three replicates containing tryptophan (100 mg/L) and ammonium chloride (1.0 g/L), and ...

  7. Biotechnological uses of Azotobacter vinelandii : Current state, limits ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 33 (2010) >. Log in or Register to get access to full text downloads.

  8. بهینه‌سازی کشت میکروبی پلی‌هیدروکسی بوتیرات توسط میکروارگانیسم Azotobacter Beijerinckii DSMZ-1041

    Directory of Open Access Journals (Sweden)

    2013-05-01

    Full Text Available در آزمایش‌های به‌عمل آمده در این تحقیق از میکروارگانیسم Azotobacter Beijerinckii DSMZ 1041 که از بانک میکروبی آلمان تهیه شد، استفاده گردید. بر اساس گزارش‌هایی که قبلاً ارایه شده و آزمایش‌های صورت گرفته مشخص شد که این میکروارگانیسم در شرایطی که منبع کربنی به میزان فراوان در محیط موجود بوده و منبع نیتروژنی محدود باشد، قابلیت تجمع گرانول‌های پلی هیدروکسی بوتیرات را دارا است. در این تحقیق منبع نیتروژنی (کلرید آمونیوم با غلظت‌های 5/0 و gr/L 2 و منبع کربنی (گلوکز با غلظت‌های 30، 40، 50 و gr/L 60 مورد استفاده قرار گرفت و تأثیر غلظت‌های این دو ماده بر وزن خشک توده سلولی، میزان مصرف قند توسط میکروارگانیسم و میزان تولید بیوپلیمر بررسی گردید. بیشترین میزان تولید بیوپلیمر در غلظت گلوکز gr/L 60 و کلرید آمونیوم gr/L 5/0 حاصل شد، لازم به ذکر است که غلظت‌های بالاتر گلوکز به علت بازدارندگی، میزان تولید بیوپلیمر را کاهش می‌دهد. بیشترین بازده بیوماس (Yx/s در گلوکز gr/L 30 و کلرید آمونیوم gr/L 2 حاصل شد. بیشترین بازده تولید (Yp/s در گلوکز و کلرید آمونیوم 30 و gr/L 5/0 حاصل شد و حداکثر بهره‌دهی (Qp در گلوکز وکلرید آمونیوم 50 و gr/L 1 حاصل گردید. همچنین میزان بیوپلیمر به دست آمده از روش آزمایشگاهی با روش آماری پاسخ سطح مقایسه شده و دقت آزمایش‌های

  9. Purification and cellular localization of wild type and mutated dihydrolipoyltransacetylases from Azotobacter vinelandii and Escherichia coli expressed in E. coli

    NARCIS (Netherlands)

    Schulze, Egbert; Westphal, Adrie H.; Veenhuis, Marten; Kok, Arie de

    1992-01-01

    Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been

  10. Characterization of an altered MoFe protein from a nifV- strain from Azotobacter vinelandii

    OpenAIRE

    Comaratta, Leonard M.

    1998-01-01

    ABSTRACT The site of substrate binding and reduction for the nitrogenase complex is located on the iron molybdenum cofactor (FeMo-co) which is contained within the a-subunit of the molybdenum iron protein. FeMo co consists of a metal sulfur core composed of an FeS cluster bridged by three inorganic sulfides to a MoFeS cluster. An organic acid, homocitrate, is coordinated to the Mo atom through its 2-carboxy and 2-hydroxy groups. Homocitrate is formed by the condensation of acetyl-CoA a...

  11. Structure of the Redox Sensor Domain of Azotobacter vinelandii NifL at Atomic Resolution: Signaling, Dimerization, and Mechanism.

    NARCIS (Netherlands)

    Key, J.; Hefti, M.H.; Purcell, E.B.; Moffat, K.

    2007-01-01

    NifL is a multidomain sensor protein responsible for the transcriptional regulation of genes involved in response to changes in cellular redox state and ADP concentration. Cellular redox is monitored by the N-terminal PAS domain of NifL which contains an FAD cofactor. Flavin-based PAS domains of

  12. Azotobacter vinelandii metal storage protein: "classical" inorganic chemistry involved in Mo/W uptake and release processes.

    Science.gov (United States)

    Schemberg, Jörg; Schneider, Klaus; Fenske, Dirk; Müller, Achim

    2008-03-03

    The release of Mo (as molybdate) from the Mo storage protein (MoSto), which is unique among all existing metalloproteins, is strongly influenced by temperature and pH value; other factors (incubation time, protein concentration, degree of purity) have minor, though significant effects. A detailed pH titration at 12 degrees C revealed that three different steps can be distinguished for the Mo-release process. A proportion of approximately 15% at pH 6.8-7.0, an additional 25% at pH 7.2-7.5 and ca. 50% (up to 90% in total) at pH 7.6-7.8. This triphasic process supports the assumption of the presence of different types of molybdenum-oxide-based clusters that exhibit different pH lability. The complete release of Mo was achieved by increasing the temperature to 30 degrees C and the pH value to >7.5. The Mo-release process does not require ATP; on the contrary, ATP prevents, or at least reduces the degree of metal release, depending on the concentration of the nucleotide. From this point of view, the intracellular ATP concentration is suggested to play-in addition to the pH value-an indirect but crucial role in controlling the extent of Mo release in the cell. The binding of molybdenum to the apoprotein (reconstitution process) was confirmed to be directly dependent on the presence of a nucleotide (preferably ATP) and MgCl2. Maximal reincorporation of Mo required 1 mM ATP, which could partly be replaced by GTP. When the storage protein was purified in the presence of ATP and MgCl2 (1 mM each), the final preparation contained 80 Mo atoms per protein molecule. Maximal metal loading (110-115 atoms/MoSto molecule) was only achieved, if Mo was first completely released from the native protein and subsequently (re-) bound under optimal reconstitution conditions: 1 h incubation at pH 6.5 and 12 degrees C in the presence of ATP, MgCl2 and excess molybdate. A corresponding tungsten-containing storage protein ("WSto") could not only be synthesized in vivo by growing cells, but could also be constructed in vitro by a metalate-ion exchange procedure by using the isolated MoSto protein. The high W content of the isolated cell-made WSto (approximately 110 atoms/protein molecule) and the relatively low amount of tungstate that was released from the protein under optimal "release conditions", demonstrates that the W-oxide-based clusters are more stable inside the protein cavity than the Mo-oxide analogues, as expected from the corresponding findings in polyoxometalate chemistry. The optimized isolation of the W-loaded protein form allowed us to get single crystals, and to determine the crystal X-ray structure. This proved that the protein contains remarkably different types of polyoxotungstates, the formation of which is templated in an unprecedented process by the different protein pockets. (Angew. Chem. Int. Ed. 2007, 46, 2408-2413).

  13. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain tailor-made alginates.

  14. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions.

    Science.gov (United States)

    Díaz-Barrera, Alvaro; Maturana, Nataly; Pacheco-Leyva, Ivette; Martínez, Irene; Altamirano, Claudia

    2017-07-01

    Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g -1  h -1 by changes in the dilution rate (D) from 0.06 to 0.10 h -1 , whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.

  15. Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Bjerkan, Tonje M.; Kalk, Kor H.; Ertesvag, Helga; Holtan, Synnove; Aachmann, Finn L.; Valla, Svein; Dijkstra, Bauke W.; Ertesvåg, Helga; Holtan, Synnøve

    2008-01-01

    Alginate is a family of linear copolymers of (1 -> 4)-linked beta-D-mannuronic acid and its C-5 epimer alpha-L-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of

  16. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  17. The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch

    NARCIS (Netherlands)

    Gangoiti, Joana; van Leeuwen, Sander S; Vafiadi, Christina; Dijkhuizen, Lubbert

    BACKGROUND: Originally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the

  18. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    IAS Admin

    PGPR genera exhibiting plant growth promoting activity are: Pseudomonas, Azospirillum, Azotobacter, Bacillus, Burkholdaria,. Enterobacter, Rhizobium, Erwinia, Mycobacterium, Mesorhizo- bium, Flavobacterium, etc. This article presents perspectives on the role of PGPR in agriculture sustainability. Jay Shankar Singh is an.

  19. Evaluación de la asociación bacterias fijadoras de nitrógeno - líneas interespecíficas de arroz-nitrógeno, en Typic haplustalf. Ibagué, Colombia Evaluation of the association nitrogen fixing bacterias interspecific - rice lines - nitrogen, in typic haplustalf. Ibagué, Colombia

    Directory of Open Access Journals (Sweden)

    Margarita M Vallejo

    2008-01-01

    Full Text Available El estudio se llevó a cabo en la hacienda Cauchitos, municipio de Ibagué, departamento del Tolima (Norte 4° 23' 51" y Oeste 75° 9' 7", 979 msnm, 24.3°C, bosque seco tropical (bs-T, con el objetivo de evaluar las asociaciones entre bacterias fijadoras de nitrógeno con inóculo y sin él en diez líneas interespecíficas de arroz, con tres dosis de nitrógeno (0%, 50% y 100% de 250 kg/ha-1 y tres repeticiones por tratamiento. La inoculación se realizó con 1 cm³ de unidades formadoras de colonias por 250 g de semilla de cada cultivar. Se aislaron 2.260 bacterias de los géneros Azotobacter spp y Azospirillum spp, se identificaron las especies A. brasilense, A. lipoferum, A. amazonense y del género Azotobacter las especies A. chroococcum, A. vinelandii, A. paspali y A. beijerinckii. Respecto al inóculo no se encontraron diferencias significativas al realizar su aplicación, se determinó que Azotobacter spp y Azospirillum spp fueron géneros típicos de la flora bacteriana en el cultivo del arroz y en condiciones de campo hubo efecto de los tratamientos en la flora bacteriana, y Azotobacter spp fue el predominante en cada uno de los tratamientos.The study was carried out at the Cauchitos farm, Ibague municipality department of Tolima, with bounds: North 4°23'51" and west 75°9'7", 979 ansm, the average temperature is 24,3°C, tropical dry forest (bs-t in the Holdridge classification. The purpose of this study was to evaluate the association between the nitrogen fixation bacteries with and without inoculo in 10 interespecific rice lines with three nitrogen dosis (0, 50 and 100% de 250 kg/ ha-1 and three repetitions. The inoculation was realized with 10(8 former units of colonies per millimeter. 2.260 bacteries of the generums Azotobacter spp y Azospirrillum spp., and identification the species: Azospirillum brasilense, Azospirillum lipoferum, Azospirillum amazonense, were identified and from the genus Azotobacter were identified the

  20. Study of some nitrogen transformation reactions as influenced by the agrochemicals in some soils of north Iraq by using labelled compounds. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Shali, K.G.

    1982-06-01

    The effect is described of different pesticides when applied to autoclaved soils to which the mixture of nitrifier, ammonifier, and azotobacter were added and incubated for 90 days. The results are given of the respiration parameter of 14 CO 2 evolved at 30 and 60 days of incubation from soil samples obtained at depths of 15, 30, 45, and 60 cm. Graphs show the survival of mixture of nitrifier, ammonifier, and azotobacter treated with pesticides Benlate, Sevin, and Diptrex at three dose levels. Total bacterial counts as estimated by 14 C-glucose oxidation are also shown

  1. Genotypic Characterization of Azotobacteria Isolated from Argentinean Soils and Plant-Growth-Promoting Traits of Selected Strains with Prospects for Biofertilizer Production

    Directory of Open Access Journals (Sweden)

    Esteban Julián Rubio

    2013-01-01

    Full Text Available The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA, gibberellin (GA3 and zeatin (Z biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2–18.2 μg IAA mL−1, 0.3–0.7 μg GA3 mL−1, and 0.5–1.2 μg Z mL−1. Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  2. Effect of different fertilizers on the microbial activity and productivity ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the effect of the application of different rates of mineral nitrogen, well rotten farmyard manure and Klebsiella planticola SL09- based microbial biofertilizer (enteroplantin) on the count of soil microorganisms (total microbial count, counts of Azotobacter, oligonitrophilic bacteria, fungi and ...

  3. Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production.

    Science.gov (United States)

    Rubio, Esteban Julián; Montecchia, Marcela Susana; Tosi, Micaela; Cassán, Fabricio Darío; Perticari, Alejandro; Correa, Olga Susana

    2013-01-01

    The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 μ g IAA mL(-1), 0.3-0.7 μ g GA3 mL(-1), and 0.5-1.2 μ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  4. [Isolation and study of azobenzene converting soil bacteria].

    Science.gov (United States)

    Vakkerov-Kouzova, N D

    2005-01-01

    Heterotrophic bacteria were isolated from soil and glass slides and classified as Bacillus cereus SNK12, Paenibacillus polymyxa SNK2, Azotobacter chroococcum ANKII, and Ochrobacterium intermedium ANKI. Their cultures could degrade azobenzene under the conditions of co-metabolism. A rapid test for the ability of bacteria to convert azobenzenes is proposed.

  5. Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran.

    Science.gov (United States)

    Farajzadeh, Davoud; Yakhchali, Bagher; Aliasgharzad, Naser; Sokhandan-Bashir, Nemat; Farajzadeh, Malak

    2012-04-01

    It has been well known that the bacteria of the genus Azotobacter, in addition to the beneficial N(2)-fixing activity, are able to improve plant growth by a number of direct and indirect mechanisms. To identify this potential in indigenous azotobacteria, the efficiency of 17 isolates of Azotobacter from the rhizosphere of wheat and barley plants cultivated in salt- and/or drought-affected soils in Iran were evaluated for their ability to dissolve inorganic and organic phosphates, siderophore secretion, indole acetic acid (IAA) production; and protease, chitinase, and ACC deaminase (ACCD) activities. First, they were biochemically characterized and one isolate (strain) was identified by 16S rDNA sequencing. Eight isolates were designated as Azotobacter vinelandii and the remaining isolates were identified as A. chroococcum. All isolates hydrolyzed the organic and inorganic phosphate compounds and effectively produced IAA. Fifteen isolates produced siderophore, but only one isolate showed protease activity which is being reported for the first time in relation to Azotobacter. None of the 17 isolates was capable of producing ACCD or chitinase. However, polymerase chain reaction amplification of the ACCD coding genes, by the use of the gene-specific primers, indicated that not all contain the ACCD gene. The standard screening methods with slight modifications, especially in the case of ACCD assay, were applied. The results showed that the use of specific screening methods, modified according to bacterial nutritional requirements, are the efficient methods for precise evaluation of the plant growth promoting rhizobacteria activity.

  6. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  7. Antifungal activity of plant growth-promoting rhizobacteria isolates ...

    African Journals Online (AJOL)

    Strains WPR-51, WPR-42 and WM-30 were selected to test in planta antagonistic activity on two wheat verities infected with R. solani. These three strains belonging to Azotobacter and Azospirillum produced IAA ranging from 19.4 to 30.2 ug/ml and possessed phosphorus solublization capability. Out of these three strains ...

  8. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.

    In chapter 2 a survey is given of the recent literature on

  9. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes

    NARCIS (Netherlands)

    Gangoiti, Joana; Lamothe, Lisa; van Leeuwen, Sander Sebastiaan; Vafiadi, Christina; Dijkhuizen, Lubbert

    2017-01-01

    Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4) glucan chains connected by alternating (α1→4)/(α1→6) linkages and (α1→4,6)

  10. Dicty_cDB: Contig-U12565-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ) Anaeromyxobacter dehalogenans 2... 200 2e-49 AB045873_5( AB045873 |pid:none) Kurthia sp. 538-KA26 biotin b...:none) Azotobacter vinelandii DJ, compl... 177 2e-42 AB045875_1( AB045875 |pid:none) Kurthia sp. 538-KA26 bi

  11. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a

  12. Pyridine nucleotide transhydrogenase

    NARCIS (Netherlands)

    Broek, van den H.W.J.

    1971-01-01

    A method for the isolation and purification of a reversible transhydrogenase from Azotobacter vinelandii is described (CHAPTER 3). The purification of the enzyme is hampered by association-dissociation phenomena, resulting in large losses of transhydrogenase activity. The relation

  13. Cost effective pilot scale production of biofertilizer using Rhizobium ...

    African Journals Online (AJOL)

    We standardized the protocol for pilot scale production of Rhizobium and Azotobacter biofertilizer technology using region specific and environmental stress compatible strains isolated from various agro climatic regions of Odisha, India. The cost benefit of biofertilizer production through a cottage industry is also presented.

  14. Plant growth promotion rhizobacteria in onion production.

    Science.gov (United States)

    Colo, Josip; Hajnal-Jafari, Timea I; Durić, Simonida; Stamenov, Dragana; Hamidović, Saud

    2014-01-01

    The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.

  15. Surfing the free energy landscape of flavodoxin folding

    NARCIS (Netherlands)

    Bollen, Y.J.M.

    2004-01-01

    The research described in this thesis has been carried out to obtain a better understanding of the fundamental rules describing protein folding. Protein folding is the process in which a linear chain of amino acids contracts to a compact state in which it is active. Flavodoxin from Azotobacter

  16. The Nifl PAS domain: Insight into its structure and function

    NARCIS (Netherlands)

    Hefti, M.H.

    2003-01-01

    Azotobacter vinelandii is an aerobic soil-dwelling organism with a wide variety of metabolic capabilities which include the ability to fix atmospheric nitrogen by converting it to ammonia. The biosynthesis of ammonia is controlled by 15 to 20 different nif gene products. The activation of nif gene

  17. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase

    NARCIS (Netherlands)

    Hengeveld, A.F.; Mierlo, van C.P.M.; Hooven, van den H.W.; Visser, A.J.W.G.; Kok, de A.

    2002-01-01

    A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies

  18. Nitrogen fixing bacteria enhanced bioremediation of a crude oil ...

    African Journals Online (AJOL)

    The highest percentage loss of crude oil (84%) was recorded in cells, which contained seeds of Phaseolus vulgaris (White beans) and 5g slurry of Bacillus polymyxa. Cells in which 5g slurry of Anacystis (Chroococcus) sp., 5g slurries each of Azotobacter sp., Bacillus polymyxa and Anacystis (Chroococcus) sp. were applied, ...

  19. Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth

    International Nuclear Information System (INIS)

    Nosheen, A.; Bano, A.

    2014-01-01

    The present investigation deals with the role of Plant Growth Promoting Rhizobacteria and chemical fertilizers alone or in combination on urease, invertase and phosphatase activities of rhizospheric soil and also on general impact on growth of safflower cvv. Thori and Saif-32. The PGPR (Azospirillum brasilense and Azotobacter vinelandii) were applied at 10/sup 6/ cells/mL as seed inoculation prior to sowing. Chemical fertilizers were applied at full (Urea 60 Kg ha/sup -1/ and Diammonium phosphate (DAP) 30 Kg ha/sup -1/), half (Urea 30 Kg ha/sup -1/ and DAP 15 Kg ha/sup -1/) and quarter doses (Urea 15 Kg ha-1 and DAP 7.5 Kg ha/sup -1/) during sowing. The chemical fertilizers and PGPR enhanced urease and invertase activities of soil. Presence of PGPR in combination with quarter and half doses of chemical fertilizers further augmented their effect on soil enzymes activities. The soil phosphatase activity was greater in Azospirillum and Azotobacter in combination with half dose of chemical fertilizers. Maximum increase in leaf melondialdehyde content was recorded in full dose of chemical fertilizers whereas coinoculation treatment exhibited significant reduction in cv. Thori. Half and quarter dose of chemical fertilizers increased the shoot length of safflower whereas maximum increase in leaf protein was recorded in Azotobacter in combination with full dose of chemical fertilizers. Root length was improved by Azospirillum and Azotobacter in combination with quarter dose of chemical fertilizers. Leaf area and chlorophyll contents were significantly improved by Azotobacter in combination with half dose of chemical fertilizers. It is inferred that PGPR can supplement 50 % chemical fertilizers for better plant growth and soil health. (author)

  20. Impact of bio-fertilizers and different levels of cadmium on the growth, biochemical contents and lipid peroxidation of Plantago ovata Forsk.

    Science.gov (United States)

    Haneef, Irfana; Faizan, Shahla; Perveen, Rubina; Kausar, Saima

    2014-09-01

    Plantago ovata Forsk. (isabgol) is a valuable medicinal plant; its seeds and shell have a significant role in pharmacy as a laxative compound. Increasing soil contamination with cadmium (Cd) is one of the major concerns and is responsible for toxic effects in plants. This investigation was aimed to analyze the role of biofertilizers in alleviation of cadmium stress, given at the rate of 0, 50, and 100 mg kg(-1) of soil. The plants of isabgol, were grown in pots with and without application of AM fungi and Azotobacter (alone and combination). Cadmium showed negative effect on growth and biochemical component whereas proline and MDA content increase with increasing cadmium concentration. Addition of bio-fertilizer showed better growth and higher pigment concentration under cadmium stress as compared to the control. The dual inoculation of AM fungi and Azotobacter was found to be the best in reduction of cadmium stress and promotion of growth parameters.

  1. Evaluation of the association nitrogen fixing bacterias interspecific – rice lines – nitrogen, in typic haplustalf. Ibagué, Colombia Evaluación de la asociación bacterias fijadoras de nitrógeno – líneas interespecíficas de arroz–nitrógeno, en Typic haplustalf. Ibagué, Colombia

    Directory of Open Access Journals (Sweden)

    Bonilla Correa Carmen Rosa

    2008-03-01

    Full Text Available The study was carried out at the Cauchitos farm, Ibague municipality department of Tolima, with bounds: North 4°23'51"; and west 75°9'7";, 979 ansm, the average temperature is 24,3°C, tropical dry forest (bs–t in the Holdridge classification. The purpose of this study was to evaluate the association between the nitrogen fixation bacteries with and without inoculo in 10 interespecific rice lines with three nitrogen dosis (0, 50 and 100% de 250 kg/ ha–1 and three repetitions. The inoculation was realized with 108 former units of colonies per millimeter. 2.260 bacteries of the generums Azotobacter spp y Azospirrillum spp., and identification the species: Azospirillum brasilense, Azospirillum lipoferum, Azospirillum amazonense, were identified and from the genus Azotobacter were identified the species: A. choroococcum, A. vinelandii, A. paspali and A. veijerinckii. Weren't found none significative differences after the inoculation. Azotobacter spp and Azospirillum spp. were typical generums of the bacterian flora in the rice plantation and in field conditions were effect of the treatment effects in the bacterian . The Azotobacter spp was the predominant in generum in each one of the treatments.El estudio se llevó a cabo en la hacienda Cauchitos, municipio de Ibagué, departamento del Tolima (Norte 4° 23' 51"; y Oeste 75° 9' 7";, 979 msnm, 24.3°C, bosque seco tropical (bs–T, con el objetivo de evaluar las asociaciones entre bacterias fijadoras de nitrógeno con inóculo y sin él en diez líneas interespecíficas de arroz, con tres dosis de nitrógeno (0%, 50% y 100% de 250 kg/ha–1 y tres repeticiones por tratamiento. La inoculación se

  2. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02

    OpenAIRE

    Dan Zhao; Pengfei Liu; Chao Pan; Renpeng Du; Wenxiang Ping; Jingping Ge

    2016-01-01

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively...

  3. The Co-application of Plant Growth Promoting Rhizobacteria and Inoculation with Rhizobium Bacteria on Grain Yield and Its Components of Mungbean (Vigna radiate L.) in Ilam Province, Iran

    OpenAIRE

    Abdollah Hosseini; Abbas Maleki; Khalil Fasihi; Rahim Naseri

    2014-01-01

    In order to investigate the effect of Plant Growth Promoting Rhizobacteria (PGPR) and rhizobium bacteria on grain yield and some agronomic traits of mungbean (Vigna radiate L.), an experiment was carried out based on randomized complete block design with three replications in Malekshahi, Ilam province, Iran during 2012-2013 cropping season. Experimental treatments consisted of control treatment, inoculation with rhizobium bacteria, rhizobium bacteria and Azotobacter, rhiz...

  4. Microbiological properties of dystric cambisols in region of eastern Serbia depending on exploitation way

    OpenAIRE

    Rasulić, Nataša; Delić, Dušica; Stajković-Srbinović, Olivera; Jošić, Dragana; Dolovac, Nenad; Kuzmanović, Đorđe

    2013-01-01

    One of the most represented types of soil in the hilly-mountainous region of Eastern Serbia is the dystric cambisol. Aiming to establish biogenity of such type of soil in Eastern Serbia, representation of the total microflora, fungi, actinomycetes, ammonifiers, azotobacters and oligonitrofills has been examined as well as dehydrogenase activity of the stated type of soil. The samples were taken from soils used in three different ways: plough-fields, orchards and forests. The standard microbio...

  5. Study of qualitative and quantitative yield and some agronomic characteristics of sunflower (Helianthus annus L. in response of seed inoculation with PGPR in various levels of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    H. Nazarly

    2016-05-01

    Full Text Available In order to study the qualitative and quantitative yield and some agronomic characteristics of sunflower (Helianthus annus L. in response to seed inoculation with PGPR under various levels of nitrogen fertilizer, a factorial experiment was conducted based on a randomized complete block design with three replications in field experimental University of Mohaghegh Ardabili during growing season of 2009-2010. Factors were nitrogen fertilizer in three levels (0, 80 and 160 kg N ha-1 as urea and seed inoculation with plant growth promoting rhizobacteria in four levels containing, without inoculation (as control, seed inoculation with Azotobacter chroococcum strain 5, Azospirillum lipoferum strain OF, Psedomunas strain 186. Results indicated that nitrogen levels and seed inoculation with Plant Growth Promoting Rhizobacteria (PGPR had significant effects on all of characteristics studied (except grain 1000 weight and stem diameter. Grain yield, plant height, head diameter, seed number per head, , yield and oil percentage, yield and protein percentage increased with increasing of nitrogen fertilizer and application of seed inoculation with PGPR. Response of grain yield wasn't the same for various levels of nitrogen fertilizer and seed inoculation with PGPR. The highest grain yield belonged to application of 160 kg N ha-1 and seed inoculation with Azotobacter. Means comparison showed that treatment compounds N160 × without inoculation with PGPR and N80 × seed inoculation with PGPR Azotobacter had similar grain yields. Thus, it can be suggested that in order to increasing of grain yield seed should be inoculated with Azotobacter bacteria × 80 kg N/ha in conditions of Ardabil region.

  6. Effect of Biofertilizers on Agronomic Criteria of Hyssop (Hyssopus officinalis)

    OpenAIRE

    Tabrizi, Leila; Koocheki, Alireza; Ghorbani, Reza

    2008-01-01

    An experiment was conducted under field conditions to evaluate the effects of pure or combinations of biofertilizers on agronomic and quality criteria of Hyssop (Hyssopus officinalis), a medicinal and aromatic plant from Labiateae family at the Research Station of the Faculty of Agriculture, Ferdowsi University of Mashhad, during 2006 and 2007. A complete randomized block design with three replications was used. Treatments containing Azospirillum/Azotobacter(Nitroxin), Azospirillum/Bacillus s...

  7. The effect of microbial inocula on the growth of black locust, Siberian elm and silver maple seedlings

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2014-01-01

    Full Text Available Growth and development of forest plants depend mostly on the soil microbial activity since no mineral or organic fertilizers are applied. Microbial processes can be activated and conditions for plants development improved with the introduction of selected microorganisms in the soil. With the aim of obtaining quality planting material in a shorter period of time, the effects of Azotobacter chroococcum and Streptomyces sp. on the early growth of black locust (Robinia pseudoacacia, Siberian elm (Ulmus pumila and silver-leaf maple (Acer dasycarpum were investigated in this study. Microorganisms were applied individually and in a mixture (1:1. Plant height was measured on the 90th, 120th and 180th day after planting. Plant diameter, as well as the number of actinomycetes and azotobacters was measured at the end of the vegetation period (180 days after planting. Applied microorganisms had a positive effect on the seedling height in all three plant species, with the best effect found in the black locust. Effectiveness of applied microorganisms on seedling diameter was the highest in the silver-leaf maple. The largest number of azotobacters was found in the rhizosphere of black locust. Number of microorganisms from both groups was increased in the inoculated variants. [Projekat Ministarstva nauke Republike Srbije, br. III 43002

  8. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    International Nuclear Information System (INIS)

    Soliman, S.; Aly, S.S.M.; Gadalla, A.M.; Abou Seeda, M.

    1995-01-01

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs

  9. Efficacy of organic matter and some bio-inoculants for the management of root-knot nematode infesting tomato

    Directory of Open Access Journals (Sweden)

    Neha Khan

    2015-06-01

    Full Text Available Efficiency of an organic matter like Tagetes erecta and bioinoculants Azotobacter chroococcum and Glomus fasciculatum was investigated in tomato cultivar ‘Pusa Ruby’ when inoculated individually as well as concomitantly for the management of the root-knot nematode, Meloidogyne incognita in terms of growth parameters such as plant length, fresh and dry weights, chlorophyll content, per cent pollen fertility and mycorrhization. Greatest reduction in the numbers of second-stage juveniles in soil, number of root-galls, egg-masses and nematode multiplication was recorded with combined application of T. erecta and bio-inoculants A. chroococcum and G. fasciculatum as compared to untreated control and other treatments. Similarly, the greatest improvement in the plant growth and biomass of tomato was noted in the same treatments. However, individual inoculation of these bio-inoculants and organic fertilizers also showed significant enhancement but was less as compared to combined treatment. A. chroococcum was found most effective against disease incidence followed by G. fasciculatum and T. erecta. Parameters like NP and K contents were significantly enhanced in those plants which received combined treatments of organic matter and bio-inoculants. Azotobacter was found more efficacious against nematodes than Glomus fasciculatum. Organic matter also influenced the activity of bio-inoculants, more with the Azotobacter than G. fasciculatum. DOI: http://dx.doi.org/10.3126/ije.v4i2.12643 International Journal of Environment Vol.4(2 2015: 206-220

  10. Response Of Guava Trees (Psidium Guajava To Soil Applications Of Mineral And Organic Fertilisers And Biofertilisers Under Conditions Of Low Fertile Soil

    Directory of Open Access Journals (Sweden)

    Shukla Sushil Kumar

    2014-12-01

    Full Text Available The goal of this study was to assess the influence of different organic fertilisers - vermicompost, mulching, Azotobacter, phosphate solubilising microbes (PSM and Trichoderma harzianum added each year to mineral fertilisers containing NPK and to farmyard manure (FYM on leaf nutrient status, tree growth, fruit yield and quality of guava grown in low fertile soil. The results revealed that vermicompost, bio-fertilisers and organic mulching resulted in yield and fruit quality boosters, as compared to application of NPK and FYM as the only organic fertiliser. Significant differences in plant height, canopy spread and stem girth of guava plants were obtained in combination, where Azotobacter, T. harzianum, PSM and organic mulching were applied. The leaf nutrient contents (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn were within sufficient ranges. Fruit yields and quality were highest in combination, where vermicompost, Azotobacter, T. harzianum, PSM and organic mulching was applied. Fruit quality parameters viz. soluble solid concentration, titratable acidity, total sugars and ascorbic acid showed positive correlation with the available macro- and micronutrients in the soil.

  11. An environment friendly engineeredAzotobactercan replace substantial amount of urea fertilizer and yet sustain same wheat yield.

    Science.gov (United States)

    Bageshwar, Umesh K; Srivastava, Madhulika; Pardha-Saradhi, Pedisetty; Paul, Sangeeta; Gothandapani, Sellamuthu; Jaat, Ranjeet S; Shankar, Prabha; Yadav, Rajbir; Biswas, Dipak R; Kumar, Polumetla A; Padaria, Jasdeep C; Mandal, Pranab K; Annapurna, Kannepalli; Das, Hirendra K

    2017-05-26

    In our endeavor to improve upon nitrogen fixation efficiency of a soil diazotroph that would be unaffected by synthetic nitrogenous fertilizers, we have deleted a part of the negative regulatory gene nifL and constitutively expressed the positive regulatory gene nifA in the chromosome of Azotobacter chroococcum CBD15, a strain isolated from the local field soil. No antibiotic resistance gene or other foreign gene was there in the chromosome of the engineered strain. Wheat seeds inoculated with this engineered strain, which we have named Azotobacter chroococcum HKD15, were tested for three years in pots and one year in the field. Yield of wheat was enhanced by ∼60% due to inoculation of seeds by A. chroococcum HKD15 in the absence of any urea application. Ammonium only marginally affected acetylene reduction by the engineered Azotobacter strain. When urea was also applied, the same wheat yield could be sustained by using seeds inoculated with A. chroococcum HKD15 and using ∼85kg less urea (∼40kg less nitrogen) than the usual ∼257 kg urea (∼120 kg nitrogen) per hectare. Wheat plants arising from the seeds inoculated with the engineered Azotobacter strain, exhibited far superior overall performance, had much higher dry weight and nitrogen content and assimilated molecular 15 N much better. A nitrogen balance experiment also revealed much higher total nitrogen content. IAA production by the wild type and the engineered strain was about the same. Inoculation of the wheat seeds with A. chroococcum HKD15 did not adversely affect the microbial population in the field rhizosphere soil.IMPORTANCE Application of synthetic nitrogenous fertilizers is a standard agricultural practice to augment crop yield. Plants, however, utilize only a fraction of the applied fertilizers, while the unutilized fertilizers cause grave environmental problems. Wild type soil diazotrophic microrganisms cannot replace synthetic nitrogenous fertilizers, as these reduce atmospheric nitrogen

  12. AISLADOS NATIVOS CON POTENCIAL EN LA PRODUCCIÓN DE ÁCIDO INDOL ACÉTICO PARA MEJORAR LA AGRICULTURA ISOLADOS NATIVOS COM POTENCIAL NA PRODUÇÃO DE ÁCIDO INDOL ACÉTICO PARA MELHORAR A AGRICULTURA STRAIN NATIVE WITH POTENTIAL IN THE ACETIC ACID PRODUCTION INDOL TO IMPROVE THE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    CECILIA LARA

    2011-06-01

    Full Text Available En la presente investigación se aislaron 90 microorganismos de los géneros Azotobacter sp y Azospirillum sp, a partir de suelos de la rizosfera de cultivos de plátano, maíz, pastos, yuca, algodón y rastrojos (áreas sin cultivar de la Zona del Sinú Medio en el Departamento de Córdoba (Colombia. Las poblaciones fueron evaluadas en la producción del Ácido IndolAcético (AIA en presencia de triptófano obteniéndose un rango de concentración de 3.0 a 45.0 ppm; la determinación se realizó por técnica colorimétrica utilizando el reactivo de Salkowski. La técnica fue modificada, adaptada y estandarizada. Se encontró que un aislado del género Azotobacter hallado en zonas de rastrojos produjo la mayor concentración de la auxina: 44,726 ppm.Na presente investigação isolaram-se 90 microorganismos dos géneros Azotobacter sp e Azospirillum sp, a partir de solos da rizosfera de cultivos de plátano, maíz, pastos, yuca, algodón e rastrojos (areas sem cultivar da Zona do Sinú Médio no Departamento de Córdoba (Colômbia. As populações foram avaliadas na produção do Ácido indolAcético (AiA em presença de triptófano obtendo-se um rango de concentração de 3.0 a 45.0 ppm; a determinação realizou-se por técnica colorimétrica utilizando o reactivo de Salkowski. A técnica foi modificada, adaptada e estandarizada. Encontrou-se que um isolado do género Azotobacter achado em zonas de rastrojos produziu a maior concentragáo da auxina: 44,726 ppm.In the present investigation 90 microorganisms of the Azotobacter sp and Azospirillum sp strains were isolated, from grounds of the rizosfera of cultures of banana, maize, grass, yucca, cotton and field of stubble (zones without cultivating of the Zone of the Sinu in the Department of Cordoba (Colombia. The populations were evaluated in presence of Tryptophan and the production of IndolAcetico Acid (AIA was obtained a ranging from 3.0 to 45.0 ppm; the determination was realised by

  13. Bio fertilization of Cereal and Legume Crops for Increasing Soil available P Uptake Using Nuclear Technique

    International Nuclear Information System (INIS)

    Soliman, S.; El-Gandour, E. A.; El Gala, A. M.; Ishac, Y. Z.

    2004-01-01

    Application of N and P in uncommon sources such as N 2 -fixers and AM fungi considered as an important source to save money and reduce pollution. In this concern, two pot experiments were carried out in sandy soils, to study the role of these neutral organisms in increasing the fertility of sandy soil. Wheat and faba bean were used. Seeds of wheat or faba bean were inoculated with Azotobacter or Rhizobium and planted in soils inoculated with and without AM fungi. A 20 mg P/kg soil in the form of single super phosphate (15.5 % P 2 O 5 ) or rock-P (26.6% P 2 O 5 ) were applied in the first experiment while KH 2 PO 4 was added in the second one. Dry weight, spore number, root infection, total and specific P were also determined. Maximum shoot growth were gained when either, wheat or faba bean inoculated with mycorrhizae and N2-fixers relative to the control. it was reached to 54 and 73%, respectively. Phosphorus uptake for shoots of both wheat and faba bean had been significantly increased upon inoculating with AM and/or Azotobacter or Rhizobium. Addition of fertilizer P help to identify the P uptake from soil or fertilizer. Mycorrhizal plants induced significant increase in Pdff by about 39 and 27% over inoculated with Azotobacter for wheat and Rhizobium for faba bean and it reached to 95 and 79% when inoculated with combined inoculation. This may be due to AM fungi absorb more available P than do nonmycorrhizal roots. FUE was increased from about 5 to 10% for wheat; 6 to 19% for faba bean. It can be concluded that, bio fertilizers can increase crop production and soil fertility. Rock-P might be recommended as a source of P fertilizer to be applied with AM fungi. (Authors)

  14. Selection of rhizosphere local microbial as bioactive inoculant based on irradiated compost

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Arief Adhari

    2014-01-01

    One of the main components of carrier based on irradiation compost for bio organic fertilizer is a potential microbial isolates role in nutrient supply and growth hormone. This research was conducted to obtain microbial isolates from plant root zone (rhizosphere), further isolation and selection in order to obtain potential isolates capable of nitrogen fixation (N 2 ), resulting in growth hormone (Indole Acetic Acid), and phosphate solubilizing. Selected potential isolates used as bioactive microbial inoculants formulation in irradiation compost based. Forty eight (48) rhizosphere samples were collected from different areas of West and Central Java. One hundred sixteen (116) isolates have been characterized for their morphological, cultural, staining and biochemical characteristics. Isolates have been selected for further screening of PGPR traits. Parameters assessed were Indole Acetic Acid (IAA) content analysis with colorimetric methods, dinitrogen fixation using gas chromatography, phosphate solubility test qualitatively (in the media pikovskaya) and quantitative assay of dissolved phosphate (spectrophotometry). Evaluation of the ability of selected isolates on the growth of corn plants were done in pots. The isolates will be used as inoculant consortium base on compost irradiation. The selection obtained eight (8) bacterial isolates identified as Bacillus circulans (3 isolates), Bacillus stearothermophilus (1 isolate), Azotobacter sp (3 isolates), Pseudomonas diminuta (1 isolate). The highest phosphate released (91,21 mg/l) was by BD2 isolate (Bacillus circulan) with a holo zone size (1.32 cm) on Pikovskaya agar medium. Isolate of Pseudomonas diminuta (KACI) was capable to produce the highest IAA hormone (74.34 μg/ml). The highest nitrogen (N 2 ) fixation activity was shown by Azotobacter sp isolates (KDB2) at a rate of 235.05 nmol/hour. The viability test showed that all selected isolates in compost irradiation carrier slightly decreased after 3 months of

  15. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production.

    Science.gov (United States)

    Leaungvutiviroj, Chaveevan; Ruangphisarn, Pimtida; Hansanimitkul, Pikul; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Biofertilizers that possess a high capacity for N(2) fixation (Azotobacter tropicalis), and consist of phosphate solubilizing bacteria (Burkhoderia unamae), and potassium solubilizing bacteria (Bacillus subtilis) and produce auxin (KJB9/2 strain), have a high potential for growth and yield enhancement of corn and vegetables (Chinese kale). For vegetables, the addition of biofertilizer alone enhanced growth 4 times. Moreover, an enhancement of growth by 7 times was observed due to the addition of rock phosphate and K-feldspar, natural mineral fertilizers, in combination with the biofertilizer.

  16. Plant growth promoting rhizobacteria (PGPR and their effect on maize

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2011-01-01

    Full Text Available Free-living soil bacteria beneficial to plant growth are usually referred to as plant growth promoting rhizobacteria (PGPR, capable of promoting plant growth by colonizing the plant root. Application of PGPR to increase the yield is limited by variability among the results obtained in the laboratory, in greenhouse and field. Rhizobacteria that promote plant growth (PGPR participate in interactions with plants (rice, wheat, maize, sugarcane, sugar beet, cotton and significantly increase their vegetative growth and yield. Apart from Azotobacter and Azospirillum, PGPR also include Acetobacter, Azoarcus and several species of Enterobacteriaceae (Klebsiella, Enterobacter, Citrobacter, and Pseudomonas. PGPR represent an alternative to plant growth enhancement chemicals.

  17. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool

    DEFF Research Database (Denmark)

    Nissen, T.L.; Anderlund, M.; Nielsen, Jens

    2001-01-01

    systems is made possible by expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii. We therefore cloned sth, encoding this enzyme and expressed it under the control of a S, cerevisiae promoter in a strain derived from the industrial model strain S, cerevisiae CBS8066, Anaerobic batch...... was measured in the extracts from the strain expressing the sth gene from A. vinelandii, while no transhydrogenase activity could be detected in control strains without the gene. Production of the transhydrogenase caused a significant increase in formation of glycerol and 2-oxoglutarate. Since NADPH is used...

  18. Effect of biological and chemical preparations on peroxidase activity in leaves of tomato plants

    Directory of Open Access Journals (Sweden)

    Yulia Kolomiets

    2016-10-01

    Full Text Available In terms of treating tomato variety Chaika with chemical preparations with active substances if aluminum phosphate, 570 g/l + phosphorous acid 80 g/,l and mankotseb in concentration of 640 g/kg, the maximum increase in peroxidase activity in leaves of plants was observed in12 hours. In terms of use of biological preparations based on living cells Bacillus subtilis and Azotobacter chroococcum its activity was maximum in 24 hours and ranged from 77.7 to 112.7 un.mg-1•s-1

  19. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Changmai, Piya; Tsaousis, A.D.; Skalický, Tomáš; Verner, Zdeněk; Wen, Yan-Zi; Roger, A. J.; Lukeš, Julius

    2011-01-01

    Roč. 81, č. 6 (2011), 1403-1418 ISSN 0950-382X R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : IRON-SULFUR CLUSTER * ESCHERICHIA-COLI * ASSEMBLY PROTEIN * SACCHAROMYCES-CEREVISIAE * AZOTOBACTER-VINELANDII * CYSTEINE DESULFURASE * CRYSTAL-STRUCTURE * BINDING ACTIVITY * GENE-CLUSTER Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.010, year: 2011

  20. Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5'-phosphate and riboflavin 3',5'-bisphosphate by apoflavodoxins.

    OpenAIRE

    Pueyo, J J; Curley, G P; Mayhew, S G

    1996-01-01

    The reactions of excess apoflavodoxin from Desulfovibrio vulgaris, Anabaena variabilis and Azotobacter vinelandii with ribo- flavin 5«-phosphate (FMN), riboflavin 3«,5«-bisphosphate and riboflavin are pseudo-first-order. The rates increase with decreasing pH in the range pH 5-8, and, in general, they increase with increasing ionic strength to approach a maximum at an ionic strength greater than 0.4 M. The rate of FMN binding in phosphate at high pH increases to a maximum ...

  1. Medio de cultivo utilizando residuos-sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante

    OpenAIRE

    Cecilia Lara Mantilla; Liliana Pahola García Támara; Luis E Oviedo Zumaqué

    2010-01-01

    En el presente trabajo se muestran los resultados obtenidos de la evaluación del crecimiento, desarrollo y viabilidad de una cepa bacteriana nativa Azotobacter A15M2G con potencial biofertilizante, sobre un medio de cultivo preparado con residuos sólidos vegetales procedentes del mercado: Brassica Oleracea (repollo), Lactusa sativa (lechuga) y Allium fistulosum (cebollín). El crecimiento de la bacteria en el medio de residuo vegetal a diferentes concentraciones: 25, 50 y 75% p/v fue evaluado,...

  2. Los biofertilizantes en la sustentabilidad del suelo y las plantas de naranjo agrio (Citrus aurantium L.) y limón persa (Citrus latifolia TAN).

    OpenAIRE

    Alejo Pereyra, Daniel Eduardo

    2010-01-01

    Los biofertilizantes son una alternativa de fertilización para mejorar las propiedades químicas y biológicas del suelo que permitan la sostenibilidad de la producción de cultivos. En este trabajo se comparó la efectividad del tipo y dosis de biofertilizantes integrados con cáscara de naranja, cachaza y estiércol de pollo como acarreadores del consorcio; Azosprillum, Azotobacter, y solubilizadoras de P, para suelos plantados con naranjo agrio (Citrus aurantium L) y naranjo agrio injertado c...

  3. Interactions between Nitrogen Fixation and Osmoregulation in the Methanogenic Archaeon Methanosarcina barkeri 227

    OpenAIRE

    Brabban, A. D.; Orcutt, E. N.; Zinder, S. H.

    1999-01-01

    The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na+ and K+ had equivalent effects, whereas Mg2+ was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl− was more inhibitory than acetate was. Because ...

  4. Molybdenum--substrate interactions in nitrogenase: an EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.P.

    1978-07-01

    The sensitivity of x-ray absorption edge spectra and extended x-ray absorption fine structure (EXAFS) to the environment of metal atoms make x-ray absorption spectroscopy a useful probe of the environment of the molybdenum in nitrogenase. It is of particular interest to investigate any perturbations of the environment of the molybdenum due to the presence of nitrogenase substrates. The results of measurements of the x-ray absorption spectra of nitrogenase samples by the absorption and fluorescence detection techniques are compared. The procedures used for the growth of Azotobacter vinelandii for the production of nitrogenase and the procedures used for the purification of nitrogenase are described in detail.

  5. Structural studies of S-7, another exocellular polysaccharide containing 2-deoxy-arabino-hexuronic acid.

    Science.gov (United States)

    Gulin, S; Kussak, A; Jansson, P E; Widmalm, G

    2001-04-12

    The exocellular polysaccharide S-7, a heteropolysaccharide from Azotobacter indicus var. myxogenes has been studied using methylation analysis, Smith degradation, partial acid hydrolysis, NMR spectroscopy and mass spectrometry as the principal methods. It is concluded that the repeating unit has the following structure: [structure: see text] The absolute configuration of the deoxyhexuronic acid was deduced from 1H NMR chemical shifts and is most likely D. Approximately two O-acetyl groups per repeating unit are present, one of which is presumably on the Rha residue. The structure bears great resemblance to another polysaccharide, recently studied, produced by Sphingomonas paucimobilis I-886.

  6. INFLUENCE OF POLLUTION BY HEAVY METALS ON BIOLOGICAL PROPERTIES OF MOUNTAIN CHERNOZEMS OF THE SOUTH OF RUSSIA

    Directory of Open Access Journals (Sweden)

    S. I. Kolesnikov

    2012-01-01

    Full Text Available Pollution of the chernozem typical (mountain Cr, Cu, Ni and Pb oxides leads to deterioration of its condition: activity of a catalase and dehydrogenase decreases, cellulolytic activity, an abundance of bacteria of the sort Azotobacter, worsen indicators of germination and initial growth of a garden radish. Extent of decrease depends by nature metal and its concentration in the soil. The studied TM oxides form the following row on extent of negative impact on biological properties of the chernozem of typical (mountain: CrO3> CuO> = PbO> = NiO.

  7. Alginato bacteriano: aspectos tecnológicos, características e produção Bacterial alginate: technological aspects, characteristics and production

    Directory of Open Access Journals (Sweden)

    Crispin Humberto Garcia-Cruz

    2008-01-01

    Full Text Available Alginate is a biopolymer used for a variety of industrial applications, for example, in the textiles, cosmetics, foods, agricultural and biotechnological industries. This biopolymer is traditionally extracted from some brown seaweeds (Phaeophyceae and can be produced by bacteria isolated from soil, as Azotobacter vinelandii, like capsular polysaccharide using glucose, sucrose, among others as carbon sources. The main difference between the alginate of seaweed and the bacterial ones, is the biggest degree of acetylation of this last one, with great influence in the gel force. These chemical characteristics and production of bacterial alginate are presented in this work.

  8. ESTUDIO DE LAS POBLACIONES MICROBIANAS DE LA RIZÓSFERA DEL CULTIVO DE PAPA (Solanum tuberosum) EN ZONAS ALTOANDINAS

    OpenAIRE

    Calvo Vélez, Pamela; Universidad Nacional Agraria La Molina (Perú).; Reymundo Meneses, Luis; Universidad Nacional Agraria La Molina (Perú).; Zúñiga Dávila, Doris; Universidad Nacional Agraria La Molina (Perú).

    2008-01-01

    Se evaluaron las poblaciones de microorganismos en la rizósfera del cultivo de papa en dos diferentes regiones Altoandinas. Se encontró que la población de bacterias totales en la rizósfera de las regiones muestreadas siempre fue mayor que la población de hongos; Puno registra mayores poblaciones de bacterias totales, lo que se puede deber entre otros factores al pH del suelo que es más alcalino que en Huancavelica. Se observa que las poblaciones de Actinomicetos y Azotobacter spp. están infl...

  9. Increased root exudation of /sup 14/C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. (Institute of Forest Genetics, Suweon (Republic of Korea)); Gaskins, M.H. (Florida Univ., Gainesville (USA). Dept. of Agriculture)

    1982-01-01

    Organic components leaked from Sorghum bicolor seedlings ('root exudates') were examined by recovering /sup 14/C labelled compounds from root solutions of seedlings inoculated with Azospirillum brasilense, Azotobacter vinelandii or Klebsiella pneumoniae nif-. Up to 3.5% of the total /sup 14/C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and Azotobacter increased the amounts of /sup 14/C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria, the increase of /sup 14/C in the solutions did not occur. Quantities of /sup 14/C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with /sup 14/CO/sub 2/, about 15% of the total /sup 14/C recovered within 48 hours exposure was found in soil leachates.

  10. Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics

    Directory of Open Access Journals (Sweden)

    Yousefi Sonia

    2017-06-01

    Full Text Available The study was conducted to evaluate the potential of different strains of plant growth-promoting rhizobacteria (PGPR to reduce the effects of salinity stress on the medicinal hopbush plant. The bacterium factor was applied at five levels (non-inoculated, inoculated by Pseudomonas putida, Azospirillum lipoferum + Pseudomonas putida, Azotobacter chroococcum + Pseudomonas putida, and Azospirillum lipoferum + Azotobacter chroococcum + Pseudomonas putida, and the salinity stress at six levels: 0, 5, 10, 15, 20, and 50 dS m-1. The results revealed that Pseudomonas putida showed maximal germination percentage and rate at 20 dS m-1 (18.33% and 0.35 seed per day, respectively. The strongest effect among the treatments was obtained with the treatment combining the given 3 bacteria at 15 dS m-1 salinity stress. This treatment increased the root fresh and dry weights by 31% and 87.5%, respectively (compared to the control. Our results indicate that these bacteria applied on hopbush affected positively both its germination and root growth. The plant compatibility with the three bacteria was found good, and the treatments combining Pseudomonas putida with the other one or two bacteria discussed in this study can be applied in nurseries in order to restore and extend the area of hopbush forests and akin dry stands.

  11. Characterization of diazotrophic bacteria non-symbiotic associated with eucalyptus (eucalyptus sp.) in Codazzi, Cesar (Colombia)

    International Nuclear Information System (INIS)

    Obando Castellanos, Dolly Melissa; Burgos Zabala, Ludy Beatriz; Rivera Botia, Diego Mauricio; Rubiano Garrido, Maria Fernanda; Divan Baldini, Vera Lucia; Bonilla Buitrago, Ruth Rebeca

    2010-01-01

    The effect of climatic seasons (rainy and dry) and the stratum sample (rhizospheric soil, roots and leaves) the population of the genera Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter and Burkholderia in soil rhizosphere, roots and leaves of eucalyptus (eucalyptus sp.). It also assesses their ability to produce indoles compounds as plant growth promoters and their acetylene reduction activity as an indicator of biological fixation of nitrogen. The results showed no statistically significant differences in the Duncan test (p ≤ 0.05) in the population with respect to the climate epoch, suggesting that these bacteria are able to tolerate stress conditions by different physiological mechanisms. With respect to the stratum sample isolates attempts of Herbaspirillum sp. and Azospirillum sp. significant differences in rhizospheric soil and roots. we obtained 44 isolates of which were grouped by phenotypic characterization as 14 suspected of Beijerinckia sp., 12 Azotobacter sp., 8 Derxia sp., 4 Herbaspirillum sp., 5 Azospirillum sp., 1 Gluconacetobacter sp. and 1 Burkholderia sp. due to their high potential were selected isolates C27, C26 and C25. These four strains present the best values of efficiency in vitro, exceeding production values of the reference strains used (A. chroococcum (AC1) and a. brasilense (SP7)).

  12. Population of bacteria from soil in Tudu-Aog village, Passi district, Bolaang Mongondow, North Sulawesi

    Directory of Open Access Journals (Sweden)

    RIANI HARDININGSIH

    2004-01-01

    Full Text Available An experiment was conducted in order to know the population of bacteria from soil in Tudu-Aog village, Passi district, Bolaang Mongondow, North Sulawesi, the purpose of the research was to study the population of bacteria from soil. Fourthy six soil samples were taken from two location, namelyTudu-Aog village and Bugis mountain. Isolation was done by dilution methods on YEMA medium (for Rhizobium bacteria, Winogradsky’s (for Azotobacter bacteria, Pycosvkaya (for Phosphat Solubilizing Bacteria, and selective Difco Pseudomonas (for Pseudomonas bacteria. Incubation at room temperature (27-280C until 15 days, and the enumeration with plate count method. The highest enumeration of Rhizobium bacteria with plant rhizosphere of Alocasia esculenta (27x105 CFU/g soil, Theobroma cacao (29x105 CFU/g soil,and Euphorbia paniculata (26x105 CFU/g soil, Azotobacter bacteria with plant rhizosphere of Lycopersicum esculantum (38x105 CFU/g soil, Eugenia aromaticum (43x105 CFU/g soil, Andropogon sp. (34x105 CFU/g soil, Phosphat Solubilizing bacteria with plant rhizosphere of Sechium edule (27x105 CFU/g soil, Cinnamomum sp. (48x105 CFU/g soil, Cyathea sp. (72x105 CFU/g soil, and Pseudomonas bacteria with plant rhizosphere of Oryza sativa (18x105 CFU/g soil, Vanilla sp. (12x105 CFU/g soil, dan Saurauia sp.(19x105 CFU/g soil.

  13. The Effect of Enrichment with Bio-fertilizers and three Nutrients of Iron, Zinc and Manganese on Germination Characteristics of Ajowan (Carum copticum L.

    Directory of Open Access Journals (Sweden)

    M. Motamednezhad

    2016-07-01

    Full Text Available Introduction: Cultivation of medicinal and aromatic plants has always had a special situation in the traditional system of agriculture and these systems have played a major role in the diversification and sustainability of agricultural ecosystems. Tend to produce medicinal and aromatic plants and demand for natural products, especially in terms of ecological culture in the world is increasing. Ajowan is an annual herbaceous plant from the Apiaceae family. Biological fertilizers produced by the activity of microorganisms are associated with nitrogen fixation or availability of phosphorus and other nutrients in the soil. Enrichment means increasing the concentration of nutrients in plants especially micronutrients. Application of biological fertilizers instead of using chemicals is one of the most important nutritional strategies in sustainable management of agro ecosystems. In this regard, the effect of enrichment with bio-fertilizers and micronutrients on Ajowan (Carum copticum L. germination characteristics was studied at Birjand Agricultural Research Laboratory. Materials and Methods: A factorial experiment based on a CRD (completely randomized design was conducted with three replications at Birjand Agricultural Research Laboratory during 2011. Experimental treatments consisted of bio-fertilizer application with three levels including without inoculation, and seed inoculation with Azospirillum and Azotobacter and seed enrichment with ten different treatment levels including without enrichment, and enrichment using 1, 2 and 3 mM of Fe, Zn and Mn elements. Bacteria were provided by Soil and Water Research Institute of Tehran. Initially, the seeds were disinfected through immersing them in 1% sodium hypochlorite for 3 minutes and then washing them with the tap water for 2-3 times. For the Enrichment of seeds, depending on the treatments, Petri dishes were treated with 10 ml of micronutrients solution for 24 hours. Then for bacterial inoculation

  14. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  15. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer.

    Science.gov (United States)

    Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan

    2009-10-01

    The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.

  16. Bacterial alginate production: an overview of its biosynthesis and potential industrial production.

    Science.gov (United States)

    Urtuvia, Viviana; Maturana, Nataly; Acevedo, Fernando; Peña, Carlos; Díaz-Barrera, Alvaro

    2017-10-07

    Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.

  17. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  18. Seasonal changes in microbial community structure and nutrients content in rhizospheric soil of Aegle marmelos tree

    Directory of Open Access Journals (Sweden)

    Prateek Shilpkar

    2013-12-01

    Full Text Available A preliminary investigation was carried out on dominance of different types of microbial communities at different monsoon seasons in rhizospheric soils of Aegle marmelos tree. Nutrients content of soil were also determined simultaneously to correlate with the microbial population. Results show that the rhizosphere of Aegle marmelos contains gram-negative bacteria, Rhizobium, Azotobacter, Actinomycetes and Yeast and major plant nutrients and their count as well as dominance changes with moisture content in rhizosphere. Except actinomycetes all the microorganisms were found highest during monsoon season whereas in post-monsoon season Actinomycetes were dominant. Amount of water in rhizosphere soil also affects soil chemical properties. Soil pH, organic carbon, C:N ratio, available nitrogen and available phosphorus were recorded maximum in monsoon whereas electrical conductivity and total nitrogen content were found maximum in post-monsoon.

  19. Seasonal changes in microbial community structure and nutrients content in rhizospheric soil of Aegle marmelos tree

    Directory of Open Access Journals (Sweden)

    Shital M. Patel

    2010-12-01

    Full Text Available A preliminary investigation was carried out on dominance of different types of microbial communities at different monsoon seasons in rhizospheric soils of Aegle marmelos tree. Nutrients content of soil were also determined simultaneously to correlate with the microbial population. Results show that the rhizosphere of Aegle marmelos contains gram-negative bacteria, Rhizobium, Azotobacter,Actinomycetes and Yeast and major plant nutrients and their count as well as dominance changes with moisture content in rhizosphere.Except actinomycetes all the microorganisms were found highest duringmonsoon season whereas in post-monsoon season Actinomycetes were dominant. Amount of water in rhizosphere soil also affects soil chemical properties. Soil pH, organic carbon, C:N ratio, available nitrogen and available phosphorus were recorded maximum in monsoon, whereas electrical conductivity and total nitrogen content were found maximum in post-monsoon.

  20. A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Mezzina, Mariela P.; Álvarez, Daniela; Egoburo, Diego

    2017-01-01

    The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. Phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against...... as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and to other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which...... increased growth, reflected in a higher final biomass and product titer compared to the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve biofuels...

  1. Antibacterial activity of curcuma long varieties against different strains of bacteria

    International Nuclear Information System (INIS)

    Naz, S.; Jabeen, S.; Ilyas, S.; Aslam, F.; Manzoor, F.; Ali, A.

    2010-01-01

    Crude extracts of curcuminoids and essential oil of Curcuma long varieties Kasur, Faisalabad and Bannu were studied for their antibacterial activity against 4 bacterial strains viz., Bacillus subtilis, Bacillus macerans, Bacillus licheniformis and Azotobacter using agar well diffusion method. Solvents used to determine antibacterial activity were ethanol and methanol. Ethanol was used for the extraction of curcuminoids. Essential oil was extracted by hydrodistillation and diluted in methanol by serial dilution method. Both Curcuminoids and oil showed zone of inhibition against all tested strains of bacteria. Among all the three turmeric varieties, Kasur variety had the most inhibitory effect on the growth of all bacterial strains tested as compared to Faisalabad and Bannu varieties. Among all the bacterial strains B. subtilis was the most sensitive to turmeric extracts of curcuminoids and oil. The MIC value for different strains and varieties ranged from 3.0 to 20.6 mm in diameter. (author)

  2. Characterization of selected groups of microorganisms occurring in soil rhizosphere and phyllosphere of oats.

    Science.gov (United States)

    Rekosz-Burlaga, Hanna; Garbolińska, Magdalena

    2006-01-01

    Studies were carried out on the microflora of phyllosphere and soil rhizosphere of hulled (Chwat variety) and naked (Akt variety) oats. The material taken for study embraced samples of leaves and soil rhizosphere taken from cultivations differing in extent of nitrogen fertilization. The studies involved determination of total number of aerobic heterotrophic bacteria belonging to the genus Pseudomonas and microscopic hyphal fungi. Qualitative determinations focused on bacteria belonging to the genera Azotobacter and Azospirillum were also made. Our results point to differences in number of microscopic hyphal fungi in the phyllosphere of both varieties of oats, depending on nitrogen fertilization dose. However, there were no significant differences in the number of bacteria of the different genera determined in the phyllosphere and rhizosphere. Strains of oligonitrophilic and diazotrophic bacteria were isolated from samples of the phyllosphere of oats and their N2-fixing activity was determined by the acetylene reduction method using gas chromatography.

  3. Caracterización de bacterias diazotróficas asimbióticas asociadas al eucalipto (eucalyptus sp.) en codazzi, cesar.

    OpenAIRE

    Obando Castellanos, Dolly Melissa; Burgos Zabala, Ludy Beatriz; Rivera Botía, Diego Mauricio; Rubiano Garrido, María Fernanda; Bonilla Buitrago, Ruth Rebeca; Divan Baldani, Vera Lúcia

    2010-01-01

    Se evaluó el efecto de las épocas climáticas (lluvia y sequía) y del estrato de la muestra (Suelo rizosférico, raíces y hojas) sobre la población de los géneros Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter y Burkholderia en el Eucalipto (Eucalyptus sp.). Así mismo, se evalúo su capacidad en la producción de compuestos indólicos como promotores del crecimiento vegetal y su actividad de reducción de acetileno como indicador de la fijación biológica de nitr...

  4. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  5. Dicty_cDB: Contig-U16205-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 52 0.055 1 ( CP000053 ) Rickettsia felis URRWXCal2, complete genome. 52 0.055 1 ( AE017197 ) Rickettsia typhi str. Wilmington com... 0-10 day post anthesis Go... 46 3.4 1 ( EU054322 ) Legionella pneumophila melitin resistance protein...205-1Q.Seq.d (1351 letters) Database: ddbj_B 98,226,423 sequences; 98,766,808,389 total letters Searching......955015339 Global-Ocean-Sampling_GS-30-02-01-1... 32 9.0 3 ( AF304356 ) Dictyostelium discoideum mito...1052 |pid:none) Burkholderia phytofirmans PsJN c... 207 7e-52 CP001157_4385( CP001157 |pid:none) Azotobacter vinelandii DJ, com

  6. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  7. Effect of two organophosphorus insecticides on the growth, respiration and (14C)-glucose metabolism of Azobacter chroococcum Beij

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Narayanan, R.

    1980-01-01

    The two organophosphorus insecticides, commonly applied to soil, viz., disulfoton (0,0-diethyl S-2-ethyl thio ethyl phosphorodithioate) and fensulfothion (0,0-diethyl 0-4-methyl sulphinyl phenyl phosphorothioate) did not affect the in vitro growth of Azotobacter chroococcum Beij., the free-living, nitrogen fixing soil bacterium, at 2 ppm (lower level), while the normal dose (5 ppm) and the higher level (10 ppm) suppressed the growth. Respiration of the organism (glucose oxidation) was adversely affected by the insecticides in the growth medium and the inhibition increased with the concentration of the chemical. Both the insecticides suppressed the assimilation of ( 14 C)-glucose in the cold-TCA soluble, hot-TCA soluble fractions and insoluble residue of the cells whereas the 14 C-incorporation in the alcohol soluble and alcohol-ether soluble fractions was enhanced indicating that the insecticides considerably altered the glucose metabolism of the bacterium. (author)

  8. Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas aeruginosa AlgX

    Energy Technology Data Exchange (ETDEWEB)

    Weadge, J.T.; Robinson, H.; Yip, P. P.; Arnett, K.; Tipton, P. A.; Howell, P. L.

    2010-05-01

    AlgX is a periplasmic protein required for the production of the exopolysaccharide alginate in Pseudomonas sp. and Azotobacter vinelandii. AlgX has been overexpressed and purified and diffraction-quality crystals have been grown using iterative seeding and the hanging-drop vapor-diffusion method. The crystals grew as flat plates with unit-cell parameters a = 46.4, b = 120.6, c = 86.9 {angstrom}, {beta} = 95.7{sup o}. The crystals exhibited the symmetry of space group P2{sub 1} and diffracted to a minimum d-spacing of 2.1 {angstrom}. On the basis of the Matthews coefficient (V{sub M} = 2.25 {angstrom}{sup 3} Da{sup -1}), two molecules were estimated to be present in the asymmetric unit.

  9. Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method

    Science.gov (United States)

    Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini

    2017-06-01

    The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.

  10. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...... and secondary fermentation products, to NAD(+). The objective of this study was to evaluate whether introduction of a new pathway for reoxidation of NADH, in a yeast strain where glycerol synthesis had been impaired, would result in elimination of glycerol production and lead to increased yields of ethanol...... and biomass under anaerobic and aerobic growth conditions, respectively. This was done by deletion of GPD1 and GPD2, encoding two isoenzymes of glycerol 3-phosphate dehydrogenase, and expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii, encoded by cth. In anaerobic batch fermentations...

  11. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  12. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool

    DEFF Research Database (Denmark)

    Nissen, T.L.; Anderlund, M.; Nielsen, Jens

    2001-01-01

    The intracellular redox state of a cell is to a large extent defined by the concentration ratios of the two pyridine nucleotide systems NADH/NAD(+) and NADPH/ADP(+) and has a significant influence on product formation in microorganisms. The enzyme pyridine nucleotide transhydrogenase, which can...... systems is made possible by expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii. We therefore cloned sth, encoding this enzyme and expressed it under the control of a S, cerevisiae promoter in a strain derived from the industrial model strain S, cerevisiae CBS8066, Anaerobic batch...... cultivations in high-performance bioreactors were carried out in order to allow quantitative analysis of the effect of transhydrogenase expression on product formation and on the intracellular concentrations of NADH, NAD(+), NADPH and NADP(+). A specific transhydrogenase activity of 4.53 U/mg protein...

  13. Restoration of fly ash dump through biological interventions.

    Science.gov (United States)

    Juwarkar, Asha A; Jambhulkar, Hemlata P

    2008-04-01

    Field experiment on 10 ha area of fly ash dump was conducted to restore and revegetate it using biological interventions, which involves use of organic amendment, selection of suitable plant species along with specialized nitrogen fixing strains of biofertilizer. The results of the study indicated that amendment with farm yard manure at 50 t/ha improved the physical properties of fly ash such as maximum water holding capacity from 40.0 to 62.42% while porosity improved from 56.78 to 58.45%. The nitrogen content was increased by 4.5 times due to addition of nitrogen fixing strains of Bradyrhizobium and Azotobacter species, while phosphate content was increased by 10.0 times due to addition of VAM, which helps in phosphate immobilization. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in fly ash improved to 7.1 x 10(7), 9.2 x 10(7) CFU/g and 35 VAM spores/10 g of fly ash, respectively. Inoculation of biofertilizer and application of FYM helped in reducing the toxicity of heavy metals such as cadmium, copper, nickel and lead which were reduced by 25, 46, 48 and 47%, respectively, due to the increased organic matter content in the fly ash which complexes the heavy metals thereby decreasing the toxicity of metals. Amendment of fly ash with FYM and biofertilizer helped in profuse root development showing 15 times higher growth in Dendrocalamus strictus plant as compared to the control. Thus amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant.

  14. CARACTERIZACIÓN DE BACTERIAS DIAZOTRÓFICAS ASIMBIÓTICAS ASOCIADAS AL EUCALIPTO (Eucalyptus sp. EN CODAZZI, CESAR.

    Directory of Open Access Journals (Sweden)

    Dolly Melissa Obando Castellanos

    2010-09-01

    Full Text Available Se evaluó el efecto de las épocas climáticas (lluvia y sequía y del estrato de la muestra (Suelo rizosférico, raíces y hojas sobre la población de los géneros Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter y Burkholderia en el Eucalipto (Eucalyptus sp.. Así mismo, se evalúo su capacidad en la producción de compuestos indólicos como promotores del crecimiento vegetal y su actividad de reducción de acetileno como indicador de la fijación biológica de nitrógeno. Los resultados no registraron diferencias estadísticas significativas en el test de Tukey (P ≤ 0.05 en la población con respecto a la época climática. Con respecto al estrato de muestra, los aislamientos tentativos a Herbaspirillum sp. y Azospirillum sp. presentaron diferencias significativas en suelo rizosférico y raíces. Se obtuvieron 44 aislamientos de los cuales se agruparon por caracterización fenotípica como: 14 presuntivos del género Beijerinckia sp., 12 de Azotobacter sp., 8 de Derxia sp., 4 de Herbarpirillum sp., 5 de Azospirillum sp., 1 de Gluconacetobacter sp. y 1 de Burkholderia sp. Por su alto potencial fueron seleccionados y criopreservados los aislamientos C27, C26, C25 y C45, las cuales presentaron los mejores valores de eficiencia in vitro, superando valores de producción de las cepas de referencia utilizadas (A. chroococcum (AC-01 y A. brasilense (SP7.

  15. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Yield and Yield Components of Sesame (Sesamum indicum l. with Emphasize on Environmental Friendly Operations

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2015-07-01

    Full Text Available In order to evaluate the effects of different plant growth promoting rhizobacteria (PGPR on yield and yield components of sesame, an experiment was conducted in the form of Randomized Complete Block Design with three replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad in year 2009. Treatments were: 1 Nitragin (containing of Azotobacter sp., Azospirillum sp. and Pseudomonas sp., 2 Nitroxin (containing of Azotobacter sp. and Azospirillum sp., 3 Super nitro plus (containing of Azospirillum sp., Bacillus sp. and Pseudomonas sp., 4 Phosphate suloblizing bacteria (containing of Bacillus sp. and Pseudomonas sp., 5 Bio Phosphate (containing of Bacillus sp. and Pseudomonas sp., 6 Nitroxin + Phosphate suloblizing bacteria, 7 Nitroxin + Bio Phosphate and control. The results showed that seed yield affected by PGPR and Nitroxin + Phosphate suloblizing bacteria treatment had superior effect on seed yield compared to other treatments. Superior effect of Nitroxin + Phosphate suloblizing bacteria treatment also was shown on plant seed weight and harvest index. Nitragin, Nitroxin + Bio Phosphate, Nitroxin + Phosphate suloblizing bacteria, Bio Phosphate, Phosphate suloblizing bacteria, Nitroxin treatments increased dry weight of capsules per plant of 62, 53, 51, 36 and 30 percent compared to control, respectively. Although, the effect of PGPR was not significant on sesame seed oil content but Bio Phosphate and Nitragin treatments increased seed oil content by 1 and 1.5 percent, respectively. In general, results showed utilization of PGPR can improve seed yield and seed oil content, which can decrease dependence of sesame seed production to chemical fertilizer, decrease negative environmental impacts and as an ecofriendly inputs can help to produce crops and sustainable agriculture guidlines.

  16. Effect of some plant growth promoting rhizobacteria and nitrogen fertilizer on morphological characteristics of german chamomile (Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    S. Dastborhan

    2016-04-01

    Full Text Available .In order to investigate the effects of plant growth promoting rhizobacteria and nitrogen fertilizer on morphological traits of german chamomile (Matricaria chamomilla L., a field experiment was carried out as factorial based on randomized complete block design with three replications in Research Farm of the Faculty of Agriculture, University of Tabriz, Iran, during 2007-2008. Factors were inoculation with plant growth promoting rhizobacteria (B0: no-inoculation, B1: inoculation with Azotobacter chroocuccum, B2: inoculation with Azospirillum lipoferum and B3: inoculation with a mixture of two bacteria and nitrogen fertilizer (N0:0, N1:50, N2:100 and N3:150 kgN.ha-1. Results showed that inoculation with bacteria significantly improved plant height, stem diameter, number of lateral branches, number of flowers per plant, dry weight of flowers, stems, leaves and total dry weight per plant. These traits were significantly similar for inoculation with Azotobacter, inoculation with Azospirillum and inoculation with a mixture of two bacteria. Effect of nitrogen fertilizer on all traits (except number of lateral branches was positive, but there were no significant differences among 50, 100 and 150 kg.ha-1 nitrogen. The highest and the lowest number and weight of flowers per plant were recorded for inoculation + 50 kg.ha-1 nitrogen application and no-inoculation + no-fertilizer, respectively. In general, application of biofertilizers had positive and significant effects on morphological traits of german chamomile. In addition, with adding 50 kg N.ha-1 the performance of bacteria increased and the highest flower yield were produced.

  17. The Influence of Mineral Fertilizer Combined With a Nitrification Inhibitor on Microbial Populations and Activities in Calcareous Uzbekistanian Soil Under Cotton Cultivation

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdiyeva

    2001-01-01

    Full Text Available Application of fertilizers combined with nitrification inhibitors affects soil microbial biomass and activity. The objective of this research was to determine the effects of fertilizer application combined with the nitrification inhibitor potassium oxalate (PO on soil microbial population and activities in nitrogen-poor soil under cotton cultivation in Uzbekistan. Fertilizer treatments were N as urea, P as ammophos, and K as potassium chloride. The nitrification inhibitor PO was added to urea and ammophos at the rate of 2%. Three treatments—N200P140K60 (T1, N200 P140 POK60 (T2, and N200 P140 POK60 (T3 mg kg-1 soil—were applied for this study. The control (C was without fertilizer and PO. The populations of oligotrophic bacteria, ammonifying bacteria, nitrifying bacteria, denitrifying bacteria, mineral assimilating bacteria, oligonitrophilic bacteria, and bacteria group Azotobacter were determined by the most probable number method. The treatments T2 and T3 increased the number of oligonitrophilic bacteria and utilization mineral forms of nitrogen on the background of reducing number of ammonifying bacteria. T2 and T3 also decreased the number of nitrifying bacteria, denitrifying bacteria, and net nitrification. In conclusion, our experiments showed that PO combined with mineral fertilizer is one of the most promising compounds for inhibiting nitrification rate, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the cotton plants. PO combined with mineral fertilizer has no negative effects on nitrogen-fixing bacteria Azotobacter and oligo-nitrophilic bacteria.

  18. EFECTO DE LA BIOFERTILIZACIÓN SOBRE EL CRECIMIENTO EN MACETA DE PLANTAS DE CAÑA DE AZÚCAR (Saccharum officinarum EFEITO DA BIOFERTILIZAÇÃO NO CRESCIMENTO DE PLANTAS EM VASOS açúcar de cana (Saccharum officinarum EFFECT OF BIOFERTILIZATION ON THE GROWTH OF POTTED SUGARCANE PLANTS (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    LILIANA SERNA-COCK

    2011-12-01

    Full Text Available El uso de microorganismos como fertilizante, ha demostrado tener efectos benéficos sobre el crecimiento de plantas y son una alternativa al uso de fertilizantes guímicos, sin embargo, cada microorganismo difiere en sus efectos benéficos. En este trabajo se evaluó el efecto de la aplicación de microorganismos fertilizantes, Azospirillum brasilense, Azotobacter chroccocum y Trichoderma lignorum sobre el crecimiento en maceta de plantas de caña de azúcar variedad CC 934418. El crecimiento de las plantas se midió en términos de diámetro del tallo, longitud de tallo y raíces, y número de hojas y raíces a los 15, 30 y 45 días de la siembra. El crecimiento de las plantas mostró diferencias estadísticamente significativas entre los tratamientos. Los microorganismos fertilizantes mostraron efecto positivo sobre el crecimiento de plantas de caña de azúcar, siendo Azospirillum brasilense y Trichoderma lignorum los microorganismos gue ejercieron mayor efecto sobre el diámetro del tallo y los sistemas radical y foliar de la planta. Se observaron los efectos beneficiosos de Trichoderma lignorum sobre el crecimiento de la hoja. Este es un nuevo aporte científico, ya que esta especie no ha sido reportada como promotora de crecimiento vegetal.0 uso de microrganismos como fertilizante, tem sido demonstrado gue têm efeitos benéficos no crescimento das plantas e são considerados uma alternativa ao uso de fertilizantes guímicos, no entanto, cada microrganismo possui diferentes efeitos benéficos. Neste estudo foi avaliado o efeito da aplicação de microorganismos fertilizantes, Azospirillum brasilense, Azotobacter chroccocum e Trichoderma lignorum no crescimento de cana-de-açucar da variedade CC 934418 plantadas em vasos. 0 crescimento das plantas foi medido em termos do diâmetro do caule, comprimento de caule e da raiz e número de folhas e raízes nos dias 15, 30 e 45 após a semeadura. 0 crescimento da planta mostrou diferen

  19. Soil microbiological composition and its evolution along with forest succession in West Siberia

    Science.gov (United States)

    Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil

    2015-04-01

    Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid

  20. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  1. Phytoremediation of coal mine spoil dump through integrated biotechnological approach

    Energy Technology Data Exchange (ETDEWEB)

    Juwarkar, A.A.; Jambhulkar, H.P. [National Environmental Engineering Research Institute, Nagpur (India)

    2008-07-15

    Field experiment was conducted on mine spoil dump on an area of 10 ha, to restore the fertility and productivity of the coal mine spoil dump using integrated biotechnological approach. The approach involves use of effluent treatment plant sludge (ETP sludge), as an organic amendment, biofertilizers and mycorrihzal fungi along with suitable plant species. The results of the study indicated that amendment with effluent treatment plant sludge (ETP sludge), at 50 ton/ha improved the physico-chemical properties of coal mine spoil. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in mine spoil improved greatly. Inoculation of biofertilizer and application of ETP sludge helped in reducing the toxicity of heavy metals such as chromium, zinc, copper, iron, manganese lead, nickel and cadmium, which were significantly reduced to 41%, 43%, 37%, 37%, 34%, 39%, 37% and 40%, respectively, due to the increased organic matter content in the ETP sludge and its alkaline pH (8.10-8.28), at which the metals gets immobilized and translocation of metals is arrested. Thus, amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant on coal mine spoil dump.

  2. Aislamiento e identificación de microorganismos con potencial biofertilizante de suelos arroceros del distrito de riego del rio zulia, norte de santander

    Directory of Open Access Journals (Sweden)

    Marilyn Tatiana Santos-Torres

    2006-07-01

    Full Text Available It was evaluated the microbial population of soils cultivated with rice at some zones of the district of irrigation of Zulia River, Norte de Santander state, Colombia, and no cultivated soil with rice. It was found that the seeded soil with rice were significantly low in fungi, bacteria and actinomycete populations compa red with no seeded with rice. This situation was due to possibly excessive use of agricultural machine and excessive application of pesticides and continuous rice monoculture. Therefore, with use the biofertilizer enriched with microorganism isolated from zone with similar agroecological conditions, will improve the microorganism adaptation of the rizosphere and will promote a reestablishment of the biological balance of soils and therefore to increase biotic activity improving the quality and productivity of the cultures. A total of 43 bacteria and 4 fungi were isolated in different soils of the studied zone, and were identified 25 microorganisms. According the isolation methodology, the bacteria were separate in two groups: diazotrophic like the species of the genera Azotobacter sp., Azospirillum sp. and Beijerinckia sp. and the phosphate solubilizate inorganic like Bacillus megaterium, B. cereus, Pseudomonas putida and P. aeruginosa. For the fungi identification were evaluate the micro and macroscopic characteristics in the culture medium Czapeck, following the fungi keys of Samson Hoekstra and Oorsehot (1981, which allowed recognize species like Trichoderma sp., Aspergillus niger, Penicillium purpurogenum, P. pinopilum.

  3. Scientometric analysis of Colombian research on bio-inoculants for agricultural production

    Directory of Open Access Journals (Sweden)

    Diana Corina Zambrano-Moreno

    2016-02-01

    Full Text Available The excessive use of synthetic chemical inputs in agricultural production has led to the disruption of biogeochemical cycles. One of the alternatives that arose within the systems of sustainable agriculture was the partial or total replacement of chemicals by biological substances. The analysis of relevant scientific literature has become a tool for assessing the quality of knowledge generation and its impact on the environment. A scientometric analysis was conducted of Colombian research on bio-inoculants from 2009 through 2014 in journals added to the Web of SciencesTM in order to identify the characteristics of the main target crops, the microorganisms used, and the beneficial effects on agriculture. In this work, 34 articles were identified: 24 (71 % were research on bio-fertilizer development and 10 (29 % on bio-pesticides. Articles mainly focused on the study of Gram-negative bacilli affecting the area (77 %, while others focused on issues and topics surrounding vegetables (30 %.The analysis of co-occurrence of keywords identified: i several genera of microorganisms (e.g. Azotobacter sp., Bradyrhizobium sp. and sustainable agriculture as issues that have a leading role in this scientific field, ii plant growth promoting rhizobacteria (PGPR as an emerging issue, iii biological nitrogen fixation (BNF as a subject which has risen in a complementary manner and iv endophytic bacteria and biodiversity as issues in growth. This study showed that research in Colombia could be targeted on issues such as endophytic bacteria, diversity and productivity.

  4. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Directory of Open Access Journals (Sweden)

    Baldani José I.

    2005-01-01

    Full Text Available This review covers the history on Biological Nitrogen Fixation (BNF in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali, associative (Azospirillum lipoferum, A. brasilense, A. amazonense and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica. The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus and GENOPAR (Herbaspirillum seropedicae reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  5. Growth promoting characteristics of rhizobacteria and AM Fungi for biomass amelioration of Zea mays

    Directory of Open Access Journals (Sweden)

    Kumar Manoj

    2015-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR and mycorrhiza were evaluated on the growth (biomass and yield of Zea mays. In the present study, selective rhizospheric PGPR (Azotobacter chroococcum, Pseudomonas aeruginosa, Azospirillum brasilense and Streptomyces sp. and a combination of six strains of arbuscular mycorrhizal fungi (AMF (Acaulospora morrowae, Gigaspora margarita, Glomus constrictum, Glomus mossae, Glomus aggregatum and Scutellospora calospora were isolated and identified with standard methods and 16S rRNA sequence analysis. PGPR and AMF were checked for their growth-promoting behavior under specific treatment conditions. The 30-48-day-old treated plants in all combinations showed a significantly higher mass value. The average dry weight from the shoot was in a range from 41-52% as compared to the control. This increase also translated into a higher mass value of the roots. Overall, an 82% growth rate was observed in terms of height as the consequence of biomass production, specifically in the case of AMF + rhizobacteria combination. We report an efficient, sustainable and cost-effective biofertilizer for enhanced biomass of Z. mays, one of the staple food crops worldwide.

  6. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    Science.gov (United States)

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  7. Full-scale photobioreactor for biotreatment of olive washing water: Structure and diversity of the microalgae-bacteria consortium.

    Science.gov (United States)

    Maza-Márquez, P; González-Martínez, A; Rodelas, B; González-López, J

    2017-08-01

    The performance of a full-scale photobioreactor (PBR) for the treatment of olive washing water (OWW) was evaluated under different HRTs (5-2days). The system was able to treat up to 3926L OWWday -1 , and consisted of an activated-carbon pretreatment column and a tubular PBR unit (80 tubes, 98.17L volume, 2-m height, 0.25m diameter). PBR was an effective and environmentally friendly method for the removal of phenols, COD, BOD 5 , turbidity and color from OWW (average efficiencies 94.84±0.55%, 85.86±1.24%, 99.12±0.17%, 95.86±0.98% and 87.24±0.91%, respectively). The diversity of total bacteria and microalgae in the PBR was analyzed using Illumina-sequencing, evaluating the efficiency of two DNA extraction methods. A stable microalgae-bacteria consortium was developed throughout the whole experimentation period, regardless of changes in HRT, temperature or solar radiation. MDS analyses revealed that the interplay between green algae (Sphaeropleales), cyanobacteria (Hapalosiphon) and Proteobacteria (Rhodopseudomonas, Azotobacter) played important roles in OWW bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhancement of Chlorella vulgaris growth and bioremediation ability of aquarium wastewater using diazotrophs.

    Science.gov (United States)

    Ali, Sayeda Mohammed; Nasr, Hoda Shafeek; Abbas, Wafaa Tawfik

    2012-08-15

    Treatment of aquarium wastewater represents an important process to clean and recycle wastewater to be safely returned to the environment, used for cultivation or to minimize the multiple renewal of water. Chlorella vulgaris was an important freshwater microalgae which used in wastewater treatment, and increasing its potential of treatment can be achieved with existence of N2-fixing bacteria. Co-culturing of Chlorella vulgaris with the diazotrophs, Azospirillum brasilense or Azotobacter chroococcum in three different media; aquarium wastewater (AWW), sterile enriched natural aquarium wastewater (GPM) and synthetic wastewater media (SWW) were studied. Biomass yield of the microalgae was estimated by determination of chlorophylls (a and b), total carotenoid and the dry weight of C. vulgaris. Also determination of ammonia, nitrite, phosphate and nitrate in the culture were done. The presence of diazotrophs significantly increased the biomass of C. vulgaris by increasing its microalgae pigments (chlorophylls a and b, and total carotenoids). The highest pigments percentage was reported due to addition of A. brasilense to C. vulgaris (18.3-133.5%) compared to A. chroococcum (23.9-56.9%). As well as increased dry weight from 12 to 50%. There was also improved removal of nitrate, nitrite, ammonia and phosphate; where, the highest removal percentage was reported due to addition of A. chroococcum to C. vulgaris (0.0-52%) compared to A. brasilense (0.6-16.4%). A. brasilense and A. chroococcum can support C. vulgaris biomass production and bioremediation activity in the aquarium to minimize the periodical water renewal.

  9. The Effect of Integrated Chemical and Biological Fertilizers on Growth Indices and Mucilage Yield of Isabgol (plantagoovata Forssk across Different Plant Densities

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2016-02-01

    Full Text Available Introduction Isabgol (plantagoovata Forssk is an important annual medicinal plant which is under cultivation in Iran. Isabgol has been used in medicine since ancient times, however, it has only been cultivated as a medicinal plant in recent decades. It is a diuretic, alleviates kidney and bladder complaints, gonorrhea, arthritis and hemorrhoids. In general, plants known as medicinal are rich in secondary metabolites and have potential as drugs. The biosynthesis of the secondary metabolites is controlled genetically and affected strongly by environmental factors especially chemical fertilizers. The environmental and economic impacts of chemical fertilizer application such as water pollution, low quality of agricultural production and decreasing soil productivity have encouraged farmers to use alternative nutrient sources. Sustainable farming on the basis of natural fertilizer application with the aim of omitting or decreasing chemical elements is a desirable approach to prevent these problems. Biofertilizers are some non-symbiotic and symbiotic microbes in the soil that stimulate plant growth and contribute the improvement of ecosystem. Many genera of plant growth promoting rhizobacteria such as Azospirillum, Azotobacter, Bacillus and Pseudomonas are used as biofertilizers for economically important crops. Several studies have shown that beneficial microbes, such as Azotobacter and Azospirillum, not only affect nitrogen fixation but also exhibit other favorable properties such as production of growth hormones. Nitrogen and phosphate chemical fertilizers could be replaced by biofertilizers containing Azotobacter, Azospirilium, Bacillus and Pseudomonas. In this study, we evaluated the effects of integrated application of chemical fertilizers and bio-fertilizers under different plant densities on growth indices, grain and mucilage yield of Isabgol. Materials and Methods A field experiment was conducted based on randomized complete block design with

  10. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  11. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem.

    Science.gov (United States)

    Chen, Xinxin; Song, Beizhou; Yao, Yuncong; Wu, Hongying; Hu, Jinghui; Zhao, Lingling

    2014-02-15

    Aromatic plants can substantially improve the diversity and structure of arthropod communities, as well as reduce the number of herbivore pests and regulate the abundance of predators and parasitoids. However, it is not clear whether aromatic plants are also effective in improving soil quality by enhancing nutrient cycling. Here, field experiments are described involving intercropping with aromatic plants to investigate their effect on soil nitrogen (N) cycling in an orchard ecosystem. The results indicate that the soil organic nitrogen and available nitrogen contents increased significantly in soils intercropped with aromatic plants. Similarly, the activities of soil protease and urease increased, together with total microbial biomass involved in N cycling, including nitrifying bacteria, denitrifying bacteria and azotobacters, as well as the total numbers of bacteria and fungi. This suggests that aromatic plants improve soil N cycling and nutrient levels by enriching the soil in organic matter through the regulation of both the abundance and community structure of microorganisms, together with associated soil enzyme activity, in orchard ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sharma, S. [Indian Institute of Technology, New Delhi (India). Centre for Rural Development and Technology

    2002-11-01

    Preliminary studies were conducted on wheat straw to test the technical viability of an integrated system of composting, with bioinoculants and subsequent vermicomposting, to overcome the problem of lignocellulosic waste degradation, especially during the winter season. Wheat straw was pre-decomposed for 40 days by inoculating it with Pleurotus sajor-caju, Trichoderma harzianum, Aspergillus niger and Azotobacter chroococcum in different combinations. This was followed by vermicomposting for 30 days. Chemical analysis of the samples showed a significant decrease in cellulose, hemicellulose and lignin contents during pre-decomposition and vermicomposting. The N, P, K content increased significantly during pre-decomposition with bioinoculants. The best quality compost, based on chemical analysis, was prepared where the substrate was treated with all the four bioinoculants together followed by vermicomposting. Results indicated that the combination of both the systems reduced the overall time required for composting and accelerated the composting of ligno-cellulosic waste during the winter season besides producing a nutrient-enriched compost product. (author)

  13. Composition and oxidation state of sulfur in atmospheric particulate matter

    Science.gov (United States)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  14. Morphological, biochemical and molecular characterization of twelve nitrogen-fixing bacteria and their response to various zinc concentration.

    Science.gov (United States)

    Dadook, Mohammad; Mehrabian, Sedigheh; Salehi, Mitra; Irian, Saeed

    2014-04-01

    Zinc is an essential micronutrient used in the form of zinc sulfate in fertilizers in the agriculture production system. Nitrogen-fixing microorganisms are also of considerable value in promoting soil fertility. This study aimed to investigate the degree of sensitivity to varying concentrations of zinc, in the form of ZnSO4, in different strains of Azotobacter chroococcum in a laboratory environment. To isolate A. chroococcum strains, soil samples were collected from wheat, corn and asparagus rhizospheres and cultured in media lacking nitrogen at 30˚C for 48 hours. Strains were identified based on morphological and biochemical characteristics. The presence of the nitrogenase enzyme system was confirmed by testing for the presence of the nifH gene using PCR analysis. The minimum inhibitory concentration (MIC) and optimal zinc concentration for the growth of each strain was determined. A total of 12 bacterial strains were isolated from six different soil samples. A. chroococcum strains were morphologically and biochemically characterized. The presence of the nifH gene was confirmed in all the strains. MIC and the optimal zinc concentration for bacterial growth were 50 ppm and 20 ppm, respectively. It was concluded that increasing the concentration of zinc in the agricultural soil is harmful to beneficial microorganisms and reduces the soil fertility. A 20-ppm zinc concentration in soil is suggested to be optimal.

  15. Influence of PAS domain flanking regions on oligomerisation and redox signalling by NifL.

    Directory of Open Access Journals (Sweden)

    Richard Little

    Full Text Available Per-ARNT-Sim (PAS domains constitute a typically dimeric, conserved α/β tertiary fold of approximately 110 amino acids that perform signalling roles in diverse proteins from all kingdoms of life. The amino terminal PAS1 domain of NifL from Azotobacter vinelandii accommodates a redox-active FAD group; elevation of cytosolic oxygen concentrations result in FAD oxidation and a concomitant conformational re-arrangement that is relayed via a short downstream linker to a second PAS domain, PAS2. At PAS2, the signal is amplified and passed on to effector domains generating the 'on' (inhibitory state of the protein. Although the crystal structure of oxidised PAS1 reveals regions that contribute to the dimerisation interface, 21 amino acids at the extreme N-terminus of NifL, are unresolved. Furthermore, the structure and function of the linker between the two PAS domains has not been determined. In this study we have investigated the importance to signalling of residues extending beyond the core PAS fold. Our results implicate the N-terminus of PAS1 and the helical linker connecting the two PAS domains in redox signal transduction and demonstrate a role for these flanking regions in controlling the oligomerisation state of PAS1 in solution.

  16. Functional participation of a nifH-arsA2 chimeric fusion gene in arsenic reduction by Escherichia coli

    International Nuclear Information System (INIS)

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara

    2008-01-01

    The NifH (dimer) and ArsA proteins are structural homologs and share common motifs like nucleotide-binding domains, signal transduction domains and also possible similar metal center ligands. Given the similarity between two proteins, we investigated if the NifH protein from Azotobacter vinelandii could functionally substitute for the ArsA1 half of the ArsA protein of Escherichia coli. The chimeric NifH-ArsA2 protein was expressed and detected in the E. coli strain by Western blotting. Growth comparisons of E. coli strains containing plasmids encoding for complete ArsA, partial ArsA (ArsA2) or chimeric ArsA (NifH-ArsA2) in media with increasing sodium arsenite concentrations (0-5 mM) showed that the chimeric NifH-ArsA2 could substitute for the ArsA. This functional complementation demonstrated the strong conservation of essential domains that have been maintained in NifH and ArsA even after their divergence to perform varied functions

  17. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P nitrogen cycle in recently abandoned croplands.

  18. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively. The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  19. Cachaza y carbonilla: residuos agroindustriales con potencial de fertilización biológica nitrogenada

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Montenegro Gómez

    2015-03-01

    Full Text Available Fue evaluada la presencia de bacterias fijadoras de nitrógeno (diazotróficas en tres mezclas de residuos con proporciones diferentes de compost de cachaza, arena y carbonilla; proporciones iguales de cascarilla de arroz y bagazo de caña:M1 (40, 10, 10, 20, 20 respectivamente, M2 (20, 0, 40, 20, 20 respectivamente, M3 (10, 40, 10, 20, 20 respectivamente. La evaluación se basó en la presencia del gen nifH, característico exclusivamente en bacterias diazotróficas. Se utilizó como control positivo muestras de ADN de bacterias del genero Azotobacter spp. Las mezclas con mayor contenido de cachaza y carbonilla M1 y M2, amplificaron para el gen nifH. Las bandas más fuertes se observan en M1 con mayor contenido de compost de cachaza. En contraste la mezcla M3, conformada principalmente por arena y cantidad muy inferior de residuos orgánicos no amplificó; sugiriendo que los contenidos de materia orgánica,son relevantes para la presencia de bacterias diazotróficas y potencial estimulante de fijación biológica de nitrógeno.

  20. Redox driven metabolic tuning: carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in Escherichia coli.

    Science.gov (United States)

    Nikel, Pablo I; de Almeida, Alejandra; Giordano, Andrea M; Pettinari, M Julia

    2010-01-01

    Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used. © 2010 Landes Bioscience

  1. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  2. Effect of Nitrogen and biological Fertilizers on Seed Yield and Fatty acid Composition of Sesame cultivars under Yazd conditions

    Directory of Open Access Journals (Sweden)

    E Shakeri

    2013-04-01

    Full Text Available To investigate the effect of different levels of nitrogen fertilizer and biofertilizers Azotobacter sp. and Azosprillum sp. on seed yield, oil yield and its percent and fatty acid composition in three sesame (Sesamum indicum L. cultivars an experiment was conducted using splite plot factorial arrangement based on randomized complete block design with three replications at Agricultural and Natural Resources Reasearch Center of Yazd in 2009 cropping season. The treatments included : cultivars ( Darab-14, Jiroft and Yazdi assigned to main plots, nitrogen fertilizer (0, 25 and 50 kg ha-1 and biofertilizer (inoculation and no-inoculation as factorial were randomized in sub-plots. Oil percent was measured using the Soxhlet method and fatty acid composition was measured using GC method. Results showed the significant differenc among three varieties concerning seed yield, oil yield and four fatty acids (oleic, linoleic, palmetic and stearis acid. Seed yield, oil yield, Oleic, Linolenic and Arasshidic acid significantly increased with applying N fertilizer. Seed yield, oil yield and linolenic acid percent significantly increased with applying biofertilizer. Oleic acid percent had negative and significant correlation with Linoleic acid (r = -0.759** and stearic acid (r=-0.774** percent. Generally, results showed the importance of applying biofertilizers against chemical fertilizers to protect the environment from harmful chemical pollution.

  3. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Polyhydroxyalcanoates of strains of Azospirillum spp. isolated of roots of Lycopersicon esculentum Mill. “tomato” and Oryza sativa L. “rice” in Lambayeque

    Directory of Open Access Journals (Sweden)

    Katty Baca

    2010-12-01

    Full Text Available In this work was determined the concentration of polyhydroxyalkanoates (PHAs of Azospirillum strains isolated from roots of Lycopersicon esculentum Mill "tomato" and Oryza sativa L. "rice" as an alternative to accumulation of petroleum-based plastics. Previously disinfected root were plated in Nfb semisolid medium where nitrogen-fixing bacteria were recognized by a whitish film on the surface and turn from green to blue. The genus Azospirillum was identified in Congo red agar medium, obtained 96 isolates of A. lipoferum and A. brasilense on tomato and rice. Batch fermentation was performed with broth Azotobacter modified feeding a saturated solution of malic acid every 12 hours and were stained with Sudan Black B. Strains were selected with the greatest number of PHAs granules (in tomato, 18 of A. lipoferum and 2 of A. brasilense; in rice, 10 of A. lipoferum and 10 of A. brasilense and quantified the biomass and PHAs. PHAs concentration reached 0.661 gL-1 in A. lipoferum KM(T-73 and 0.738 gL-1 in A. brasilense KM(T-19, both isolated from tomato. Strains of A. lipoferum and A. brasilense isolated from tomato reached a higher concentration of biomass and PHAs against the strains of rice.

  5. (Catalytic mechanism of hydrogenase from aerobic N sub 2 -fixing microorganisms)

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.

    1990-01-01

    Hydrogenases are enzymes which catalyze reactions involving dihydrogen. They serve integral roles in a number of microbial metabolic pathways. Our research is focussed on investigations of the catalytic mechanism of the hydrogenases found in aerobic, N{sub 2}-fixing microorganisms such as Azotobacter vinelandii and the agronomically important Bradyrhizobium japonicum as well as microorganisms with similar hydrogenases. The hydrogenases isolated from these microorganisms are Ni- and Fe-containing heterodimers. Our work has focussed on three areas during the last grant period. In all cases, a central theme has been the role of inhibitors in the characteristics under investigation. In addition, a number of collaborative efforts have yielded interesting results. In metalloenzymes such as hydrogenase, inhibitors often influence the activity of the enzyme through ligand interactions with redox centers, often metals, within the enzyme. Therefore, investigations of the ability of various compounds to inhibit an enzyme's activity, as well as the mechanism of inhibition, can provide insight into the catalytic mechanism of the enzyme as well as the role of various redox centers in catalysis. We have investigated in detail four inhibitors of A. vinelandii and the results are summarized here. The influence of these inhibitors on the spectral properties of the enzyme are summarized. Electron paramagnetic resonance and ultraviolet spectra investigations are discussed. 9 figs.

  6. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study

    International Nuclear Information System (INIS)

    Wu, S.C.; Luo, Y.M.; Cheung, K.C.; Wong, M.H.

    2006-01-01

    A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism. - Influence of bacterial activities on heavy metal is two-edged

  7. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.

  8. Estimation of the effect of radionuclide contamination on Vicia sativa L. induction of chlorophyll fluorescence parameters using "Floratest" optical biosensor

    Science.gov (United States)

    Ruban, Yu.; Illienko, V.; Nesterova, N.; Pareniuk, O.; Shavanova, K.

    2017-12-01

    The presented research was aimed to determine the parameters of chlorophyll fluorescence (IChH) curve induction for Vicia sativa L. that were grown on radionuclide contaminated soils by using "Floratest" fluorometer. Plants were inoculated with 5 species of bacteria that might potentially block radionuclide uptake (Agrobacterium radiobacter IMBB-7246, Azotobacter chroococcum UKMB-6082, A. chroococcum UKMB-6003, Bacillus megaterium UKMB-5724, Rhizobium leguminosarum bv. viceae) and grown in sod-podzolic, chernozem and peat-bog soils, contaminated with 137Cs (4000±340 Bq/kg). As a result of research, it was determined that the most stressful factors for vetch plants are combination of soil radionuclide and presence of Bacillus megaterium UKM B-5724, as the number of inactive chlorophyll increased. In addition, the vetch plants significantly increased fixed level of fluorescence (Fst) under the influence of radioactive contamination in presence of Bacillus megaterium UKM B-5724, indicating inhibition of photosynthetic reactions. Other bacteria showed radioprotective properties in almost all types of soil.

  9. Microbial abundance in rhizosphere of medicinal and aromatic plant species in conventional and organic growing systems

    Directory of Open Access Journals (Sweden)

    Adamović Dušan

    2015-01-01

    Full Text Available This study was aimed at comparing the abundance of microorganisms in the rhizosphere of four different medicinal and aromatic plant species (basil, mint, dill and marigold grown under both conventional and organic management on the chernozem soil at the experimental field of Bački Petrovac (Institute of Field and Vegetable Crops, Novi Sad, Serbia. Two sampling terms (June 1 and July 18, 2012 were performed to collect samples for microbiological analyses. The microbial abundance was higher in organic than in conventional system while at the same time significant differences were obtained only with dill rhizosphere. The differences in number of microorganisms belonging to different groups relied upon both plant species and sampling term. Thus, in mint, the recorded number of azotobacters and fungi was significantly higher whereas the number of ammonifiers was significantly lower. The present results indicate that organic growing system affected the abundance of microorganisms in rhizosphere of species investigated, especially in the second term of sampling.

  10. Effect of free and symbiotic nitrogen fixing bacterial co-inoculation on seed and seedling of soybean seeds produced under deficit water condition

    Directory of Open Access Journals (Sweden)

    Hamed Hadi

    2016-04-01

    Full Text Available Effect of free and symbiotic nitrogen fixing bacteria on seed and seedling produced seeds under deficit irrigation was conducted in laboratory and field experiments in 2006. In laboratory of karaj’s Seed and Plant Research and Certificate Institute an experiment was conducted based on factorial in form of completely randomized design with four replications and in field’s of Islamic Azad University, Varamin Branch were split factorial in form of randomized completely block design with three replications. Treatments included water stress [Irrigation after 50 (Normal irrigation, 100 (Middle stress, 150 (Severe stress mm evaporation from pan class A], Cultivar [Manokin & Williams and SRF×T3 Line] and inoculation [Inoculation with Bradyrhizobium japonicum, Bradyrhizobium japonicum co-inoculated with Azotobacter chroococcum, No seed inoculation]. Results showed that drought stress decreased the uniformity and germination speed and seedling emergence. Bacteria increased leaf dry weight, stem dry weight, leaf area and seedling vigor index but had no effect on emergence. In irrigation levels inoculated treatments had higher seedling length, leaf, stem, seedling dry weight and seedling vigor. Severs stress seeds inoculated with Bradyrhizobium japonicum had higher root dry weight than control. Therefore in seeds which were produced under deficit irrigation conditions, bacteria increased seedlings vigor.

  11. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Efecto de la fertilización en la nutrición y rendimiento de ají (Capsicum spp. en el Valle del Cauca, Colombia Effect of the fertilization on the nutrition and yield of the red pepper (Capsicum spp. in the Valley of the Cauca, Colombia.

    Directory of Open Access Journals (Sweden)

    Edgar A Rodríguez Araujo

    2010-01-01

    Full Text Available En el estudio se evaluó el efecto de las fertilizaciones química y orgánica y biofertilización en la nutrición y rendimiento del ají (Capsicum spp. en el Valle del Cauca, Colombia, y en la producción de plántulas en vivero y en campo. Las variables evaluadas en vivero fueron: peso fresco de raíz y parte aérea, número de hojas, altura de la planta (cm, diámetro del tallo (mm, peso seco total, peso seco de raíz y parte aérea. Se evaluaron seis tratamientos, bajo un diseño estadístico de bloques completos al azar, de la forma siguiente: fertilización de síntesis química completa (testigo (FSQC, FSQC más fertilización orgánica (FSQC + O, FSQC + O más biofertilización 1 (solubilizador de fósforo con base en Penicillium janthinellum (1x10(7conidias/ml, FSQC + O más micorrizas (FSQC + O + M, FSQC + O más biofertilización 2 (fijador de nitrógeno con base en Azotobacter chroococcum (1x10(8 UFC/ml y Azospirillun sp. (1x10(8 UFC/ml, FSQC + O más biofertilización 3 (fijador de nitrógeno con base en Azotobacter chroococcum (1x10(8 UFC/ml. El experimento se instaló sobre un Typic Hapludolls. El análisis de resultados mostró que, en todos los tratamientos la fertilización de síntesis química + orgánica + micorrizas presentó los mejores resultados (P This study was realised with the purpose of to evaluate the effect of the chemical, organic fertilization and biofertilization on the nutrition and yield of the red pepper (Capsicum spp. in the Valley of the Cauca in the initial production of plants in breeding ground and final production in field. Two experiments were realized, one in stage of fish-pond and other one in field stage. In fish-pond an experiment was realized where there was evaluated the effect of the different types of fertilization in chili and other one where there was evaluated the effect of the chemical, organic fertilization and biofertilización in chili. In field there was evaluated the effect of the

  13. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    Science.gov (United States)

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  14. Evaluation Of The Impact Of Chemical And Biological Fertiliser Application On Agronomical Traits Of Safflower (Carthamus Tinctorius L. / Íîmiskâ Un Bioloìiskâ Mçslojuma Pielietojuma Ietekme Uz Saflora (Carthamus Tinctorius L. Agronomiskâm Pazîmçm

    Directory of Open Access Journals (Sweden)

    Janmohammadi Mohsen

    2015-12-01

    Full Text Available In order to investigate the influence of biological and chemical fertilisers on morphological traits, yield and yield components of safflower (Carthamus tinctorius L., a field experiment was conducted in Maragheh (37°23' N; 46°16' E, in north western Iran, for one year in the 2014 growing season. The effect of seven treatments was evaluated: T1 - control (no fertiliser application, T2 - seed inoculation with P biofertiliser (contains phosphate solubilising bacteria; Pantoea agglomerans strain P5 and Pseudomonas putida strain P13, T3 - seed inoculation with N biofertiliser (contains Azotobacter vinelandii strain O4, T4 - foliar application of iron chelate, T5 - soil application of complete NPK, T6: foliar application of manganese chelate, and T7 - foliar application of zinc sulphate. The result showed that although application of N biofertiliser did not have a significant effect on the evaluated traits, P biofertiliser slightly improved grain yield. However, the application of complete NPK fertiliser improved most of the traits, compared to the control and biofertiliser treatment. The best performance was obtained by foliar application of manganese chelate and zinc sulphate. The results showed that micronutrient-deficiencies have to be managed to unlock the potential yield of safflower in semiarid production systems.

  15. Effects of plant growth promoting rhizobacteria (PGPR and cover crops on seed germination and early establishment of field dodder (Cuscuta campestris Yunk.

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Several bacterial cultures: Bacillus licheniformis (MO1, B. pumilus (MO2, and B. amyloliquefaciens (MO3, isolated from manure; B. megatherium ZP6 (MO4 isolated from maize rhizosphere; Azotobacter chroococcum Ps1 (MO5 and Pseudomonas fluorescens (MO6, were used to test the influence of plant growth promoting rhizobacteria (PGPR on seed germination and germination rate of field dodder (Cuscuta campestris Yunk.. Also, to examine the effect of host seeds on germination and initial growth of seedlings of field dodder plants in the dark and under white light, the seeds of four host plants were used (watermelon, red clover, alfalfa and sugar beet. Germinated seeds were counted daily over a ten-day period and the length of seedlings was measured on the final day. The results show that treatments MO3, MO4 and MO6 had inhibitory effects (15%, 65% and 52%, respectively, while treatments MO1, MO2 and MO5 had stimulating effects (3%, 3% and 19%, respectively on seed germination of field dodder. The data for host seeds show that light was a significant initial factor (83-95%, control 95% for stimulating seed germination of field dodder plants, apart from host presence (73-79%, control 80%.

  16. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    Science.gov (United States)

    Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M

    2009-06-17

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.

  17. Capsule production by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  18. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  19. Expression, Purification, Crystallization and Preliminary X-ray Analysis of Pseudomonas fluorescens AlgK

    Energy Technology Data Exchange (ETDEWEB)

    Keiski,C.; Yip, P.; Robinson, H.; Burrows, L.; Howell, P.

    2007-01-01

    AlgK is an outer-membrane lipoprotein involved in the biosynthesis of alginate in Pseudomonads and Azotobacter vinelandii. A recombinant form of Pseudomonas fluorescens AlgK with a C-terminal polyhistidine affinity tag has been expressed and purified from the periplasm of Escherichia coli cells and diffraction-quality crystals of AlgK have been grown using the hanging-drop vapour-diffusion method. The crystals grow as flat plates with unit-cell parameters a = 79.09, b = 107.85, c = 119.15 {angstrom}, = 96.97{sup o}. The crystals exhibit the symmetry of space group P2{sub 1} and diffract to a minimum d-spacing of 2.5 {angstrom} at Station X29 of the National Synchrotron Light Source, Brookhaven National Laboratory. On the basis of the Matthews coefficient (V{sub M} = 2.53 {angstrom}{sup 3} Da{sup -1}), four protein molecules are estimated to be present in the asymmetric unit.

  20. Inoculation Effect of N2-Fixer and P-Solubilizer into a Mixture of Fresh Manure and Phosphate Rock Formulated as Organonitrofos Fertilizer on Bacterial and Fungal Populations

    Directory of Open Access Journals (Sweden)

    Sutopo Ghani Nugroho

    2013-03-01

    Full Text Available Microbial N2-fixer and P-solubilizer were innoculated in a mixture of fresh manure and phosphate rock formulated as an Organonitrophos fertilizer. The population dynamics of bacteria and fungi growing during the composting process were observed. The inoculation treatments consisted of: K = mixture of 20% phosphate rock and 80% of fresh manure + decomposers (control, N = mixture of 20% phosphate rock and 80% of fresh manure + decomposers + N2-fixer (Azotobacter and Azospirillum sp. , P = mixture of 20% phosphate rock and 80% of fresh manure + decomposers + P-solubilizer (A. niger and P. fluorescens, and NP = mixture of 20% phosphate rock and 80% of fresh manure + decomposers + N2-fixer + P-solubilizer. The results showed that inoculation of microbial N2-fixer and combination inoculation of N2-fixer and P-solubilizer increased the total bacterial population compared to that of the control as well as the only inoculation of microbial P-solubilizer on the 14th day of observation in which the bacteria reached the highest population. On all the observation days, the population of fungi in the inoculation of microbial P-solubilizer treatment increased significantly compared to that of the control. However, there was no difference between the populations of fungi in the inoculation of N2-fixer and combination inoculation of N2-fixer and Psolubilizer. The genus of fungy identified in the compost of the mixture of fresh manure and phosphate rock were Chytridium sp., Aspergillus sp., Rhizopus sp., and Fusarium sp.

  1. The Effects of Time of Manure Application and Different Biological Fertilizers on Quantitative and Qualitative Characteristics of Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    m Jahan

    2011-02-01

    Full Text Available Abstract To study the response of summer squash as a medicinal plant, two manure application time and utilization of different biofertilizers, split plot arrangement of factors based on randomized complete block design with three replications was used in 2008-09 growing season. Two manure application time (autumn and spring were allocated to main plots and four biofertilizers including 1- Nitragin (containing Azotobacter sp., Azospirillum sp. and Pseudomonas sp., 2- phosphate solubilizing bacteria PSB (containing Pseudomonas sp. and Bacillus sp., 3- Nitragin+PSB, 4-control, were assigned to sub plots. The results showed the significant effect of spring manure application on fruit and seed yield. Nitragin increased fruit and seed yield, significantly. The superiority of spring manure application was revealed on seed and fruit number. A positive correlation (R2 = 0.92 was found between fruit and seed yield with a linear trend in the range of 10 to 20 t ha-1 and leveling off at the above 20 t ha-1 fruit yields. The seed oil and protein content were not affected by treatments, however, the biofertilizers increased oil and protein yield compared to control. At a glance, the biofertilizers could be an appropriate alternative for chemical fertilizers to achieve ecological production of summer squash. Keywords: Schneider Squash, Biofertilizers, Seed yield, Seed oil

  2. The influence of benefit microorganisms on yield and quality of soybean grains under conditions of reduced nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Suzana Kristek

    2017-01-01

    Full Text Available The aim of this study was to investigate the possibility to reduce the application of mineral nitrogen fertilizers through the application of beneficial microorganisms (genus Bradyrhizobium, Azotobacter, bacteria Pseudomonas fluorescens, Bacillus spp., etc.. Research was conducted during 2013 and 2014 on Eutric brown soil. The experiment was set up in a split-block scheme with 12 different variants in 4 repetitions: two soybean cultivars were used; two different treatments of nitrogen fertilizers and three different treatments of microbiological preparation were applied. Analysed parameters were soybean grain yield (kg/ha based on 13% moisture, protein content (%, oil content (% and hectolitre mass (kg. Given that the climatic conditions in the second year of research were more favourable than in the first year of research, all the elements of research, including control variants, achieved better results in the second year of research. All variants treated with microbiological preparations, either by application in soil or by application in soil combined with foliar treatments, also achieved statistically significant differences compared to the control variants.

  3. RESISTANCE OF KARST CAVERNS NITROGEN-FIXING BACTERIA TO EXTREME FACTORS

    Directory of Open Access Journals (Sweden)

    Tashyrev O. B.

    2014-10-01

    Full Text Available To determine the studied bacteria resistance quantitative parameters of extreme factors such as toxic metals (Cu2+, organic xenobiotics (p-nitrochlorobenzene and UV-irradiation were the aim of the research. Six strains of nitrogen-fixing bacteria isolated from clays of two caverns Mushkarova Yama (Podolia, Ukraine and Kuybyshevskaya (Western Caucasus, Abkhazia and Azotobacter vinelandii УКМ В-6017 as a reference strain have been tested. For this purpose the maximum permissible concentration of Cu2+ and p-nitrochlorobenzene in the concentration gradient and lethal doses of UV by the survival caverns have been determined. Maximum permissible concentrations for strains were as 10 ppm Cu2+, 70–120 ppm of p-nitrochlorobenzene. The maximum doses of UV-irradiation varied in the range of 55–85 J/m2 (LD99.99. It is shown that three classes of extreme factors resistance parameters of karst caverns strains are similar to the strain of terrestrial soil ecosystems. The most active studied strains reduce the concentration of p-nitrochlorobenzene in the medium in 13 times. The ability of nitrogen-fixing bacteria to degrade p-nitrochlorobenzene could be used in creation new environmental biotechnology for industrial wastewater treatment from nitrochloroaromatic xenobiotics. Isolated strains could be used as destructors for soils bioremediation in agrobiotechnologies and to optimize plants nitrogen nutrition in terrestrial ecosystems.

  4. Efecto del uso del suelo sobre rizobacterias fosfatosolubizadoras y diazotroficas en el distrito de riego del río zulia,norte de santander (colombia

    Directory of Open Access Journals (Sweden)

    Ronal Fernando-Cañon

    2009-07-01

    Full Text Available It was quantified the population of diazotrophic and phosphate solubilizer bacteria with the aim of determine the effect of the use of soils during different periods of intervention with culture of rice in three agro-ecological zones of the District of Irrigation of the Zulia river. The results showed that the management of the culture of rice in the different studied zones significantly influenced the population of microorganisms in all the studied culture media, excepting the semi-solid culture media JMV. The populations of the genera Azospirillum spp., Azotobacter spp., Beijerinckia spp., were influenced by the fertility of the soils in the zones of Buena Esperanza and Restauración compared with Limoncito, where the quantities of organic matter and nutritional escential elements were lower. It were obtained 28 isolations of entophytic, associative, free-living diazotrophic and phosphate solubilizer rhizobacteria according with their macroscopic characteristics in the culture media Batata, JMV, Ashby and nutritive, from the analysis of the population in the zones of Buena Esperanza, Restauración and Limoncito. These isolations were purified and preserved in sterilized saline solution (0.85% NaCl at 4°C in the Laboratory of Microbiology of the Colombian Agricultural Institute, ICA, with the purpose to be used in subsequent studies about their potential as biofertilizers in rice cultured soils of the department.

  5. Effects of organic and biological fertilizers on fruit yield and essential oil of sweet fennel (Foeniculum vulgare var. dulce)

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, R.; Rezvani Moghaddam, P.; Nasiri Mahallati, M.; Nezhadali, A.

    2011-07-01

    In order to evaluate the effects of different organic and biological fertilizers on quantity and quality of fennel essential oil, an experiment was conducted in a completely randomized block design with three replications. The experimental treatments included two organic (compost and vermicompost) and two biological (Pseudomonas putida and Azotobacter chroococcum) fertilizers, their all twin combinations (Ps. putida + A. chroococcum, Ps. putida + compost, Ps. putida + vermicompost, A. chroococcum + compost, A. chroococcum + vermicompost and compost + vermicompost) and control (non fertilized). There were significant differences between treatments in terms of seed essential oil percentage, essential oil yield; anethole, fenchone, limonene and straggle content in seed essential oil. Results showed that the highest and the lowest percentages of essential oil were obtained in control (2.9%) and A. chroococcum + vermicompost (2.2%) treatments, respectively. The highest essential oil yield (29.9 L ha{sup -}1) and anethole content of essential oil (69.7%) and the lowest contents of fenchone (6.14%), limonene (4.84%) and estragole (2.78%) in essential oil were obtained in compost + vermicompost treatment. It seems that compost + vermicompost treatment compared to other treatments supplied the highest equilibrium of nutrients and water in the root zone of sweet fennel which is led to increasing the anethole content, there upon, decreasing other compounds. Essential oil yield and percentage of anethole content in essential oil were significantly higher in all organic and biological treatments compared with control. (Author) 43 refs.

  6. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  7. Fluorescence of Alexa fluor dye tracks protein folding.

    Science.gov (United States)

    Lindhoud, Simon; Westphal, Adrie H; Visser, Antonie J W G; Borst, Jan Willem; van Mierlo, Carlo P M

    2012-01-01

    Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET) are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488), which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  8. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    Science.gov (United States)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  9. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  10. Inoculación de Cilantro (Coriandrum sativum L. con Rizobacterias en Villa del Rosario, Norte de Santander / Inoculation of Cilantro (Coriandrum sativum L. with Rhizobacterias in Villa del Rosario, Norte de Santander

    Directory of Open Access Journals (Sweden)

    Katherine Carrillo Becerra

    2014-12-01

    Full Text Available Resumen. Las rizobacterias promotoras de crecimiento vegetalrepresentan una alternativa de biofertilización. En este estudiose evaluó el efecto de su inoculación en plantas de cilantro y lautilización de la práctica de quema de cascarilla de arroz en lapreparación del suelo para el establecimiento del cultivo. Seempleó un diseño experimental en parcelas divididas donde, lasparcelas principales correspondieron a la preparación del suelo conquema de cascarilla de arroz y sin quema con la inoculación previade Trichoderma sp. Las subparcelas eran los tratamientos con lainoculación simple y en co-inoculación de Azospirillum RzH132y Azotobacter RzH120 y los testigos absoluto y químico. Unavez se comprobaron los supuestos en los residuales del modelo,normalidad, homogeneidad de varianzas y aleatoriedad, se realizóel análisis de varianza y pruebas de comparación múltiple porel test de Tukey y un análisis de componentes principales comotécnica de reducción de dimensiones. Los resultados mostraronun efecto positivo en el crecimiento de las plantas inoculadas conlas rizobacterias en las dos parcelas con quema y sin quema decascarilla de arroz; sin embargo, en la variable rendimiento nose obtuvieron diferencias significativas (P≤0,05. Así mismo, seencontró que la población de bacterias rizosféricas en los mediosde cultivo NFb semisólido, Ashby y King B, se vio favorecida por lano quema de cascarilla de arroz en el suelo. Es importante resaltarque los resultados se obtuvieron con la disminución al 30% de lafertilización química, con lo cual se puede reducir el uso de estosproductos químicos. /  Abstract. Plant growth promoting rhizobacteria (PGPR representan alternative biofertilization form. In this study, was evaluatedPGPR inoculation in cilantro plants. Likewise, was evaluatedthe practice of burning rice husk in soil preparation for cropestablishment. An experimental design was used in a split plotwhere the main plots were

  11. Efecto de productos bioactivos combinados con el biopreparado microbiano Azotofos en el crecimiento de Paspalum salam Effect of bioactive products combined with the microbial biopreparate Azotofos on the growth of Paspalum salam

    Directory of Open Access Journals (Sweden)

    Gertrudis Pentón

    2010-12-01

    Full Text Available Con el objetivo de evaluar el efecto de los productos bioactivos y su combinación con Azotofos en el crecimiento de Paspalum salam (Paspalum vaginatum Sw. cv. Salam, se realizaron dos experimentos. Se empleó un diseño en bloques al azar con tres repeticiones y se probaron los productos bioactivos: Pectimorf(r (a base de pectinas y BIOBRAS-16(r (a base de brasinoesteroides, y su combinación con el biopreparado microbiano Azotofos, que consiste en una mezcla en soporte húmico de Pseudomonas sp. y Azotobacter chroococcum. En el primer experimento se establecieron seis tratamientos a partir de los productos bioactivos, el biopreparado microbiano y su combinación. El segundo experimento consistió en probar distintos tiempos de imbibición de los propágulos en Pectimorf(r. Se obtuvo a los 30 días de la siembra una significativa superioridad en el porcentaje de esquejes enraizados en los tratamientos con BIOBRAS-16(r y Pectimorf(r, superior a 89%; mientras que el testigo no superó el 69%. La combinación del Pectimorf(r con el Azotofos aumentó el porcentaje de esquejes enraizados. En cuanto a la biomasa total acumulada, el mejor resultado se obtuvo en el tratamiento con Pectimorf (0,84 g/individuo. Con respecto al tiempo de imbibición, los tratamientos testigo hidratado y sin hidratar no superaron el 69% de esquejes enraizados, y fueron diferentes significativamente del tiempo de imbibición 60 min. que alcanzó 100%. Se concluye que el Pectimorf(r fue la mejor alternativa para estimular el crecimiento de P. vaginatum cv. Salam. Los resultados indicaron además que los esquejes deben mantenerse imbibidos en Pectimorf(r durante 60 minutosIn order to evaluate the effect of bioactive products and their combination with Azotofos on the growth of Paspalum salam (Paspalum vaginatum Sw. cv. Salam, two trials were conducted. A randomized block design was used with three repetitions and the bioactive products Pectimorf(r (based on pectins and

  12. Produção de alginato por microrganismos Alginate production by microorganisms

    Directory of Open Access Journals (Sweden)

    José Miguel Müller

    2011-01-01

    Full Text Available O alginato é um copolímero linear constituído de unidades de ácidos α-L-gulurônicos e β-D-manurônicos e é extensamente utilizado devido as suas propriedades espessantes, estabilizantes e gelificantes. Estas características fazem com que este biopolímero encontre aplicações na indústria de alimentos, na indústria têxtil e de papel, em cosméticos e na área farmacêutica e médica. Atualmente para este conjunto de aplicações sua principal fonte são algas marrons, entretanto, o alginato pode ser obtido a partir de biossíntese, utilizando-se microrganismos do gênero Pseudomonas e Azotobacter. A produção bacteriana de alginato apresenta-se como uma alternativa interessante e sua produção por microrganismos, além de possibilitar a produção de biopolímeros de alta qualidade com características específicas e pré-determinadas, irá diminuir o impacto ambiental nas regiões em que as algas marinhas das quais é extraído são coletadas. Nos últimos anos, vários estudos relacionados à produção de alginato por microrganismos foram realizados com o objetivo de avaliar sua produção e rota metabólica de biossíntese, para caracterizar o material produzido e para determinar as potencialidades de aplicação deste novo material. O rápido desenvolvimento de aplicações do alginato na área médica e farmacêutica, bem como a descoberta de propriedades imunológicas únicas deste material tem aumentado o interesse no desenvolvimento de processos para produzi-lo. Neste artigo são abordados aspectos relacionados à produção e as características do alginato bacteriano e também reportadas às potencialidades e aplicações inovadoras nas quais este material vem sendo utilizado.Alginate is a linear copolymer consisting of units of α-L-guluronic and β-D-mannuronic acid which is widely used due to its thickening, stabilizing and gelling properties. These characteristics mean that it has many applications in the food

  13. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S. M.K Tahhami Zarandi

    2015-04-01

    Full Text Available The use of organic manure and biofertilizers containing beneficial microorganisms instead of chemical fertilizers are known to improve plant growth through supply of plant nutrients and can help sustain environmental health and soil productivity. Because of special priority of the medicinal plants production in sustainable agricultural systems and lack of studies on assessment of different sources of fertilizer on basil plants, an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2009. A complete randomize block design with ten treatments, and three replications was used. The treatments were: 1cow manure, 2sheep manure, 3hen manure, 4compost 5vermicompost, 6biological fertilizer nitroxin (consisting of Azotobacter and Azospirillum, 7biological fertilizer consisting of Phosphate Solubilizing Bacteria (Pseudomonas and Bacillus, 8mixture of biological fertilizer nitroxin and Phosphate Solubilizing Bacteria 9NPK fertilizers, and 10control (no fertilizer. Results showed plant height in sheep manure was higher than other treatments. Number of branches in vermicompost and number of inflorescence in cow manure were significantly higher than other treatments. The number of whorled flowers in compost, sheep and cow manure were more than other treatments. Highest leaf and green area index was observed in nitroxin treatment and biological yield in sheep manure have significant difference with other treatments (except cow manure. The highest seed yield were obtained from plants treated with compost (1945 kg/h and the lowest of that observed in NPK fertilizer and control treatments. In all measured traits (except number of inflorescence NPK fertilizer and control treatment did not have any significant difference.

  14. The Effect of Biofertilizers and Winter Cover Crops on Essential Oil Production and Some Agroecological Characteristics of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    M Jahan

    2013-04-01

    Full Text Available In searching for new strategies of medicinal plant production with high yield but without undesirable compounds or effects, it is important to investigate unconventional alternatives such as application of PGPR and cover crops cultivation. This experiment was conducted in a split plots arrangement with two factors based on randomized complete block design with three replications during years 2009-10, at Research Farm of Ferdowsi University of Mashhad. Cultivation and no cultivation of cover crops in autumn assigned to the main plots. The sub factor was biofertilizer application with four levels, included 1-Nitroxin (containing Azotobacter spp. and Azospirillum spp., 2-Biophosphorous (Bacillus sp. and Pseudomonas sp., 3-Nitroxin + Biophosphorous and 4-Control. During growing season plants were harvested by three cuts. Results showed that total shoots dry weight, leaves yield and LAI in plants under no cover crop cultivation had a significant advantage. Biofertilizers increased most characteristics e.g. fresh and dry total shoot yield, dry leaves and LAI. The interaction between fertilizer and cover crop was significant, as the highest yield of fresh shoots was observed in mix of nitroxin and biophosphorous with no cover crop, the highest and the lowest of leaf and green area index were obtained in plants treated by nitroxin without cover crop and biophosphorous with cover crop, respectively. Plants harvested in cut 3 had the lowest LAI and other two cuts had no significant difference concerning this trait. The highest and the lowest fresh and dry shoot yield were observed in cut 2 and 1, respectively. The most essential oil yield was in cut 2 and 3 (without significant difference and cut 1 was the lowest. The results showed that the interaction between biofertilizers and no cover crop cultivation was significant, as use of the biofertilizers especially nitroxin and biophosphorous in no cover crop condition enhanced the most characteristics of

  15. Effects of Fertilizer Types and Irrigation Intervals of on Quantity Criteria of Lavender (Lavandula angustifolia, Rosemary (Rosemarinus officinalis and Hyssop (Hyssopus officinalis

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2012-02-01

    Full Text Available In order to investigate the effects of fertilizer types and irrigation regimes on quantitative criteria of three medicinal plants: lavander, rosemary and hyssop, an experiment was conducted at Research Field of Faculty of Agriculture, Ferdowsi University of Mashhad, during two growing years of 2007-2010. A split-split plot design with three replications was used. Treatments were three irrigation intervals (10, 20, 30 days as main plots and three types of fertilizers in six levels: control, Nitroxin containing Azotobacter sp. and Azospirilum sp. (5lit/ha, nitrogen fertilizer (50 and 100 kg/ha, cow manure (10 and 20 ton/ha as subplots. Animal manure and chemical fertilizer were applied at the time of transferring seedlings to the field and Nitroxin was used with the first irrigation. Shoot harvesting was performed twice during the plant growth at the time of full flowering. Increasing irrigation intervals reduced dry matter yield of three species and the highest yield of lavender (3990 kg/ha, rosemary (2380 kg/ha and hyssop (7380 kg/ha were obtained with 10 days interval. Also the effect of fertilizer was not significant but the highest yield for lavender (3930kg/ha, rosemary (2535kg/ha was obtained with 50 kg/ha chemical fertilizer and the highest yield of hyssop (6117kg/ha resulted in application of 20 ton/ha animal manure. The ratio of leaf dry weight to stem dry weight for both years was gained with 30 days irrigation interval at 20 ton/ha animal manure. In general, the best treatment was 30 days interval irrigation and 20 ton/ha animal manure for the best yield and respective in local conditions

  16. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  17. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  18. ProClaT, a new bioinformatics tool for in silico protein reclassification: case study of DraB, a protein coded from the draTGB operon in Azospirillum brasilense.

    Science.gov (United States)

    Rubel, Elisa Terumi; Raittz, Roberto Tadeu; Coimbra, Nilson Antonio da Rocha; Gehlen, Michelly Alves Coutinho; Pedrosa, Fábio de Oliveira

    2016-12-15

    Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N 2 to NH 4 + by nitrogenase occurs only under limiting conditions of NH 4 + and O 2 . Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function.

  19. Effect of plant growth promoting rhizobacteria (PGPR application, nitrogen and zinc sulphate fertilizer on yield and nitrogen uptake in rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    N. Jafari

    2016-05-01

    Full Text Available In order to study the effects of simultaneous application of ZnSO4 and biological fertilizer, Azotobacter chroococcum and Azospirillum brasilense, on grain yield and nitrogen uptake efficiency in rapeseed (Brassica napus L., cv. Hyola308, a field experiment was conducted as split plot factorial based on randomized complete block design at research field of Faculty of Agricultural Sciences, University of Guilan, Iran, during growing season of 2007-2008. Results showed that urea fertilizer, ZnSO4 fertilizer and biological fertilizer had significant effects on nitrogen uptake and accumulation. Maximum grain yield (2568 kg.ha-1 were obtained in 150kgN + ZnSO4+ bio treatment. Maximum accumulation of nitrogen in rosette stage (4.9% and nitrogen content of grain (3.6% was obtained in 150 kg N.ha-1N + ZnSO4 + bio. Maximum Nitrogen uptake efficiency and nitrogen use efficiency (0.86 and 29.56 kg.kg-1, respectively were obtained in 50 kgN.ha-1N + ZnSO4 + bio. In regard to significant effects of ZnSO4 and biological fertilizer with lower N rate and high nitrogen uptake efficiency of rapeseed, it seems that the ability of uptake and use of nitrogen fertilizers was greater for seed formation in the presence of ZnSO4 and biological fertilizer in rapeseed, cv. Hyola308. The most important of mechanisms of PGPRs is increase the bioavailability of mineral nutrients with biological nitrogen fixation and soluble phosphorus and potassium that lead to economize nitrogen fertilizer in rapeseed production and minimizing environmental pollution risk.

  20. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  1. Potencial biofertilizante de bacterias diazótrofas aisladas de muestras de suelo rizosférico

    Directory of Open Access Journals (Sweden)

    Laura Y Moreno

    Full Text Available Las bacterias promotoras del crecimiento vegetal son capaces de adaptarse, colonizar y persistir en la rizosfera de la planta, lo cual favorece su crecimiento y desarrollo. En este trabajo se aislaron 32 cepas nativas de bacterias diazótrofas, a partir de muestras de suelo rizosférico de diferentes cultivos, identificadas mediante los medios de cultivo tradicionales y el sistema BBL CRYSTAL. La identificación bioquímica se realizó a través de la reacción en cadena de la polimerasa (PCR, del inglés Polymerase Chain Reaction. Nueve aislados se determinaron como Stenotrophomonas maltophilia y uno como Azotobacter vinelandii, de los cuales tres coincidieron en la identificación bioquímica y la molecular. Se realizó un ensayo en invernadero para evaluar el efecto fertilizante en plantas de maíz, según un diseño experimental de bloques al azar y nueve tratamientos, por triplicado: tratamiento 1: A. vinelandii ATCC 9046; tratamientos del 2 al 7 para los seis aislados; tratamiento 8 para fertilización química; y tratamiento 9 para suelo sin fertilización (testigo. Los aislados M8-10, M10-1 y M11-3, identificados como S. maltophilia por PCR, tuvieron mejores resultados en la emergencia de las plantas, el diámetro del tallo y la longitud de las hojas y los tallos. Finalmente se determinó que M10-1 mostró valores de emergencia y crecimiento de la planta por encima de la media y el límite superior, con respecto a los demás aislados y controles, lo cual lo convierte en un potencial biofertilizante.

  2. Uptake and Requirements of Molybdenum and Vanadium in Nitrogen Fixing Bacteria: Implications for the Nitrogen Cycle Now and in the Past.

    Science.gov (United States)

    Bellenger, J.; Wichard, T.; Kraepiel, A. M.

    2008-12-01

    Three nitrogenases (Mo-, V- and Fe-Nase) have thus far been identified. The requirement and use efficiency of those metals are key parameters for the nitrogen cycle. Within present terrestrial ecosystems, the Mo- Nase is considered to be dominant and the so called alternative nitrogenases (V- and Fe-Nase) have heretofore been neglected, likely resulting in misconceptions about the soil nitrogen cycle. Here, I present an overview of recent findings on trace metals speciation in soils and requirements, homeostasis, and uptake of these metals by free-livng nitrogen fixing bacteria. Our data show that Mo in soils associates strongly with organic matter, contrary to the classic view of Mo being associated with iron oxides. We also find that free- living nitrogen fixers, such as Azotobacter vinelandii, acquire both Mo and V through highly regulated uptake systems using released ligands specifically targeting the required metals, similar to that of iron. Finally, our findings demonstrate that nitrogen fixers, e.g. A. vinelandii, use Mo and V to fix nitrogen with close efficiency. This, and recent work showing that Mo may be limiting N2 fixation in a variety of terrestrial systems suggest that the worldwide dominance of Mo-nitrogenase may have been overestimated, and the role of the alternative nitrogenases in present environments deserves more attention. Interestingly, two decades after the identification of the alternative V and Fe nitrogenases, their evolution and exact role in the terrestrial nitrogen cycle over geologic time are still unclear. As crustal V abundance is about 100 times higher than Mo, nitrogen fixers might have benefited throughout geologic time from being able to utilize this additional metal source to sustain nitrogen fixation. A better understanding of the past and present nitrogen cycle is critical to anticipate the possible responses of terrestrial environments to global changes due to recent and future anthropic activities.

  3. [Development of a liquid fermentation system and encystment for a nitrogen-fixing bacterium strain having biofertilizer potential].

    Science.gov (United States)

    Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth

    The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes.

    Directory of Open Access Journals (Sweden)

    Joana Gangoiti

    Full Text Available Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4 glucan chains connected by alternating (α1→4/(α1→6 linkages and (α1→4,6 branching points. This enzyme constituted the single evidence for this reaction and product specificity in the GH70 family, mostly containing glucansucrases encoded by lactic acid bacteria (http://www.CAZy.org. In this work, 4 additional GtfD-like proteins were identified in taxonomically diverse plant-associated bacteria forming a new GH70 subfamily with intermediate characteristics between the evolutionary related GH13 and GH70 families. The GtfD enzyme encoded by Paenibacillus beijingensis DSM 24997 was characterized providing the first example of a reuteran-like polymer synthesizing 4,6-α-glucanotransferase in a Gram-positive bacterium. Whereas the A. chroococcum GtfD activity on amylose resulted in the synthesis of a high molecular polymer, in addition to maltose and other small oligosaccharides, two reuteran-like polymer distributions are produced by P. beijingensis GtfD: a high-molecular mass polymer and a low-molecular mass polymer with an average Mw of 27 MDa and 19 kDa, respectively. Compared to the A. chroooccum GtfD product, both P. beijingensis GtfD polymers contain longer linear (α1→4 sequences in their structure reflecting a preference for transfer of even longer glucan chains by this enzyme. Overall, this study provides new insights into the evolutionary history of GH70 enzymes, and enlarges the diversity of natural enzymes that can be applied for modification of the starch present in food into less and/or more slowly digestible carbohydrate structures.

  5. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    Science.gov (United States)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  6. Polihidroxialcanoatos de cepas de Azospirillum spp. aisladas de raíces de Lycopersicon esculentum Mill. “tomate” y Oryza sativa L. “arroz” en Lambayeque

    Directory of Open Access Journals (Sweden)

    Katty Baca

    2010-01-01

    Full Text Available En este trabajo se determinó la concentración de polihidroxialcanoatos (PH As de cepas de Azospirillum aisladas de raíces de Lycopersicon esculentum Mill. “tomate” y Oryza sativa L. “arroz”, como una alternativa ante la acumulación de plásticos derivados del petróleo. R aíces previamente desinfectadas se sembraron en medio Nfb se misólido, donde las bacterias fijadoras de nitrógeno se reconocieron por una película blanquecina bajo la superficie y el viraje del indicador al azul. El género Azospirillum se identificó en medio rojo de Congo, obteniéndose 96 cepas de A. lipoferum y A. brasilense en tomate y arroz. Se realizó una fermentación discontinua con caldo Azotobacter modificado, alimentando con una solución saturada de ácido málico cada 12 horas y se realizaron tinciones con Sudán Negro B. Se seleccionaron las cepas con mayor nú mero de gránulos de PHAs (en tomate , 18 de A. lipoferum y 2 de A. brasilense y en arroz, 10 de A. lipoferum y 10 de A. brasilense y se cuantificó la biomasa y PHAs. La concentración de PHAs alcanzó 0 . 661 gL - 1 en A. lipoferum KM(T - 73 y 0 . 738 gL - 1 en A. br asilense KM(T - 19. Las cepas de A. lipoferum y A. brasilense aisladas de tomate alcanzaron una mayor concentración de biomasa y PHAs frente a las cepas aisladas de arroz.

  7. Regulation of nif gene expression in Enterobacter agglomerans: nucleotide sequence of the nifLA operon and influence of temperature and ammonium on its transcription.

    Science.gov (United States)

    Siddavattam, D; Steibl, H D; Kreutzer, R; Klingmüller, W

    1995-12-20

    The nucleotide sequence of a plasmid-borne 3.9 kb XhoI-SmaI fragment comprising the 3'-region of the nifM gene, the nifL and nifA genes and the 5'-region of nifB gene of Enterobacter agglomerans was determined. The genes were identified by their homology to the corresponding nif genes of Klebsiella pneumoniae. A typical sigma 54-dependent promoter and a consensus NtrC-binding motif were identified upstream of nifL. The predicted amino acid sequence of NifL showed close similarities to NifL of K. pneumoniae and Azotobacter vinelandii. However, no histidine residue was found to correspond to histidine-304 of A. vinelandii NifL, which had been proposed to be required for the repressor activity of NifL. The NifA sequence with a putative DNA binding motif (Q(x3) A(x3) G(x5)I) and an ATP binding site in the C-terminal and central domains, respectively, resembles that of other known NifA proteins. The function of the nifL and nifA genes was demonstrated in vivo using a binary plasmid system by their ability to activate a nifH promoter-lacZ fusion at different temperatures and concentrations of NH4+. Maximal promoter activity occurred at 25 degrees C, and it appears that the sensitivity of NifA to elevated temperatures is independent of NifL. The expression of nifL inhibited promoter activity in the presence of NifA when the initial NH4+ concentration in the medium exceeded 4 mM.

  8. The effect of plant growth promoting rhizobacteria (PGPR on quantitative and qualitative characteristics of Sesamum indicum L. with application of cover crops of Lathyrus sp. and Persian clover (Trifolium resopinatum L.

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-05-01

    Full Text Available Cover crops cultivation and application of plant growth rhizobacteria are the key factors to enhance agroecosystem health. A field experiment was conducted at the Research Farm of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010. A split plot arrangement based on a complete randomized block design with three replications was used. Cultivation and no cultivation of Lathyrus sp. and Persian clover (Trifolium resopinatum in autumn assigned to the main plots. The sub plot factor consisted of three different types of biofertilizers plus control, including 1-nitroxin (containing of Azotobacter sp. and Azospirillum sp., 2- phosphate solubilizing bacteria (PSB (containing of Bacillus sp. and Pseudomonas sp., 3- biosulfur (containing of Thiobacillus ssp. and 4- control (no fertilizer. The results showed the effect of cover crops on seed number and seed weight per plant, biological and seed yield was significant, as the seed yield increased of 9 %. In general, biofertilizers showed superiority due to the most studied traits compared to control. Nitroxin, PSB and biosulfur increased biological yield of 44, 28 and 26 % compared to control, respectively. Cover crops and biofertilizers interactions, showed significant effect on all studied traits, as the highest and the lowest harvest index resulted in cover crop combined with biofertilizers (22.1% and cultivation and no cultivation of cover crops combined with control (15.3%, respectively. The highest seed oil and protein content resulted from cover crops plus biofertilizers (42.4% and cover crops plus PSB (22.5%, respectively. In general, the results showed cover crops cultivation in combination with biofertilizers application could be an ecological alternative for chemical fertilizers, in addition of achieving advantages of cover crops. According to the results, it should be possible to design an ecological cropping system and produce appropriate and healthy

  9. Kajian Penggunaan Pupuk Hayati untuk Mengendalikan Penyakit Akar Gada (Plasmodiophora brassicae pada Tanaman Sawi Daging

    Directory of Open Access Journals (Sweden)

    Diding Rachmawati

    2016-03-01

    Full Text Available Pada budidaya tanaman sawi daging (pakcoi  dijumpai berbagai masalah  serius  yang menghambat upaya peningkatan produksi dan kualitas hasil. Salah satu kendala utama adalah penyakit tular tanah yang disebabkan oleh cendawan Plasmopara brassicae Wor . Serangan patogen tular tanah dapat menekan produksi tanaman hortikultura secara significan. Berbagai upaya telah dilakukan untuk mengendalikan patogen tular tanah antara lain dengan menggunakan bekterisida sistemik . Salah satu alternatif pengendalian yang paling prospektif adalah dengan menggunakan pupuk hayati yang telah diperkaya dengan mikroorganisme. antara lain bakteri selulotik, Azotobacter sp., Azospirillium sp., Rhizobium sp., Pseudomonas sp., Lactobacillus sp., dan  bakteri pelarut fosfat yang bertujuan untuk memperbaiki struktur tanah dan mengendalikan penyakit tular tanah. Penelitian dilakukan di kebun percobaan Karangploso BPTP Jatim,  pada bulan Januari sampai dengan April 2014, menggunakan rancangan acak kelompok, 4 perlakuan dan 6 ulangan. Perlakuan  terdiri dari  : A = Pupuk hayati dosis 15 kg/ha,   B = Pupuk hayati dosis 30 kg/ha,  C = Pupuk hayati dosis 45 kg/ha, D = Cara petani. Tujuan penelitian adalah untuk mengetahui efektifitas pupuk hayati dalam mengendalikan penyakit akar gada  P.brassicae  pada tanaman sawi daging. Hasil penelitian menunjukkan bahwa pemberian pupuk hayati dosis 45 kg/ha dapat memberikan pertumbuhan yang baik terhadap tinggi tanaman ( 26,50 cm, jumlah daun (21 helai, lebar tajuk (33,25 cm, panjang akar (14,38 cm dan bobot/tanaman (380 g/tanaman. Persentase serangan penyakit akar gada terendah juga ditunjukkan oleh pemberian pupuk hayati dosis 45 kg/ha, yaitu sebesar 1,75 % dan penekanan penyakit sebesar 70,83 %.Kata Kunci : Brassica juncea, pupuk hayati, penyakit bengkak akar

  10. Actinorhizal Alder Phytostabilization Alters Microbial Community Dynamics in Gold Mine Waste Rock from Northern Quebec: A Greenhouse Study.

    Directory of Open Access Journals (Sweden)

    Katrina L Callender

    Full Text Available Phytotechnologies are rapidly replacing conventional ex-situ remediation techniques as they have the added benefit of restoring aesthetic value, important in the reclamation of mine sites. Alders are pioneer species that can tolerate and proliferate in nutrient-poor, contaminated environments, largely due to symbiotic root associations with the N2-fixing bacteria, Frankia and ectomycorrhizal (ECM fungi. In this study, we investigated the growth of two Frankia-inoculated (actinorhizal alder species, A. crispa and A. glutinosa, in gold mine waste rock from northern Quebec. Alder species had similar survival rates and positively impacted soil quality and physico-chemical properties in similar ways, restoring soil pH to neutrality and reducing extractable metals up to two-fold, while not hyperaccumulating them into above-ground plant biomass. A. glutinosa outperformed A. crispa in terms of growth, as estimated by the seedling volume index (SVI, and root length. Pyrosequencing of the bacterial 16S rRNA gene for bacteria and the ribosomal internal transcribed spacer (ITS region for fungi provided a comprehensive, direct characterization of microbial communities in gold mine waste rock and fine tailings. Plant- and treatment-specific shifts in soil microbial community compositions were observed in planted mine residues. Shannon diversity and the abundance of microbes involved in key ecosystem processes such as contaminant degradation (Sphingomonas, Sphingobium and Pseudomonas, metal sequestration (Brevundimonas and Caulobacter and N2-fixation (Azotobacter, Mesorhizobium, Rhizobium and Pseudomonas increased over time, i.e., as plants established in mine waste rock. Acetate mineralization and most probable number (MPN assays showed that revegetation positively stimulated both bulk and rhizosphere communities, increasing microbial density (biomass increase of 2 orders of magnitude and mineralization (five-fold. Genomic techniques proved useful in

  11. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    Science.gov (United States)

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer.

  12. Comparative study of microflora in Rhizospheric soils of Argania spinosa and Acacia raddiana of the arid zone from Oued El Ma (Tindouf)

    Science.gov (United States)

    Tissouras, Fatiha; Habib, Semira; Missoum, Malika; Louacini, Braim Kamel

    2016-04-01

    Desert soils occupy a large area in Algeria (80Moreover, exploitation of the Saharan soil microorganisms has several interests and especially in maintaining the ecological equilibrium of ecosystems. Unfortunately, few of microbiological studies have been conducted so far about the Saharan soil Algerian, with the exception of some work done on the desert soils in the region of Beni Ounif. This work falls within the framework of Project CNEPRU F02320100009. The study focuses on an evaluation of the main germs rhizosphere soils from Argania spinosa and Acacia raddiana of the region of Oued El-ma (wilaya of Tindouf), located in southwest Algeria, followed by physicochemical analysis of some parameters (soil texture, pH, moisture content, organic matter). The results reveal that both rhizosphere soils have a sandy silt texture of alkali pH, with very low water content slightly different. Organic material of the rate varies from 0.2 to 1The type of vegetation influences positively the quantity and the dynamics of microbial population. Indeed, the two soils have an interesting microbial diversity, with densities of azotobacters, fungi, aerobic bacteria and actinomycetes are very high, followed germs ammonifiants, nitrifying and denitrifying. In the presence of Argania spinosa the microbial growth is most important (6.53 × 107 germs /g soil), compared with Acacia raddiana (3.13 × 107 germs /g). This shows the stimulating effect of the vegetation on the increase in the rate of these microorganisms in the soil. Well as the strong Fitness of adaptation the microbial biomass to drought. Keywords: Argania spinoza; Acacia raddiana; rhizospheric soil; microbiology evaluation.

  13. APLIKASI KOMBINASI KOMPOS JERAMI, KOMPOS AZOLLA DAN PUPUK HAYATI UNTUK MENINGKATKAN JUMLAH POPULASI BAKTERI PENAMBAT NITROGEN DAN PRODUKTIVITAS TANAMAN PADI BERRBASIS IPAT-BO

    Directory of Open Access Journals (Sweden)

    Ferina Rosiana

    2013-03-01

    Full Text Available Penelitian untuk mengetahui efek pemberian kombinasi kompos jerami dengan Azolla dan pupuk hayati majemuk terhadap peningkatan populasi bakteri penambat N dan produktivitas tanaman padi dengan teknologi IPAT-BO dilaksanakan dari bulan April hingga Juli 2012 di kebun percobaan Fakultas Pertanian, Universitas Padjadjaran, Jatinangor, dengan ketinggian + 740 m dpl. Penelitian ini menggunakan rancangan acak kelompok faktor tunggal dengan dua belas perlakuan dan tiga kali ulangan. Perlakuan terdiri dari (A tanpa kompos jerami, (B kompos jerami 2,5 ton ha-1, (C kompos jerami 5 ton ha-1, (D kompos Azolla 0,5 ton ha-1, (E kompos jerami 2,5 ton ha-1 + kompos Azolla 0,5 ton ha-1, (F kompos jerami 5 ton ha-1 + kompos Azolla 0,5 ton ha-1, (G pupuk hayati 400 g ha-1, (H kompos jerami 2,5 ton ha-1 + pupuk hayati 400 g ha-1, (I kompos jerami 5 ton ha-1 + pupuk hayati 400 g ha-1, (J kompos Azolla 0,5 ton ha-1 + pupuk hayati 400 g ha-1, (K kompos jerami 2,5 ton ha-1 + kompos Azolla 0,5 ton ha-1 + pupuk hayati 400 g ha-1, (L kompos jerami 5 ton ha-1 + kompos Azolla 0,5 ton ha-1 + pupuk hayati 400 g ha-1.Aplikasi perlakuan kompos jerami, kompos Azolla dan pupuk hayati majemuk memberikan pengaruh terhadap populasi penambat N (Azotobacter sp. dan Azospirilium sp. dan produktifitas tanaman padi. Aplikasi kompos jerami 2,5 ton ha-1 dengan pupuk hayati 400 g ha-1 memberikan hasil GKP yaitu 64,39 g tanaman-1 (6,13 ton ha-1. Kata kunci: IPAT-BO, kompos Azolla, kompos jerami, pupuk hayati.

  14. Diversity and Functional Analysis of the FeMo-Cofactor Maturase NifB

    Directory of Open Access Journals (Sweden)

    Simon Arragain

    2017-11-01

    Full Text Available One of the main hurdles to engineer nitrogenase in a non-diazotrophic host is achieving NifB activity. NifB is an extremely unstable and oxygen sensitive protein that catalyzes a low-potential SAM-radical dependent reaction. The product of NifB activity is called NifB-co, a complex [8Fe-9S-C] cluster that serves as obligate intermediate in the biosyntheses of the active-site cofactors of all known nitrogenases. Here we study the diversity and phylogeny of naturally occurring NifB proteins, their protein architecture and the functions of the distinct NifB domains in order to understand what defines a catalytically active NifB. Focus is on NifB from the thermophile Chlorobium tepidum (two-domain architecture, the hyperthermophile Methanocaldococcus infernus (single-domain architecture and the mesophile Klebsiella oxytoca (two-domain architecture, showing in silico characterization of their nitrogen fixation (nif gene clusters, conserved NifB motifs, and functionality. C. tepidum and M. infernus NifB were able to complement an Azotobacter vinelandii (ΔnifB mutant restoring the Nif+ phenotype and thus demonstrating their functionality in vivo. In addition, purified C. tepidum NifB exhibited activity in the in vitro NifB-dependent nitrogenase reconstitution assay. Intriguingly, changing the two-domain K. oxytoca NifB to single-domain by removal of the C-terminal NifX-like extension resulted in higher in vivo nitrogenase activity, demonstrating that this domain is not required for nitrogen fixation in mesophiles.

  15. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    Science.gov (United States)

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  16. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog.

    Science.gov (United States)

    Dedysh, Svetlana N; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Semrau, Jeremy D; Liesack, Werner; Tiedje, James M

    2002-01-01

    A novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov., are proposed for a methane-oxidizing bacterium isolated from an acidic Sphagnum peat bog. This bacterium, designated strain B2T, represents aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy and utilize the serine pathway for carbon assimilation. Strain B2T is a moderately acidophilic organism with growth between pH 4.2 and 7.2 and at temperatures from 10 to 30 degrees C. The cells possess a well-developed system of intracytoplasmic membranes (ICM) packed in parallel on only one side of the cell membrane. This type of ICM structure represents a novel arrangement, which was termed type III. The resting cells are Azotobacter-type cysts. Strain B2T is capable of atmospheric nitrogen fixation; it possesses particulate methane monooxygenase and does not express soluble methane monooxygenase. The major phospholipid fatty acid is 18:1omega7c and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 63.1 mol%. This bacterium belongs to the alpha-subclass of the Proteobacteria and is most closely related to the acidophilic methanotroph Methylocella palustris KT (97.3% 16S rDNA sequence similarity). However, the DNA-DNA hybridization value between strain B2T and Methylocella palustris K(T) is only 7%. Thus, strain B2T is proposed to comprise a novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov. Strain B2T (= DSM 13967T = NCIMB 13765T) is the type strain.

  17. Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India.

    Science.gov (United States)

    Mishra, Rashmi Ranjan; Swain, Manas Ranjan; Dangar, Tushar Kanti; Thatoi, Hrudayanath

    2012-06-01

    Different groups of microorganisms are present in mangrove areas, and they perform complex interactions for nutrient and ecological balances. Since little is known about microbial populations in mangroves, this study analyzed the microbial community structure and function in relation to soil physico-chemical properties in Bhitarkanika, a tropical mangrove ecosystem in India. Spatial and seasonal fluctuations of thirteen important groups of microorganisms were evaluated from the mangrove forest sediments during different seasons, along with soil physico-chemical parameters. The overall microbial load (x10(5)cfu/g soil) in soil declined in the order of heterotrophic, free living N2 fixing, Gram-negative nitrifying, sulphur oxidizing, Gram-positive, spore forming, denitrifying, anaerobic, phosphate solubilizing, cellulose degrading bacteria, fungi and actinomycetes. Populations of the heterotrophic, phosphate solubilizing, sulphur oxidizing bacteria and fungi were more represented in the rainy season, while, Gram-negative, Gram-positive, nitrifying, denitrifying, cellulose decomposing bacteria and actinomycetes in the winter season. The pool size of most of other microbes either declined or maintained throughout the season. Soil nutrients such as N, P, K (Kg/ha) and total C (%) contents were higher in the rainy season and they did not follow any common trend of changes throughout the study period. Soil pH and salinity (mS/cm) varied from 6-8 and 6.4-19.5, respectively, and they normally affected the microbial population dynamics. Determination of bacterial diversity in Bhitarkanika mangrove soil by culture method showed the predominance of bacterial genera such as Bacillus, Pseudomonas, Desulfotomaculum, Desulfovibrio, Desulfomonas, Methylococcus, Vibrio, Micrococcus, Klebsiella and Azotobacter. Principal component analysis (PCA) revealed a correlation among local environmental variables with the sampling locations on the microbial community in the mangrove soil.

  18. Increasing potassium (K release from K-containing minerals in the presence of insoluble phosphate by bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sarikhani

    2016-03-01

    Full Text Available Introduction: Phosphorus and potassium are major essential macronutrients for biological growth and development. Application of soil microorganisms is one approach to enhance crop growth. Some bacteria are efficient in releasing K and solubilizing P from mineral sources but their behavior was not studied more in presence together. Materials and methods: In this study the ability of seven bacterial strains, including Pseudomonas putida P13, P. putida Tabriz, P. fluorescens Tabriz, P. fluorescens Chao, Pantoea agglomerans P5, Azotobacter sp. and Bacillus megaterium JK3 to release mineral K from muscovite and biotite with application of insoluble (Ca3(PO42 or soluble (Na2HPO4 P-sources was investigated. Nutrient Broth was used to prepare an overnight culture of bacteria to inoculate in Aleksandrov medium, which was used to study the dissolution of silicate minerals. It should be mentioned that Aleksandrov medium was used to determine the amount of released P from tricalcium phosphate (TCP while muscovite was added to the medium as a sole source of potassium. Concentration of P was determined spectrophotometrically by ammonium-vanadate-molybdate method and K was determined by flame photometry. Results: The insoluble P-source led to a significantly increased released K into assay medium (66%, and the net release of K from the biotite was significantly enhanced. Among bacterial strains, the highest mean of released K was observed with P. putida P13 which released more K (27% than the control. The amounts of released K from micas in the presence of insoluble and soluble phosphate by P. putida P13 were 8.25 and 4.87 mg/g, respectively. Discussion and conclusion: Application of insoluble phosphate could increase K release from mica minerals. The enhanced releasing of mineral K might be attributed to the release of organic acids from the bacteria, a mechanism which plays a pivotal role in solubilizing phosphate from inorganic source of phosphate.

  19. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  20. Evidence for the direct interaction of the nifW gene product with the MoFe protein.

    Science.gov (United States)

    Kim, S; Burgess, B K

    1996-04-19

    The Azotobacter vinelandii nifW gene, under control of the nifH promoter, was subcloned into the broad host range multicopy plasmid pKT230 for overexpression in both wild-type and delta nifW strains of A. vinelandii. Unlike the parent delta nifW strain, which grows slowly relative to wild-type under N2-fixing conditions, both overproduction strains grow at the same rate, showing that the overexpressed nifW product is functional in vivo. The approximately 40-fold overexpressed protein was purified, and sequence analysis confirmed its identity. During purification it was observed that NifW in crude extracts ran above the predicted molecular weight on denaturing gels and that as the purification proceeded lower molecular weight forms appeared. Mass spectrometry and studies with protease inhibitors revealed that this abnormal behavior was due to proteolysis. Native molecular weight determinations demonstrate that NifW is a homomultimer, most likely a trimer. Native gel electrophoresis analysis shows that the behavior of wild-type and overexpressed NifW are identical and that when extracts are prepared anaerobically only the homomultimeric forms of NifW are observed. When extracts are exposed to oxygen, however, NifW becomes part of a very high molecular weight complex. Immunoprecipitation with NifW antibodies demonstrate that under those conditions NifW specifically associates with the MoFe protein. These data are consistent with a model whereby NifW is not involved in the initial assembly of an active MoFe protein but rather is part of a system design to protect the MoFe protein from O2 damage.

  1. Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a.

    Science.gov (United States)

    Hearn, Elizabeth M; Dennis, Jonathan J; Gray, Murray R; Foght, Julia M

    2003-11-01

    The hydrocarbon-degrading environmental isolate Pseudomonas fluorescens LP6a possesses an active efflux mechanism for the polycyclic aromatic hydrocarbons phenanthrene, anthracene, and fluoranthene but not for naphthalene or toluene. PCR was used to detect efflux pump genes belonging to the resistance-nodulation-cell division (RND) superfamily in a plasmid-cured derivative, P. fluorescens cLP6a, which is unable to metabolize hydrocarbons. One RND pump, whose gene was identified in P. fluorescens cLP6a and was designated emhB, showed homology to the multidrug and solvent efflux pumps in Pseudomonas aeruginosa and Pseudomonas putida. The emhB gene is located in a gene cluster with the emhA and emhC genes, which encode the membrane fusion protein and outer membrane protein components of the efflux system, respectively. Disruption of emhB by insertion of an antibiotic resistance cassette demonstrated that the corresponding gene product was responsible for the efflux of polycyclic aromatic hydrocarbons. The emhB gene disruption did not affect the resistance of P. fluorescens cLP6a to tetracycline, erythromycin, trimethoprim, or streptomycin, but it did decrease resistance to chloramphenicol and nalidixic acid, indicating that the EmhABC system also functions in the efflux of these compounds and has an unusual selectivity. Phenanthrene efflux was observed in P. aeruginosa, P. putida, and Burkholderia cepacia but not in Azotobacter vinelandii. Polycyclic aromatic hydrocarbons represent a new class of nontoxic, highly hydrophobic compounds that are substrates of RND efflux systems, and the EmhABC system in P. fluorescens cLP6a has a narrow substrate range for these hydrocarbons and certain antibiotics.

  2. Characterization of [4Fe-4S] Cluster Vibrations and Structure in Nitrogenase Fe Protein at Three Oxidation Levels via Combined NRVS, EXAFS and DFT Analyses

    Science.gov (United States)

    Mitra, Devrani; George, Simon J.; Guo, Yisong; Kamali, Saeed; Keable, Stephen; Peters, John W.; Pelmenschikov, Vladimir; Case, David A.; Cramer, Stephen P.

    2013-01-01

    Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques as each generates highly complementary information and their analytical methodologies are interdependent. Importantly, the spectroscopic samples contained no glassing agents. NRVS and DFT reveal a systematic 10-30 cm−1 decrease in Fe-S stretching frequencies with each added electron. The “oxidized” [4Fe-4S]2+ state spectrum is consistent with and extends previous resonance Raman spectra. For the “reduced” [4Fe-4S]1+ state in Fe protein, and for any “all-ferrous” [4Fe-4S]0 cluster, these NRVS spectra are the first available vibrational data. NRVS simulations also allow estimation of the vibrational disorder for Fe-S and Fe-Fe distances, constraining the EXAFS analysis and allowing structural disorder to be estimated. For oxidized Av2, EXAFS and DFT indicate nearly equal Fe-Fe distances, while addition of one electron decreases the cluster symmetry. However, addition of the second electron to form the all-ferrous state induces significant structural change. EXAFS data recorded to k = 21 Å−1 indicates a 1:1 ratio of Fe-Fe interactions at 2.56 Å and 2.75 Å, a result consistent with DFT. Broken symmetry (BS) DFT rationalizes the interplay between redox state and the Fe-S and Fe-Fe distances as predominantly spin-dependent behavior inherent to the [4Fe-4S] cluster and perturbed by the Av2 protein environment. PMID:23282058

  3. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Directory of Open Access Journals (Sweden)

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  4. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects

    International Nuclear Information System (INIS)

    Parkin, D.W.; Mentch, F.; Banks, G.A.; Horenstein, B.A.; Schramm, V.L.

    1991-01-01

    The transition state of the V max mutant of AMP nucleosidase from Azotobacter vinelandii has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the K m for substrate, the activation constant for MgATP, and the K i for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s -1 . The kinetic isotope effects were measured with the substrates [1'- 3 H]AMP, [2'- 2 H]AMP, [9- 15 N]AMP, and [1',9- 14 C, 15 N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. Transition-state analysis using bond-energy and bond-order vibrational analysis indicated that the transition state for the mutant enzyme has a similar position in the reaction coordinate compared to that for the normal enzyme. The mutant enzyme is less effective in stabilizing the carbocation-like intermediate and in the ability to protonate N7 of adenine to create a better leaving group. This altered transition-state structure was confirmed by an altered substrate specificity for the mutant protein

  5. EFECTO DE INOCULACIÓN DE MICROORGANISMOS EN CRECIMIENTO DE RÁBANO (Raphanus sativus EFEITO DA INOCULAÇÃO MICRORGANISMOS NO CRESCIMENTO DE RABANETE (Raphanus sativus EFFECT OF INOCULATION OF MICROORGANISMS ON RADISH GROWTH (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    LUZ INDIRA SOTELO D

    2012-06-01

    Full Text Available El efecto de la inoculación de microorganismos que pueden estimular el crecimiento en plantas, ha sido de gran interés para la producción de bioinsumos en los últimos años. Se inocularon cepas de Azotobacter sp, Bacillus pumilus y Bacillus licheniformis en un cultivo de rábano (Raphanus sativus, aisladas e identificadas de un proceso de compostaje de la empresa (GEO ®. Se realizó un diseño experimental de cinco tratamientos y un control, con 15 repeticiones para cada uno. Previo a la aplicación de los tratamientos cada cepa se sometió individualmente a crecimiento en caldo de cultivo. La aplicación de cada tratamiento se efectuó dos veces por aspersión, con un intervalo de 15 días durante el tiempo de cultivo. Las variables de respuesta que se evaluaron en el cultivo de rábano fueron: longitud de las plantas, número de hojas y peso seco del sistema radicular. Los resultados mostraron menor efectividad en la producción de biomasa radicular en el tratamiento T5 (mezcla de los tres microorganismos; además se encontró un mayor rendimiento en todas las variables de respuesta, con la utilización de la fertllización química. Sin embargo los tres microorganismos aplicados individualmente presentan resultados promisorios para la aplicación en cultivos agrícolas de ciclo corto.O efeito da inoculação de microrganismos que podem estimular o crescimento em plantas tem sido de grande interesse para a produção de bio-produtos nos últimos anos. Isolados foram inoculados Azotobacter sp, Bacillus pumilus e Bacillus licheniformis em uma cultura de rabanete (Raphanus sativus isolados e identificados em um processo de compostagem da empresa (GEO ®. Foi realizado um delineamento experimental de cinco tratamentos e controle, com 15 repetições para cada um. Antes da aplicação dos tratamentos, cada cepa foi submetida ao crescimento individual em caldo. A aplicação de cada tratamento foi realizada por aspersão duas vezes com um

  6. Compensation effect of bacterium containing biofertilizer on the growth of Cucumis sativus L. under Al-stress conditions.

    Science.gov (United States)

    Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia

    2013-03-01

    Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without

  7. Redox balancing in recombinant strains of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Anderlund, M.

    1998-09-01

    In metabolically engineered Saccharomyces cerevisiae expressing Pichia stipitis XYL1 and XYL2 genes, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, xylitol is excreted as the major product during anaerobic xylose fermentation and only low yields of ethanol are produced. This has been interpreted as a result of the dual cofactor dependence of XR and the exclusive use of NAD{sup +} by XDH. The excretion of xylitol was completely stopped and the formation of glycerol and acetic acid were reduced in xylose utilising S. cerevisiae strains cultivated in oxygen-limited conditions by expressing lower levels of XR than of XDH. The expression level of XYL1 and XYL2 were controlled by changing the promoters and transcription directions of the genes. A new functional metabolic pathway was established when Thermus thermophilus xylA gene was expressed in S. cerevisiae. The recombinant strain was able to ferment xylose to ethanol when cultivated on a minimal medium containing xylose as only carbon source. In order to create a channeled metabolic transfer in the two first steps of the xylose metabolism, XYL1 and XYL2 were fused in-frame and expressed in S. cerevisiae. When the fusion protein, containing a linker of three amino acids, was co expressed together with native XR and XDH monomers, enzyme complexes consisting of chimeric and native subunits were formed. The total activity of these complexes exhibited 10 and 9 times higher XR and XDH activity, respectively, than the original conjugates, consisting of only chimeric subunits. This strain produced less xylitol and the xylitol yield was lower than with strains only expressing native XR and XDH monomers. In addition, more ethanol and less acetic acid were formed. A new gene encoding the cytoplasmic transhydrogenase from Azotobacter vinelandii was cloned. The enzyme showed high similarity to the family of pyridine nucleotide-disulphide oxidoreductase. To analyse the physiological effect of

  8. Characterization of an M-Cluster-Substituted Nitrogenase VFe Protein.

    Science.gov (United States)

    Rebelein, Johannes G; Lee, Chi Chung; Newcomb, Megan; Hu, Yilin; Ribbe, Markus W

    2018-03-13

    The Mo- and V-nitrogenases are two homologous members of the nitrogenase family that are distinguished mainly by the presence of different heterometals (Mo or V) at their respective cofactor sites (M- or V-cluster). However, the V-nitrogenase is ~600-fold more active than its Mo counterpart in reducing CO to hydrocarbons at ambient conditions. Here, we expressed an M-cluster-containing, hybrid V-nitrogenase in Azotobacter vinelandii and compared it to its native, V-cluster-containing counterpart in order to assess the impact of protein scaffold and cofactor species on the differential reactivities of Mo- and V-nitrogenases toward CO. Housed in the VFe protein component of V-nitrogenase, the M-cluster displayed electron paramagnetic resonance (EPR) features similar to those of the V-cluster and demonstrated an ~100-fold increase in hydrocarbon formation activity from CO reduction, suggesting a significant impact of protein environment on the overall CO-reducing activity of nitrogenase. On the other hand, the M-cluster was still ~6-fold less active than the V-cluster in the same protein scaffold, and it retained its inability to form detectable amounts of methane from CO reduction, illustrating a fine-tuning effect of the cofactor properties on this nitrogenase-catalyzed reaction. Together, these results provided important insights into the two major determinants for the enzymatic activity of CO reduction while establishing a useful framework for further elucidation of the essential catalytic elements for the CO reactivity of nitrogenase. IMPORTANCE This is the first report on the in vivo generation and in vitro characterization of an M-cluster-containing V-nitrogenase hybrid. The "normalization" of the protein scaffold to that of the V-nitrogenase permits a direct comparison between the cofactor species of the Mo- and V-nitrogenases (M- and V-clusters) in CO reduction, whereas the discrepancy between the protein scaffolds of the Mo- and V-nitrogenases (MoFe and VFe

  9. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  10. Dry matter yield and forage quality traits of oat (Avena sativa L. under integrative use of microbial and synthetic source of nitrogen

    Directory of Open Access Journals (Sweden)

    M. Bilal

    2017-07-01

    Full Text Available The natural microbes are potential contributor to build up soil nitrogen through transformation of molecular nitrogen to plant available forms. Therefore, in the present study, we investigated the contribution of biofertilizer to reduce the synthetic nitrogen application without deteriorating the yield and forage quality. The supplementary nitrogen rates included 0, 40, 80 and 120 kg ha−1 and the seed inoculation was carried out with the mixture of Azospirillum + Azotobacter spp. The experiment was laid out in randomized complete block design with factorial arrangement. The results indicated that organic matter contents and ether extractable fat were negatively associated with both nitrogen and inoculation factors. The inoculation produced 6.58%, 9.58%, 2.51%, 16.94%, 10.26%, 17.59%, 14.02%, 33.81% and 66.18% more No. tillers, plant height, leaf to stem ratio, dry matter yield, mineral matter contents, crude fibre, crude protein, crude protein yield and total digestible crude protein yield, respectively over uninoculation. The interactive effects indicated that inoculation alone without nitrogen application produced 19.16% and 6.87% more dry matter yield and crude protein (%, respectively. The beneficiary effects of biofertilizers on growth and dry matter of oat were more pronounced at intermediate level of inorganic nitrogen which was gradually decreased at higher nitrogen levels. The CP, CPY and DCPY achieved with inoculation alone were statistically equivalent to plots fertilized with 0 and 40 kg N ha−1. It is clear that plots sown with inoculated seeds must be fertilized with 80 kg N to produce higher dry matter and economic returns. However, the highest protein contents in dry matter were recorded with highest fertilization level along with inoculation. By giving due attention to stimulatory effects of bacterial species in the present study, it is therefore, recommended to integrate the use of biofertilizers with supplemental

  11. Pseudomonas tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica.

    Science.gov (United States)

    Anwar, Nusratgul; Rozahon, Manziram; Zayadan, Bolatkhan; Mamtimin, Hormathan; Abdurahman, Mehfuzem; Kurban, Marygul; Abdurusul, Mihribangul; Mamtimin, Tursunay; Abdukerim, Muhtar; Rahman, Erkin

    2017-11-01

    An endophytic bacterium, MA-69 T , was isolated from the storage liquid in the stems of Populuseuphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain MA-69 T was found to be short rod-shaped, Gram-stain-negative, non-spore-forming, aerobic and motile by means of a monopolar flagellum. According to phylogenetic analysis based on 16S rRNA gene sequences, strain MA-69 T was assigned to the genus Pseudomonas with highest 16S rRNA gene sequence similarity of 97.5 % to Pseudomonas azotifigens JCM 12708 T , followed by Pseudomonas matsuisoli JCM 30078 T (97.5 %), Pseudomonas balearica DSM 6083 T (97.1 %), Azotobacter salinestris ATCC 49674 T (96.1 %) and Pseudomonas indica DSM 14015 T (95.9 %). Analysis of strain MA-69 T based on the three housekeeping genes, rpoB, rpoD and gyrB, further confirmed the isolate to be distinctly delineated from species of the genus Pseudomonas. The DNA G+C content of strain MA-69 T was 64.1 mol%. DNA-DNA hybridization with Pseudomonas azotifigens JCM 12708 T , Pseudomonas matsuisoli JCM 30078 T and Pseudomonas balearica DSM 6083 T revealed 62.9, 60.1 and 49.0 % relatedness, respectively. The major fatty acids in strain MA-69 T were summed feature 3 (25.7 %), summed feature 8 (24.0 %), C19 : 0cyclo ω8c (19.9 %), C16 : 0 (14.6 %) and C12 : 0 (6.3 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Q-9 was the major quinone in strain MA-69 T . Based on phenotypic, chemotaxonomic and phylogenetic properties, strain MA-69 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas tarimensis sp. nov. is proposed. The type strain is MA-69 T (=CCTCC AB 2013065 T =KCTC 42447 T ).

  12. THE USE OF gusA REPORTER GENE TO MONITOR THE SURVIVAL OF INTRODUCED BACTERIA IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Edi Husen

    2013-07-01

    Full Text Available An effective marker to monitor the survival of introduced bacteria in the soil is required for further evaluation of their beneficial effects on plant growth. This study tested the use of gusA gene as a marker to trace the fate of three Gram negative bacteria in the root, rhizosphere, and soil. The study was conducted at the laboratory and greenhouse of the National Institute of Molecular Biology and Biotechnology, Philippines from January to December 2001. Isolates TCaR 61 and TCeRe 60, and Azotobacter vinelandii Mac 259 were selected as test bacteria based on their ability to produce indole-3acetic acid and solubilize precipitated phosphate, which may promote plant growth in the field. These bacteria were marked with gusA reporter gene from Escherichia coli strain S17-1(λ-pir containing mTn5SSgusA21. The gusA (β-glucuronidase gene from the donor (E. coli was transferred to each bacterium (recipient through bacterial conjugation in mating procedures using tryptone-yeast agar followed by the selection of the transconjugants (bacteria receiving gusA in tryptone-yeast agar supplemented with double antibiotics and X-GlcA (5bromo-4chloro- 3indoxyl-β-D-glucuronic acid. The antibiotics used were rifampicin and either streptomycin or spectinomycin based on antibiotic profiles of the donor and recipients. The results showed that the insertion of gusA gene into bacterial genomes of the recipient did not impair its phenotypic traits; the growth rates of the transconjugants as well as their ability to produce indole-3acetic acid and solubilize precipitated phosphate in pure culture were similar to their wild types. All transconjugants colonized the roots of hot pepper (Capsicum annuum L. and survived in the rhizosphere and soil until the late of vegetative growth stage. The distinct blue staining of transconjugants as the expression of gusA gene in media containing X-GlcA coupled with their resistance to rifampicin and streptomycin or spectinomycin

  13. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  14. Effect of Different Levels of Nitroxin and Humic Acid on Quantitative Properties and Essential Oil of Ajowan (Carum copticum (L. C. B. Clarke

    Directory of Open Access Journals (Sweden)

    K. Barghamadi

    2016-02-01

    Full Text Available Introduction: Unbalanced application of fertilizer and chemical pesticides reduce soil fertility and agricultural products quality. Application of bio-fertilizers is quite important for sustainable agriculture..According to the principles of ecological agriculture, soil fertility and plant nutrition play an important role in improving the yield and quality of medicinal plants. The use of biological fertilizers is one of the main strategies in ecological agriculture for plant nutrition. Organic materials are not the only source of bio-fertilizer but bacterial and fungal particles and materials from their activities in relation to nitrogen, phosphorus and other nutrients are examples of biological fertilizers too. Today particular attention has been paid to the canvas of biological nitrogen fixation byfree-living bacteria such as Azospirillum and Azotobacter companion agricultural systems. Nitrogen is mainly the first nutrient which its deficiency in the arid and semi-aridoccurs.It is due to this fact thatthe amount of organic matter that is the major source of nitrogen stored in these areas is negligible. Nitroxin contains the most effective nitrogen fixation bacteria (Azotobacter and Azospirillum. Nitroxin bacteria besides nitrogen fixation of atmosphere and counterbalance of macronutrients and micro nutrientsare required for plant uptake, with the synthesis and secretion of various hormones and growth regulators such as auxin (IAA, the secretion of various amino acids, antibiotics, andhydrogen cyanide hydrogen will cause siderophore growth and development of roots and aerial parts of the plant. Due to environmental concerns, the use of organic acids to improve the quality and quantity of crops and gardens is not possible. Small amounts of organic acids have significant impacts on physical characteristics, chemical and biological soil because of the useful hormonal effects of compounds in increasing production and improving the quality of

  15. Evaluation of the Effect of Seed Priming and Seedbed on Characteristic of Transplant Sweet Corn (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    A Manzari-Tavakkoli

    2016-10-01

    Full Text Available Introduction Corn (Zea mays L. is one of the main cereals in the tropical and temperate regions of the world. Sweet corn obtained from a genetic mutation on chromosome 4 locus SU conventional maize resulting accumulation of sugars and polysaccharides which are soluble in seed endosperm. Unlike other types of corn, sweet corn endosperm contains a lot of sugar to starch, which is called Amylodextrin and it is soluble in water. Producing healthy and uniform plants is one of the requirements of modern agriculture. Considering the unsuitable climatic condition in Iran (arid and semiarid transplantation is one of the requirements for sustainable agriculture particularly in sweet corn production with high water requirement where transplantation is able to save at least 2-3 times of irrigations. Therefore, producing high quality transplants is an important practice for successful seedling establishment. Hence, the objective of this study was to evaluate the effects of seed priming and substrate types on the characteristics of sweet corn transplants. Materials and Methods This experiment was conducted as factorial based on a completely randomized design with three replications. Treatments were three levels of seeds pretreatment: no priming (p1, hydropriming (p2 and biopriming (p3, and another factor was seedbeds types in seven levels including: vermicompost (b1, perlite (b2, cocopeat(b3, vermicompost+perlite(b4, vermicompost+ cocopeat (b5, perlite+ cocopeat (b6 and vermicompost+ cocopeat +perlite (b7. Biopriming using bioaminopalis biological fertilizer applied on the seeds for 24hours in a solution containing micro-organisms such azotobacter and Pseudomonas. Then the non-primed and the primed seeds were sown in the plastic pots and grown in a greenhouse with average temperature of 22-25° C. Samples were taken three weeks after planting. Results and Discussion Mean emergence time Emergence is shoot elongation and growth leading the shoots out of the

  16. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-03-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  17. The Effect of Bio-fertilizer and Chemical Fertilizers (Phosphate and Zinc on Yield and Yield Components of Two Cultivars of Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: Use of unbalanced chemical fertilizers especially P, having low absorption efficiency and low solubility compounds with soil components, has resulted in the production and use of bio-fertilizers (17, 23 and 29. Bio-fertilizer is a preservative material consisting of one or several specific beneficial micro-organisms or their metabolic products used to supply plant nutrients and development of root systems (29. There are a lot of micro-organisms in soil capabling help to plant nutrition and uptake of nutrient elements in different ways that can be mentioned by the dual symbiotic relation between micro-organism and plant. Mycorrhizal fungus and plant growth promoting rhizobacteria (PGPR such as Azotobacter and Pseudomonas are able to increase uptake of nutrient elements particularly when they are applied with others and hence they increase the yield of different crops (12, 14; 24 and 30. P solubilizing fungus and bacteria facilitate uptake of slowly diffusing nutrient ions such as P, Zn and Cu and increase their availabilities usually by increasing volume of soil exploited by plants, spreading external mycelium, secreting organic acids, production of dehydrogenase and phosphates enzymes and reducing rhizosphere acidity (9, 15, 19, 23 and 26. The main beneficial use of micro-organism is increasing of host plant growth. It can be done with increase of nutrient elements uptake. The main objective of this study was to evaluate the effect of P and Zn bio-fertilizers on yield, yield components and shoot nutrient elements in two cultivars of bean for the first time in the Chaharmahal-va- Bakhtiari province. Material and Methods: This field experiment was carried out as a factorial in a randomized complete block design (RCBD with three replications. The treatments of this research consisted of two cultivars of Chiti bean (Talash and Sadri, four levels of P (P0: Control, P1: Chemical fertilizer on the basis of soil test, P2: 50 percent of

  18. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  19. Effects of Organic amendments and Biofertilizer Application on some Morphological Traits and Yield of hyssop (Hyssopus officinalis L.

    Directory of Open Access Journals (Sweden)

    mohammad taghi darzi

    2017-02-01

    Full Text Available Introduction: Hyssop (Hyssopus officinalis is a perennial herb which is cultivated in temperate regions of Asia, Europe and America. The essential oil of hyssop is widely used as traditional drug in some of the parts of Asia and Europe to treat respiratory diseases. Hyssop is also used in food, pharmaceutical, flavor and cosmetic industries throughout the world. It is mainly used for antispasmodic, stomachic, antifungal, relax spasm and cough treatment. Applying organic fertilizers and biofertilizers such as compost, vermicompost and nitrogen fixing bacteria contain Azotobacter and Azospirillum has led to a decrease in chemical fertilizers consumption and has provided high quality agricultural products. Several studies have shown that organic and bio-fertilizers application such as vermicompost and nitrogen fixing bacteria can increase essential oil content of medicinal plants of dill, basil and fennel.The main object of this work was to record the best suitable treatment of organic and biological fertilizer to obtain highest yield of Hyssop. Materials and Methods: A field experiment, arranged in a randomized complete blocks design with eight treatments and three replications at research field of the Agriculture Company of Ran, Firouzkuh, Iran during the growing season of 2012. The treatments were (1 20 t/ha compost, (2 12 t/ha vermicompost, (3 biofertilizer [inoculated seeds with Azotobacter and Azospirillum], (4 10 t/ha compost + 6 t/ha vermicompost, (5 20 t/ha compost + biofertilizer, (6 12 t/ha vermicompost + biofertilizer, (7 10 t/ha compost + 6 t/ha vermicompost + biofertilizer and (8 control [without fertilizer application]. Inoculation was carried out by immersing the hyssop seeds in the cells suspension of 108 CFU/ml for 15 min. The required quantities of compost and vermicompost were applied and incorporated to the top 5 cm layer of soil in the experimental beds before planting of hyssop seeds. Each experimental plot was 3 m long by 2

  20. Evaluation of Vermicompost and Nitrogen Biofertilizer Effects on Flowering Shoot Yield, Essential Oil and Mineral Uptake (N, P and K in Summer Savory (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haj Seyed Hadi

    2018-02-01

    (2.01% were obtained by using 10 ton per hectare of vermicompost. Applying 15 ton per hectare of vermicompost caused maximum flowering shoot yield (2237.82kg/ha, nitrogen (2.21% and phosphorus (0.52% content in the aboveground shoot. Mean comparison indicated that seed inoculation with Supernitroplus had significant effects on all measured traits except for nitrogen content in aboveground shoot. The maximum fresh and dry plant weight (40.21 and 14.42g/plant, flowering shoot yield (2406.21kg/ha, essential oil (2.05%, phosphorus (0.49% and potassium (1.34% were obtained by applying Supernitroplus. The maximum nitrogen content (2.23% was obtained by using Nitroxine. Results of interaction effects showed that using supernitroplus and 15 ton per hectare of vermicompost caused maximum potassium content (1.50% in Savory shoots. Several types of studies have shown a beneficial effect on crop plants by inoculation of seeds with Azospirillum and Azotobacter strains. Inoculation of plants with Azospirillum and Azotobacter can results in significant changes in various plant growth parameters. Positive effects of inoculation have been demonstrated on including increase in root length and nutrition (NO3- , NH4+, P042- , K +, Rb+ and Fe++ uptake. Nitrogen and phosphorus are the two major plant nutrients and combined inoculation of nitrogen fixers and PSM may benefit the plants better than either group of organisms alone. Interaction studies have been done both in vitro and in vivo. Nitrogen fixers and PSM when inoculated together colonized the rhizosphere and enhanced the growth of crops by providing it with nitrogen and phosphate, respectively. Vermicompost contains most of the plant nutrients such as nitrate, phosphates, exchangeable calcium and soluble potassium, and microelements which result in improved plant growth and development and is responsible for increased qualitative and quantitative yield of many crops. Conclusion The results of current experiment showed that

  1. Comparing Different Soil Fertility Systems on Some Physiological Characteristics, Yield and Essential Oil of Sage (Salvia officinalis L. under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Mostafa Govahi

    2017-10-01

    Full Text Available Introduction Sage is a popular medicinal plant which is widely used in food and pharmaceutical industries. Vermicompost are a rich source of macronutrients, micronutrients, vitamins, enzymes and plant growth promoter hormones. Therefore, the use of vermicompost in sustainable agriculture, in addition to increasing population and activity of beneficial soil microorganisms, causes the rapid growth of medicinal plants. The uses of bacteria (Azotobacter, Azospirillum and Pseudomonas as a biofertilizer have causes increasing the efficiency of nitrogen and phosphorus fertilizers and improving the growth of several crops. Drought stress is one of the most important environmental stresses that affect the growth and yield of plants. Management of nutrients in plants, especially during drought conditions and to assess this management on quantity and quality of sage medicinal plant is very important. Limited information are available about the response of sage under water deficiency conditions in different fertilizing systems, so the aim of this research was to study the growth, yield and essential oil production of Sage under different irrigation regimes. Materials and methods Field experiments were carried out at the field research station of Faculty of Agriculture of Tarbiat Modares University in Tehran, Iran during two growing seasons (2011-2012 and 2012-2013. The experiment was laid out in split plot based on randomized complete block design with three replications. Three irrigation levels including irrigation after depletion of 40% available water (I1, irrigation after depletion of 60% available water (I2, irrigation after depletion of 80% available water (I3 as the main plots and five different soil fertility systems including control (no fertilizer (F0, chemical fertilizer (urea=150 kg/ha-1¬¬ (Ur, nitrogen fixing bacteria(Azotobacter+Azospirillum+Pseudomonas (NFB, vermicompost (8 t/ha-1 (V vermicompost + nitrogen fixing bacteria (V+NFB as sub

  2. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  3. Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 A resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, P.; Swaminathan, S.; Lu, F.; Zhao, X.; Li, Z.; Gilmore, J.; Bain, K.; Rutter, M. E.; Gheyi, T.; Schwinn, D.; Bonanno, J. B.; Pieper, U.; Fajardo, J. E.; Fiser, A.; Almo, S. C.; Chance, M. R.; Baker, D.; Atwell, S.; Thompson, D. A.; Emtage, J. S.; Wasserman, S. R.; Sali, A.; Sauder, J. M.; Burley, S. K.

    2010-11-01

    Gram-negative bacteria typically overcome poor permeability of outer membranes through general porins like OmpF and OmpC, which form water-filled transmembrane pores permitting diffusion of hydrophilic molecules with no particular selectivity. Many bacteria lacking such general porins use substrate-specific porins to overcome growth-limiting conditions and facilitate selective transport of metabolites. Exclusive reliance on substrate-specific porins yields lower membrane permeability to small molecules (<600 Da) versus that seen for Escherichia coli. In Pseudomonads, transit of most small molecules across the cell membrane is thought to be mediated by substrate-specific channels of the OprD superfamily. This property explains, at least in part, the high incidence of Pseudomonas aeruginosa antibiotic resistance. High-throughput DNA sequencing of the P. aeruginosa chromosome revealed the presence of 19 genes encoding structurally related, substrate-specific porins (with 30-45% pairwise amino acid sequence identity) that mediate transmembrane passage of small, water-soluble compounds. The OprD superfamily encompasses the eponymous OprD subfamily, which includes 9 P. aeruginosa proteins that convey basic amino acids and carbapenem antibiotics, and the OpdK subfamily, which includes 11 P. aeruginosa proteins that convey aromatic acids and other small aromatic compounds. Genome sequencing of other gram-negative bacteria has revealed additional members of the OprD and OpdK subfamilies in various organisms, including other pseudomonads. Among the many bacteria in which OprD superfamily members have been identified are P. putida, P. fluorescens Pf-5, P. syringae, and Azotobacter vinelandii, all of which share closely related genes that encode the so-called BenF-like porins. In P. putida, benF is part of an operon involved in benzoate catabolism regulated by benR. Within this operon, benK, benE, and benF genes have been suggested to contribute toward either influx or efflux

  4. Bacterial Transport and Fate and Its Effect on Horizontal Gene Transfer in Soil

    Science.gov (United States)

    Lv, N.; Massoudieh, A.; Nguyen, T. H.; Kamai, T.; Zilles, J. L.; Ginn, T. R.; Liang, X.

    2013-12-01

    Biogeochemical cycling in ecosystems relies heavily on soil bacterial communities. Bacterial communities adapt to natural or anthropogenic disruptions through mutation and horizontal gene transfer. Horizontal gene transfer alters bacterial communities rapidly by transferring DNA across species. A systematic understanding of bacterial transport and fate and its effects on horizontal gene transfer is critical for predicting and harnessing bacterial adaption and evolution in soil. In this work, a multi-scale approach was applied to study the effects of both flagella and motility on transport and fate of the soil bacterium Azotobacter vinelandii in porous media. Both micromodel and column experiments showed decreasing deposition over time, suggesting that both flagellated and non-flagellated cells were blocked from deposition by previously deposited cells. In later stages, ripening effects were also observed, and they appeared earlier for the non-flagellated strain. Based on the overall clean collector removal efficiencies determined from micromodel and column experiments, the non-motile and non-flagellated strain DJNM deposited the most, while the motile, wild-type strain DJ showed the least deposition. The overall clean collector removal efficiencies was due to decreased deposition of motile cells on the front sides of the collectors (relative to the flow direction). The horizontal gene transfer of extracellular DNA, known as natural transformation, was evaluated with both dissolved and adsorbed extracellular DNA and with motile and non-motile but flagellated strains (DJ and DJ77, respectively). The distinct transport mechanisms of these strains resulted in different natural transformation rates and relationships to the concentration of cells and dissolved extracellular DNA. A modified mass action type relationship with power relationships was established to model the differences in natural transformation between DJ and DJ77. A cell-DNA pairing hypothesis was

  5. The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2016-07-01

    Full Text Available Introduction Since the use of chemical fertilizers causes environmental pollution and ecological damage, so application of biological fertilizers and selection the effective and compatible species in an special area, could be beneficial for sustainability of agroecosystems there. Nowadays, attention to the interrelation of plant-organism tended to interrelations between plant-organism-organism. Such nutritional relations, have ecological importance and important application in agriculture. The aim of this experiment was to evaluate the effect of chemical, organic and bio fertilizers on sorghum performance. Materials and Methods A field experiment was conducted in a randomized complete block design with three replications. The experimental treatments include three kinds of biofertilizers and their integrations and vermicompost and chemical fertilizer as follow: 1- mycorhhiza arbuscular (G.mosseae + vermicompost 2- mycorhhiza+ Nitroxine® (included bacteria Azospirillum sp. and Azotobacter sp. 3- mycorhhiza arbuscular+ Rhizobium (Rhizobium sp. 4-mycorhhiza arbuscular + Chemical fertilizer NPK 5- mycorhhiza arbuscular 6-control. Mycorhhiza and chemical fertilizer were mixed with soil at the depth of 30 cm before planting. Seeds were inoculated with bio fertilizers and dried at shadow. First irrigation applied immediately after planting. In order to improve seedling emergence second irrigation was performed after 4 days and other irrigation was applied at regular intervals of 10 days. Studied traits were: height and percentage of root colonization, specific root length, seed yield, number of seeds in panicle, thousands seeds weight. To determine the specific root length (root length in a certain volume of soil at the end of the growing season, plants in each plot were sampled. Then the length of root of each sample was determined. Results and Discussion The results showed that although the treatments did not affect the height of stem significantly

  6. Evaluation of Two Mycorrhiza Species and Nitroxin on Yield and Yield Components of Garlic (Allium sativum L. in an Ecological Agroecosystem

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2016-02-01

    biofertilizers on different crops, information on the effects of these factors for many medicinal plants such as garlic is scarce; therefore, in this study the effects of mycorrhiza and biofertilizers on quantitative characteristics of garlic in a low input cropping system were studied. Materials and Methods In order to study the effects of two mycorrhiza species and nitroxin on yield and yield components of garlic (Allium sativum L., an experiment was conducted in a factorial arrangement based on a randomized completed block design with three replications in the growing seasons of 2010 at the experimental farm of College of Agriculture, Ferdowsi University of Mashhad, Iran. The experimental factors were all combination of two mycorrhiza species (Glomus mosseae, Glomus intraradices and control and also inoculation with and without nitroxin (include Azotobacter sp. and Azospirillum sp. as a biofertilizer. Results and Discussion The results showed that both two mycorrhiza species had superior effects on most of the study traits compared with control. Bulb weight per plant was significantly affected by mycorrhiza species. Glomus mosseae، and Glomus intraradices increased bulb weight per plant by 48 and 29 percent compared with control, respectively. Nitroxin had a significant effect on length and diameter of bulbs. Length and diameter of bulbs were increased by 13 and 8 percent using nitroxin compared with control, respectively. Interactive effects of mycorrhiza and nitroxin on all study traits also were significant. Interactive effects of study treatments showed that Glomus mosseae had better effect on most of study traits at with and without nitroxin treatments. On the other hand, nitroxin had synergistic effect on mycorrhiza treatments compared when these treatments were used without nitroxin. Highest (4306 kg ha-1 and lowest (1665 kg ha-1 economic yield (bulb yield were obtained from Glomus mosseae + Nitroxin and control (without mycorhiza and nitroxin, respectively. In

  7. The Effect of Different Fertilizer Management on Yield and Yield Components of Black Seed (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-03-01

    Full Text Available Introduction Given the importance of nitrogen for improving the quantitative and qualitative yield of crops (Rodrigues et al., 2006 and the need for application of chemical fertilizers in intensive agriculture to get the maximum production, nitrogen supply in adequate amounts by ecologically avowed resources is known as one of the main challenges during transition from conventional to organic farming (Rodrigues et al., 2006. Considering the sustainable nitrogen management, reconstruction and rehabilitation of agroecosystems depends on reduction the nitrogen losses due to leaching, soil erosion and volatilization (Kizilkaya, 2008. For this purpose, the use of eco-friendly bio based fertilizers that are derived from natural origin, known as effective and enforceable approaches. In this regards, the proper use of manure and free-living aerobic bacteria of soils, such as Azotobacter and Azospirillum as well as mycorrhizal inoculation which can be used as a biological fertilizers, can particularly be considered (Kizilkaya, 2008. With regard to all mentioned above, the current study was aimed to evaluate the effects of biological, organic and inorganic resources of nitrogen on yield and yield components of black seed (Nigella sativa L.. Materials and methods The field experiment was conducted at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in years of 2009-2010. Experimental site was located in a semi-arid region, Khorasan Province, Northeast of Iran. The soil texture was silty loam, pH 8.36, electrical conductivity 3.72 dS.m-1, total N 0.095% and 0.195% organic carbon. The available P and K contents were 5.76 and 0.378 ppm, respectively. Experimental design was arranged by using a completely randomized block design with three replications. Experimental treatments included chemical fertilizer (urea, urea + nitroxin, urea + mycorrhizae, urea + nitroxin + mycorrhizae, urea + biosulfur, manure, manure + nitroxin, manure + mycorrhizae

  8. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    Full Text Available Introduction Utilizing biological fertilizer is a proper and cheap method for crop production. Potentially, soybean can be used as biological fertilizers and seed inoculation. Zinc is an essential element that have positive effects on plant growth and its development. Canola, sunflower, soybean and safflower are the main cultivated oilseeds in Iran. Soybean production in Iran is very low as compared to other countries. One of the most effective factor in increasing the soybean yield is seed inoculation with plant growth promoting rhizobacteria (PGPR and application of Zinc fertilizer. Some of the benefits provided by PGPR are the ability to produce gibberellic acid, cytokinins and ethylene, N2 fixation, solubilization of mineral phosphates and other nutrients (56. Numerous studies have shown a substantial increase in dry matter accumulation and seed yield following inoculation with PGPR. Seyed Sharifi (45 reported that seed inoculation with Azotobacter chroococcum strain 5 increased all of the growth indices such as total dry matter, crop growth rate and relative growth rate. Increasing and extending the role of biofertilizers such as Rhizobium can reduce the need for chemical fertilizers and decrease adverse environmental effects. Therefore, in the development and implementation of sustainable agricultural techniques, biofertilization has great importance in alleviating environmental pollution and deterioration of the nature. As a legume, soybean can obtain a significant portion (4-85% of its nitrogen requirement through symbiotic N2 fixation when grown in association with effective and compatible Rhizobium strains. Since there is little available information on nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR on yield in the agro-ecological growing zones of Ardabil province of Iran. Therefore, this research was conducted to investigate the effects of nano-zinc oxide and seed inoculation with plant growth

  9. Effect of Nitrogen and Phosphorus Sources on Soil Chemical Properties and Elements Concentration in Sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    A. i Yadav

    2016-02-01

    Full Text Available Introduction: Soil fertility management is a key factor in achieving sustainable agriculture. Use of organic fertilizers is one of the methods that without environmental harmful effects with improvement of chemical and biological conditions increases soil fertility. Nitroxin contains a collection of the best strains of nitrogen fixation bacteria of the genus Azospirillum and Azotobacter. These bacteria through atmospheric nitrogen fixation and the balance of macro and microelements needed for plant uptake, stimulate the growth and development of roots and aerial parts of the plant. Phosphate Barvar2 is another bio-fertilizer which contains set of phosphate solubilizing bacteria of different genera Bacillus and Pseudomonas that can change soil insoluble phosphorus into available forms for plants. The purpose of this study was to evaluate some chemical properties of soil and nutrient concentrations in leaves and seeds of sunflower under the influence of chemical and biological form of nitrogen and phosphorus fertilizers to reduce the use of chemical inputs and to improve quality traits in sunflower. Material and Methods :The experiment was carried out in a split factorial based on RCBD with three replications in a field in Eivanegharb (Ilam province in summer of 2011. The main plot included four levels of phosphorus and nitrogen chemical fertilizer (0, 33, 66 and 100% of nitrogen and phosphorus fertilizer requirements and subplot included factorial of Nitroxin bio-fertilizer application with two levels (inoculation and non inoculation and Phosphate Barvare2 bio fertilizer with two levels (inoculation and non inoculation. Each plot consisted of 5 rows at a distance of 60 cm and a length of 6 m and 20 cm plant spacing. At the time of flowering, leaves were harvested for measurement of nitrogen, phosphorus, potassium, zinc and manganese. After harvesting, the amount of total nitrogen, phosphorus and potassium and pH of the soil and the concentrations

  10. Effects of Different Amounts of Nitrogen and Azotobarvar on Growth Characteristics and Yield of Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    ghobad mohammadpoor

    2017-09-01

    Full Text Available Introduction One of the most important agricultural efforts is to minimize the use of chemicals nitrogen fertilizers and to replace it with biological nitrogen fertilizers to produce healthy productions. In dry conditions the use of industrial nitrogen fertilizers depends on the amount of rainfall and consumed cautiously. Low consumption of nitrogen sources reduce crop growth and yield and higher than optimum applications of chemical Nitrogen sources can cause many environmental disorders. This is while Azotobacter as a soil bacteria also fixes nitrogen, produce vitamins, growth hormones and antibiotics and also increases the photosynthesis, plant growth and grain yield and reduces the need to application of chemical Nitrogen. Materials and Methods In order to study the effect of biological and industrial nitrogen fertilizers on growth, yield and yield components of chickpea (Bivanij variety, an experiment was conducted with split plot arrangement based on randomized complete block design (RCBD with four replications under rainfed conditions in the Telesm village, Dalahoo, Kermanshah, during 2013 agricultural season. Climate of the region is temperate and semi-arid with 535.6 mm of rainfall. Soil texture is clay - loam with 0.02 percent of nitrogen. Basic amount of Nitrogen fertilizer was considered 30 Kg.ha-1 Urea and four levels of chemical nitrogen fertilizers including: %50 of base fertilizer, %100 of base fertilizer, %150 of base fertilizer and no fertilizer (control were assumed as main plot factors. Similarly, the basic amount of Azotobarvar bio-fertilizer was considered as 100 g.ha-1 and four levels of it including %50 of base fertilizer, %100 of base fertilizer, %150 of base fertilizer and no bio-fertilizer (control were assumed as sub plot factors. Bio-fertilizers are inoculated to seeds and planting was done manually on 19 March 2013. Density was considered 40 plants per square meter with 25 cm intervals between rows and 10 cm on the

  11. Effect of Seed Priming, Sowing methods and Bio-fertilizers on Yield and Yield Components of Seedy Watermelon (Citrullus Lanatus

    Directory of Open Access Journals (Sweden)

    M Zarandi

    2018-02-01

    Full Text Available Introduction Watermelon (Citrullus Lanatus is one of the most important fresh fruits in Iran particularly during summer. After China, in terms of production and cultivation area, Iran placed second in the world. Research conducted in different regions (especially in arid and semi-arid regions, like Iran indicated that poor germination and establishment of seedlings in the field causes low yield, particularly in vegetables. Seed priming, (to increase the percentage and rate of germination and transplanting to increase plant establishment and use of bio-fertilizers to increase food availability during the growing season are inevitable to transfer to ecological agriculture. The purpose of this research was to evaluate the effect of seeds osmopriming, transplanting and bio-fertilizers on watermelon grain yield. Materials and Methods This experiment was conducted at split plot based on complete block design with three replications in the Laboratory, Greenhouse and the Farm of the Faculty of Agriculture, Ferdowsi University of Mashhad in 2013. First factor was seed priming in two levels (unprimed and primed, the second factor was transplanting in two levels (direct sowing and transplantation and the third factor was bio-fertilizers containing pseudomonas and Azotobacter in two levels (non bio-fertilizers and bio-fertilizers. Leaf area index (LAI, number of fruits per plant, number of seeds per fruit, 1000 seed weight, grain yield and total dry matter were determined. Results and Discussion Transplants produced using osmoprimed seeds that had been sprayed with bio-fertilizers on the field (T2P2K2 had higher LAI than the other treatments (Table 3. Bio-fertilizers in both transplanting and direct sowing produced more LAI, but osmopriming of seeds with PEG 6000 had little impact on LAI (Table 3. LAI is one of the growth parameters which had a great effect to achieve maximum yield that needs to be at higher level before flowering. Izadkhah et al. (2010 and

  12. Effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some quantitative and qualitative characteristics of sesame (Sesamum indicum L. in a low input cropping system

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2016-03-01

    quantitative and qualitative characteristics of plant, moreover, decreased environment risks of chemical inputs and ensure sustainability of production in long time by this approach. Acknowledgments We wish to thank Vice President for Research and Technology, Ferdowsi University of Mashhad, Iran for the financial support of the project. Keywords: Ecological inputs, Glomus mosseae, Health of food, Medicinal crops References Hawkes, C.V., Hartley, I.P., Ineson, P., and Fitter, A.H. 2008. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology 14: 1181-1190. Motta, S.R., and Maggiore, T. 2013. Evaluation of nitrogen management in maize cultivation grown on soil amended with sewage sludge and urea. European Journal of Agronomy 45: 59-67. Raja Sekar, K., and Karmegan, N. 2010. Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Scientia Horticulturae 124: 286-289.

  13. Effects of Vermicompst and Nitroxin Biofertilizer on Quantity and Quality of Essential Oil of Dragonhead (Dracocephalum moldavica L.

    Directory of Open Access Journals (Sweden)

    hesam sajadi niaki

    2016-11-01

    Full Text Available Introduction Dragonhead (Dracocephalum moldavica L. is an annual herbaceous aromatic plant and belongs to Lamiaceae family. It is native to south of Siberia and Himalayan hillsides. The essential oil content shows great variation due to plant origin. The main constituents of dragonhead essential oil have been reported as geranial, geranyl acetate, neral and geraniol. Using organic manures and biofertilizers such as vermicompost and nitrogen fixing bacteria contain azotobacter and azospirillum has led to a decrease in the application of chemical fertilizers and has provided high quality agricultural products. Several studies have shown that organic and bio-fertilizers application such as vermicompost and Nitroxin can increase quantity and quality of essential oil of medicinal plants of dragonhead, anise and thyme (Darzi et al., 2013; Mafakheri et al., 2012; Mohammadpour Vashvaei et al., 2015. Therefore, the main objective of the present field experiment was to investigate the effects of vermicompst and Nitroxin biofertilizer on quantity and quality of essential oil of dragonhead. Materials and methods An experiment was conducted as afactorial experiment in the base of randomized complete blocks design with six treatments and three replications at research field of Agriculture Company of Ran in Firouzkuh of Iran in 2013. The factors were Vermicompost in three levels (0, 5 and 10 t.ha-1 and Nitroxinbiofertilizer (inoculated seeds and non-inoculated. Inoculation was carried out by immersing the dragonhead seeds in the cells suspension of 108 CFU/ml for 15 min. The required quantities of vermicompost were applied and incorporated to the top 5 cm layer of soil in the experimental beds before planting of dragonhead seeds. Each experimental plot was 3 m long and 2.28 m wide with the spacing of 10 cm between the plants and 38 cm between the rows. There was a space of one meter between the plots and 2 meters between replications. In this study

  14. The effect of biological fertilizers on yield, yield components and seed oil contents of three cultivars of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    achieve this goal is optimization and improvement of resources use efficiencies. Considering medicinal importance of savory and its role in the food and pharmaceutical industries (Omidbeigi, 2000, beside the limited nutrient resources and need to increase healthy production through using ecological inputs, this study was designed and conducted aimed to evaluate agroecological characteristics of savory as affected by the application of bio fertilizers, chemical and organic fertilizers under Mashhad conditions. Materials and methods In order to study the effects of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of summer savory, a split-plot design based on RCBD with three replications was conducted during the growing season of 2012 at the Agricultural Research Station, College of Agriculture, Ferdowsi University of Mashhad, Iran. Different levels of cattle manure (0 and 25 t.ha-1 were assigned to the main plots and different types of bio fertilizers (Nitroxin, containing Azotobacter sp. and Azospirillum sp., Biophosphor, containing phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas sp., Biosulfur, containing sulfur-solubilizing bacteria (Thiobacillus ssp., combination of Nitroxin+Biophosphor+ Biosulfur, vermicompost (7 t.ha-1, chemical fertilizers (NPK: 60, 60 and 70 kg.ha-1 and control (no fertilizer were used in the sub- plots. Results and discussion According to the results, all studied characteristics including plant height, lateral branches, flowering shoot yield, stem yield, percentage of essential oil and dry matter yield were affected positively by cattle manure. The highest plant height and number of lateral branches resulted from vermicompost and combination of Nitroxin+Biophosphor+Biosulfur, respectively. Biosulfur fertilizer produced the highest dry matter yield, flowering shoot yield and stem yield. Percentage of essential oil was also significantly affected by fertilizer treatments as the most