WorldWideScience

Sample records for azoles

  1. Azoles

    OpenAIRE

    Collado Martín, Daniel

    2014-01-01

    Azoles. Imidazol, tiazoles y oxazoles: reactividad y síntesis. Pirazol, isoozaxol, isotiazol: reactividad y síntesis. Capítulo cuarto del temario del segundo bloque de la asignatura Ampliación de Química Orgánica Avanzada. Azoles.

  2. [Pharmacology of azoles].

    Science.gov (United States)

    Azanza, José Ramón; García-Quetglas, Emilio; Sádaba, Belén

    2007-09-30

    Azole antifungals have different pharmacokinetic characteristics: complete oral absorption for Voriconazole, and to a lesser extent for fluconazole. The absorption of posaconazole and itraconazole increases with food intake. All of them have high tissue distribution with low plasma concentrations, especially low in the case of posaconazole and itraconazole. Posaconazole and itraconazole have high plasmatic protein binding and consequently both have a very low free fraction. Elimination of azole antifungals is through a metabolic pathway with CYP450 isoenzymes, and has a non linear pharmacokinetics with a high risk of interation with other drugs since azoles have the ability of CYP450 isoenzymes inhibition. Possibly the parameter that defines more precisely their efficacy is AUIC with an optimum value near 20, although cut-off values must be defined since some azoles may have difficulty to reach this value.

  3. Azole-Resistant Invasive Aspergillosis

    DEFF Research Database (Denmark)

    Stensvold, Christen Rune; Jørgensen, Lise Nistrup; Arendrup, Maiken Cavling

    2012-01-01

    for the highest fungicide use in the global perspective (37 % and 24 %, respectively). Among the 25 azole fungicides, five have been associated with the potential to select for the TR34/L98H genotype; three of these are among those most frequently used. Although the number of antifungal fungicide compounds...

  4. AN OVERVIEW OF AZOLE ANTIFUNGALS

    Directory of Open Access Journals (Sweden)

    Pratibha Shivaji Gavarkar*, Rahul Shivaji Adnaik, and Shrinivas Krishna Mohite

    2013-11-01

    Full Text Available Fungal infections in critically ill or immunosuppressed patients were increasing in incidence in the human population over the last 1-2 decades. There were few advances in antifungal therapy and, until recently, there were few choices from which to select a treatment for systemic mycoses. However, in the past decade, there have been several developments in this area. Antifungal agents are sufficiently diverse in activity, toxicity, and drug interaction potential. Azoles are synthetic and semi-synthetic compounds. They have a broad spectrum of activity. Triazole antifungals are active to treat an array of fungal pathogens, whereas imidazoles are used almost exclusively in the treatment of superficial mycoses and vaginal candidiasis. Despite the advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. The present review aims to explore the pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and potential for drug–drug interactions of the azole antifungal agents.

  5. Theoretical studies on nitrogen rich energetic azoles.

    Science.gov (United States)

    Ghule, Vikas Dasharath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2011-06-01

    Different nitro azole isomers based on five membered heterocyclics were designed and investigated using computational techniques in order to find out the comprehensive relationships between structure and performances of these high nitrogen compounds. Electronic structure of the molecules have been calculated using density functional theory (DFT) and the heat of formation has been calculated using the isodesmic reaction approach at B3LYP/6-31G* level. All designed compounds show high positive heat of formation due to the high nitrogen content and energetic nitro groups. The crystal densities of these energetic azoles have been predicted with different force fields. All the energetic azoles show densities higher than 1.87 g/cm(3). Detonation properties of energetic azoles are evaluated by using Kamlet-Jacobs equation based on the calculated densities and heat of formations. It is found that energetic azoles show detonation velocity about 9.0 km/s, and detonation pressure of 40GPa. Stability of the designed compounds has been predicted by evaluating the bond dissociation energy of the weakest C-NO(2) bond. The aromaticity using nucleus independent chemical shift (NICS) is also explored to predict the stability via delocalization of the π-electrons. Charge on the nitro group is used to assess the impact sensitivity in the present study. Overall, the study implies that all energetic azoles are found to be stable and expected to be the novel candidates of high energy density materials (HEDMs).

  6. Azole drug import into the pathogenic fungus Aspergillus fumigatus.

    Science.gov (United States)

    Esquivel, Brooke D; Smith, Adam R; Zavrel, Martin; White, Theodore C

    2015-01-01

    The fungal pathogen Aspergillus fumigatus causes serious illness and often death when it invades tissues, especially in immunocompromised individuals. The azole class of drugs is the most commonly prescribed treatment for many fungal infections and acts on the ergosterol biosynthesis pathway. One common mechanism of acquired azole drug resistance in fungi is the prevention of drug accumulation to toxic levels in the cell. While drug efflux is a well-known resistance strategy, reduced azole import would be another strategy to maintain low intracellular azole levels. Recently, azole uptake in Candida albicans and other yeasts was analyzed using [(3)H]fluconazole. Defective drug import was suggested to be a potential mechanism of drug resistance in several pathogenic fungi, including Cryptococcus neoformans, Candida krusei, and Saccharomyces cerevisiae. We have adapted and developed an assay to measure azole accumulation in A. fumigatus using radioactively labeled azole drugs, based on previous work done with C. albicans. We used this assay to study the differences in azole uptake in A. fumigatus isolates under a variety of drug treatment conditions, with different morphologies and with a select mutant strain with deficiencies in the sterol uptake and biosynthesis pathway. We conclude that azole drugs are specifically selected and imported into the fungal cell by a pH- and ATP-independent facilitated diffusion mechanism, not by passive diffusion. This method of drug transport is likely to be conserved across most fungal species.

  7. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence.

    Directory of Open Access Journals (Sweden)

    Maiken Cavling Arendrup

    Full Text Available Four sequential Aspergillus fumigatus isolates from a patient with chronic granulomatous disease (CGD eventually failing azole-echinocandin combination therapy were investigated. The first two isolates (1 and 2 were susceptible to antifungal azoles, but increased itraconazole, voriconazole and posaconazole MICs were found for the last two isolates (3 and 4. Microsatellite typing showed that the 4 isolates were isogenic, suggesting that resistance had been acquired during azole treatment of the patient. An immunocompromised mouse model confirmed that the in vitro resistance corresponded with treatment failure. Mice challenged with the resistant isolate 4 failed to respond to posaconazole therapy, while those infected by susceptible isolate 2 responded. Posaconazole-anidulafungin combination therapy was effective in mice challenged with isolate 4. No mutations were found in the Cyp51A gene of the four isolates. However, expression experiments of the Cyp51A showed that the expression was increased in the resistant isolates, compared to the azole-susceptible isolates. The microscopic morphology of the four isolates was similar, but a clear alteration in radial growth and a significantly reduced growth rate of the resistant isolates on solid and in broth medium was observed compared to isolates 1 and 2 and to unrelated wild-type controls. In the mouse model the virulence of isolates 3 and 4 was reduced compared to the susceptible ones and to wild-type controls. For the first time, the acquisition of azole resistance despite azole-echinocandin combination therapy is described in a CGD patient and the resistance demonstrated to be directly associated with significant change of virulence.

  8. Antifungal drug resistance to azoles and polyenes.

    Science.gov (United States)

    Masiá Canuto, Mar; Gutiérrez Rodero, Félix

    2002-09-01

    There is an increased awareness of the morbidity and mortality associated with fungal infections caused by resistant fungi in various groups of patients. Epidemiological studies have identified risk factors associated with antifungal drug resistance. Selection pressure due to the continuous exposure to azoles seems to have an essential role in developing resistance to fluconazole in Candida species. Haematological malignancies, especially acute leukaemia with severe and prolonged neutropenia, seem to be the main risk factors for acquiring deep-seated mycosis caused by resistant filamentous fungi, such us Fusarium species, Scedosporium prolificans, and Aspergillus terreus. The still unacceptably high mortality rate associated with some resistant mycosis indicates that alternatives to existing therapeutic options are needed. Potential measures to overcome antifungal resistance ranges from the development of new drugs with better antifungal activity to improving current therapeutic strategies with the present antifungal agents. Among the new antifungal drugs, inhibitors of beta glucan synthesis and second-generation azole and triazole derivatives have characteristics that render them potentially suitable agents against some resistant fungi. Other strategies including the use of high doses of lipid formulations of amphotericin B, combination therapy, and adjunctive immune therapy with cytokines are under investigation. In addition, antifungal control programmes to prevent extensive and inappropriate use of antifungals may be needed.

  9. Synthesis and Bioactivities of A Series of Bis-azoles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-He; LIU Qiang; CHEN Jie; HU Xiang-Nan; CAI Meng-Shen; XIE Ru-Gang; Alfred Hassner

    2003-01-01

    @@ Imidazoles as pharmaceutical agents are widely used and investigated. A series of bis-azoles were prepared fromimidazole and its analogues and dibromides obtained according to similar procedures of literatures. [1 ~ 4

  10. Posaconazole prophylaxis in experimental azole-resistant invasive pulmonary aspergillosis

    NARCIS (Netherlands)

    Seyedmousavi, S.; Mouton, J.W.; Melchers, W.J.G.; Verweij, P.E.

    2015-01-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazo

  11. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog

    Directory of Open Access Journals (Sweden)

    Sergio Álvarez-Pérez

    2016-03-01

    Full Text Available Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.

  12. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog.

    Science.gov (United States)

    Álvarez-Pérez, Sergio; García, Marta E; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L

    2016-03-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.

  13. Endocrine disrupting properties in vivo of widely used azole fungicides

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Vinggaard, Anne; Hass, Ulla

    2008-01-01

    The endocrine-disrupting potential of four commonly used azole fungicides, propiconazole, tebuconazole, epoxiconazole and ketoconazole, were tested in two short-term in vivo studies. Initially, the antiandrogenic effects of propiconazole and tebuconazole (50, 100 and 150 mg/kg body weight/day eac...... as endocrine disruptors in vivo, although the profile of action in vivo varies. As ketoconazole is known to implicate numerous endocrine-disrupting effects in humans, the concern for the effects of the other tested azole fungicides in humans is growing.......The endocrine-disrupting potential of four commonly used azole fungicides, propiconazole, tebuconazole, epoxiconazole and ketoconazole, were tested in two short-term in vivo studies. Initially, the antiandrogenic effects of propiconazole and tebuconazole (50, 100 and 150 mg/kg body weight/day each...

  14. New therapeutic strategies for invasive aspergillosis in the era of azole resistance: how should the prevalence of azole resistance be defined?

    Science.gov (United States)

    Alanio, Alexandre; Denis, Blandine; Hamane, Samia; Raffoux, Emmanuel; Peffault de la Tour, Régis; Touratier, Sophie; Bergeron, Anne; Bretagne, Stéphane

    2016-08-01

    Given reports showing a high prevalence of azole resistance in Aspergillus fumigatus, alternatives to azole therapy are discussed when a threshold of 10% of azole-resistant environmental isolates is reached. This raises the issue of calculation of this threshold, either on the prevalence of azole-resistant isolates as a whole or on the prevalence of azole-resistant cases in populations at risk of invasive aspergillosis (IA). For isolate evaluation, there are high disparities in routine microbiological procedures for the isolation of A. fumigatus and azole resistance detection. There are also huge differences between the microbiological work-up for diagnosing IA. Some centres rely on galactomannan detection alone without actively trying to culture appropriate samples, which affects reliability of the figures on the prevalence of resistance and thus the threshold of resistance. Moreover, reports from the laboratory could mix up figures from completely different patient populations: frequent azole-resistant isolates from pneumology patients and rare azole-resistant isolates from haematology patients. Therefore, to sum isolates from different specimens and different wards can lead to erroneous calculations for the restricted populations at risk of developing IA. In conclusion, assessing the incidence of azole resistance in A. fumigatus should be based on harmonized consensual microbiological methods and reports should be restricted to IA episodes in identified populations at risk of IA when the issue is to define an operational threshold for modifying recommendations.

  15. Does farm fungicide use induce azole resistance in Aspergillus fumigatus?

    Science.gov (United States)

    Kano, Rui; Kohata, Erina; Tateishi, Akira; Murayama, Somay Yamagata; Hirose, Dai; Shibata, Yasuko; Kosuge, Yasuhiro; Inoue, Hiroaki; Kamata, Hiroshi; Hasegawa, Atsuhiko

    2015-02-01

    Azole resistance of Aspergillus fumigatus isolates has been reported worldwide and it would appear to be mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which is the target enzyme for azoles. The mutation has been confirmed in isolates from patients who received long-term itraconazole (ITZ) therapy and from agricultural fields where high levels of azole fungicides were employed. However, the relationship between farm environments and azole-resistant A. fumigatus has not been fully studied. In this investigation, 50 isolates of A. fumigatus were obtained from a farm where tetraconazole has been sprayed twice a year for more than 15 years. The mean minimum inhibitory concentration (MIC) of isolates was 0.74 (0.19-1.5) mg/L against ITZ, which was below the medical resistance level of ITZ. The sequence of CYP51A from isolates indicated no gene mutations in isolates from the farm. Antifungal susceptibility of isolates to tetraconazole showed that spraying with tetraconazole did not induce resistance to tetraconazole or ITZ in A. fumigatus.

  16. Nationwide Surveillance of Azole Resistance in Aspergillus Diseases.

    Science.gov (United States)

    Vermeulen, Edith; Maertens, Johan; De Bel, Annelies; Nulens, Eric; Boelens, Jerina; Surmont, Ignace; Mertens, Anna; Boel, An; Lagrou, Katrien

    2015-08-01

    Aspergillus disease affects a broad patient population, from patients with asthma to immunocompromised patients. Azole resistance has been increasingly reported in both clinical and environmental Aspergillus strains. The prevalence and clinical impact of azole resistance in different patient populations are currently unclear. This 1-year prospective multicenter cohort study aimed to provide detailed epidemiological data on Aspergillus resistance among patients with Aspergillus disease in Belgium. Isolates were prospectively collected in 18 hospitals (April 2011 to April 2012) for susceptibility testing. Clinical and treatment data were collected with a questionnaire. The outcome was evaluated to 1 year after a patient's inclusion. A total of 220 Aspergillus isolates from 182 patients were included. The underlying conditions included invasive aspergillosis (n = 122 patients), allergic bronchopulmonary aspergillosis (APBA) (n = 39 patients), chronic pulmonary aspergillosis (n = 10 patients), Aspergillus bronchitis (n = 7 patients), and aspergilloma (n = 5 patients). The overall azole resistance prevalence was 5.5% (95% confidence interval [CI] 2.8 to 10.2%) and was 7.0% (4/57; 95% CI, 2.3 to 17.2%) in patients with APBA, bronchitis, aspergilloma, or chronic aspergillosis and 4.6% in patients with invasive aspergillosis (5/108; 95% CI, 1.7 to 10.7%). The 6-week survival in invasive aspergillosis was 52.5%, while susceptibility testing revealed azole resistance in only 2/58 of the deceased patients. The clinical impact of Aspergillus fumigatus resistance was limited in our patient population with Aspergillus diseases.

  17. Azole preexposure affects the Aspergillus fumigatus population in patients.

    Science.gov (United States)

    Alanio, Alexandre; Cabaret, Odile; Sitterlé, Emilie; Costa, Jean-Marc; Brisse, Sylvain; Cordonnier, Catherine; Bretagne, Stéphane

    2012-09-01

    The relationship between the azole preexposure of 86 patients and the genotype, azole susceptibility, and cyp51A polymorphisms of 110 corresponding Aspergillus fumigatus isolates was explored. Isolates carrying serial polymorphisms (F46Y and M172V with or without N248T with or without D255E with or without E427K) had higher itraconazole MICs (P = 0.04), although <2 μg/ml using the EUCAST methodology, were associated with two genetic clusters (P < 0.001) and with voriconazole preexposure of patients (P = 0.016). Voriconazole preexposure influences the distribution of A. fumigatus isolates with selection of isolates carrying cyp51A polymorphisms and higher itraconazole MICs.

  18. Azole Fungicides as Synergists in the Aquatic Environment

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen

    the aquaticcrustacean Daphnia magna in both laboratory experiments and natural-like environments. In the PhDthesis, synergy is defined as happening in mixtures where either EC50 values decrease more than two-foldbelow the prediction by the model of Concentration Addition (horizontal assessment of synergy) or wherethe...... forbifenthrin. Subsequent experiments indirectly assessed sorption strength by measuring the bioaccessiblefraction of the sorbed pesticides using poly(dimethylsiloxane) (PDMS) rods. Bifenthrin bioaccessibilitywas significantly reduced in an algae suspension of approximately 17,000 cells mL-1 while a tendency...... ofsynergistically acting azoles in the environment. As a consequence of sorbents acting as vectors andpotential accumulation within exposed organisms, aquatic organisms may experience larger exposureconcentrations, leading to greater synergistic effects, than expected based on single azole concentrationsmeasured...

  19. Solderability perservative coatings: Electroless tin vs. organic azoles

    Energy Technology Data Exchange (ETDEWEB)

    Artaki, I.; Ray, U.; Jackson, A.M.; Gordon, H.M. [AT and T Bell Labs., Princeton, NJ (United States); Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)

    1993-07-01

    This paper compares the solderability performance and corrosions ion protection effectiveness of electroless tin coatings versus organic azole films after exposure to a series of humidity and thermal (lead-free solders) cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of Sn-Cu intermetallic phases as long as the intermetallic phase is protected by a Sn layer. For a nominal tin thickness of 60{mu}inches, the typical thermal excursions associated with assembly are not sufficient to cause the intermetallic phase to consume the entire tin layer. Exposure to humidity at moderate to elevated temperatures promotes heavy tin oxide formation which leads to solderability loss. In contrast, thin azole films are more robust to humidity exposure; however upon heating in the presence of oxygen, they decompose and lead to severe solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.

  20. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    Science.gov (United States)

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible.

  1. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms

    NARCIS (Netherlands)

    Chowdhary, A.; Sharma, C.; Hagen, F.; Meis, J.F.G.M.

    2014-01-01

    Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis. Azole antifungals play an important role in the management of aspergillosis. However, over a decade, azole resistance in A. fumigatus isolates has been increasingly reported with v

  2. Effects of azole fungicides on the function of sex and thyroid hormones

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Andersen, Helle Raun; Taxvig, Camilla

    Azole-fungicides are frequently used in Denmark. Epoxiconazole, propiconazole, and tebuconazole had endocrine disrupting properties in cell based assays. In rats, epoxiconazole and tebuconazole increased gestational length, maternal progesterone level, and masculinized female-offspring. Besides......, tebuconazole caused feminization of male-offspring. Similar effects were previously demonstrated for prochloraz. The results indicate that azole-fungicides in general have endocrine disrupting properties....

  3. An azole, an amide and a limonoid from Vepris uguenensis (Rutaceae).

    Science.gov (United States)

    Cheplogoi, Peter K; Mulholland, Dulcie A; Coombes, Philip H; Randrianarivelojosia, Milijaona

    2008-04-01

    The limonoid derivative, methyl uguenenoate, the azole, uguenenazole, and the amide, uguenenonamide, together with the known furoquinoline alkaloids flindersiamine and maculosidine, and syringaldehyde have been isolated from the root of the East African Rutaceae Vepris uguenensis. While methyl uguenenoate and the furoquinoline alkaloids displayed mild antimalarial activity, the azole and amide were completely inactive.

  4. Effects of the azole fungicide imazalil on the fathead minnow (Pimephales promelas) steroidogenesis pathway

    Science.gov (United States)

    Azole fungicides, used for both agriculture and human therapeutic applications may disrupt endocrine function of aquatic life. Azole fungicides are designed to inhibit the fungal enzyme lanosterol 14 á-demethylase (cytochrome P450 [CYP] 51). However, they can also interact...

  5. Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Snelders, E.; Arends, J.P.; Daenen, S.M.G.J.; Melchers, W.J.G.; Verweij, P.E.

    2010-01-01

    We report the use of PCR techniques on a formalin-fixed and paraffin-embedded tissue specimen for direct detection of one dominant azole resistance mechanism in a case of disseminated invasive aspergillosis. Rapid detection of mutations associated with azole resistance directly in tissue significant

  6. Rapid Diagnosis of Azole-Resistant Aspergillosis by Direct PCR Using Tissue Specimens

    NARCIS (Netherlands)

    van der Linden, Jan W. M.; Snelders, Eveline; Arends, Jan P.; Daenen, Simon M.; Melchers, Willem J. G.; Verweij, Paul E.

    2010-01-01

    We report the use of PCR techniques on a formalin-fixed and paraffin-embedded tissue specimen for direct detection of one dominant azole resistance mechanism in a case of disseminated invasive aspergillosis. Rapid detection of mutations associated with azole resistance directly in tissue significant

  7. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    Science.gov (United States)

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  8. Posaconazole Prophylaxis in Experimental Azole-Resistant Invasive Pulmonary Aspergillosis

    OpenAIRE

    Seyedmousavi, Seyedmojtaba; Mouton, Johan W.; Melchers, Willem J. G.; Verweij, Paul E.

    2014-01-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effec...

  9. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi

    Science.gov (United States)

    Hagiwara, Daisuke; Watanabe, Akira; Kamei, Katsuhiko; Goldman, Gustavo H.

    2016-01-01

    Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms. PMID:27708619

  10. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain.

    Science.gov (United States)

    Mortensen, Klaus Leth; Mellado, Emilia; Lass-Flörl, Cornelia; Rodriguez-Tudela, Juan Luis; Johansen, Helle Krogh; Arendrup, Maiken Cavling

    2010-11-01

    A single mechanism of azole resistance was shown to predominate in clinical and environmental Aspergillus fumigatus isolates from the Netherlands, and a link to the use of azoles in the environment was suggested. To explore the prevalence of azole-resistant A. fumigatus and other aspergilli in the environment in other European countries, we collected samples from the surroundings of hospitals in Copenhagen, Innsbruck, and Madrid, flowerbeds in an amusement park in Copenhagen, and compost bags purchased in Austria, Denmark, and Spain and screened for azole resistance using multidish agars with itraconazole, voriconazole, and posaconazole. EUCAST method E.DEF 9.1 was used to confirm azole resistance. The promoter and entire coding sequence of the cyp51A gene were sequenced to identify azole-resistant A. fumigatus isolates. A. fumigatus was recovered in 144 out of 185 samples (77.8%). Four A. fumigatus isolates from four Danish soil samples displayed elevated azole MICs (8%), and all harbored the same TR/L98H mutation of cyp51A. One A. lentulus isolate with voriconazole MIC of 4 mg/liter was detected in Spain. No azole-resistant aspergilli were detected in compost. Finally, A. terreus was present in seven samples from Austria. Multi-azole-resistant A. fumigatus is present in the environment in Denmark. The resistance mechanism is identical to that of environmental isolates in the Netherlands. No link to commercial compost could be detected. In Spain and Austria, only Aspergillus species with intrinsic resistance to either azoles or amphotericin B were found.

  11. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  12. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Crettaz, Pierre [Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); ETH Zürich, Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2014-09-15

    Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of

  13. Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells.

    Science.gov (United States)

    Heusinkveld, Harm J; Molendijk, Jeffrey; van den Berg, Martin; Westerink, Remco H S

    2013-08-01

    Humans are exposed to complex mixtures of pesticides and other compounds, mainly via food. Azole fungicides are broad spectrum antifungal compounds used in agriculture and in human and veterinary medicine. The mechanism of antifungal action relies on inhibition of CYP51, resulting in inhibition of fungal cell growth. Known adverse health effects of azole fungicides are mainly linked to CYP inhibition. Additionally, azole fungicide-induced neurotoxicity has been reported, though the underlying mechanism(s) are largely unknown. We therefore investigated the effects of a group of six azole fungicides (imazalil, flusilazole, fluconazole, tebuconazole, triadimefon, and cyproconazole) on cell viability using a combined alamar Blue/CFDA-AM assay and on oxidative stress using a H2-DCFDA fluorescent assay. As calcium plays a pivotal role in neuronal survival and functioning, effects of these six azole fungicides and binary and quaternary mixtures of azole fungicides on the intracellular calcium concentration ([Ca(2+)]i) were investigated using single-cell fluorescence microscopy in dopaminergic PC12 cells loaded with the calcium-sensitive fluorescent dye Fura-2. Only modest changes in cell viability and ROS production were observed. However, five out of six azole fungicides induced a nonspecific inhibition of voltage-gated calcium channels (VGCCs), though with varying potency. Experiments using binary IC20 and quaternary IC10 mixtures indicated that the inhibitory effects on VGCCs are additive. The combined findings demonstrate modulation of intracellular Ca(2+) via inhibition of VGCCs as a novel mode of action of azole fungicides. Furthermore, mixtures of azole fungicides display additivity, illustrating the need to take mixture effects into account in human risk assessment.

  14. Posaconazole prophylaxis in experimental azole-resistant invasive pulmonary aspergillosis.

    Science.gov (United States)

    Seyedmousavi, Seyedmojtaba; Mouton, Johan W; Melchers, Willem J G; Verweij, Paul E

    2015-03-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effective in A. fumigatus with posaconazole MICs of ≤0.5 mg/liter, where 100% survival was reached. However, breakthrough infection was observed in mice infected with the isolate for which the posaconazole MIC was >16 mg/liter.

  15. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain

    DEFF Research Database (Denmark)

    Mortensen, Klaus Leth; Mellado, Emilia; Lass-Flörl, Cornelia;

    2010-01-01

    in the environment in other European countries, we collected samples from the surroundings of hospitals in Copenhagen, Innsbruck, and Madrid, flowerbeds in an amusement park in Copenhagen, and compost bags purchased in Austria, Denmark, and Spain and screened for azole resistance using multidish agars....... fumigatus isolates from four Danish soil samples displayed elevated azole MICs (8%), and all harbored the same TR/L98H mutation of cyp51A. One A. lentulus isolate with voriconazole MIC of 4 mg/liter was detected in Spain. No azole-resistant aspergilli were detected in compost. Finally, A. terreus...... was present in seven samples from Austria. Multi-azole-resistant A. fumigatus is present in the environment in Denmark. The resistance mechanism is identical to that of environmental isolates in the Netherlands. No link to commercial compost could be detected. In Spain and Austria, only Aspergillus species...

  16. Cul/8-Hydroxyquinalidine Promoted N-Arylation of Indole and Azoles

    Institute of Scientific and Technical Information of China (English)

    杨新业; 邢辉; 张烨; 赖宜生; 张奕华; 蒋咏文; 马大为

    2012-01-01

    An efficient catalytic system of CuI/8-hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90 ~C under the condition of relatively low cata- lyst loading, affording various N-arylindoles and N-aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.

  17. Effects of azole fungicides on the function of sex and thyroid hormones

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Andersen, Helle Raun; Taxvig, Camilla

    Resumé: Azole-fungicides are frequently used in Denmark. Epoxiconazole, propiconazole, and tebuconazole had endocrine disrupting properties in cell based assays. In rats, epoxiconazole and tebuconazole increased gestational length, maternal progesterone level, and masculinized female......-offspring. Besides, tebuconazole caused feminization of male-offspring. Similar effects were previously demonstrated for prochloraz. The results indicate that azole-fungicides in general have endocrine disrupting properties...

  18. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2016-02-01

    Full Text Available Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11. In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli.

  19. Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles in Candida glabrata.

    Science.gov (United States)

    Faria-Ramos, Isabel; Tavares, Pedro R; Farinha, Sofia; Neves-Maia, João; Miranda, Isabel M; Silva, Raquel M; Estevinho, Letícia M; Pina-Vaz, Cidalia; Rodrigues, Acácio G

    2014-11-01

    Acquisition of azole resistance by clinically relevant yeasts in nature may result in a significant, yet undetermined, impact in human health. The main goal of this study was to assess the development of cross-resistance between agricultural and clinical azoles by Candida spp. An in vitro induction assay was performed, for a period of 90 days, with prochloraz (PCZ) - an agricultural antifungal. Afterward, the induced molecular resistance mechanisms were unveiled. MIC value of PCZ increased significantly in all Candida spp. isolates. However, only C. glabrata developed cross-resistance to fluconazole and posaconazole. The increased MIC values were stable. Candida glabrata azole resistance acquisition triggered by PCZ exposure involved the upregulation of the ATP binding cassette multidrug transporter genes and the transcription factor, PDR1. Single mutation previously implicated in azole resistance was found in PDR1 while ERG11 showed several synonymous single nucleotide polymorphisms. These results might explain why C. glabrata is so commonly less susceptible to clinical azoles, suggesting that its exposure to agricultural azole antifungals may be associated to the emergence of cross-resistance. Such studies forward potential explanations for the worldwide increasing clinical prevalence of C. glabrata and the associated worse prognosis of an infection by this species.

  20. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Bryce E Mansfield

    Full Text Available Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m of 0.64 μM and V(max of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.

  1. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.

    Science.gov (United States)

    Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C

    2010-09-30

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.

  2. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  3. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    Directory of Open Access Journals (Sweden)

    Norma T. Gross

    2007-01-01

    Full Text Available Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient was 57 (20.6%. C. albicans was the predominant species (70%, followed by C. parapsilosis (12%, C. tropicalis (5.3%, C. glabrata and C. famata (3.5% each, C. krusei, C. inconspicua and C. guilliermondii (1.7% each. The majority of vaginal Candida isolates were susceptible to ketoconazole (91%, fluconazole (96.5%, and itraconazole (98%. A lower susceptibility of some isolates to miconazole (63% was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01. Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles.

  4. ERG11 mutations associated with azole resistance in Candida albicans isolates from vulvovaginal candidosis patients

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Li-Hua Huang; Ji-Xue Zhao; Man Wei; Hua Fang; Dan-Yang Wang; Hong-Fa Wang; Ji-Gang Yin; Mei Xiang

    2015-01-01

    Objective:To investigate the azole susceptibility of Candida albicans (C. albicans) from vulvovaginal candidosis patients and to analyze the relationship between ERG11 gene mutations in these isolates and azole resistance. Methods:Three hundred and two clinical isolates of Candida species were collected. Azole susceptibility was tested in vitro in microdilution studies. The ERG11 genes of 17 isolates of C. albicans (2 susceptibles, 5 dose-dependent resistants and 10 resistants) were amplified and sequenced. Results:Of the 302 isolates collected, 70.2%were C. albicans, of which 8.5%, 3.8%and 4.2%were resistant to fluconazole, itraconazole and voriconazole, respectively. In total, 27 missense mutations were detected in ERG11 genes from resistant/susceptible dose-dependent isolates. Among them, Y132H, A114S, and Y257H substitutions were most prevalent and were known to cause fluconazole resistance. G464S and F72S also has been proved to cause fluconazole resistance. Two novel substitutions (T285A, S457P) in hotspot regions were identified. Conclusions:Twenty seven mutations in the ERG11 gene were identified in azole-resistant C. albicans isolates, which indicated a possible relation with the increase in resistance to azole drugs and the recurrence of vulvovaginal candidosis. The relationship of two novel substitutions (T285A, S457P) with fluconazole resistance needs to be further verified by site-directed mutagenesis.

  5. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    Science.gov (United States)

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.

  6. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain

    Directory of Open Access Journals (Sweden)

    T. Pelaez

    2015-07-01

    Full Text Available We report the first isolation of a voriconazole-resistant Aspergillus fumigatus strain harbouring the azole resistance mechanism TR46/Y121F/T289A, recovered from an azole-naive patient in Spain with chronic obstructive pulmonary disease. This new finding in Spain suggests the spread of this resistance mechanism and reinforces the need for antifungal susceptibility surveillance.

  7. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

    Science.gov (United States)

    Hayama, Kazumi; Ishibashi, Hiroko; Ishijima, Sanae A; Niimi, Kyoko; Tansho, Shigeru; Ono, Yasuo; Monk, Brian C; Holmes, Ann R; Harding, David R K; Cannon, Richard D; Abe, Shigeru

    2012-03-01

    Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis.

  8. Synthesis of azole nucleoside analogues of D-pinitol as potential antitumor agents.

    Science.gov (United States)

    Zhan, Tianrong; Lou, Hongxiang

    2007-05-07

    A convenient strategy is reported for the synthesis of azole nucleoside analogues of D-pinitol (=3-O-methyl-D-chiro-inositol). The key intermediate 3-O-methyl-4,5-epoxy-D-chiro-inositol was obtained in excellent yield via an epoxidation from mono-methanesulfonate of D-pinitol. The process of opening of the epoxy ring by azole-bases appeared strongly regioselective in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene. All newly synthesized carbocyclic azole nucleosides were assayed against lung and bladder cancer in vitro. Only the triazole and benzotriazole nucleoside analogues inhibited the growth of human lung cancer cell lines (PG) with EC(50) of 11.3 and 22.6 microM, respectively, and showed much less inhibitory activity against human bladder cell lines (T(24)).

  9. Quantum chemical study on the corrosion inhibition property of some heterocyclic azole derivatives

    Directory of Open Access Journals (Sweden)

    N. Anusuya

    2015-09-01

    Full Text Available Quantum chemical calculations based on density functional theory (DFT method were performed on heterocyclic azole derivatives as corrosion inhibitors for mild steel in acid media to investigate the relationship between molecular structure of the inhibitors and the corresponding inhibition efficiencies (%. Quantum chemical parameters most relevant to their potential action as corrosion inhibitors have been calculated in the non-protonated and protonated forms in aqueous phase for comparison. Results obtained in this study indicate thatin acidic media, both the protonated and non-protonated forms of the azoles represent the better actual experimental situation.

  10. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    Science.gov (United States)

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2015-11-09

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  11. CalPFl4030 negatively modulates intracellular ATP levels during the development of azole resistance in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xin-ming JIA; Ying WANG; Jun-dong ZHANG; Hong-yue TAN; Yuan-yingJIANG; Jun GU

    2011-01-01

    Aim:Widespread and repeated use of azoles, particularly fiuconazole, has led to the rapid development of azole resistance in Candida albicans.We investigated the role of CalPF14030 during the development of azole resistance in C albicans.Methods:The expression of CalPF14030 was measured by quantitative RT-PCR, and CalPF14030 was disrupted by the hisG-URA3-hisG(URA-blaster)method.The sensitivity of C albicans to azoles was examined using a spot assay, and the intracellular ATP concentrations were measured by a luminometer.Results:CalPF14030 expression in C albicans was up-regulated by Ca2+ in a calcineurin-dependent manner, and the protein was overexpressed during the stepwise acquisition of azole resistance.However,disruption or ectopic overexpression of CalPFl4030 did not affect the sensitivity of C albicans to azoles.Finally,we demonstrated that disruption of CalPFll4030 significantly increased intracellular ATP levels.and overexpression significantly decreased intracellular ATP levels jn C albicans.Conclusion:CalPF14030 may negatively modulate intracellular ATP levels during the development of azole resistance in C albicans.

  12. Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing

    NARCIS (Netherlands)

    Abdolrasouli, A.; Rhodes, J.; Beale, M.A.; Hagen, F.; Rogers, T.R.; Chowdhary, A.; Meis, J.F.G.M.; Armstrong-James, D.; Fisher, M.C.

    2015-01-01

    A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole anti

  13. Molecular Epidemiology of Aspergillus fumigatus Isolates Harboring the TR34/L98H Azole Resistance Mechanism.

    NARCIS (Netherlands)

    Camps, S.M.T.; Rijs, A.J.M.M.; Klaassen, C.H.; Meis, J.F.G.M.; O'Gorman, C.M.; Dyer, P.S.; Melchers, W.J.G.; Verweij, P.E.

    2012-01-01

    A rapid emergence of azole resistance has been observed in Aspergillus fumigatus in The Netherlands over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves the TR(34)/L98H mutations in cyp51A. This resistance mechanism is now also increasingly being

  14. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs.

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Zhang

    Full Text Available Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(- phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+ and H(+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.

  15. In vitro resistance of Aspergillus fumigatus to azole farm fungicide.

    Science.gov (United States)

    Kano, Rui; Sobukawa, Hideto; Murayama, Somay Yamagata; Hirose, Dai; Tanaka, Yoko; Kosuge, Yasuhiro; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2016-03-01

    Azole resistance in Aspergillus fumigatus is mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which encodes the target of azole fungicides. Moreover, overexpression of CYP51B or multidrug resistance (MDR) gene is supposedly related to the mechanism of azole resistance in A. fumigatus. In this study, we tried to induce resistance to tetraconazole, an azole fungicide, in strains of A. fumigatus from a farm and then investigated mutation and expression of their CYP51A, CYP51B, and multidrug resistance (MDR) genes. Three tetraconazole resistant strains were induced and their minimum inhibitory concentration (MIC) for tetraconazole was 145 mg/L. However, the MICs of itraconazole (ITZ), posaconazole (POS), and voriconazole (VRZ) obtained by an E-test of the three tetraconazole resistant strains were 0.064-0.19 mg/L for ITZ, 0.023-0.32 mg/L for POS, and 0.047-0.064 mg/L for VRZ. No gene mutations were detected in the CYP 51A sequence amplified in these strains. RT-PCR of cyp51A and cyp51B indicated that the tetraconazole resistant strains more highly expressed these genes than the susceptible strain in tetraconazole containing medium.

  16. A Global Analysis of CYP51 Diversity and Azole Sensitivity in Rhynchosporium commune.

    Science.gov (United States)

    Brunner, Patrick C; Stefansson, Tryggvi S; Fountaine, James; Richina, Veronica; McDonald, Bruce A

    2016-04-01

    CYP51 encodes the target site of the azole class of fungicides widely used in plant protection. Some ascomycete pathogens carry two CYP51 paralogs called CYP51A and CYP51B. A recent analysis of CYP51 sequences in 14 European isolates of the barley scald pathogen Rhynchosporium commune revealed three CYP51 paralogs, CYP51A, CYP51B, and a pseudogene called CYP51A-p. The same analysis showed that CYP51A exhibits a presence/absence polymorphism, with lower sensitivity to azole fungicides associated with the presence of a functional CYP51A. We analyzed a global collection of nearly 400 R. commune isolates to determine if these findings could be extended beyond Europe. Our results strongly support the hypothesis that CYP51A played a key role in the emergence of azole resistance globally and provide new evidence that the CYP51A gene in R. commune has further evolved, presumably in response to azole exposure. We also present evidence for recent long-distance movement of evolved CYP51A alleles, highlighting the risk associated with movement of fungicide resistance alleles among international trading partners.

  17. Tuning interaction in dinuclear ruthenium complexes : HOMO versus LUMO mediated superexchange through azole and azine bridges

    NARCIS (Netherlands)

    Browne, Wesley; Hage, R; Vos, Johannes G.

    2006-01-01

    In this review the interaction between metal centers in dinuclear complexes based on azole and azine containing bridging ligands is reviewed. The focus of the review is on the manner in which the interaction pathway can be manipulated by variations in the nature of both the direct bridging unit and

  18. Does fungicide application in vineyards induce resistance to medical azoles in Aspergillus species?

    Science.gov (United States)

    Lago, Magali; Aguiar, Ana; Natário, André; Fernandes, Carla; Faria, Miguel; Pinto, Eugénia

    2014-09-01

    This study assessed if the use of sterol demethylase inhibitor fungicides in vineyard production can induce resistance to azoles in Aspergillus strains and if it can induce selection of resistant species. We also tried to identify the Aspergillus species most prevalent in the vineyards. Two vineyards from northern Portugal were selected from "Vinhos Verdes" and "Douro" regions. The vineyards were divided into plots that were treated or not with penconazole (PEN). In each vineyard, air, soil, and plant samples were collected at three different times. The strains of Aspergillus spp. were isolated and identified by morphological and molecular techniques. We identified 46 Aspergillus section Nigri, eight Aspergillus fumigatus, seven Aspergillus lentulus, four Aspergillus wentii, two Aspergillus flavus, two Aspergillus terreus, one Aspergillus calidoustus, one Aspergillus westerdijkiae, one Aspergillus tamarii, and one Eurotium amstelodami. Aspergillus strains were evaluated for their susceptibility to medical azoles used in human therapy (itraconazole, posaconazole, and voriconazole) and to agricultural azoles (PEN) used in the prevention and treatment of plant diseases. The isolates showed moderate susceptibility to voriconazole. We did not observe any decrease of susceptibility to the medical azoles tested throughout the testing period in any of the treated plots, although some of the resistant species were isolated from there.

  19. ERG11 mutations associated with azole resistance in Candida albicans isolates from vulvovaginal candidosis patients

    Institute of Scientific and Technical Information of China (English)

    Bin; Wang; Li-Hua; Huang; Ji-Xue; Zhao; Man; Wei; Hua; Fang; Dan-Yang; Wang; Hong-Fa; Wang; Ji-Gang; Yin; Mei; Xiang

    2015-01-01

    Objective: To investigate the azole susceptibility of Candida albicans(C.albicans)from vulvovaginal candidosis patients and to analyze the relationship between ERG11 gene mutations in these isolates and azole resistance.Methods: Three hundred and two clinical isolates of Candida species were collected.Azole susceptibility was tested in vitro in microdilution studies. The ERG11 genes of 17 isolates of C. albicans(2 susceptibles, 5 dose-dependent resistants and 10 resistants) were amplified and sequenced.Results: Of the 302 isolates collected, 70.2% were C. albicans, of which 8.5%, 3.8% and4.2% were resistant to fluconazole, itraconazole and voriconazole, respectively. In total,27 missense mutations were detected in ERG11 genes from resistant/susceptible dosedependent isolates. Among them, Y132 H, A114 S, and Y257 H substitutions were most prevalent and were known to cause fluconazole resistance. G464 S and F72 S also have been proved to cause fluconazole resistance. Two novel substitutions(T285A, S457P) in hotspot regions were identified.Conclusions: Twenty seven mutations in the ERG11 gene were identified in azoleresistant C. albicans isolates, which indicated a possible relation with the increase in resistance to azole drugs and the recurrence of vulvovaginal candidosis. The relationship of two novel substitutions(T285A, S457P) with fluconazole resistance needs to be further verified by site-directed mutagenesis.

  20. Azole resistance in Aspergillus fumigatus: a side-eff ect of environmental fungicide use?

    NARCIS (Netherlands)

    Verweij, P.A.; Snelders, E.; Kema, G.H.J.; Mellado, E.; Melchers, W.J.G.

    2009-01-01

    Invasive aspergillosis due to multi-azole-resistant Aspergillus fumigatus has emerged in the Netherlands since 1999, with 6·0–12·8% of patients harbouring resistant isolates. The presence of a single resistance mechanism (denoted by TR/L98H), which consists of a substitution at codon 98 of cyp51A an

  1. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    Full Text Available Abstract Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024 groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide

  2. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  3. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens.

    Science.gov (United States)

    Price, Claire L; Parker, Josie E; Warrilow, Andrew G S; Kelly, Diane E; Kelly, Steven L

    2015-08-01

    Plant fungal pathogens can have devastating effects on a wide range of crops, including cereals and fruit (such as wheat and grapes), causing losses in crop yield, which are costly to the agricultural economy and threaten food security. Azole antifungals are the treatment of choice; however, resistance has arisen against these compounds, which could lead to devastating consequences. Therefore, it is important to understand how these fungicides are used and how the resistance arises in order to tackle the problem fully. Here, we give an overview of the problem and discuss the mechanisms that mediate azole resistance in agriculture (point mutations in the CYP51 amino acid sequence, overexpression of the CYP51 enzyme and overexpression of genes encoding efflux pump proteins). © 2015 Society of Chemical Industry.

  4. The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active Against RNA Viruses.

    Science.gov (United States)

    1986-09-15

    azole heterocycles and the corresponding nucleosides structurally related to ribavirin have been synthesized. 1,2,4-Triazole, thiazole, pyrrole... Structurally Related to Pyrazofurin . . . .. .. . 18 4. Synthesis of 4-Amino-8-(O--D-ribofuranosylamino)- pyrimido[5,4-dJpyrimidine and Other Miscellaneous...strains of rhinovirus , more than thirty adenovirus strains and over sixty coxsackie and echovirus strains are known. It is virtually impossible or

  5. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2016-09-01

    Full Text Available Pierre-Régis Burgel,1,2 André Paugam,2,3 Dominique Hubert,1,2 Clémence Martin1,2 1Department of Respiratory Medicine, Cochin Hospital, Assistance Publique – Hôpitaux de Paris, 2Université Paris Descartes, Sorbonne Paris Cité, 3Parasitology-Mycology Laboratory, Cochin Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France Abstract: Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF. Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus-positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy. Keywords: itraconazole, voriconazole, posaconazole, azole resistance, allergic bronchopulmonary aspergillosis

  6. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy.

    Science.gov (United States)

    Burgel, Pierre-Régis; Paugam, André; Hubert, Dominique; Martin, Clémence

    2016-01-01

    Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF). Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus-positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy.

  7. Mechanisms of Resistance to an Azole Fungicide in the Grapevine Powdery Mildew Fungus, Erysiphe necator.

    Science.gov (United States)

    Frenkel, Omer; Cadle-Davidson, Lance; Wilcox, Wayne F; Milgroom, Michael G

    2015-03-01

    We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.

  8. Structural Basis for Cooperative Binding of Azoles to CYP2E1 as Interpreted through Guided Molecular Dynamics Simulations

    Science.gov (United States)

    Levy, Joseph W.; Hartman, Jessica H.; Perry, Martin D.; Miller, Grover P.

    2015-01-01

    CYP2E1 metabolizes a wide array of small, hydrophobic molecules, resulting in their detoxification or activation into carcinogens through Michaelis-Menten as well as cooperative mechanisms. Nevertheless, the molecular determinants for CYP2E1 specificity and metabolic efficiency toward these compounds are still unknown. Herein, we employed computational docking studies coupled to Molecular Dynamics simulations to provide a critical perspective for understanding a structural basis for cooperativity observed for an array of azoles from our previous binding and catalytic studies (Hartman, JH et al (2014) Biochem Pharmacol 87, 523-33). The resulting 28 CYP2E1 complexes in this study revealed a common passageway for azoles that included a hydrophobic steric barrier causing a pause in movement toward the active site. The entrance to the active site acted like a second sieve to restrict access to the inner chamber. Collectively, these interactions impacted the final orientation of azoles reaching the active site and hence could explain differences in their biochemical properties observed in our previous studies, such as the consequences of methylation at position 5 of the azole ring. The association of a second azole demonstrated significant differences in interactions stabilizing the bound complex than observed for the first binding event. Intermolecular interactions occurred between the two azoles as well as CYP2E1 residue side chains and backbone and involved both hydrophobic contacts and hydrogen bonds. The relative importance of these interactions depended on the structure of the respective azoles indicating the absence of specific defining criteria for binding unlike the well-characterized dominant role of hydrophobicity in active site binding. Consequently, the structure activity relationships described here and elsewhere are necessary to more accurately identify factors impacting the observation and significance of cooperativity in CYP2E1 binding and catalysis

  9. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture.

    Science.gov (United States)

    Álvarez-Pérez, Sergio; de Vega, Clara; Pozo, María I; Lenaerts, Marijke; Van Assche, Ado; Herrera, Carlos M; Jacquemyn, Hans; Lievens, Bart

    2016-02-01

    The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.

  10. Multidrug resistance in Botrytis cinerea associated with decreased accumulation of the azole fungicide oxpoconazole and increased transcription of the ABC transporter gene BcatrD

    NARCIS (Netherlands)

    Hayashi, K.; Schoonbeek, H.; Sugiura, H.; Waard, De M.A.

    2001-01-01

    Azole-resistant mutants of Botrytis cinerea have a multidrug resistance phenotype since they exhibit cross-resistance to unrelated chemicals. These mutants also display resistance to the new azole fungicide oxpoconazole. Resistance to oxpoconazole is associated with decreased accumulation of the fun

  11. Effects of mixtures of azole fungicides in postimplantation rat whole-embryo cultures.

    Science.gov (United States)

    Menegola, Elena; Di Renzo, Francesca; Metruccio, Francesca; Moretto, Angelo; Giavini, Erminio

    2013-11-01

    The effect of mixtures of azole fungicides on development of postimplantation rat whole-embryos cultured in vitro has been tested. On the basis of bench mark dose (BMD) modeling of the in vitro effect in rat embryo, the potency of 7 azoles was determined and compared. Then, relative potency factors have been derived based on either the NOAEL or on the BMD curve. Alternatively, each compound was used as index compound (IC), and IC-equivalent concentrations have been calculated for each mixture. Expected effects of such IC-equivalent concentrations of the mixture were derived from the appropriate BMD curve. Test mixture includes the agrochemicals triadimefon and imazalil (MIX2) or triadimefon, imazalil, and the clinically used fluconazole (MIX3) at their previously determined no-effect concentration, corresponding to approximately a benchmark response of 5-10 %. Subsequently, we tested the effect of a mixture of the agrochemicals triadimefon, imazalil, triadimenol, cyproconazole, tebuconazole, and flusilazole (MIX6) at concentration levels derived from their established human acceptable daily intake. MIX6 was also added with fluconazole at concentration levels indicated as the minimum therapeutically effective plasmatic concentration (MIX7A) or ten times this level (MIX7B). Generally, the experimental response was higher than the estimated one, by a factor of 2-6. Our data suggest that it is in principle correct to assume that azoles act as teratogens via a common mode of action and therefore should be grouped together for risk assessment. The synergistic effect needs to be confirmed with more combinations of concentrations/compounds in vitro and with specific in vivo experiments.

  12. Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, Natasa [Department of Physical and Organic Chemistry, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kokalj, Anton, E-mail: tone.kokalj@ijs.si [Department of Physical and Organic Chemistry, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-11-15

    By means of density functional theory calculations, it has been shown how typical organic corrosion inhibitors-molecules that have the ability to remarkably slow down the corrosion of metals and alloys-interact with bare surfaces of various types of metals. As representative model systems, benzimidazole and benzotriazole inhibitors on iron, copper, and aluminum surfaces are considered. It is found that bonding depends sensitively on the type of metal. On transition metals with open d-band the inhibitor molecules can chemisorb strongly either parallel to the surface with a pronounced {pi}-d hybridization or perpendicularly with unsaturated N atom(s) through {sigma}-molecular orbitals, whereas on transition metals with fully occupied d-band and on sp-metals the molecules weakly chemisorb only with the latter mode. In addition to neutral inhibitor molecules also inhibitors in deprotonated (anionic) and protonated (cationic) forms are considered, because many corrosion inhibitors possess acidic hydrogens as well as basic heteroatoms. It is shown that the chemisorptive bonding is far the strongest for deprotonated inhibitors and, moreover, that even protonated inhibitors may chemisorb, although such bonding is characteristic of more reactive metals. However adsorbed protonated inhibitors are likely to deprotonate on all considered metals, whereas further deprotonation from neutral to deprotonated form is more likely on more reactive metals. Highlights: Black-Right-Pointing-Pointer Bonding of azole corrosion inhibitors onto metal surfaces characterized by DFT calculations. Black-Right-Pointing-Pointer Adsorption bonding depends sensitively on the type of metal. Black-Right-Pointing-Pointer Azoles bond with either {pi}-system or {sigma}-orbitals to transition metals with open d-band. Black-Right-Pointing-Pointer Azoles bond with {sigma}-orbitals to transition metals with fully occupied d-band and to sp-metals. Black-Right-Pointing-Pointer Among various molecular forms

  13. The Effects of Antifungal Azoles on Inflammatory Cytokine Production in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    K Zomorodian

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Azoles drugs are being used successfully in treatment of fungal infections. Recently, immunosuppressive effects of some of these agents have been reported. Keratinocytes, as the major cells of the skin, have an important role in innate immunity against pathogenic agents. Considering the scanty of information about the effects of azoles on immune responces, this study was conducted to assess the expression and secretion of inflammatory cytokines in keratinocytes following treatment with azole drugs. Materials & Methods: This is an exprimental study conducted in in molecular biology division in Tehran University of Medical Sciences and Immunodermatology Department in Vienna Medical University. Primery keratinocytes were cultured and treated with different concentrations of fluconazole, itraconazole, ketoconazole and griseofulvin. Secreted IL1, IL6 and TNF-α by keratinocytes in culture supernatant were measured by quantitative enzyme immunoassay technique. Moreover, expression of the genes encoding IL1 and IL8 was evaluated by Real Time-PCR. Results: Treatment of keratinocytes with different concentrations of fluconazole and low concentration of ketoconazole resulted in decrease in IL1 secretion, but Itraconazole and griseofulvin did not show such an effect at the same concentrations. In addition, none of the examined drugs had an effect on secretion level of IL6 and TNF-α. Quantitative analysis of IL1 and IL8 encoding genes revealed that transcription on these genes might be suppressed following treatment with fluconazole or ketoconazole. Conclusion: Fluconazole and ketoconazole might modulate the expression and secretion of IL1 and IL8 and affect the direction of immune responses induced by keratinocytes

  14. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Hung [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China); Chou, Pei-Hsin [Department of Environmental Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chen, Pei-Jen, E-mail: chenpj@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2014-07-30

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  15. Synthesis of fused azole-piperidionoses: A free radical cyclization approach

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Contelles, Jose; Alhambra Jimenez, Carolina [Instituto de Quimica Organica General (CSIC), Madrid (Spain)

    1999-08-01

    A new strategy has been reported for the synthesis of fused azole-piperidinoses featuring and unprecedented and very efficient 6-exo-trig free radical cyclization onto heterocyclic sugar templates. These compounds are key intermediates for the synthesis of known or analogues of azole-glycosidase inhibitors. In this communication we describe our recent and successful results on the synthesis of fused triazole-piperidinoses. Radical precursors have been prepared by standard methodologies from 1, 2:5, 6-bis-O-isopropylidene-{alpha}-D-glucofuranose (4) via triazoles linked at C3 with {beta}-orientation, readily obtained by 1, 3-dipolar cycloaddition of azide 5 with diethyl acetylenedicarboxylate or methyl propiolate, and by S{sub N}2 displacement of the tosylate at C3 with 1, 2, 4-triazole in compound 20. The key 6-exp-trig free radical cyclizations proceeded in the usual conditions [tributyltin hydride or tris(trimethylsily)silane, AIBN, toluene] yielding the azaannulated sugars 9, 11, 19 and 23 in good or excellent yields. A mechanism for these cyclizations has been proposed. [Spanish] Se ha informado una nueva estrategia para la sintesis azol-piperidinosas fusionadas mediante una ciclizacion 6-exo-trig muy eficiente y sin precedentes, sobre plantillas de azucares heterociclicos. Estos compuestos son intermediarios claves para la sintesis de inhibidores de azol-glicosidasa conocidos analogos de ellos. En esta comunicacion describimos nuestros resultados recientes y exitosos sobre la sintesis de triazol-piperidinosas. Los precursores de radicales fueron preparados por la metodologia usual a partir de 1, 2:5, 6-bis-O-isopropiliden-{alpha}-D-glucofuranosa (4) via triazoles unidos en C3, con orientacion {beta}, los cuales se obtienen facilmente por cicloadicion 1, 3-dipolar de la azida 5 con acetilendicarboxilato de dietilo o propiolato de metilo y por desplazamiento S{sub N}2 del tosilato en C3 con 1, 2, 4-triazol en el compuesto 20. Las ciclizaciones 6-exo

  16. Emergence of Azoles Resistance Candida species in Iranian AIDS defined patients with oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Farzad Katiraee

    2015-09-01

    Conclusion: Based on the findings, it can be concluded that screening of resistant Candida isolates by disk diffusion or broth dilution method is essential for the surveillance and prevention of antifungal resistance in patient management. Although nystatin is widely used in clinical practice for HIV patients in Iran, no evidence of enhanced resistance against this agent was found on the other hand, resistance to azole antifungals, particularly fluconazole, increased. Considering the lack of resistance to caspofungin, administration of this agent is suggested for the treatment of OPC in AIDS patients.

  17. Candida glabrata Esophagitis: Are We Seeing the Emergence of a New Azole-Resistant Pathogen?

    Directory of Open Access Journals (Sweden)

    Aze Wilson

    2014-01-01

    Full Text Available Background. Candida glabrata (C. glabrata has become a recognized pathogen in fungal esophagitis. A proportion of these isolates are azole-resistant which may have treatment implications. Variability in the prevalence of this organism exists in the limited data available. Objective. To determine the incidence of C. glabrata esophagitis in a North American hospital setting and to highlight factors that may predispose patients to this condition. Methods. Patient charts were collected from January 1, 2009 to July 30, 2011. Any charts of patients identified as having esophagitis with a positive fungal culture were reviewed for the species of Candida and the presence of factors that would predispose them to esophageal candidiasis. Results. The prevalence of Candida esophagitis based on culture was 2.2% (37 subjects. C. glabrata was the 2nd most prevalent pathogen identified (24.3% or 9 subjects. Of the C. glabrata cohort, all patients had at least one factor predisposing them to candidiasis. Conclusion. C. glabrata esophagitis makes up a large portion of the candidal esophagitis seen in hospital. C. glabrata infections were associated with at least one risk factor for candidal infection. Given its resistance to azole-based therapy, this may have treatment implications for how candidal esophagitis is approached by the clinician.

  18. Synthesis and Characterization of Nanosized Uranyl Coordination Polymers derived from Terephthalic acid and Azoles

    Directory of Open Access Journals (Sweden)

    Maged S.Al-Fakeh

    2016-05-01

    Full Text Available The structure of the complexes [UO2(TPA(Azole(H2O].xH2O, TPA = 1,4-benzenedicarboxylic acid and azoles = 2-aminobenzothiazole, 2-aminothiazole, 2-amino-4-methylthiazole and 2-mercaptobenzothiazole has been prepared and characterized. The structure of the complexes has been assigned based on elemental analysis, IR, electronic spectral studies, magnetic measurement, molar conductance, Scanning electron microscope (S.E.M, X-ray powder diffraction techniques investigations and thermogravimetric analysis complete the characterization of the compound. Thermogravimetry(TG, derivative thermogravimetry (DTG and differential thermal analysis (DTA have been used to study the thermal decomposition of the complexes. The kinetic parameters have been calculated making use of the Coats-Redfern and Horowitz-Metzger. The scanning electron microscope SEM photographs and particle size calculations from the powder XRD data indicate the average size of the prepared UO2(II (28-56 nm supramolecular coordination polymers in the nanoscale range. The biological screening of the compounds was also tested.

  19. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He [Southwest University, Chongqing (China)

    2010-12-15

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

  20. Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.; Nistelrooy, van J.G.M.; Kema, G.H.J.; Waard, de M.A.

    2003-01-01

    Molecular mechanisms that account for variation in base-line sensitivity to azole fungicides were examined in a collection of twenty field isolates, collected in France and Germany, of the wheat pathogen Mycosphaerella graminicola (Fuckel) Schroeter. The isolates tested represent the wide base-line

  1. Multilocus sequence typing of Candida tropicalis shows clonal cluster enrichment in azole-resistant isolates from patients in Shanghai, China.

    Science.gov (United States)

    Wang, Ying; Shi, Ce; Liu, Jin-Yan; Li, Wen-Jing; Zhao, Yue; Xiang, Ming-Jie

    2016-10-01

    To explore the putative correlation between the multilocus sequence types (MLST) and antifungal susceptibility of clinical Candida tropicalis isolates in Mainland China. Eighty-two clinical C. tropicalis isolates were collected from sixty-nine patients at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, from July 2012 to February 2015, and antifungal susceptibility tests were performed. Genetic profiles of those 82 isolates (30 azole-resistant and 52 azole-susceptible) were characterised by multilocus sequence typing. Phylogenetic analysis of the data was conducted with the clustering method, using UPGMA (unweighted pair group method with arithmetic averages) and the minimal spanning tree algorithm. MLST clonal clusters were analysed using the eBURST V3 package. Of the six gene fragments identified in multilocus sequence typing, SAPT4 presented the highest typing efficiency, whereas SAPT2 was the least efficient. Of the 44 diploid sequence types (DSTs) differentiated, 32 DSTs and 12 genotypes were identified as new to the C. tropicalis DST database. Twenty (45.45%) of the 44 DSTs were assigned to seven major groups based on eBURST analysis. Of these, Group 6, which contained DST 376, DST 505, DST 506 and DST 507, accounted for 76.7% of the 30 azole-resistant isolates. However, the genetic relationships among the azole-susceptible isolates were relatively decentralised. This MLST analysis of the putative correlation between the MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Mainland China shows that DSTs 376, 505, 506 and 507 are closely related azole-resistant C. tropicalis clones.

  2. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Eveline Snelders

    2008-11-01

    Full Text Available BACKGROUND: Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured from patients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus is unknown. We investigated the prevalence and spread of azole resistance using our culture collection that contained A. fumigatus isolates collected between 1994 and 2007. METHODS AND FINDINGS: We investigated the prevalence of itraconazole (ITZ resistance in 1,912 clinical A. fumigatus isolates collected from 1,219 patients in our University Medical Centre over a 14-y period. The spread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients, from 28 other medical centres in The Netherlands and 317 isolates from six other countries. The isolates were characterized using phenotypic and molecular methods. The electronic patient files were used to determine the underlying conditions of the patients and the presence of invasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases were observed after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with two copies of a 34-bp sequence in tandem in the gene promoter (TR/L98H, was found to be the dominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolates were genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to be responsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found in isolates from 13 patients (12.8% from nine other medical centres in The Netherlands, of which 69% harboured the TR/L98H substitution, and in six isolates originating from four other countries. CONCLUSIONS: Azole resistance has emerged in A. fumigatus and might be more

  3. [Photochemical reaction types of the azole fungicide fluconazole under UV-vis irradiation].

    Science.gov (United States)

    Ge, Lin-Ke; Li, Kai; Yang, Kai; Na, Guang-Shui; Yu, Chun-Yan; Zhang, Peng; Yao, Zi-Wei

    2013-08-01

    This study selected the azole fungicide fluconazole as a model compound, and investigated its photodegradation kinetics and photoreaction types in pure water. It was found that under UV-vis irradiation (lambda > 200 nm), the fluconazole photodegraded fast and followed the pseudo-first-order kinetics, whereas under simulated sunlight (lambda > 290 nm), photodegradation did not occur. The ROS scavenging experiments and competition kinetic examination indicated that the compound underwent both direct photolysis and self-sensitized photooxidation via *OH other than 1O2. The bimolecular rate constant for the reaction between fluconazole and *OH was (5.95 +/- 0.58) x 10(9) L x (mol x s)(-1), and the corresponding environmental half-life was calculated to be (32.41 +/- 3.16) h in surface waters. Furthermore, it was deduced from the photodegradation product identification that the UV-vis degradation pathways involved photoinduced defluorination, hydrolysis and photooxidation.

  4. In vitro and in vivo screening of azole fungicides for antiandrogenic effects

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Vinggaard, Anne; Hass, Ulla

    and antiandrogenic effects both in vitro and in vivo. Two other azole fungicides, tebuconazole and epoxiconazole, have now been investigated for antiandrogenic effects in vitro and in vivo as well. The fungicides were screened in two well-established cell assays, including testing for agonistic and antagonistic...... effects on AR in transfected CHO cells, using an AR reporter gene assay. The compounds were also analyzed for effects on steroidogenesis in H295R cells, a human adrenocorticocarcinoma cell line, used to detect effects on steroid production. In vitro tebuconazole and epoxiconazole proved to be antagonists...... signs of feminization of the male offspring were investigated. Tebuconazole caused an increase in testicular 17alfa-hydroxyprogesterone and progesterone levels, and a decrease in testosterone levels in male fetuses. Epoxiconazole had no effect on any of the mesured hormonelevels. Furthermore...

  5. In vitro screening of azole fungicides for antiandrogenic effects – comparison with in vivo effects

    DEFF Research Database (Denmark)

    -based assays. In vitro prochloraz proved to be an activator of the aryl hydrocarbon receptor (AhR), to inhibit aromatase activity and to possess antiestrogenic and antiandrogenic effects both in vitro and in vivo. Another two azole fungicides, tebuconazole and epoxiconazole, have now been investigated...... in H295R cells, a cell line, which produces a wide range of steroid hormones in measurable quantities, including testosterone, progesterone and estradiol, a property that makes it suitable as a screening assay to detect effects on steroidogenesis. In the in vitro tebuconazole and epoxiconazole showed...... antiandrogenic effects, and in the H295R cell assay, tebuconazole and epoxiconazole were like prochloraz able to inhibit testosterone and estradiol levels and increase progesterone levels. For the in vivo testing, a study was conducted testing the developmental effects on offspring after prenatal exposure...

  6. 2-Azidoimidazolium Ions Captured by N-Heterocyclic Carbenes: Azole-Substituted Triazatrimethine Cyanines

    Directory of Open Access Journals (Sweden)

    Simone Haslinger

    2016-04-01

    Full Text Available 1,3-Disubstituted 2-azidoimidazolium salts (substituents = methyl, methoxy; anion = PF6 reacted with N-heterocyclic carbenes to yield yellow 2-(1-(azolinylidenetriazen-3-yl-1,3-R2-imidazolium salts (azole = 1,3-dimethylimidazole, 1,3-dimethoxyimidazole, 4-dimethylamino-1-methyl-1,2,4-triazole; R = methyl, methoxy; anion = PF6. Crystal structures of three cationic triazenes were determined. Numerous interionic C–H···F contacts were observed. Solvatochromism of the triazenes in polar solvents was investigated by UV-Vis spectroscopy, involving the dipolarity π* and hydrogen-bond donor acidity α of the solvent. Cyclovoltammetry showed irreversible reduction of the cations to uncharged radicals. Thermoanalysis showed exothermal decomposition.

  7. Synthesis, Characterization and Biocidal Evaluation of Azole-Based Ligandsmetal Complexes

    Directory of Open Access Journals (Sweden)

    S. A. Olagboye

    2013-12-01

    Full Text Available Different metal complexes of the azole-based ligands have been synthesized and characterized based on the solubility, percentage yield, melting points and conductivity a well as the antimicrobial evaluations on the selected fungi species of plant pathogens. The studies revealed that solid metal complexes were soluble in 80% water and 20% (DMSO dimethylsulphuroxide and the percentage yields were of appreciable high while the conductivity results showed that metal complexes were non-electrolytes. The solid complexes were also screened against the fungi species: Rhizoctonia solani,Pythium aphaindermatum,Rhizoctonia cerealis,Sclerotium rofisil ,Phyphotoria palmivora (causative agent of black pod diseases and Benlate a commercial anti fungi agent (as control.The results of the present studies confirmed that metal complexes had good inhibitory actions on the growth of the fungi species and metal complexes appeared to be more proactive on the tested organisms than the free ligands.

  8. DEVELOPMENT AND VALIDATION OF HPLC METHOD FOR SOME AZOLES IN PHARMACEUTICAL PREPARATION

    Directory of Open Access Journals (Sweden)

    Wael Abu Dayyih et al

    2012-10-01

    Full Text Available A new, simple and rapid reversed-phase high-performance liquid chromatography (HPLC method was developed and validated for the determination of some azoles drug (Ketoconazole, Isoconazole and Miconazole in pharmaceutical dosage forms in Jordan market. The HPLC separation was achieved on a C18 BDS column (100 mm × 4.6 mm using a mobile phase of acetonitrile and 0.05 M Ammonium Acetate buffer (70:30, v/v that adjusted to pH 6 using phosphoric acid at a flow rate of 1 mL min−1 and using UV absorbance detection at 254 nm. The method was validated for specificity, linearity, precision, accuracy, robustness. The separation was completed within 11.77 minutes and the assay was linear over the concentration range of 50% to 150% (r2 = 0.9999, the percent recovery for test and reference formulation was (98.14%-101.12%.

  9. An Efficient Method for the In Vitro Production of Azol(in)e-Based Cyclic Peptides**

    Science.gov (United States)

    Houssen, Wael E; Bent, Andrew F; McEwan, Andrew R; Pieiller, Nathalie; Tabudravu, Jioji; Koehnke, Jesko; Mann, Greg; Adaba, Rosemary I; Thomas, Louise; Hawas, Usama W; Liu, Huanting; Schwarz-Linek, Ulrich; Smith, Margaret C M; Naismith, James H; Jaspars, Marcel

    2014-01-01

    Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6–9 residues representing 11 out of the 20 canonical amino acids. PMID:25331823

  10. An efficient method for the in vitro production of azol(in)e-based cyclic peptides.

    Science.gov (United States)

    Houssen, Wael E; Bent, Andrew F; McEwan, Andrew R; Pieiller, Nathalie; Tabudravu, Jioji; Koehnke, Jesko; Mann, Greg; Adaba, Rosemary I; Thomas, Louise; Hawas, Usama W; Liu, Huanting; Schwarz-Linek, Ulrich; Smith, Margaret C M; Naismith, James H; Jaspars, Marcel

    2014-12-15

    Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6-9 residues representing 11 out of the 20 canonical amino acids.

  11. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks

    Science.gov (United States)

    Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.

    2016-10-01

    An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.

  12. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism

    Science.gov (United States)

    Brilhante, Raimunda S.N.; Paiva, Manoel A.N.; Sampaio, Célia M.S.; Castelo-Branco, Débora S.C.M.; Teixeira, Carlos E.C.; de Alencar, Lucas P.; Bandeira, Tereza J.P.G.; Monteiro, André J.; Cordeiro, Rossana A.; Pereira-Neto, Waldemiro A.; Sidrim, José J.C.; Moreira, José L.B.; Rocha, Marcos F.G.

    2016-01-01

    Since, there is no study reporting the mechanism of azole resistance among yeasts isolated from aquatic environments; the present study aims to investigate the occurrence of antifungal resistance among yeasts isolated from an aquatic environment, and assess the efflux-pump activity of the azole-resistant strains to better understand the mechanism of resistance for this group of drugs. For this purpose, monthly water and sediment samples were collected from Catú Lake, Ceará, Brazil, from March 2011 to February 2012. The obtained yeasts were identified based on morphological and biochemical characteristics. Of the 46 isolates, 37 were Candida spp., 4 were Trichosporon asahii, 3 were Cryptococcus laurentii, 1 Rhodotorula mucilaginosa, and 1 was Kodamaea ohmeri. These isolates were subjected to broth microdilution assay with amphotericin B, itraconazole, and fluconazole, according to the methodology standardized by the Clinical and Laboratory Standards Institute (CLSI). The minimum inhibitory concentrations (MICs) of amphotericin B, itraconazole, and fluconazole were 0.03125–2 μg/mL, 0.0625 to ≥16 μg/mL, and 0.5 to ≥64 μg/mL, respectively, and 13 resistant azole-resistant Candida isolates were detected. A reduction in the azole MICs leading to the phenotypical reversal of the azole resistance was observed upon addition of efflux-pump inhibitors. These findings suggest that the azole resistance among environmental Candida spp. is most likely associated with the overexpression of efflux-pumps. PMID:26887224

  13. An unusual hydrogen addition of indolo-2,3-quinodimethanes to dimethylindoles in the presence of 1,3-azoles

    Indian Academy of Sciences (India)

    P T Perumal; R Nagarajan

    2006-03-01

    Indolo-2,3-quinodimethane generated in situ from bis-(bromomethyl)indole with NaI/DMF at 70°C was expected to undergo cycloaddition with 1,3-azoles to give carboline derivatives, which form the backbone of many indole alkaloids. However, the reaction did not give the anticipated product but proceeded via hydrogen addition to exocyclic methylene groups, furnishing dimethylindoles in good yields.

  14. In vivo emergence of Aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I alteration

    DEFF Research Database (Denmark)

    Arendrup, Maiken C; Jensen, Rasmus; Grif, Katharina;

    2012-01-01

    Azole resistance in Aspergillus terreus isolates was explored. Twenty related (MB) and 6 unrelated A. terreus isolates were included. CYP51A sequencing and RAPD genotyping was performed. Five MB isolates were itraconazole susceptible, whereas the minimum inhibitory concentrations (MICs) for 15 MB...... isolates were elevated (1-2 mg/L). Voriconazole and posaconazole MICs were 0.5-4 and 0.06-0.5 mg/L, respectively, for MB isolates but 0.25-0.5 and...

  15. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations

    DEFF Research Database (Denmark)

    Jensen, Rasmus Hare; Thyssen Astvad, Karen Marie; Vale Silva, Luis

    2015-01-01

    ) in the clinical isolates, but higher than in the azole- and echinocandin-resistant unrelated control strain. Conclusions: C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validation.......Objectives: The objective of this study was to characterize the underlying molecular mechanisms in consecutive clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance.  Methods: Nine clinical isolates (P-1 to P-9) were susceptibility tested......-MS were used for sterol analyses. In vivo virulence was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel–Cox tests. Results: P-1 + P-2 were susceptible, P-3 + P-4 fluconazole resistant, P-5 pan-azole resistant, P-6 + P-7 pan-azole and echinocandin resistant and P-8 + P-9...

  16. Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?

    Science.gov (United States)

    Rocha, Marcos Fábio Gadelha; Alencar, L P; Paiva, M A N; Melo, Luciana Magalhães; Bandeira, Silviane Praciano; Ponte, Y B; Sales, Jamille Alencar; Guedes, G M M; Castelo-Branco, D S C M; Bandeira, T J P G; Cordeiro, R A; Pereira-Neto, W A; Brandine, G S; Moreira, José Luciano Bezerra; Sidrim, José Júlio Costa; Brilhante, Raimunda Sâmia Nogueira

    2016-05-01

    This study aimed to investigate the influence of tetraconazole and malathion, both used in agricultural activities, on resistance to fluconazole, itraconazole and voriconazole in Candida parapsilosis ATCC 22019. The susceptibility to tetraconazole, malathion, fluconazole, itraconazole and voriconazole, through broth microdilution. Then, 12 independent replicates, were separated and exposed to four treatment groups, each one containing three replicates: G1: tetraconazole; G2: malathion; G3: fluconazole (positive control); G4: negative control. Replicates from G1, G2 and G3, were exposed to weekly increasing concentrations of tetraconazole, malathion and fluconazole, respectively, ranging from MIC/2 to 32 × MIC, throughout 7 weeks. The exposure to tetraconazole, but not malathion, decreased susceptibility to clinical azoles, especially fluconazole. The tetraconazole-induced fluconazole resistance is partially mediated by the increased activity of ATP-dependent efflux pumps, considering the increase in antifungal susceptibility after the addition of the efflux pump inhibitor, promethazine, and the increase in rhodamine 6G efflux and CDR gene expression in the G1 replicates. Moreover, MDR expression was only detected in G1 and G3 replicates, suggesting that MDR pumps are also involved in tetraconazole-induced fluconazole resistance. It is noteworthy that tetraconazole and fluconazole-treated replicates behaved similarly, therefore, resistance to azoles of clinical use may be a consequence of using azoles in farming activities.

  17. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.

    2016-03-09

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  18. Triazole derivatives with improved in vitro antifungal activity over azole drugs

    Directory of Open Access Journals (Sweden)

    Yu S

    2014-04-01

    Full Text Available Shichong Yu,1,* Xiaoyun Chai,1,* Yanwei Wang,1 Yongbing Cao,2 Jun Zhang,3 Qiuye Wu,1 Dazhi Zhang,1 Yuanying Jiang,2 Tianhua Yan,4 Qingyan Sun11Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 2Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 3Overseas Education Faculty of the Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A series of triazole antifungal agents with piperidine side chains was designed and synthesized. The results of antifungal tests against eight human pathogenic fungi in vitro showed that all the compounds exhibited moderate-to-excellent activities. Molecular docking between 8d and the active site of Candida albicans CYP51 was provided based on the computational docking results. The triazole interacts with the iron of the heme group. The difluorophenyl group is located in the S3 subsite and its fluorine atom (2-F can form H-bonds with Gly307. The side chain is oriented into the S4 subsite and formed hydrophobic and van der Waals interactions with the amino residues. Moreover, the phenyl group in the side chain interacts with the phenol group of Phe380 through the formation of π–π face-to-edge interactions.Keywords: synthesis, CYP51, molecular docking, azole agents

  19. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

    Science.gov (United States)

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  20. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Sara Teixeira de Macedo-Silva

    Full Text Available Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ and posaconazole (POSA, two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51. Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm, which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and

  1. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    Science.gov (United States)

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A.; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  2. Design, Synthesis and Biological Evaluation of Non-azole Inhibitors of Lanosterol 14α-Demethylase of Fungi

    Institute of Scientific and Technical Information of China (English)

    Bin YAO; You Jun ZHOU; Jü ZHU; Jia Guo L(U); Yao Wu LI; Jun CHENG; Qing Feng JIANG; Can Hui ZHENG

    2006-01-01

    Novel tetralin compounds were designed and synthesized on the three-dimensional model of lanosterol 14α-demethylase of Candida albicans. All of the lead compounds exhibited potent antifungal activities, especially compounds 16, 20. The mode of the action of the lead compounds was different from that of azoles. The present study affords the possibility to develop novel antifungal agents that specifically interact with the amino acid residues in the active site and avoid the serious toxicity arising from coordination binding with the heme of mammalian P450s.

  3. Sterol content analysis suggests altered eburicol 14alpha-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides.

    Science.gov (United States)

    Bean, Tim P; Cools, Hans J; Lucas, John A; Hawkins, Nathaniel D; Ward, Jane L; Shaw, Michael W; Fraaije, Bart A

    2009-06-01

    The recent decline in the effectiveness of some azole fungicides in controlling the wheat pathogen Mycosphaerella graminicola has been associated with mutations in the CYP51 gene encoding the azole target, the eburicol 14alpha-demethylase (CYP51), an essential enzyme of the ergosterol biosynthesis pathway. In this study, analysis of the sterol content of M. graminicola isolates carrying different variants of the CYP51 gene has revealed quantitative differences in sterol intermediates, particularly the CYP51 substrate eburicol. Together with CYP51 gene expression studies, these data suggest that mutations in the CYP51 gene impact on the activity of the CYP51 protein.

  4. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    Science.gov (United States)

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment.

  5. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, A.; Laina, R.; Rojas, J. A. M.; Rojas, I. M.; Vignote, S.

    2013-07-01

    Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strenght. Area of study: Spain. Material and methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601) and 50 with waterborne Copper Azole (Tanalith E 3492). 40 control samples were not treated (water or preservative). Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative. Main results: The results indicate that the treated wood (with either product) presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors. There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole. The most probable explanation for these results concerns changes in pressure during treatment. The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies. Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending and parallel compression strength. There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative. (Author)

  6. INK128 exhibits synergy with azoles against Exophiala spp. and Fusarium spp.

    Directory of Open Access Journals (Sweden)

    Lujuan Gao

    2016-10-01

    Full Text Available Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 μg/ml against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 μg/ml and 1-4μg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a

  7. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    Science.gov (United States)

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  8. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis.

    Science.gov (United States)

    Sharma, Monika; Manoharlal, Raman; Negi, Arvind Singh; Prasad, Rajendra

    2010-08-01

    We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.

  9. Evaluation of readily accessible azoles as mimics of the aromatic ring of D-phenylalanine in the turn region of gramicidin S

    NARCIS (Netherlands)

    Knaap, M. van der; Lageveen, L.T.; Busscher, H.J.; Mars-Groenendijk, R.; Noort, D.; Otero, J.M.; Llamas-Saiz, A.L.; Raaij, M.J. van; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2011-01-01

    The influence of replacing the d-phenylalanine residue with substituted and unsubstituted azoles on the structure and biological activity of the antibiotic gramicidinS was investigated against a representative panel of Gram-positive and Gram-negative bacteria strains. Substituted triazole derivative

  10. Evaluation of Readily Accessible Azoles as Mimics of the Aromatic Ring of D-Phenylalanine in the Turn Region of Gramicidin S

    NARCIS (Netherlands)

    van der Knaap, Matthijs; Lageveen, Lianne T.; Busscher, Henk J.; Mars-Groenendijk, Roos; Noort, Daan; Otero, Jose M.; Llamas-Saiz, Antonio L.; van Raaij, Mark J.; van der Marel, Gijsbert A.; Overkleeft, Herman S.; Overhand, Mark

    2011-01-01

    The influence of replacing the D-phenylalanine residue with substituted and unsubstituted azoles on the structure and biological activity of the antibiotic gramicidin S was investigated against a representative panel of Gram-positive and Gram-negative bacteria strains. Substituted triazole derivativ

  11. Pharmacodynamics of voriconazole against wild-type and azole-resistant aspergillus flavus isolates in a nonneutropenic murine model of disseminated aspergillosis

    NARCIS (Netherlands)

    S.M. Rudramurthy; S. Seyedmousavi (Seyedmojtaba); Dhaliwal, M. (Manpreet); A. Chakrabarti; J.F. Meis (Jacques F.); J.W. Mouton (Johan)

    2016-01-01

    textabstractInvasive aspergillosis (IA) due to Aspergillus flavus is associated with high mortality. Although voriconazole (VRC) is widely recommended as the first-line treatment for IA, emergence of azole resistance in Aspergillus spp. is translating to treatment failure. We evaluated the efficacy

  12. An improved extraction method of rapeseed oil sample preparation for the subsequent determination in it of azole class fungicides by gas chromatography

    Directory of Open Access Journals (Sweden)

    Mikhail F. Zayats

    2015-03-01

    Full Text Available The distribution of 19 azole class pesticides in hexane/aqueous–organic mixtures systems and rapeseed oil (or oil solution in hexane/organic solvents has been studied at 20 ± 1 °C. The distribution constants (P and coefficients (D between hydrocarbon and polar phase are calculated. It is found that all the studied pesticides are hydrophobic, i.e., in hexane–water system logP ≫ 0. Replacement of water by organic solvents results in sharp logP falling, and their values become negative. It is revealed that solutions of strong inorganic acids in anhydrous acetonitrile extract azole class pesticides from hexane and vegetable oils most fully and selectively. In particular, the acidification of acetonitrile causes a drop of D values in 50–2000 times for the majority of the studied pesticides. This phenomenon was used for the development of the improved technique for the quantitative analysis of a widely used azole class pesticides, which can be presented at trace levels in rapeseed oil. The proposed methodology is based on dissociation extraction (DE of azoles using perchloric acid in anhydrous acetonitrile, with following clean-up of acetonitrile extract from organic impurities by hexane and aqueous solution of dipotassium hydrogen orthophosphate, and final GC–ECD (gas chromatography with electron capture detection determination of azole fungicides. The values of obtained recoveries were between 85% and 115% with RSD values below 10%. The obtained limits of quantitation, ranged from 3.0 to 300 μg kg−1, are below the maximum residue levels (MRLs set by the European Union for the majority of pesticides. The developed method was successfully applied to different rapeseed oil samples.

  13. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.

    Science.gov (United States)

    Warrilow, Andrew G; Parker, Josie E; Kelly, Diane E; Kelly, Steven L

    2013-03-01

    Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.

  14. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment

    Directory of Open Access Journals (Sweden)

    Li Qingdi

    2012-06-01

    Full Text Available Abstract Background The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. Results The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25 remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4 were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13 as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such

  15. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    Science.gov (United States)

    Büchel, Gabriel E; Gavriluta, Anatolie; Novak, Maria; Meier, Samuel M; Jakupec, Michael A; Cuzan, Olesea; Turta, Constantin; Tommasino, Jean-Bernard; Jeanneau, Erwann; Novitchi, Ghenadie; Luneau, Dominique; Arion, Vladimir B

    2013-06-03

    Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most

  16. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2015-10-15

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H{sub 2}TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved. - Graphical abstract: Lanthanide metal-organic frameworks (LnMOFs) with tunable luminescence were synthesized using an azole-containing carboxylic acid as ligand. - Highlights: • A series of isostructural LnMOFs serving as phosphor is reported. • We model the GdTIPA: Tb{sup 3+}, Eu{sup 3+} which can tune color and emit white light. • The scheme and mechanism of luminescent LnMOFs are also presented and discussed.

  17. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates

    Directory of Open Access Journals (Sweden)

    Laura Bedin Denardi

    2015-03-01

    Full Text Available In vitro interaction between tacrolimus (FK506 and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%, followed by that of the combination with ketoconazole (37%, against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata, a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%, itraconazole (73%, voriconazole (63% and fluconazole (60%. The synergisms that we observed in vitro, notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  18. Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Fuursted, Kurt; Gahrn-Hansen, Bente;

    2005-01-01

    laboratory systems documented a continuous increase of candidemia cases since the early 1990s. For the 272 susceptibility-tested isolates, MICs of amphotericin B and caspofungin were within the limits expected for the species or genus. However, decreased azole susceptibility, defined as a fluconazole MIC...... of >8 microg/ml and/or itraconazole MIC of >0.125 microg/ml, was detected for 11 Candida isolates that were neither C. glabrata nor C. krusei. Including intrinsically resistant fungi, we detected decreased susceptibility to fluconazole and/or itraconazole in 87 (32%) current Danish bloodstream fungal...... isolates. We showed a continuous increase of fungemia in Denmark and an annual rate in 2003 to 2004 higher than in most other countries. The proportion of bloodstream fungal isolates with reduced susceptibility to fluconazole and/or itraconazole was also notably high....

  19. Combination Effects of (Tri)Azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Science.gov (United States)

    Rieke, Svenja; Koehn, Sophie; Hirsch-Ernst, Karen; Pfeil, Rudolf; Kneuer, Carsten; Marx-Stoelting, Philip

    2014-01-01

    Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence of this effect. PMID

  20. Epidemiological cutoff values for azoles and Aspergillus fumigatus based on a novel mathematical approach incorporating cyp51A sequence analysis.

    Science.gov (United States)

    Meletiadis, J; Mavridou, E; Melchers, W J G; Mouton, J W; Verweij, P E

    2012-05-01

    Epidemiological cutoff values (ECV) are commonly used to separate wild-type isolates from isolates with reduced susceptibility to antifungal drugs, thus setting the foundation for establishing clinical breakpoints for Aspergillus fumigatus. However, ECVs are usually determined by eye, a method which lacks objectivity, sensitivity, and statistical robustness and may be difficult, in particular, for extended and complex MIC distributions. We therefore describe and evaluate a statistical method of MIC distribution analysis for posaconazole, itraconazole, and voriconazole for 296 A. fumigatus isolates utilizing nonlinear regression analysis, the normal plot technique, and recursive partitioning analysis incorporating cyp51A sequence data. MICs were determined by using the CLSI M38-A2 protocol (CLSI, CLSI document M38-A2, 2008) after incubation of the isolates for 48 h and were transformed into log(2) MICs. We found a wide distribution of MICs of all azoles, some ranging from 0.02 to 128 mg/liter, with median MICs of 32 mg/liter for itraconazole, 4 mg/liter for voriconazole, and 0.5 mg/liter for posaconazole. Of the isolates, 65% (192 of 296) had mutations in the cyp51A gene, and the majority of the mutants (90%) harbored tandem repeats in the promoter region combined with mutations in the cyp51A coding region. MIC distributions deviated significantly from normal distribution (D'Agostino-Pearson omnibus normality test P value, Recursive partitioning analysis confirmed these ECVs, since the proportions of isolates harboring cyp51A mutations associated with azole resistance were less than 20%, 20 to 30%, and >70% when the MICs were lower than, equal to, and higher than the above-mentioned ECVs, respectively.

  1. Azole-resistant Aspergillus fumigatus isolate with the TR34/L98H mutation in both a fungicide-sprayed field and the lung of a hematopoietic stem cell transplant recipient with invasive aspergillosis.

    Science.gov (United States)

    Rocchi, Steffi; Daguindau, Etienne; Grenouillet, Frédéric; Deconinck, Eric; Bellanger, Anne-Pauline; Garcia-Hermoso, Dea; Bretagne, Stéphane; Reboux, Gabriel; Millon, Laurence

    2014-05-01

    A French farmer developed invasive aspergillosis with azole-resistant Aspergillus fumigatus with the TR34/L98H mutation following a hematopoietic stem cell transplantation. He had worked in fungicide-sprayed fields where a non-genetically related A. fumigatus TR34/L98H isolate was collected. If azole resistance detection increases, voriconazole as first-line therapy might be questioned in agricultural areas.

  2. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Sai-Yang Zhang

    2016-05-01

    Full Text Available A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803. Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma.

  3. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents.

    Science.gov (United States)

    Zhang, Sai-Yang; Fu, Dong-Jun; Yue, Xiao-Xin; Liu, Ying-Chao; Song, Jian; Sun, Hui-Hui; Liu, Hong-Min; Zhang, Yan-Bing

    2016-05-19

    A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma.

  4. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    Science.gov (United States)

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus.

  5. Macrolides from a Marine-Derived Fungus, Penicillium meleagrinum var. viridiflavum, Showing Synergistic Effects with Fluconazole against Azole-Resistant Candida albicans.

    Science.gov (United States)

    Okabe, Miki; Sugita, Takashi; Kinoshita, Kaoru; Koyama, Kiyotaka

    2016-04-22

    Two new 13-membered macrolides (1, 7), along with known 13-membered macrolides PF1163A, B, D, H, and F (2-6), were isolated from a strain of a marine-derived fungus, Penicillium meleagrinum var. viridiflavum. The structures of 1 and 7 were elucidated from spectroscopic data (NMR, MS, IR). Compounds 1-7 showed synergistic effects with fluconazole against azole-resistant Candida albicans by a checkerboard assay.

  6. Measuring internal azole and pyrethroid pesticide concentrations in Daphnia magna using QuEChERS and GC-ECD--method development with a focus on matrix effects.

    Science.gov (United States)

    Kretschmann, Andreas; Cedergreen, Nina; Christensen, Jan H

    2016-02-01

    Pyrethroids are highly toxic towards aquatic macroinvertebrates such as Daphnia magna and can be synergized when co-occurring with azole fungicides. A sensitive analytical method for the measurement of azole-pyrethroid mixtures in aquatic macroinvertebrates is not available at present. We developed and validated an extraction, cleanup, and quantification procedure for four pyrethroid insecticides and four azole fungicides at the picograms per milligram wet weight level in D. magna using a QuEChERS approach and GC-ECD analysis. Short- and long-term matrix effects were analyzed by injection of a series of extracts from D. magna, and the best surrogate standards were identified through correlation analysis of analyte responses. The presence of matrix clearly stabilized the analyte responses (≤6% relative standard deviation of peak area compared to up to 22% when injected without matrix). The sensitivity was high with detection limits and limits of quantification between 58-168 and 119-571 pg mg(wet weight)(-1) for the azoles and 5.8-27 and 12-84 pg mg(wet weight)(-1) for the pyrethroids, respectively. Accuracy (% recovery) was between 95 and 111% and the precision (repeatability) below 10% relative standard deviation for all analytes. In the case of prochloraz, α-cypermethrin, and deltamethrin, normalization to surrogate standards led to a clear improvement of accuracy and precision by up to 8 and 4%, respectively. The method was successfully applied to the measurement of internal α-cypermethrin concentrations in D. magna under environmentally relevant exposure conditions (exposure to a pulse in the micrograms per liter range) with and without co-exposure to propiconazole.

  7. A putative mitochondrial iron transporter MrsA in Aspergillus fumigatus plays important roles in azole-, oxidative stress responses and virulence

    Directory of Open Access Journals (Sweden)

    Nanbiao eLong

    2016-05-01

    Full Text Available Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA and siderophore-mediated iron acquisition (SIA. Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus.

  8. Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata

    Science.gov (United States)

    Borah, Sapan; Shivarathri, Raju; Srivastava, Vivek Kumar; Ferrari, Sélène; Sanglard, Dominique

    2014-01-01

    Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals. PMID:25070095

  9. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Muromoto, Ryuta; Takahashi, Miki [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Takeda, Yukimasa; Jetten, Anton M. [National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (United States); Matsuda, Tadashi [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2012-03-15

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides

  10. Thiocyanate-free asymmetric ruthenium(II) dye sensitizers containing azole chromophores with near-IR light-harvesting capacity

    Science.gov (United States)

    Wu, Guohua; Kaneko, Ryuji; Islam, Ashraful; Zhang, Yaohong; Sugawa, Kosuke; Han, Liyuan; Shen, Qing; Bedja, Idriss; Gupta, Ravindra Kumar; Otsuki, Joe

    2016-11-01

    A new series of thiocyanate-free bis-tridentate Ru(II) complexes containing azole ligands as well as an organometallic Ru-C bond are synthesized, characterized, and evaluated in dye-sensitized solar cells (DSSCs). CF3-substituted pyrazolyl, CF3-substituted triazolyl, and tetrazolyl derivatives are employed as ligands in the three neutral complexes PYZ, TRZ, and TEZ dyes, respectively. Despite their different structures, all the three complexes exhibit similar absorption features and panchromatic absorption covering the visible and near-IR regions. By switching from a pyrazolyl via triazolyl to tetrazolyl moiety in the ligand, the photocurrent value, open-circuit voltage, and overall efficiency are increased accordingly under the same conditions. Among them, photon-to-current conversion efficiency (ƞ) of TEZ dye reaches the maximum of 6.44% with a short-circuit photocurrent density (Jsc) of 17.8 mA cm-2, an open-circuit photovoltage (Voc) of 0.54 V and fill factor (FF) of 0.67 under illumination of an AM1.5G solar simulator. TEZ dye shows a good long term light soaking stability and maintains up to more than 90% of the initial power conversion efficiency after 1000 h.

  11. Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: kinetics, mechanistic investigations and toxicity evaluation.

    Science.gov (United States)

    Chen, Zhi-Feng; Ying, Guang-Guo; Jiang, Yu-Xia; Yang, Bin; Lai, Hua-Jie; Liu, You-Sheng; Pan, Chang-Gui; Peng, Fu-Qiang

    2014-04-01

    The azole fungicide fluconazole has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photodegradation of fluconazole under UV-254 in aqueous solutions. The results revealed that the photodegradation of fluconazole was pH-dependent (2.0-12.0) following the pseudo-first-order kinetics with quantum yield values ranging from 0.023 to 0.090 mol einstein(-1), and it underwent a direct and self-sensitized mechanism involving (1)O2. The main photodegradation by-products were identified and semi-quantitated. The proposed photodegradation pathway included hydroxylative defluorination reaction. The 72 h-NOEC and 72 h-LOEC values for fluconazole using a freshwater unicellular green alga Pseudokirchneriella subcapitata were 10 μM and 15 μM. Overall, the photodegradation of fluconazole produced a significant decrease in algal toxicity. It also proved that the photodegradation by-products will not present extra toxicity to this alga than fluconazole itself.

  12. Combination Effects of (TriAzole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Directory of Open Access Journals (Sweden)

    Svenja Rieke

    2014-09-01

    Full Text Available Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (triazole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this

  13. 五种新型唑类抗真菌药物%Five novel azole antifungal agents

    Institute of Scientific and Technical Information of China (English)

    王乐; 刘维达

    2011-01-01

    Azoles are a primary treatment choice for superficial and deep fungal infections. They can be divided into two groups, i.e., imidazoles and triazoles, according to chemical structure. Three new imidazoles including luliconazole, lanoconazole and flutrimazole have been on the medical market abroad and shown notable efficacy with no obvious local side effects in the treatment of superficial fungal infection including dermatophytosis. Two triazoles including pramiconazole and ravuconazole are still in clinical trials, although they have proved to be safe and effective in the treatment of superficial and deep fungal infection, and have shown some potential as new antifungal agents.%唑类药物是目前治疗浅部和深部真菌感染的一线用药.按照其结构的不同,该药可以分为咪唑类和三唑类.3种咪唑类新药卢立康唑、拉诺康唑和氟曲乌唑已在国外上市,外用治疗皮肤癣菌等浅部真菌病疗效明显且局部无明显不良反应.2种三唑类新药普拉康唑和雷夫康唑则仍在临床试验阶段,但从目前研究来看,两者用于治疗浅部和深部真菌感染亦较安全有效,有望作为新型抗真菌药应用于临床.

  14. Excited-state intramolecular proton transfer (ESIPT) inspired azole-quinoline based fluorophores: Synthesis and photophysical properties study

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in

    2014-11-15

    7-Hydroxy-3-(4-nitrophenyl)quinoline-6-carboxylic acid was obtained by the condensation reaction of p-amino salicylic acid and 4-nitrophenylmalonadialdehyde which was obtained from phenylacetonitrile through nitration, hydrolysis and Vilsmeier reaction. 7-Hydroxy-3-(4-nitrophenyl) quinoline-6-carboxylic acid was condensed with different o-aminophenols or o-aminothiophenol in ethanol in the presence of phosphorustrichloride. Synthesized quinoline contained benzimidazole and benzothiazole moieties. Photophysical behaviors of these compounds in solvents of different polarities were studied using UV–vis and fluorescence spectroscopy. The compounds showed single absorption in all the studied solvents. The dual emissions (normal emission and ESIPT emission) as well as large Stokes' shift emission pattern were observed for the synthesized fluorophores. The photophysical study shows that the emission properties of the compounds depend on the solvent polarity. The photophysical properties of the compounds were compared with structurally analogous ESIPT quinoline. Thermal stability of the compounds was studied using thermogravimetric analysis and results show that compounds are thermally stable up to 300 °C. The synthesized quinoline derivatives were characterized using elemental analysis, FT-IR and {sup 1}H –NMR, {sup 13}C –NMR spectroscopy and mass spectral analysis. - Highlights: • First and unique study of quinoline derivatives contain ESIPT azole unit at 6-position and hydroxyl group at 7-position. • Compounds are fluorescent with considerable quantum yields. • All compounds showed absorption in ultraviolet region and emission in visible region with large Stokes' shift. • The photophysical properties of new compounds were compared with reported ESIPT quinoline analogous.

  15. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Célia Couzigou

    2014-07-01

    Full Text Available We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast.

  16. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  17. The nitration pattern of energetic 3,6-diamino-1,2,4,5-tetrazine derivatives containing azole functional groups.

    Science.gov (United States)

    Aizikovich, A; Shlomovich, A; Cohen, A; Gozin, M

    2015-08-21

    One of the successful strategies for the design of promising new energetic materials is the incorporation of both fuel and oxidizer moieties into the same molecule. Therefore, during recent years, synthesis of various nitro-azole derivatives, as compounds with a more balanced oxygen content, has become very popular. In the framework of this effort, we studied nitration of N(3),N(6)-bis(1H-tetrazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine (BTATz; ) and its alkylated derivative N(3),N(6)-bis(2-methyl-2H-tetrazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine , using a (15)N-labeled nitration agent and monitoring and analyzing products of these reactions by (15)N NMR. It was seen that the nitration of both compounds takes place only on the exocyclic ("bridging") secondary amine groups. Possible tetranitro derivative isomers N,N'-(1,2,4,5-tetrazine-3,6-diyl)bis(N-(1-nitro-1H-tetrazol-5-yl)-nitramide) and N,N'-(1,2,4,5-tetrazine-3,6-diyl)bis(N-(2-nitro-2H-tetrazol-5-yl)nitramide) , both of which have OB = 0% and calculated VODs of 9790 and 9903 m s(-1), respectively, could not be observed in the reaction mixtures, during the in situ(15)N NMR monitoring of nitration of , using (15)N-labeled nitrating agents. Following a similar strategy, a new analog of BTATz - N(3),N(6)-Bis(1H-1,2,4-triazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine was obtained and its nitration was studied. The reaction of with a HNO3-Ac2O nitration mixture resulted in the formation of a new N(3),N(6)-bis(3-nitro-1H-1,2,4-triazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine derivative in a moderate yield. Structures and properties of (in the form of its perchlorate salt, ) and were measured by FTIR, multinuclear NMR, MS, DSC and X-ray crystallography. It is important to note that compound exhibits exothermic decomposition at 302 °C (DSC) and >353 N (sensitivity to friction), making it a highly-promising thermally-insensitive energetic material for further development.

  18. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree oil against azole-susceptible and -resistant human pathogenic Candida species

    Directory of Open Access Journals (Sweden)

    Cassone Antonio

    2006-11-01

    Full Text Available Abstract Background Recent investigations on the antifungal properties of essential oil of Melaleuca alternifolia Cheel (Tea Tree Oil, TTO have been performed with reference to the treatment of vaginal candidiasis. However, there is a lack of in vivo data supporting in vitro results, especially regarding the antifungal properties of TTO constituents. Thus, the aim of our study was to investigate the in vitro and the in vivo anti-Candida activity of two critical bioactive constituents of TTO, terpinen-4-ol and 1,8-cineole. Methods Oophorectomized, pseudoestrus rats under estrogen treatment were used for experimental vaginal infection with azole (fluconazole, itraconazole -susceptible or -resistant strains of C. albicans. All these strains were preliminarily tested for in vitro susceptibility to TTO, terpinen-4-ol and 1,8-cineole for their antifungal properties, using a modification of the CLSI (formerly NCCLS reference M27-A2 broth micro-dilution method. Results In vitro minimal inhibitory concentrations (MIC90 values were 0.06% (volume/volume for terpinen-4-ol and 4% (volume/volume for 1,8-cineole, regardless of susceptibility or resistance of the strains to fluconazole and itraconazole. Fungicidal concentrations of terpinen-4-ol were equivalent to the candidastatic activity. In the rat vaginal infection model, terpinen-4-ol was as active as TTO in accelerating clearance from the vagina of all Candida strains examined. Conclusion Our data suggest that terpinen-4-ol is a likely mediator of the in vitro and in vivo activity of TTO. This is the first in vivo demonstration that terpinen-4-ol could control C. albicans vaginal infections. The purified compound holds promise for the treatment of vaginal candidiasis, and particularly the azole-resistant forms.

  19. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes.

    Science.gov (United States)

    Zhang, Shimin; Pillai, Venkateswaran C; Mada, Sripal Reddy; Strom, Steve; Venkataramanan, Raman

    2012-05-01

    Azole antifungal agents are known to inhibit cytochrome P450 3A (CYP3A) enzymes. Limited information is available regarding the effect of voriconazole on CYP3A activity. We examined the effect of voriconazole on CYP3A activity in human liver microsomes as measured by the formation of 6β-hydroxytestosterone from testosterone. We also evaluated the interaction between voriconazole and tacrolimus, an immunosuppressive drug, using human liver microsomes. The effect of voriconazole on CYP3A activity and tacrolimus metabolism was compared to that of other azole antifungal agents. CYP3A4 activity and the metabolism of tacrolimus were measured in the absence and in the presence of various concentrations of voriconazole (0-1.43 mM), fluconazole (0-1.63 mM), itraconazole (0-14 µM) and ketoconazole (0-0.19 µM). At a concentration of 21.2 ± 15.4 µM and 29.8 ± 12.3 µM, voriconazole inhibited the formation of 6β-hydroxytestosterone from testosterone and the metabolism of tacrolimus by 50%, respectively. The rank order of inhibition of 6β-hydroxytestosterone formation from testosterone and the metabolism of tacrolimus, is ketoconazole > itraconazole > voriconazole > fluconazole. Our observations suggest that voriconazole at clinically relevant concentrations will inhibit the hepatic metabolism of tacrolimus and increase the concentration of tacrolimus more than two-fold. Close monitoring of the blood concentrations and adjustment in the dose of tacrolimus are warranted when transplant patients receiving tacrolimus are treated with voriconazole.

  20. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2011-05-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and\\/or oral swab samples each time. Candida was recovered from 14\\/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7\\/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and\\/or fluconazole susceptibility were identified in a further 3\\/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.

  1. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence.

    Science.gov (United States)

    McManus, Brenda A; McGovern, Eleanor; Moran, Gary P; Healy, Claire M; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J; Coleman, David C

    2011-05-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.

  2. Effects of anti-ecdysteroid quaternary derivatives of azole analogues of metyrapone on the post-embryonic development of the red cotton bug (Dysdercus cingulatus F).

    Science.gov (United States)

    Bélai, Iván; Fekete, Gábor

    2003-04-01

    In order to improve the larvicidal activity of the azole analogues of metyrapone, previously found to have a strong inhibitory activity on ecdysone 20-monooxygenase (E-20-M) from the fleshfly Neobellieria bullata Parker, soft-alkylated compounds (3-(1,1-dimethyl-2-oxo-2-phenylethyl)-1-dodecanoyloxymethyl-1H-imidazolium chloride, sPIM) and (1-(1,1-dimethyl-2-oxo-2-phenylethyl)-4-dodecanoyloxymethyl-1H-1,2,4-triazolium chloride, sPTM), derivatives of phenyl-imidazolyl-metyrapone (PIM) and phenyl-1,2,4-triazolyl-metyrapone (PTM), respectively, were synthesized. Both sPIM and sPTM, designed as propesticides, inhibited E-20-M in vitro at 10(-4) M concentration, which was unexpected since they had been expected to be inactive in vitro and to gain activity only within the organism. sPTM significantly delayed the pupariation of N. bullata larvae and this effect could be reversed by the simultaneous application of 20-hydroxyecdysone (20E), supporting the hypothesis that sPTM can act by interfering with the moulting hormone system. Due to this in vitro activity, sPTM and sPIM cannot be considered to be simple drug precursors, and their structure should contain structural elements (pharmacophores) responsible for the observed biological effects. In order to examine this hypothesis, derivatives of sPTM and sPIM were synthesised in which the hydrolytically labile N(+)-CH2O(CO)- moiety was changed to the more stable N(+)-CH2CH2(CO)-group. In three new stable derivatives, a dodecylamino or a phenyl group, respectively, is attached to the carbonyl group to obtain PTM and PIM derivatives quaternised with a 2-dodecylcarbamoylethyl or a 3-oxo-3-phenylpropyl group. In one derivative, the 2-oxo-2-phenylethyl quaternising group has one fewer carbon atom. In addition to their moderate activity (LC50 = 10(-6)-10(-5) M) against the red cotton bug Dysdercus cingulatus F, they delayed development and caused developmental abnormalities, including mortality in the pharate phase, mortality

  3. 1-[(2-arylthiazol-4-yl)methyl]azoles as a new class of anticonvulsants: design, synthesis, in vivo screening, and in silico drug-like properties.

    Science.gov (United States)

    Ahangar, Nematollah; Ayati, Adile; Alipour, Eskandar; Pashapour, Arsalan; Foroumadi, Alireza; Emami, Saeed

    2011-11-01

    A series of novel thiazole incorporated (arylalkyl)azoles were synthesized and screened for their anticonvulsant properties using maximal electroshock and pentylenetetrazole models in mice. Among target compounds, 1-[(2-(4-chlorophenyl)thiazol-4-yl)methyl]-1H-imidazole (compound 4b), 1-[(2-phenylthiazol-4-yl)methyl]-1H-1,2,4-tria-zole (8a), and its 4-chlorophenyl analog (compound 8b) were able to display noticeable anticonvulsant activity in both pentylenetetrazole and maximal electroshock tests with percentage protection range of 33-100%. A computational study was carried out for prediction of pharmacokinetics properties and drug-likeness. The structure-activity relationship and in silico drug relevant properties (molecular weight, topological polar surface area, clog P, hydrogen bond donors, hydrogen bond acceptors, and log BB) confirmed that the compounds were within the range set by Lipinski's rule-of-five, and possessing favorable physicochemical properties for acting as CNS-drugs, making them potentially promising agents for epilepsy therapy.

  4. Study of the Relationships between the Structure, Lipophilicity and Biological Activity of Some Thiazolyl-carbonyl-thiosemicarbazides and Thiazolyl-azoles

    Directory of Open Access Journals (Sweden)

    Radu Tamaian

    2015-12-01

    Full Text Available Lipophilicity, as one of the most important physicochemical parameters of bioactive molecules, was investigated for twenty-two thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles. The determination was carried out by reversed-phase thin-layer chromatography, using a binary isopropanol-water mobile phase. Chromatographically obtained lipophilicity parameters were correlated with calculated log P and log D and with some biological parameters, determined in order to evaluate the anti-inflammatory and antioxidant potential of the investigated compounds, by using principal component analysis (PCA. The PCA grouped the compounds based on the nature of their substituents (X, R and Y, indicating that their nature, electronic effects and molar volumes influence the lipophilicity parameters and their anti-inflammatory and antioxidant effects. Also, the results of the PCA analysis applied on all the experimental and computed parameters show that the best anti-inflammatory and antioxidant compounds were correlated with medium values of the lipophilicity parameters. On the other hand, the knowledge of the grouping patterns of the tested variables allows the reduction of the number of parameters, determined in order to establish the biological activity.

  5. Novel 3-Amino-6-chloro-7-(azol-2 or 5-yl-1,1-dioxo-1,4,2-benzodithiazine Derivatives with Anticancer Activity: Synthesis and QSAR Study

    Directory of Open Access Journals (Sweden)

    Aneta Pogorzelska

    2015-12-01

    Full Text Available A series of new 3-amino-6-chloro-7-(azol-2 or 5-yl-1,1-dioxo-1,4,2-benzodithiazine derivatives 5a–j have been synthesized and evaluated in vitro for their antiproliferative activity at the U.S. National Cancer Institute. The most active compound 5h showed significant cytotoxic effects against ovarian (OVCAR-3 and breast (MDA-MB-468 cancer (10% and 47% cancer cell death, respectively as well as a good selectivity toward prostate (DU-145, colon (SW-620 and renal (TK-10 cancer cell lines. To obtain a deeper insight into the structure-activity relationships of the new compounds 5a–j QSAR studies have been applied. Theoretical calculations allowed the identification of molecular descriptors belonging to the RDF (RDF055p and RDF145m in the MOLT-4 and UO-31 QSAR models, respectively and 3D-MorSE (Mor32m and Mor16e for MOLT-4 and UO-31 QSAR models descriptor classes. Based on these data, QSAR models with good robustness and predictive ability have been obtained.

  6. Synthesis of amino, azido, nitro, and nitrogen-rich azole-substituted derivatives of 1H-benzotriazole for high-energy materials applications.

    Science.gov (United States)

    Srinivas, Dharavath; Ghule, Vikas D; Tewari, Surya P; Muralidharan, Krishnamurthi

    2012-11-19

    The amino, azido, nitro, and nitrogen-rich azole substituted derivatives of 1H-benzotriazole have been synthesized for energetic material applications. The synthesized compounds were fully characterized by (1)H and (13)C NMR spectroscopy, IR, MS, and elemental analysis. 5-Chloro-4-nitro-1H-benzo[1,2,3]triazole (2) and 5-azido-4,6-dinitro-1H-benzo[1,2,3]triazole (7) crystallize in the Pca2(1) (orthorhombic) and P2(1)/c (monoclinic) space group, respectively, as determined by single-crystal X-ray diffraction. Their densities are 1.71 and 1.77 g cm(-3), respectively. The calculated densities of the other compounds range between 1.61 and 1.98 g cm(-3). The detonation velocity (D) values calculated for these synthesized compounds range from 5.45 to 8.06 km s(-1), and the detonation pressure (P) ranges from 12.35 to 28 GPa.

  7. The Rho1 GTPase-activating Protein CgBem2 Is Required for Survival of Azole Stress in Candida glabrata*

    Science.gov (United States)

    Borah, Sapan; Shivarathri, Raju; Kaur, Rupinder

    2011-01-01

    Invasive fungal infections are common clinical complications of neonates, critically ill, and immunocompromised patients worldwide. Candida species are the leading cause of disseminated fungal infections, with Candida albicans being the most prevalent species. Candida glabrata, the second/third most common cause of candidemia, shows reduced susceptibility to a widely used antifungal drug fluconazole. Here, we present findings from a screen of 9134 C. glabrata Tn7 insertion mutants for altered survival profiles in the presence of fluconazole. We have identified two components of RNA polymerase II mediator complex, three players of Rho GTPase-mediated signaling cascade, and two proteins implicated in actin cytoskeleton biogenesis and ergosterol biosynthesis that are required to sustain viability during fluconazole stress. We show that exposure to fluconazole leads to activation of the protein kinase C (PKC)-mediated cell wall integrity pathway in C. glabrata. Our data demonstrate that disruption of a RhoGAP (GTPase activating protein) domain-containing protein, CgBem2, results in bud-emergence defects, azole susceptibility, and constitutive activation of CgRho1-regulated CgPkc1 signaling cascade and cell wall-related phenotypes. The viability loss of Cgbem2Δ mutant upon fluconazole treatment could be partially rescued by the PKC inhibitor staurosporine. Additionally, we present evidence that CgBEM2 is required for the transcriptional activation of genes encoding multidrug efflux pumps in response to fluconazole exposure. Last, we report that Hsp90 inhibitor geldanamycin renders fluconazole a fungicidal drug in C. glabrata. PMID:21832071

  8. In vitro and in vivo antifungal profile of a novel and long acting inhaled azole, PC945, on Aspergillus fumigatus infection.

    Science.gov (United States)

    Colley, Thomas; Alanio, Alexandre; Kelly, Steven L; Sehra, Gurpreet; Kizawa, Yasuo; Warrilow, Andrew G S; Parker, Josie E; Kelly, Diane E; Kimura, Genki; Anderson-Dring, Lauren; Nakaoki, Takahiro; Sunose, Mihiro; Onions, Stuart; Crepin, Damien; Lagasse, Franz; Crittall, Matthew; Shannon, Jonathan; Cooke, Michael; Bretagne, Stéphane; King-Underwood, John; Murray, John; Ito, Kazuhiro; Strong, Pete; Rapeport, Garth

    2017-02-21

    The profile of PC945, a novel triazole antifungal, designed for administration via inhalation, has been assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tight-binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (IC50, 0.23 μM and 0.22 μM, respectively), with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032∼>8 μg/ml, whilst those of voriconazole ranged from 0.064∼4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth, yielded IC50 (OD) values between 0.0012∼0.034 μg/ml, whereas voriconazole (0.019∼>1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (MIC ranged from 0.0078∼2 μg/ml) including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans andRhizopus oryzae (1∼2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945, and then washed, PC945 was found to be quickly absorbed into both target and non-target cells and to produce persistent antifungal effects. In temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.

  9. Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus and azole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid.

    Science.gov (United States)

    Chong, Ga-Lai M; van de Sande, Wendy W J; Dingemans, Gijs J H; Gaajetaan, Giel R; Vonk, Alieke G; Hayette, Marie-Pierre; van Tegelen, Dennis W E; Simons, Guus F M; Rijnders, Bart J A

    2015-03-01

    Azole resistance in Aspergillus fumigatus is increasingly reported. Here, we describe the validation of the AsperGenius, a new multiplex real-time PCR assay consisting of two multiplex real-time PCRs, one that identifies the clinically relevant Aspergillus species, and one that detects the TR34, L98H, T289A, and Y121F mutations in CYP51A and differentiates susceptible from resistant A. fumigatus strains. The diagnostic performance of the AsperGenius assay was tested on 37 bronchoalveolar lavage (BAL) fluid samples from hematology patients and 40 BAL fluid samples from intensive care unit (ICU) patients using a BAL fluid galactomannan level of ≥1.0 or positive culture as the gold standard for detecting the presence of Aspergillus. In the hematology and ICU groups combined, there were 22 BAL fluid samples from patients with invasive aspergillosis (IA) (2 proven, 9 probable, and 11 nonclassifiable). Nineteen of the 22 BAL fluid samples were positive, according to the gold standard. The optimal cycle threshold value for the presence of Aspergillus was Aspergillus species and 14 A. fumigatus samples). This resulted in a sensitivity, specificity, and positive and negative predictive values of 88.9%, 89.3%, 72.7%, and 96.2%, respectively, for the hematology group and 80.0%, 93.3%, 80.0%, and 93.3%, respectively, in the ICU group. The CYP51A real-time PCR confirmed 12 wild-type and 2 resistant strains (1 TR34-L98H and 1 TR46-Y121F-T289A mutant). Voriconazole therapy failed for both patients. The AsperGenius multiplex real-time PCR assay allows for sensitive and fast detection of Aspergillus species directly from BAL fluid samples. More importantly, this assay detects and differentiates wild-type from resistant strains, even if BAL fluid cultures remain negative.

  10. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics

    Directory of Open Access Journals (Sweden)

    Arjuna N.B. Ellepola

    Full Text Available Abstract Objective Candida albicans is the primary causative agent of oral candidosis, and one of its key virulent attributes is considered to be its ability to produce extracellular phospholipases that facilitate cellular invasion. Oral candidosis can be treated with polyenes, and azoles, and the more recently introduced echinocandins. However, once administered, the intraoral concentration of these drugs tend to be sub-therapeutic and rather transient due to factors such as the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, the pathogenic yeasts may undergo a brief exposure to antifungal drugs. We, therefore, evaluated the phospholipase production of oral C. albicans isolates following brief exposure to sub-therapeutic concentrations of the foregoing antifungals. Materials and methods Fifty C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sub-therapeutic concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for one hour. Thereafter the drugs were removed and the phospholipase production was determined by a plate assay using an egg yolk-agar medium. Results The phospholipase production of these isolates was significantly suppressed with a percentage reduction of 10.65, 12.14, 11.45 and 6.40% following exposure to nystatin, amphotericin B, caspofungin and ketoconazole, respectively. This suppression was not significant following exposure to fluconazole. Conclusions Despite the sub-therapeutic, intra oral, bioavailability of polyenes, echinocandins and ketoconazole, they are likely to produce a persistent antifungal effect by suppressing phospholipase production, which is a key virulent attribute of this common pathogenic yeast.

  11. Selective adsorption in two porous triazolate-oxalate-bridged antiferromagnetic metal-azolate frameworks obtained via in situ decarboxylation of 3-amino-1,2,4-triazole-5-carboxylic acid

    Science.gov (United States)

    Hou, Juan-Juan; Xu, Xia; Jiang, Ning; Wu, Ya-Qin; Zhang, Xian-Ming

    2015-03-01

    Solvothermal reactions of metal salts, 3-amino-1,2,4-triazole-5-carboxylic acid (H2atzc) and ammonium oxalate in different temperature produced two metal azolate frameworks, namely, [Cu3(atzc)2(atz)(ox)]·1.5H2O (1) and [Co5(atz)4(ox)3(HCOO)2]·DMF (2) (H2atzc=3-amino-1,2,4-triazole-5-carboxylic acid, Hatz=3-amino-1,2,4-triazole, and ox=oxalate), in which the atzc precusor was in situ decarboxylated. Structural determination reveals that 1 contains [Cu3(atzc)2(atz)]2- layers of mixed μ4-atzc and μ3-atz ligands, which are pillared by ox2- groups to form a 3D porous framework. Compound 2 contains 2D layers with basic spindle-shaped decanuclear units, which extended by ox2- and formates to form 3D porous framework. Gas adsorption investigation revealed that two kinds of frameworks exhibited selective CO2 over N2 sorption. Moreover, activated 2 shows H2 storage capacity. Additionally, magnetic properties of both the compounds have been investigated.

  12. Comportamento de amostras ambientais e clínicas de Cryptococcus neoformans frente a fungicidas de uso agronômico e ao fluconazol Behaviour azole fungicide and fluconazole in Cryptococcus neoformans clinical and environmental isolates

    Directory of Open Access Journals (Sweden)

    Elislene Dias Drummond

    2007-04-01

    Full Text Available Avaliou-se a atividade de fungicidas azólicos de uso agronômico (epoxiconazol, difenoconazol e ciproconazol em comparação ao antifúngico de uso terapêutico fluconazol sobre 23 amostras ambientais de Cryptococcus neoformans var neoformans isoladas de fezes de pombos, as quais foram coletadas em fazendas com práticas agrícolas empregando compostos azólicos e 11 amostras clínicas isoladas de pacientes portadores de criptococose. Os testes de sensibilidade foram realizados pela técnica de diluição em agar. A concentração inibitória mínima capaz de inibir 50% dos isolados ambientais (CIM 50 foi de 6,0µg/mL para epoxiconazol, 1,0µg/mL para difenoconazol, 2,0µg/mL para ciproconazol e 64,0µg/mL para fluconazol. Entre os isolados clínicos os valores de CIM 50 foram 2,0µg/mL, 0,38µg/mL, 1,0µg/mL e 16,0µg/mL para epoxiconazol, difenoconazol, ciproconazol e fluconazol, respectivamente. Os valores de CIM 50 em relação aos isolados de origem ambiental foram maiores do que os valores para os isolados de origem clínica. Em nosso estudo, frente ao mesmo antifúngico, as amostras ambientais apresentaram comportamento significativamente diferente em relação às amostras clínicas (p The activity of azole fungicides for agronomical use (epoxiconazole, difenoconazole and cyproconazole was evaluated in comparison with the therapeutic antifungal agent fluconazole, on 23 environmental samples of Cryptococcus neoformans var neoformans isolated from pigeon feces that were collected from farms with agricultural practices using azole compounds, and on 11 clinical samples isolated from patients with cryptococcosis. Sensitivity tests were performed using the agar dilution technique. The minimum inhibitory concentration capable of inhibiting 50% of the environmental isolates (MIC 50 was 6.00µg/ml to epoxiconazole, 1.00µg/ml for difenoconazole, 2.00µg/ml for cyproconazole and 64.00µg/ml for fluconazole. Among the clinical isolates the MIC 50

  13. LAN Sola Azole Combined Antibiotics in Treatment of Alcoholic Digestive Ulcer Clinical Effe%兰索拉唑联合抗生素治疗酒精性消化溃疡的临床效果

    Institute of Scientific and Technical Information of China (English)

    屈金伟

    2016-01-01

    目的:探讨酒精性消化溃疡患者联合应用兰索拉唑和抗生素治疗的临床效果.方法该院将2014年6月—2015年6月收治的74例酒精性消化溃疡患者,随机分为对照组(37例)和观察组(37例),对照组和观察组患者分别采用奥美拉唑治疗﹑兰索拉唑联合抗生素治疗.结果观察组患者治疗总有效率97.30%,明显低于对照组81.08%,具备统计学意义(P<0.05).结论给予酒精性消化溃疡患者兰索拉唑和抗生素联合治疗,能够缓解患者的临床反应,值得借鉴.%Objective to investigate the alcoholic patients with peptic ulcer combined use of orchid sola and clinical effect of antibiotic treatment. Methods Our college will be treated 74 patients with alcoholic digestive ulcer, were randomly divid-ed into control group (37 cases) and observation group (37 cases) and control group and observation group patients were treated with omeprazole, sola azole with antibiotic therapy. Results the total effective rate of observation group patients 97.30%, significantly lower than the control group 81.08%, with statistical significance (P< 0.05). Conclusion Alcoholic peptic ulcer patients' orchid sola combination therapy with antibiotics, can alleviate the patient's clinical response, is worth using for reference.

  14. Arylimidamide-Azole Combinations Against Leishmaniasis

    Science.gov (United States)

    2015-09-01

    drugs have ever been used for treatment against the Leishmania parasites used to infect the mice. Decrease of luminescence signal on day 32 for DB766...is also likely not due to a failure of drug efficacy but to the appearance of dark ulcers that quench the luminescence signal. Signal quenching is...Compounds Derived from the Medicines for Malaria Venture Open Access Box Against Intracellular Leishmania major Amastigotes. American Journal of Tropical

  15. Stress Relaxation of Paraffin Wax Emulsion/Copper Azole Compound System Treated Wood%石蜡防水剂与CA复配处理材的力学松弛

    Institute of Scientific and Technical Information of China (English)

    廖雨晴; 钟卉; 马尔妮

    2016-01-01

    Objective] An approach of stress relaxation was proposed in present work to investigate the interactions among the waterproof agent, preservative and wood. [Method] Paraffin emulsion waterproof using natural surfactants was prepared at dif-ferent concentrations of 0.5% and 2.0%, which were added into two concentrations (0.3%, 0.5%) of copper azole (CA) to obtain compound systems, and one-time ful-cel process was applied to treat the sapwood of Pinus spp. with a size of 10 mm (L) ×10 mm (R) ×10 mm (T). [Result] Compressive stress relaxation behaviors at two moisture levels and room temperature were measured and the results were as fol-lows: 1) compared with control group, the stress relaxation of compound system treated groups reduced, whether at oven-dried state or air-dried state. 2) Under oven-dried condition, CA could weaken the relaxation of treated samples and this effect became greater with increasing concentration of preservative, but an increase in the concentration of paraffin emulsion would slightly promote the relaxation of compound system treated samples. While under air-dried condition, both CA and paraffin wax emulsion lowered the relaxation which was inversely related to the concentrations of both agents. [Conclusion] The results were expected to shed new light on the various macroscopic properties of the compound system treated wood at a microscopic level, and to provide favorable scientific evidences and theoretical supports for the manufacture of waterproofing preservative-treated wood.%[目的]利用应力松弛的方法考察复配处理材中防水剂、防腐剂与木材的相互作用情况[方法]采用0.3%和0.5%两种浓度的CA以及0.5%、2.0%两种浓度的石蜡乳液制备复配体系,利用满细胞法一次性浸注处理10 mm(L)×10 mm (R)×10 mm (T)的南方松(Pinus spp.)试材,在常温条件下,对其进行不同含水率状态下的压缩应力松弛实验。[结果]无论在气干还是绝干状态下,CA和石蜡

  16. Analysis the effect of salmon calcitonin combined with azole phosphonic acid in the treatment of osteoporosis in elderly men%鲑鱼降钙素联合唑来膦酸治疗老年男性骨质疏松症的效果分析

    Institute of Scientific and Technical Information of China (English)

    冯缨缨; 钟远; 金俊

    2015-01-01

    ObjectiveTo explore the effect of salmon calcitonin combined with azole phosphonic acid in the treatment of osteoporosis in elderly men.Method173 cases of elderly male patients with osteoporosis were randomly divided into control group and experimental group, the two groups of patients were given oral calcium supplements, on the basis of the control group patients were given salmon calcitonin nasal spray, experimental group patients were given azole phosphonic acid injection, a course of 1 year. Compared the two groups of patients with clinical efifcacy, bone mineral density (BMD) before and after treatment, serum bone alkaline phosphatase (BAP), serum the C-terminal peptide (CTX) type I collagen levels and adverse reactions.ResultThere was no signiifcant difference of BMD between the two groups before treatment (P>0.05); BMD in both groups after treatment were higher than before treatment (P0.05).ConclusionSalmon calcitonin combined with azole phosphonic acid can effectively improve the elderly male patients with osteoporosis bone mineral density, curative effect is distinct, worth of clinical promotion.%目的:探究鲑鱼降钙素联合唑来膦酸治疗老年男性骨质疏松症的临床效果。方法将本院收治的173例老年男性骨质疏松症患者随机分为对照组及试验组,两组患者均给予口服钙补充剂,在此基础上对照组患者予以鲑鱼降钙素鼻喷剂,试验组患者予以唑来膦酸注射液,疗程均为1年。比较两组患者临床疗效,治疗前后骨密度(BMD),血清骨碱性磷酸酶(BAP)、血清I型胶原C端肽(CTX)水平及不良反应发生情况。结果两组患者治疗前BMD比较差异无显著性(P>0.05);治疗后两组患者BMD均高于治疗前(P<0.05),试验组明显高于对照组(P<0.05)。试验组患者治疗总有效率明显高于对照组(P<0.05)。两组患者治疗后BAP水平均较治疗前升高,CTX水

  17. 铜唑(CA-C)/石蜡防水剂复配处理材的金属腐蚀性能%Metal Corrosion of Copper Azole(CA-C)/Paraffin Wax Emulsion Compound System Treated Wood

    Institute of Scientific and Technical Information of China (English)

    王佳敏; 马尔妮; 曹金珍

    2015-01-01

    Objective]Copper azole ( CA ) as a new generation of environmentally friendly water-borne wood preservative,its treated wood tends to accelerate the corrosion process of mental. To provide technical basis for reducing metal corrosion issue in wood preservation,the effects of adding paraffin wax emulsion into CA preservative on the metal corrosion of treated wood was investigated.[Method]In this work,two concentrations of CA(0. 3% and 0. 5%) were combined with three concentrations of paraffin wax emulsion(0. 5%,1% and 2%)to treat sapwood of Pinus spp. with the size of 19 mm(T) × 38 mm(R) × 89 mm(L),using a full-cell process. Weight percent gain(WPG)and retention of copper in treated wood were calculated. Furthermore,the metal corrosion of 304 stainless steel,hot dip galvanized steel and Q235 A steel contacted with CA /paraffin wax emulsion compound system treated wood were tested according to the American Wood Protection Association Standard AWPA E12-08,respectively.[Result]1) The retentions of copper in CA treated wood were(1. 81 ± 0. 12)kg·m - 3 and(3. 80 ± 0. 03)kg·m - 3 respectively,reaching use category C3(≥1. 7 kg·m - 3) and C4A(≥3. 3 kg·m - 3). 2) Q235A was the most prone to corrosion with a large area of red copper element on the surface. Hot dip galvanized steel showed mild corrosion and 304 stainless steel was almost not corroded. 3) All corrosion rate of 304 stainless steel was 0; corrosion rate of Q235 A steel contacted with CA treated wood was twice or three times as much as the control,adding paraffin wax emulsion could obviously reduce the metal corrosion rate; the tendency in corrosion of hot dip galvanized steel was similar to that of Q235A steel,but its corrosion rate was much lower.[Conclusion]1 ) Corrosion rate of the three metals contacted with treated wood was exhibited in the following order:Q235A steel > hot dip galvanized steel > 304 stainless steel. 2) After CA treatment,wood presented much more serious corrosion for Q235A steel

  18. 对唑类药物交叉耐药的烟曲霉临床分离株耐药机制的初步探讨%Molecular mechanisms of cross-resistance to azole antifungal agents in a clinical isolate of Aspergillus fumigatus: a preliminary study

    Institute of Scientific and Technical Information of China (English)

    孙毅; 刘伟; 陈伟; 万喆; 李若瑜

    2011-01-01

    Objective To investigate the molecular mechanisms of cross-resistance to azoles in a clinical isolate of Aspergillus fumigatus. Methods A. fumigatus was isolated from a patient with invasive aspergillosis.Clinical Laboratory Standard Institute M38-A2 broth microdilution method and E-test method were used to determine the minimum inhibitory concentrations (MICs) or minimum effective concentration (MEC) of itraconazole, voriconazole, amphotericin B, posaconazole and caspofungin for the A. fumigatus isolate. DNA was extracted from the isolate and subjected to the amplification of cyp51A gene encoding the target enzyme of azole antifungal agents followed by sequence analysis. Results The broth microdilution test showed that the MEC of caspofungin was 0.5 mg/L, and MICs of itraconazole, voriconazole and amphotericin B were ≥ 16 mg/L,8 mg/L and 1 mg/L, respectively, for this isolate; while E-test assay revealed that the MICs of caspofungin,itraconazole, voriconazole, amphotericin B and posaconazole were 0.047 mg/L, ≥32 mg/L,≥32 mg/L, 12 mg/L and ≥32 mg/L, respectively. Sequence analysis showed an insertion of a 34-bp tandem sequence in the promoter region of the cyp51A gene as well as a T364A point mutation causing the substitution of leucine 98 (L98H). In addition, there were some other mutations in the cyp51A gene of this isolate, such as A137T,G585A, C814A, G836C, T991C and A1350G, which could result in corresponding amino acid substitutions.Conclusions An A. fumigatus strain with cross-resistance to azole antifungal agents is isolated. There is an insertion of a 34-bp tandem sequence into the promoter region as well as a T364A point mutation in the cyp51A gene, which contribute to the cross resistance to azole antifungal agents including itraconazole, voriconazole,and posaconazole. In addition, other mutations causing amino acid substitutions have also been detected in the cyp51 A gene of this isolate.%目的 研究对唑类药物交叉耐药的烟曲霉临

  19. Dermatophyte susceptibilities to antifungal azole agents tested in vitro by broth macro and microdilution methods Suscetibilidade in vitro de dermatófitos a azóis pelos métodos macro e microdiluição em caldo

    Directory of Open Access Journals (Sweden)

    Emerson Roberto Siqueira

    2008-02-01

    Full Text Available The in vitro susceptibility of dermatophytes to the azole antifungals itraconazole, fluconazole and ketoconazole was evaluated by broth macro and microdilution methods, according to recommendations of the CLSI, with some adaptations. Twenty nail and skin clinical isolates, four of Trichophyton mentagrophytes and 16 of T. rubrum were selected for the tests. Itraconazole minimal inhibitory concentrations (MIC varied from Foi avaliada a suscetibilidade in vitro de dermatófitos aos antifúngicos itraconazol, fluconazol e cetoconazol, pelos métodos macro e microdiluição em caldo, de acordo com as recomendações do CLSI, com algumas modificações. Foram estudados 20 isolados clínicos de lesões de unha e pele, sendo quatro Trichophyton mentagrophytes e 16 T. rubrum. A concentração inibitória mínima (CIM para itraconazol variou de < 0,03 a 0,25 µg/mL pelo método da macrodiluição, e de < 0,03 a 0,5 µg/mL pela microdiluição em caldo; de 0,5 a 64 µg/mL e de 0,125 a 16 µg/mL para fluconazol, respectivamente, pela macro e microdiluição; e de < 0,03 a 0,5 µg/mL por ambos os métodos para cetoconazol. A concordância entre os dois métodos (considerando ± uma diluição foi de 70% para itraconazol, 45% para fluconazol e 85% para cetoconazol. Conclui-se que os isolados estudados foram inibidos por concentrações relativamente baixas dos antifúngicos testados, e os dois métodos apresentam boa concordância, especialmente para itraconazol e cetoconazol.

  20. Novel Reaction of Some Azoles with Dimethyl Sulfoxid

    Institute of Scientific and Technical Information of China (English)

    WANG,Bin; ZHU,An-Xiong; DONG,Heng-Shan

    2004-01-01

    @@ The compounds 4a~4j were prepared by 3a~3j which were prepared from 1a~1j through 2a~2j. The compounds 6a~6j were prepared by the reaction of the products of 4a~4j with dimethyl sulfoxid via Dimroth rearrangement.[1] The compounds ethyl 5-arylamino-1H-1,2,3-triazol-4-carbonates (5a~5d) and ethyl 2-methylthiamethylene-5-arylamino-2H-1,2,3-triazol-4-carbonates (6a~6j) are established by MS, IR, elemental analysis and 1H NMR spectral data. The route of syntheses is shown in Scheme 1.

  1. Synthesis and oxidation of some azole-containing thioethers

    Directory of Open Access Journals (Sweden)

    Andrei S. Potapov

    2011-11-01

    Full Text Available Pyrazole and benzotriazole-containing thioethers, namely 1,5-bis(3,5-dimethylpyrazol-1-yl-3-thiapentane, 1,8-bis(3,5-dimethylpyrazol-1-yl-3,6-dithiaoctane and 1,3-bis(1,2,3-benzotriazol-1-yl-2-thiapropane were prepared and fully characterized. Oxidation of the pyrazole-containing thioether by hydrogen peroxide proceeds selectively to provide a sulfoxide or sulfone, depending on the amount of oxidant used. Oxidation of the benzotriazole derivative by hydrogen peroxide is not selective, and sulfoxide and sulfone form concurrently. Selenium dioxide-catalyzed oxidation of benzotriazole thioether by H2O2, however, proceeds selectively and yields sulfoxide only.

  2. Some azine and azole derivatives as antioxidant additives for lithium lubricating grease

    Directory of Open Access Journals (Sweden)

    Reda M. Fikry

    2013-06-01

    The structure of these compounds has been confirmed using elemental analysis, nuclear magnetic resonance and infrared spectroscopy. On the other hand, lithium lubricating grease was prepared and evaluated according to the National Lubricating Grease Institute (NLGI and Egyptian Standard (ES. The antioxidant compounds were tested for the prepared grease with concentration 0.1 wt.%. The efficiency of these compounds has been determined using total acid number. It was found that the prepared lithium grease resists oxidation reaction in the presence of these compounds. A correlation between the chemical structure of these compounds and their efficiency as antioxidants additives was discussed. Data showed that the efficiency of these compounds as antioxidants decreases in the order: compound I > compound II > compound III.

  3. Optimization of Azoles as Anti-Human Immunodeficiency Virus Agents Guided by Free-Energy Calculations

    OpenAIRE

    Zeevaart, Jacob G.; Wang, Ligong; Thakur, Vinay V.; Leung, Cheryl S.; Tirado-Rives, Julian; Bailey, Christopher M.; Domaoal, Robert A.; Anderson, Karen S.; Jorgensen, William L.

    2008-01-01

    Efficient optimization of an inactive 2-anilinyl-5-benzyloxadiazole core has been guided by free energy perturbation (FEP) calculations to provide potent non-nucleoside inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (NNRTIs). An FEP “chlorine scan” was performed to identify the most promising sites for substitution of aryl hydrogens. This yielded NNRTIs 8 and 10 with activities (EC50) of 820 and 310 nM for protection of human T-cells from infection by wild-type HIV-1. ...

  4. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    OpenAIRE

    Sara Teixeira de Macedo-Silva; Urbina, Julio A; Wanderley de Souza; Juliany Cola Fernandes Rodrigues

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is a...

  5. Metal-based biologically active azoles and β-lactams derived from sulfa drugs.

    Science.gov (United States)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Almayah, Abdulelah A; Bolandnazar, Zeinab; Swadi, Ali G; Ebrahimi, Amirpasha

    2016-03-01

    Metal complexes of Schiff bases derived from sulfamethoxazole (SMZ) and sulfathiazole (STZ), converted to their β-lactam derivatives have been synthesized and experimentally characterized by elemental analysis, spectral (IR, (1)H NMR, (13)C NMR, and EI-mass), molar conductance measurements and thermal analysis techniques. The structural and electronic properties of the studied molecules were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The spectral and thermal analysis reveals that the Schiff bases act as bidentate ligands via the coordination of azomethine nitrogen to metal ions as well as the proton displacement from the phenolic group through the metal ions; therefore, Cu complexes can attain the square planner arrangement and Zn complexes have a distorted tetrahedral structure. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. In addition, the antibacterial activities of synthesized compounds have been screened in vitro against various pathogenic bacterial species. Inspection of the results revealed that all newly synthesized complexes individually exhibit varying degrees of inhibitory effects on the growth of the tested bacterial species, therefore, they may be considered as drug candidates for bacterial pathogens. The free Schiff base ligands (1-2) exhibited a broad spectrum antibacterial activity against Gram negative Escherichia coli, Pseudomonas aeruginosa, and Proteus spp., and Gram positive Staphylococcus aureus bacterial strains. The results also indicated that the β-lactam derivatives (3-4) have high antibacterial activities on Gram positive bacteria as well as the metal complexes (5-8), particularly Zn complexes, have a significant activity against all Gram negative bacterial strains. It has been shown that the metal complexes have significantly higher activity than corresponding ligands due to chelation process which reduces the polarity of metal ion by coordinating with ligands.

  6. Synthesis, physical properties and self-assembly behavior of azole-fused pyrene derivatives

    Science.gov (United States)

    Xiao, Jinchong; Xiao, Xuyu; Zhao, Yanlei; Wu, Bo; Liu, Zhenying; Zhang, Xuemin; Wang, Sujuan; Zhao, Xiaohui; Liu, Lei; Jiang, Li

    2013-05-01

    A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent.A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent. Electronic supplementary information (ESI) available: TGA analysis, spectra characterization data for compound 1, 2, 3 and X-ray crystallographic data for compound PySe (2, CIF). CCDC 917821. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr00523b

  7. Clinicomycological Profile and Antifungal Sensitivity Pattern of Commonly Used Azoles in Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Mahesh Mathur

    2015-06-01

    Conclusions: This study highlighted the increasing resistance of the antifungals, which is responsible for the treatment failure in dermatophye infections. Keywords: antifungal resistance; dermatophyte; epidemiology.

  8. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.

    Science.gov (United States)

    Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B

    2012-02-01

    The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.

  9. Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co).

    Science.gov (United States)

    Sarker, Mithun; Bhadra, Biswa Nath; Seo, Pill Won; Jhung, Sung Hwa

    2017-02-15

    Benzotriazole (BTA) and benzimidazole (BZI) are regarded as water pollutants because of their extensive uses in industry and appreciable water solubility. The adsorption of both BTA and BZI from water over a newly synthesized metal-organic framework, MAF-5(Co), was investigated and compared with zeolitic imidazole frameworks (ZIFs), such as ZIF-8(Zn) and ZIF-67(Co), as well as commercial activated carbon. MAF-5(Co) had the highest adsorption capacities for both BTA and BZI. The maximum adsorption capacities of MAF-5(Co) for BTA and BZI were 389 and 175mgg(-1), respectively. Hydrophobic and π-π interactions between the aromatic adsorbate BTA and MAF-5(Co) were suggested as a plausible mechanism. Based on the zeta potential of MAF-5(Co) and effects of pH on the BTA adsorption, electrostatic interactions between the MAF-5(Co) and BTA species might also affect the adsorption of BTA over MAF-5(Co). MAF-5(Co) can be recycled for adsorptive removal of BTA by simple ethanol washing. Therefore, MAF-5(Co) is suggested as a promising adsorbent for the removal of BTA and BZI from water.

  10. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts.

    Science.gov (United States)

    Mondello, Francesca; De Bernardis, Flavia; Girolamo, Antonietta; Salvatore, Giuseppe; Cassone, Antonio

    2003-05-01

    A tea tree oil (TTO) preparation of defined chemical composition was studied, using a microbroth method, for its in vitro activity against 115 isolates of Candida albicans, other Candida species and Cryptococcus neoformans. The fungal strains were from HIV-seropositive subjects, or from an established type collection, including reference and quality control strains. Fourteen strains of C. albicans resistant to fluconazole and/or itraconazole were also assessed. The same preparation was also tested in an experimental vaginal infection using fluconazole-itraconazole-susceptible or -resistant strains of C. albicans. TTO was shown to be active in vitro against all tested strains, with MICs ranging from 0.03% (for C. neoformans) to 0.25% (for some strains of C. albicans and other Candida species). Fluconazole- and/or itraconazole-resistant C. albicans isolates had TTO MIC50s and MIC90s of 0.25% and 0.5%, respectively. TTO was highly efficacious in accelerating C. albicans clearance from experimentally infected rat vagina. Three post-challenge doses of TTO (5%) brought about resolution of infection regardless of whether the infecting C. albicans strain was susceptible or resistant to fluconazole. Overall, the use of a reliable animal model of infection has confirmed and extended our data on the therapeutic effectiveness of TTO against fungi, in particular against C. albicans.

  11. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    Science.gov (United States)

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China.

  12. Possibility of the existence of donor-acceptor interactions in bis(azole)amines: an electronic structure analysis.

    Science.gov (United States)

    Bhatia, Sonam; Bharatam, Prasad V

    2014-06-06

    Donor-stabilized divalent N(I) systems have recently gained attention in the field of organic chemistry. Existence of low-valent nitrogen(I) species with moderate nucleophilicities in several pharmacophoric functionalities is prompting extensive exploration in this field. Quantum chemical analysis on the imidazole, oxazole, and thiazole derivatives of thiazole-2-amine indicated that these species preferably exist in the iminic state. Electronic structure analysis of these systems suggested the existence of hidden divalent N(I) character in a neutral state (L → N-R) and the explicit divalent N(I) character (L → N ← L)(+) in the protonated state. The strength of L → N interaction in these systems was analyzed, and the variations in the nucleophilicity trend at the coordinating nitrogen center were rationalized by estimating the electronic (TEP (Tolman electronic parameter) and MESP minimum (V(min))) as well as steric parameters (r-repulsiveness and ΔH elimination of CO group, in L → Ni(CO)3) of the coordinating ligands L. The importance of energetically preferred ionic and tautomeric representations of thiazol-2-amine derivatives in iminic and aminic forms was also demonstrated by carrying out comparative docking analysis with the enzyme lymphocyte-specific kinase (Lck).

  13. Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence.

    Directory of Open Access Journals (Sweden)

    Ghada Abou Ammar

    Full Text Available Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol and the NIV (nivalenol trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum.

  14. An alternative host model of a mixed fungal infection by azole susceptible and resistant Aspergillus spp strains.

    Science.gov (United States)

    Alcazar-Fuoli, L; Buitrago, Mj; Gomez-Lopez, A; Mellado, E

    2015-01-01

    Aspergillus fumigatus is the most common mold involved in human infections. However, the number of non-fumigatus species able to cause disease is continuously increasing. Among them, Aspergillus lentulus is reported in hematological and cystic fibrosis patients and in those treated with corticosteroids. A. lentulus differs from A. fumigatus in some clinically relevant aspects such as virulence and antifungal susceptibility, showing high MICs to most antifungals. Previous studies proved that A. lentulus was pathogenic in immunocompromised mice, although the course of the infection was delayed compared to A. fumigatus. These differences could explain why A. lentulus is mostly found in mixed infections with A. fumigatus challenging the diagnosis and treatment. We used the alternative model host Galleria mellonella to compare virulence, host interaction, fungal burden and antifungal response when larvae were infected with A. fumigatus or A. lentulus alone, and with a mixture of both species. A. lentulus was pathogenic in G. mellonella but infected larvae did not respond to therapeutic doses of voriconazole. We were able to simultaneously detect A. fumigatus and A. lentulus by a multiplex Nested Real Time PCR (MN-PCR). Comparative analysis of larvae histological sections showed melanization of both species but presented a different pattern of immune response by haemocytes. Analysis of fungal burden and histology showed that A. lentulus survived in the G. mellonella despite the antifungal treatment in single and mixed infections. We conclude that the simultaneous presence of antifungal susceptible and resistant Aspergillus species would likely complicate the management of these infections.

  15. The origin, versatility and distribution of azole fungicide resistance in the banana black Sigatoka pathogen Pseudocercospora fijiensis

    NARCIS (Netherlands)

    Chong Aguirre, Pablo A.

    2016-01-01

    Pseudocercospora fijiensis causes black Sigatoka disease of banana. It is one of the most damaging threats of the crop requiring excessive fungicide applications for disease control as the major export “Cavendish” clones are highly susceptible. The consequence of this practice is the red

  16. Epidemiological cutoff values for azoles and Aspergillus fumigatus based on a novel mathematical approach incorporating cyp51A sequence analysis.

    NARCIS (Netherlands)

    Meletiadis, J.; Mavridou, E.; Melchers, W.J.G.; Mouton, J.W.; Verweij, P.E.

    2012-01-01

    Epidemiological cutoff values (ECV) are commonly used to separate wild-type isolates from isolates with reduced susceptibility to antifungal drugs, thus setting the foundation for establishing clinical breakpoints for Aspergillus fumigatus. However, ECVs are usually determined by eye, a method which

  17. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    Science.gov (United States)

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  18. Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Fuursted, Kurt; Gahrn-Hansen, Bente;

    2005-01-01

    The aim of this study was to present the first set of comprehensive data on fungemia in Denmark including the distribution of species and range of susceptibility to major antifungal compounds based on a seminational surveillance study initiated in 2003. The catchment area of the participating hos...

  19. In Vitro Activities of Amphotericin B, Terbinafine, and Azole Drugs against Clinical and Environmental Isolates of Aspergillus terreus Sensu Stricto

    Science.gov (United States)

    Fernández, Mariana S.; Rojas, Florencia D.; Cattana, María E.; Sosa, María de los Ángeles; Iovannitti, Cristina A.; Giusiano, Gustavo E.

    2015-01-01

    The antifungal susceptibilities of 40 clinical and environmental isolates of A. terreus sensu stricto to amphotericin B, terbinafine, itraconazole, and voriconazole were determined in accordance with CLSI document M38-A2. All isolates had itraconazole and voriconazole MICs lower than epidemiologic cutoff values, and 5% of the isolates had amphotericin B MICs higher than epidemiologic cutoff values. Terbinafine showed the lowest MICs. No significant differences were found when MICs of clinical and environmental isolates were compared. PMID:25824228

  20. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods.

    Science.gov (United States)

    Cafarchia, Claudia; Figueredo, Luciana A; Iatta, Roberta; Colao, Valeriana; Montagna, Maria T; Otranto, Domenico

    2012-11-01

    Dermatitis caused by Malassezia spp., one of most common skin disease in dogs, requires prolonged therapy and/or high doses of antifungal agents. In the present study, the antifungal susceptibility of M. pachydermatis to ketoconazole (KTZ), fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS) and voriconazole (VOR) was evaluated in vitro using both CLSI reference broth microdilution (CLSI BMD) and E-test. A total of 62 M. pachydermatis strains from dogs with and without skin lesions were tested. M. pachydermatis strains were susceptible to ITZ, KTZ and POS using both test methods, with the highest MIC found in tests of FLZ. Essential agreement between the two methods ranged from 87.1% (VOR) to 91.9% (ITZ), and categorical agreement from 74.2% (FLZ) to 96.8% (ITZ). Minor error discrepancies were observed between the two methods, with major discrepancies observed for KTZ. A higher MIC(50) value for FLZ was noted with M. pachydermatis genotype B. The MICs(50) of M. pachydermatis genotype B for KTZ, VOR and POS were higher in isolates from dogs with skin lesions than those in isolates from animals without skin lesions. The results suggest a link between genotypes of M. pachydermatis and in vitro drug susceptibility. The categorical agreement for both E-test and CLSI BMD methods found in this investigation confirms the E-test as a reliable diagnostic method for routine use in clinical mycology laboratories.

  1. <研究論文>置換基導入がアゾール型イオン液体の粘度に及ぼす影響

    OpenAIRE

    北岡, 賢; 藤本, 泰徳; 西中, 信之祐

    2014-01-01

    [Abstract] We investigated the substituent effects on the viscosity of azole based ionic liquids. Introducing some electro withdrawing groups to the azole anion and some electron donating groups to the azole cation decreased the viscosity of ionic liquids. In these substituent effects to azole anion and azole cation, the anion and cation charge are delocalized over substituent groups. The decrease in the anion and cation charge density weakens the cation-anion interaction of ionic liquids. As...

  2. 唑类缓蚀剂在铜表面的吸附机理%Adsorption Mechanism of Azole Corrosion Inhibitors on Cu Surface

    Institute of Scientific and Technical Information of China (English)

    廉兵杰; 石泽民; 徐慧; 赵起锋; 王木立; 姜云瑛; 胡松青

    2015-01-01

    Objective To compare the inhibition performance of two corrosion inhibitors:1, 2, 4-triazole and benzotriazole, in order to explore their adsorption types on Cu surface and explain the inhibition mechanism from experiment and molecular simula-tion point of view. Methods Potentiodynamic polarization measurement was used to test the corrosion inhibitive efficiency of the two inhibitors. The adsorption isothermal fitting method was used to explore their adsorption types on Cu surface. Adsorption energy, deformation charge density and partial density of states were calculated using quantum chemistry calculation method to explain their inhibition mechanism. Results The results of polarization measurement showed that the inhibition efficiency of benzotriazole was higher than that of triazole at all concentrations. The relationship of concentration and coverage of the two inhibitors accorded with the Langmuir adsorption isotherm, and their adsorption free energy was in range of -35~-37 kJ/mol. The absolute value of ad-sorption energy of benzotriazole (top -4. 41eV, bridge -4. 36 eV) was larger than that of triazole (3. 28 eV). Obvious charge transfer occurred in the adsorption process, and the electron atmosphere distributed between the two bonding atoms. In addition, the s,p orbits of N atoms and the d orbit of Cu atoms overlapped during the adsorption process. Both of the neutral and protonated forms of the two inhibitors could parallelly adsorb onto Cu surface. Conclusion The inhibition performance of benzotriazole was bet-ter than that of triazole, which was due to the higher adsorptivity of benzotriazole compared to that of triazole. Both chemical ad-sorption and physical adsorption existed in the interaction of the inhibitors and the Cu surface, and the chemical adsorption of in-hibitors on Cu surface was attributed to the covalent bond between N and Cu atoms, and the bonding interaction was due to atomic orbits hybridization, while the physical adsorption between the inhibitor and Cu surface consisted of both Van der Waals forces and electrostatic attraction.%目的 对比三氮唑( TA)和苯并三氮唑( BTA)两种缓蚀剂的缓蚀性能,明确两种缓蚀剂在铜表面的吸附类型,并从实验和分子模拟角度解释其吸附机理. 方法 采用动电位极化曲线法测试两种缓蚀剂的缓蚀效率,采用吸附等温拟合方法确定两种缓蚀剂的吸附类型,采用分子模拟中的量子化学计算方法计算两种缓蚀剂在铜表面的吸附能、形变电荷密度和分波态密度等参数,深入揭示其吸附机理. 结果 在不同浓度下,BTA的缓蚀效率均大于TA. 两种缓蚀剂浓度与覆盖度的关系符合Langmuir吸附模型,其吸附自由能介于-35~-37 kJ/mol之间. BTA在铜表面的吸附能绝对值(顶位为4. 41 eV,桥位为4. 36 eV)要大于TA的吸附能绝对值(3. 28 eV),吸附过程发生了明显的电荷转移,电子云处于两个成键原子之间,且N原子s,p轨道与Cu原子d轨道发生重叠. 中性和质子化形式的两种缓蚀剂分子均可在铜表面发生平行吸附. 结论 由于BTA在铜表面的吸附能力强于TA,因此BTA的缓蚀性能优于TA. 两种缓蚀剂在铜表面既能发生化学吸附,又能发生物理吸附. 化学吸附是由于N原子的s,p轨道与Cu原子d轨道相互作用所致,物理吸附是由于中性分子的范德华相互作用和质子化分子的静电相互作用所致.

  3. Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans

    Directory of Open Access Journals (Sweden)

    Zhimin Yan

    2012-01-01

    Full Text Available This study was designed to evaluate the in vitro antifungal activities of four traditional Chinese medicine (TCM extracts. The inhibitory effects of pseudolaric acid B, gentiopicrin, rhein, and alion were assessed using standard disk diffusion and broth microdilution assays. They were tested against six oral Candida species, Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida dubliniensis, and Candida guilliermondii, including clinical isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. It was found that pseudolaric acid B had the most potent antifungal effect and showed similar antifungal activity to all six Candida spp, and to isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. The MIC values ranged from 16 to 128 μg/mL. More interestingly, a synergistic effect of pseudolaric acid B in combination with fluconazole was observed. We suggest that pseudolaric acid B might be a potential therapeutic fungicidal agent in treating oral candidiasis.

  4. Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51).

    Science.gov (United States)

    Lamb, David C; Warrilow, Andrew G S; Rolley, Nicola J; Parker, Josie E; Nes, W David; Smith, Stephen N; Kelly, Diane E; Kelly, Steven L

    2015-08-01

    In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 μM), whereas inhibition by fluconazole was weak (IC50, 30 μM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections.

  5. The Repellent Effect of Albend azole for Animals in Zoo%丙硫咪唑对观赏动物的驱虫效果

    Institute of Scientific and Technical Information of China (English)

    姜昌付; 陈兆浚; 杨敦敬; 赵保国

    1986-01-01

    @@ 丙硫咪唑(Albendazole)对动物寄生线虫、绦虫和吸虫均有很强的驱除作用,但对感染多种寄生虫病动物的驱虫效果,尚未见报告.1984年5至8月,我们采用该药对武汉市中山公园动物园内30种86只感染多种寄生虫的观赏动物进行了驱虫效果试验,报告如下.

  6. Multiple-azole-resistant Aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous disease successfully treated with long-term oral posaconazole and surgery.

    NARCIS (Netherlands)

    Hodiamont, C.J.; Dolman, K.M.; Berge, I.J. Ten; Melchers, W.J.G.; Verweij, P.E.; Pajkrt, D.

    2009-01-01

    We describe a patient with chronic granulomatous disease and proven Aspergillus fumigatus osteomyelitis of the midfoot, while receiving itraconazole-prophylaxis. The isolate proved resistant to itraconazole as well as voriconazole, and showed reduced susceptibility to posaconazole. Although molecula

  7. Economic Evaluation of Posaconazole Versus Standard Azole Therapy as Prophylaxis against Invasive Fungal Infections in Patients with Prolonged Neutropenia in Canada

    Directory of Open Access Journals (Sweden)

    Amir A Tahami Monfared

    2012-01-01

    Full Text Available INTRODUCTION: Posaconazole prophylaxis in high-risk neutropenic patients prevents invasive fungal infection (IFI. An economic model was used to assess the cost effectiveness of posaconazole from a Canadian health care system perspective.

  8. Semi-national surveillance of fungaemia in Denmark 2004-2006: increasing incidence of fungaemia and numbers of isolates with reduced azole susceptibility

    DEFF Research Database (Denmark)

    Arendrup, M.C.; Fuursted, K.; Gahrn-Hansen, B.;

    2008-01-01

    .0%) isolates in 2006 (p 0.03). Overall, the proportion of isolates with decreased susceptibility to fluconazole exceeded 30% in 2006. The incidence of fungaemia in Denmark was three-fold higher than that reported from other Nordic countries and is increasing. Decreased susceptibility to fluconazole is frequent...

  9. 防止银器文物变色的唑系复合缓蚀剂Ⅱ. SERS法研究唑系缓蚀剂防银变色的作用机理%Azoles as Composite Corrosion Inhibitor for Anti-tarnishing of Silver Antiques Ⅱ.Mechanism of the Azoles for Anti-tarnishing of Silver

    Institute of Scientific and Technical Information of China (English)

    蔡兰坤; 张东曙; 王桂华; 祝鸿范; 周浩

    2002-01-01

    测定了PMTA、MBO、MBI的普通拉曼光谱(NRS),利用表面增强拉曼散射光谱(SERS)研究了几种唑系缓蚀剂防止银器文物变色的表面成膜过程,复合缓蚀剂组分与银的相互作用,并讨论了其防变色作用的机理.实验结果表明,PMTA、MBI和MBO与银表面存在着较强的相互作用,由于杂环结构的差异,不同缓蚀剂在银表面上呈现不同的吸附取向,形成了更为致密的防变色保护膜.在成膜溶液中,pH值较小时有利于缓蚀剂吸附,处理时间应不少于120 min.成膜溶液和含缓蚀剂的硫化钠溶液中,银电极阴极极化时(外加阴极电位≤600mV的测试范围内),复合缓蚀剂的SERS响应均随电位负移而增强,表明其可有效防止银在腐蚀介质中的变色行为.

  10. Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution

    Science.gov (United States)

    Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.

    2014-01-01

    In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.

  11. Optically active antifungal azoles. V. Synthesis and antifungal activity of stereoisomers of 3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2- butanols.

    Science.gov (United States)

    Tasaka, A; Tsuchimori, N; Kitazaki, T; Hiroe, K; Hayashi, R; Okonogi, K; Itoh, K

    1995-03-01

    The (2S,3S)-, (2R,3S)- and (2S,3R)-stereoisomers of (2R,3R)-3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanols [(2R,3R)-1a--d] were prepared and evaluated for antifungal activity against Candida albicans in vitro and in vivo to clarify the relationships between stereochemistry and biological activities. The results revealed that the in vitro antifungal activity in each set of the four stereoisomers [(2R,3R)-, (2S,3S)-, (2R,3S)- and (2S,3R)-1a--d] definitely paralleled the in vivo antifungal activity against candidosis in mice, and the order of potency was (2R,3R) > (2R,3S) > or = (2S,3S) > or = (2S,3R). In addition, the four stereoisomers in each set were assessed for sterol biosynthesis-inhibitory activities in C. albicans and rat liver. The (2R,3R)-isomer was found to exert a strong and selective inhibitory effect on the sterol synthesis in C. albicans as compared with that in rat liver.

  12. 丙硫咪唑治疗肠线虫感染几种疗法的比较%COMPARATIVE STUDIES ON SEVERAL ALBEND AZOLE THERAPEUTIC REGIMENS FOR INTESTINAL NEMATODES INFESTATION

    Institute of Scientific and Technical Information of China (English)

    牛安欧; 沈婷婷; 陈兆浚

    1986-01-01

    @@ 丙硫眯唑(Albendazole)是新的广谱抗蠕虫药,国内外已试用于临床,但疗法不一.驱肠道线虫如钩虫、蛔虫、鞭虫及蛲虫等有顿服,也有多次分服者,剂量和疗程亦颇不一致[1~6].为探索理想疗法,我们把1982~1984年308例钩虫、蛔虫、鞭虫等肠道线虫感染者分组进行的不同疗法加以比较,现报道如下.

  13. Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B

    NARCIS (Netherlands)

    Hull, Claire M.; Parker, Josie E.; Bader, Oliver; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Kelly, Diane E.; Kelly, Steven L.

    2012-01-01

    We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 mu g ml(-1), respectively. Sterol analysis using gas chromatography-mass spectrometry (GC

  14. TRIAZOLE: A POTENTIAL BIOACTIVE AGENT (SYNTHESIS AND BIOLOGICAL ACTIVITY)

    OpenAIRE

    Pandeya Surendra Nath; Pathak Ashish; Mishra Rupesh

    2011-01-01

    Azoles belong to very important class of Antimicrobial drugs. Triazole is very important Azole which exists in two isomeric forms namely 1, 2, 3-Triazole and 1, 2, 4-Triazole. This Review Article covers the Different approaches to synthesize Triazoles having different substitution and their different biological activity. This Review article can be useful to synthesize new compounds having Triazole nucleolus.

  15. Mixture effects of endocrine disrupting compounds in vitro

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Taxvig, Camilla; Andersen, H. R.

    2010-01-01

    on AR could not be predicted under assumption of additivity in our model system. For a mixture containing three azole fungicides (epoxiconazole, propiconazole and tebuconazole), the observed AR antagonistic effects were close to the predicted effect assuming additivity. Azole fungicides are known...

  16. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Meletiadis, J; Leth Mortensen, K; Verweij, P E

    2017-01-01

    . METHODS: Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared...

  17. Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius(®) assay

    NARCIS (Netherlands)

    Chong, G M; Vonk, A G; Meis, J F; Dingemans, G J H; Houbraken, J; Hagen, F.; Gaajetaan, G R; van Tegelen, D W E; Simons, G F M; Rijnders, B J A

    2016-01-01

    The AsperGenius(®) assay detects several Aspergillus species and the A. fumigatus Cyp51A mutations TR34/L98H/T289A/Y121F that are associated with azole resistance. We evaluated its contribution in identifying A. lentulus and A. felis, 2 rare but intrinsically azole-resistant sibling species within t

  18. Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius® assay

    NARCIS (Netherlands)

    G.M. Chong; A.G. Vonk (Alieke); J.F. Meis (Jacques F.); G. Dingemans (Gijs); J. Houbraken (Jos); F. Hagen (Ferry); G.R. Gaajetaan (Giel R.); D.W.E. Van Tegelen (Dennis W. E.); G.F.M. Simons (Guus F. M.); B.J.A. Rijnders (Bart)

    2016-01-01

    textabstractThe AsperGenius® assay detects several Aspergillus species and the A. fumigatus Cyp51A mutations TR34/L98H/T289A/Y121F that are associated with azole resistance. We evaluated its contribution in identifying A. lentulus and A. felis, 2 rare but intrinsically azole-resistant sibling specie

  19. In vitro interaction of voriconazole and anidulafungin against triazole-resistant Aspergillus fumigatus

    NARCIS (Netherlands)

    Seyedmousavi, S.; Meletiadis, J.; Melchers, W.J.G.; Rijs, A.J.M.M.; Mouton, J.W.; Verweij, P.E.

    2013-01-01

    Voriconazole is the recommended drug of first choice to treat infections caused by Aspergillus fumigatus. The efficacy of voriconazole might be hampered by the emergence of azole resistance. However, the combination of voriconazole with anidulafungin could improve therapeutic outcomes in azole-resis

  20. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR₃₄/L98H mutations in the cyp51A gene in India.

    Directory of Open Access Journals (Sweden)

    Anuradha Chowdhary

    Full Text Available Azole resistance is an emerging problem in Aspergillus which impacts the management of aspergillosis. Here in we report the emergence and clonal spread of resistance to triazoles in environmental Aspergillus fumigatus isolates in India. A total of 44 (7% A. fumigatus isolates from 24 environmental samples were found to be triazole resistant. The isolation rate of resistant A. fumigatus was highest (33% from soil of tea gardens followed by soil from flower pots of the hospital garden (20%, soil beneath cotton trees (20%, rice paddy fields (12.3%, air samples of hospital wards (7.6% and from soil admixed with bird droppings (3.8%. These strains showed cross-resistance to voriconazole, posaconazole, itraconazole and to six triazole fungicides used extensively in agriculture. Our analyses identified that all triazole-resistant strains from India shared the same TR(34/L98H mutation in the cyp51 gene. In contrast to the genetic uniformity of azole-resistant strains the azole-susceptible isolates from patients and environments in India were genetically very diverse. All nine loci were highly polymorphic in populations of azole-susceptible isolates from both clinical and environmental samples. Furthermore, all Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype not found in any other analyzed samples, either from within India or from the Netherlands, France, Germany or China. Our population genetic analyses suggest that the Indian azole-resistant A. fumigatus genotype was likely an extremely adaptive recombinant progeny derived from a cross between an azole-resistant strain migrated from outside of India and a native azole-susceptible strain from within India, followed by mutation and then rapid dispersal through many parts of India. Our results are consistent with the hypothesis that exposure of A. fumigatus to azole fungicides in the environment causes cross-resistance to medical triazoles. The

  1. 白念珠菌人工诱导耐药株唑靶酶三磷酸鸟苷环水解酶Ⅰ功能区的序列分析%Cloning and sequencing of the GTP cyclohydrolase Ⅰ function region of azole target enzyme gene in artificially induced resistant Candida albicans

    Institute of Scientific and Technical Information of China (English)

    邓旭亮; 张新成; 张锋; 李若瑜; 陆慧君; 贺文琦; 刘立国; 范彬; 胡晓阳

    2006-01-01

    目的:研究羊毛甾醇14α-脱甲基酶(14-DM)DNA序列中三磷酸鸟苷(GTP)环水解酶Ⅰ功能区域基因突变与白念珠菌对氟康唑耐药性的关系.方法:体外采用氟康唑结合阿苯达唑进行人工耐药性诱导1株白念珠菌标准菌株和2株临床分离对氟康唑敏感株,将获得的3株人工诱导耐药白念菌株和另外2株临床分离对氟康唑耐药的白念菌株,通过PCR扩增目的片段,并克隆到pMD-18T载体上,测序分析诱导前后基因序列碱基变化.结果:经体外人工耐药性诱导后,标准白念珠菌菌株和临床分离敏感白念珠菌菌株GTP环水解酶Ⅰ功能区域多处碱基突变,部分碱基变化引起了氨基酸的改变,与临床分离耐药白念珠菌在碱基变化及其导致的编码氨基酸变化相似.结论:14-DM GTP环水解酶Ⅰ功能区域基因突变与白念珠菌的耐药性有相关性.

  2. Estudo do comportamento eletroquímico de azóis para o aço inoxidável AISI 430 em H2SO4 1 mol L-1 Study of electrochemical behavior of azoles for AISI 430 stainless steel in H2SO4 1 mol L-1

    Directory of Open Access Journals (Sweden)

    Martha Tussolini

    2010-03-01

    Full Text Available A corrosão é um processo indesejável que ocorre em materiais metálicos. Nesse trabalho, estudou-se o efeito inibidor do benzotriazol (BTAH, benzimidazol (BZM e indol em diferentes concentrações para o aço inoxidável AISI 430 em H2SO4 1 mol L-1. Foram empregadas as técnicas de: polarização potenciostática anódica, espectroscopia de impedância eletroquímica, microscopia óptica e eletrônica de varredura. As curvas de polarização potenciostática anódica mostraram que o BTAH, BZM e Indol atuam como inibidores de corrosão para o aço AISI 430, nas concentrações de 1x10-3 e 5x10-4 mol L-1, não apresentando inibição significativa para as concentrações iguais ou inferiores a 1x10-4 mol L-1. O aumento da eficiência inibidora em relação às substâncias estudadas seguiu a seguinte ordem: Indol Corrosion is an undesirable process that occurs in metallic materials. Studied was the effect of inhibiting Benzotriazole (BTAH, Benzimidazole (BZM and Indole in different concentrations for the stainless steel (SS AISI 430 in H2SO4 1 mol L-1. The techniques employed this research were: anodic potenciostatic polarisation, electrochemical impedance spectroscopy, optical microscopy and scanning electron microscopy. The curves of anodic polarisation showed that BTAH, BZM and Indol act as corrosion inhibitors for 430 SS, at concentrations of 1x10-3 and 5x10-4 mol L-1, but do not inhibit corrosion for concentrations equal to or less than 1x10-4 mol L-1. The in-crease of the efficiency in relation to the inhibitory substances studied followed this order: Indol

  3. Drug: D08510 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available azole derivatives D01AC14 Sertaconazole D08510 Sertacona...cation [BR:br08303] D DERMATOLOGICALS D01 ANTIFUNGALS FOR DERMATOLOGICAL USE D01A ANTIFUNGALS FOR TOPICAL USE D01AC Imidazole and tri

  4. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    NARCIS (Netherlands)

    Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Rodriguez-Tudela, J.L.; Donnelly, J.P.; Verweij, P.E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (ampho

  5. The concentration-dependent nature of in vitro amphotericin B-itraconazole interaction against Aspergillus fumigatus: isobolographic and response surface analysis of complex pharmacodynamic interactions.

    NARCIS (Netherlands)

    Meletiadis, J.; Dorsthorst, D.T.A. te; Verweij, P.E.

    2006-01-01

    The interaction between polyenes and azoles is not well understood. We therefore explored the in vitro combination of amphotericin B with itraconazole against 14 clinical Aspergillus fumigatus isolates (9 itraconazole susceptible and 5 itraconazole resistant) with a colorimetric broth microdilution

  6. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    Science.gov (United States)

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  7. Mass Spectra of Some 4- and 5-Substituted Derivatives of Benzoselenadiazoles

    Directory of Open Access Journals (Sweden)

    Marcel Schultz

    2000-07-01

    Full Text Available Electron impact mass spectra of variety of eight 4-substituted and eight 5-substituted benzoselenadiazoles are presented and their spectral fragmentations are discussed. New mass spectra containing selenium in heterocyclic azole atom containing ring.

  8. QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici.

    Science.gov (United States)

    Lendenmann, Mark H; Croll, Daniel; McDonald, Bruce A

    2015-07-01

    A major problem associated with the intensification of agriculture is the emergence of fungicide resistance. Azoles are ergosterol biosynthesis inhibitors that have been widely used in agriculture and medicine since the 1970s, leading to emergence of increasingly resistant fungal populations. The known genetic mechanisms underlying lower azole sensitivity include mutations affecting the CYP51 gene that encodes the target protein, but in many cases azole resistance is a more complex trait with an unknown genetic basis. We used quantitative trait locus (QTL) mapping to identify genes affecting azole sensitivity in two crosses of Zymoseptoria tritici, the most damaging wheat pathogen in Europe. Restriction site associated DNA sequencing (RADseq) was used to genotype 263 (cross 1) and 261 (cross 2) progeny at ∼ 8500 single nucleotide polymorphisms (SNP) and construct two dense linkage maps. Azole sensitivity was assessed using high-throughput digital image analysis of colonies growing on Petri dishes with or without the fungicide propiconazole. We identified three QTLs for azole sensitivity, including two that contained novel fungicide sensitivity genes. One of these two QTLs contained only 16 candidate genes, among which four most likely candidates were identified. The third QTL contained ERG6, encoding another protein involved in ergosterol biosynthesis. Known genes in QTLs affecting colony growth included CYP51 and PKS1, a gene affecting melanization in Z. tritici. PKS1 showed compelling evidence for pleiotropy, with a rare segregating allele that increased melanization while decreasing growth rate and propiconazole sensitivity. This study resolved the genetic architecture of an important agricultural trait and led to identification of novel genes that are likely to affect azole sensitivity in Z. tritici. It also provided insight into fitness costs associated with lowered azole sensitivity and suggests a novel fungicide mixture strategy.

  9. Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus.

    Science.gov (United States)

    Verweij, Paul E; Kema, Gert H J; Zwaan, Bas; Melchers, Willem J G

    2013-02-01

    Azole resistance is an emerging problem in the opportunistic mould Aspergillus fumigatus. The triazoles are the most important agents for the management of Aspergillus diseases in humans. Selection for acquired resistance may occur in the hospital setting through exposure to high doses of azoles during azole therapy, but evidence is accumulating that A. fumigatus may become resistant to medical triazoles through environmental exposure to fungicides. The recovery of A. fumigatus isolates resistant to the medical triazoles from azole-naive patients as well as from the environment strongly indicates an environmental route of resistance selection. Molecule alignment studies have identified five fungicides that share a very similar molecule structure with the medical triazoles, and thus may have selected for mechanisms that confer resistance to both groups of compounds. It is important to explore further the presumed fungicide-driven route of resistance selection in order to implement effective preventive measures as the prevalence of azole resistance in A. fumigatus continues to increase and causes major challenges in the management of azole-resistant Aspergillus diseases.

  10. Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China.

    Science.gov (United States)

    Wang, Dong Ying; Gricourt, Marine; Arné, Pascal; Thierry, Simon; Seguin, Dominique; Chermette, René; Huang, Wei Yi; Dannaoui, Eric; Botterel, Françoise; Guillot, Jacques

    2014-01-01

    Azole resistance in the fungal pathogen Aspergillus fumigatus is an emerging problem and may develop during azole therapy in humans and animals or exposure to azole fungicides in the environment. To assess the potential risk of azole-resistance emergence in avian farms where azole compounds are used for the control of avian mycoses, we conducted a drug susceptibility study including A. fumigatus isolates from birds and avian farms in France and Southern China. A total number of 175 isolates were analyzed: 57 isolates were collected in France in avian farms where chemoprophylaxis with parconazole was performed; 51 isolates were collected in southern China in avian farms where no chemoprophylaxis was performed; and 67 additional isolates came from the collection of a mycology laboratory. No resistant isolate was detected, and the distribution of minimum inhibitory concentrations was similar for isolates collected in farms with or without azole chemoprophylaxis. For 61 randomly selected isolates, the full coding sequence of the Cyp51A gene was determined to detect mutations. Nine amino acid alterations were found in the target enzyme, 3 of which were new.

  11. Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene

    Institute of Scientific and Technical Information of China (English)

    FENG Li-juan; WAN Zhe; WANG Xiao-hong; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The cytochrome P450 lanosterol 14α-demethylase(Erg11p) encoded by ERG11 gene is the primary target for azole antifungals.Changes in azole affinity of this enzyme caused by amino acid substitutions have been reported as a mechanism of azole antifungal resistance. This study aimed to investigate the relationship between amino acid substitutions in Erg11p from fluconazole resistant Candida albicans (C.albicans)isolates and their cross-resistance to azoles.Methods Mutations in ERG11 gene were screened in 10 clinical isolates of fluconazole resistant C.albicans strains.DNA sequence of ERG11 was determined by PCR based DNA sequencing.Results In the 10 isolates,19 types of amino acid substitutions were found,of which 10 substitutions (F72S, F103L, F145I, F198L, G206D, G227D, N349S, F416S, F422L and T482A) have not been reported previously. Mutations in ERG11 gene were detected in 9 isolates of fluconazole resistant C. albicans, but were not detected in 1 isolate. Conclusions Although no definite correlation was found between the type of amino acid substitutions in Erg11p and the phenotype of cross-resistance to azoles, the substitutions F72S, F145I and G227D in our study may be highly associated with resistance to azoles because of their special location in Erg11p.

  12. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    Science.gov (United States)

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  13. Azoles as Composite Corrosion Inhibitor for Anti-tarnishing of Silver Antiques Ⅰ.Process of the Inhibition Film Formation and Assessment of Its Anti-tarnishing Abilities%防止银器文物变色的唑系复合缓蚀剂Ⅰ. 缓蚀剂成膜处理工艺与防变色性能的评定

    Institute of Scientific and Technical Information of China (English)

    蔡兰坤; 张东曙; 祝鸿范; 周浩

    2002-01-01

    通过按正交法设计的紫外光照曝露等加速大气腐蚀实验,研究了用于防止银变色的唑系复合缓蚀剂成膜处理的工艺,并评定其对模拟文物银试片的防变色性能.采用极化曲线和交流阻抗Nyquist图,讨论了防变色作用的电化学机理.实验结果表明,缓蚀剂PMTA、MBI和MBO具有较好的协同作用,银试片在50°C、pH 3.0、组分MBO∶PMTA∶MBI为1∶1.7∶3(摩尔比)、复合缓蚀剂浓度为0.018 9 mol/L的溶液中4h成膜处理后,经48h硫华气氛和36h紫外光曝露腐蚀实验,无色斑出现,表明缓蚀膜明显地提高了银试片的抗变色能力.

  14. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Markus Andersson Trojer

    2013-01-01

    Full Text Available Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+ and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a particular focus on the very potent antifouling agent medetomidine. The entry starts by providing a detailed theoretical description of the azole-metal coordination chemistry. Some attention will be given to ways to functionalize polymers with azole ligands. Then, the effect of metal coordination in azole-containing polymers with respect to material properties will be discussed. Our work concerning the controlled release of antifouling agents, in particular medetomidine, using azole coordination chemistry will be reviewed. Finally, an outlook will be given describing the potential for tailoring the azole ligand chemistry in polymers with respect to Cu2+ adsorption and Cu2+→Cu+ reduction for antifouling coatings without added biocides.

  15. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  16. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis:

    DEFF Research Database (Denmark)

    Mortensen, Klaus Leth; Jensen, Rasmus Hare; Johansen, Helle Krogh

    2011-01-01

    Respiratory tract colonization by molds in patients with cystic fibrosis (CF) were analyzed, with particular focus on the frequency, genotype, and underlying mechanism of azole resistance among Aspergillus fumigatus isolates. Clinical and demographic data were also analyzed. A total of 3,336 resp......Respiratory tract colonization by molds in patients with cystic fibrosis (CF) were analyzed, with particular focus on the frequency, genotype, and underlying mechanism of azole resistance among Aspergillus fumigatus isolates. Clinical and demographic data were also analyzed. A total of 3......,336 respiratory samples from 287 CF patients were collected during two 6-month periods in 2007 and 2009. Azole resistance was detected using an itraconazole screening agar (4 mg/liter) and the EUCAST method. cyp51A gene sequencing and microsatellite genotyping were performed for isolates from patients harboring...

  17. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  18. Role of posaconazole in the treatment of oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Voichita Ianas

    2010-06-01

    Full Text Available Voichita Ianas1, Kathryn R Matthias2, Stephen A Klotz11Section of Infectious Diseases and Department of Medicine, 2School of Pharmacy, University of Arizona, Tucson, Arizona, USAAbstract: Posaconazole is the newest azole antifungal approved by the US Food and Drug Administration, and possesses a broad spectrum of activity against numerous yeasts and filamentous fungi. It is available as an oral suspension and is generally well tolerated by patients, but gastrointestinal absorption is sometimes inadequate and remains a clinical concern in treating deep-seated infections. It is used routinely and effectively for the prophylaxis of invasive fungal infections in immunosuppressed hosts and is an effective treatment of oropharyngeal candidiasis, including azole-resistant disease.Keywords: posaconazole, azole, yeasts, filamentous fungi

  19. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue?

    Science.gov (United States)

    Nabili, Mojtaba; Shokohi, Tahereh; Moazeni, Maryam; Khodavaisy, Sadegh; Aliyali, Masoud; Badiee, Parisa; Zarrinfar, Hossein; Hagen, Ferry; Badali, Hamid

    2016-06-01

    Triazole antifungal agents are the mainstay of aspergillosis treatment. As highlighted in numerous studies, the global increase in the prevalence of triazole resistance could hamper the management of aspergillosis. In the present three-year study, 513 samples (213 clinical and 300 environmental samples) from 10 provinces of Iran were processed and screened in terms of azole resistance (4 and 1 mg l-1 of itraconazole and voriconazole, respectively), using selective plates. Overall, 150 A. fumigatus isolates (71 clinical and 79 environmental isolates) were detected. The isolates were confirmed by partial sequencing of the β-tubulin gene. Afterwards, in vitro antifungal susceptibility tests against triazole agents were performed, based on the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The CYP51A gene was sequenced in order to detect mutations. The MIC of itraconazole against 10 (6.6 %) strains, including clinical (n=3, 4.2 %) and environmental (n=7, 8.8 %) strains, was higher than the breakpoint and epidemiological cut-off value. Based on the findings, the prevalence of azole-resistant A. fumigatus in Iran has increased remarkablyfrom 3.3 % to 6.6 % in comparison with earlier epidemiological research. Among resistant isolates, TR34/L98H mutations in the CYP51A gene were the most prevalent (n=8, 80 %), whereas other point mutations (F46Y, G54W, Y121F, G138C, M172V, F219C, M220I, D255E, T289F, G432C and G448S mutations) were not detected. Although the number of patients affected by azole-resistant A. fumigatus isolates was limited, strict supervision of clinical azole-resistant A. fumigatus isolates and persistent environmental screening of azole resistance are vital to the development of approaches for the management of azole resistance in human pathogenic fungi.

  20. Mechanistic evidence for a ring-opening pathway in the Pd-catalyzed direct arylation of benzoxazoles

    DEFF Research Database (Denmark)

    Sanchez, R.S.; Zhuravlev, Fedor

    2007-01-01

    The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent with the r......The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent...

  1. Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients

    DEFF Research Database (Denmark)

    Jensen, R H; Johansen, H K; Søes, L M

    2015-01-01

    The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species...... analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥ 7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood...... isolates (36.6% versus 12.9%; P 0.5). Acquired resistance in Candida albicans was rare (

  2. Life threatening zygomyces infection of the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Al-Qaisi M

    2014-08-01

    Full Text Available A 25 year old diabetic woman was admitted into the Intensive Care Unit because of ketoacidosis, hypotension and upper gastrointestinal bleeding. Emergency endoscopic biopsy of the upper gastrointestinal tract demonstrated invasive, non-septate fungal hyphae suggestive of either a Zygomyces or Basidiobolus. Amphotericin B was not used because of its ineffectiveness against Basidiobolus and her renal failure. In addition, first generation antifungal azoles were not used because of their ineffectiveness against Zygomyces. The patient responded to medical therapy and the broad-spectrum azole antifungal posaconazole which has activity against both Basidiobolus and Zygomyces. The patient recovered from her critical illness and on follow up was without residual problems.

  3. In vitro antifungal susceptibility profile and correlation of mycelial and yeast forms of molecularly characterized Histoplasma capsulatum strains from India

    NARCIS (Netherlands)

    Kathuria, S.; Singh, P.K.; Meis, J.F.G.M.; Chowdhary, A.

    2014-01-01

    The antifungal susceptibility profiles of the mycelial and yeast forms of 23 Histoplasma capsulatum strains from pulmonary and disseminated histoplasmosis patients in India are reported here. The MIC data of this dimorphic fungus had good agreement between both forms for azoles, amphotericin B, and

  4. Malassezia spp. overgrowth in allergic cats.

    Science.gov (United States)

    Ordeix, Laura; Galeotti, Franca; Scarampella, Fabia; Dedola, Carla; Bardagí, Mar; Romano, Erica; Fondati, Alessandra

    2007-10-01

    A series of 18 allergic cats with multifocal Malassezia spp. overgrowth is reported: atopic dermatitis was diagnosed in 16, an adverse food reaction in another and one was euthanized 2 months after diagnosis of Malassezia overgrowth. All the cats were otherwise healthy and those tested (16 out of 18) for feline leukaemia or feline immunodeficiency virus infections were all negative. At dermatological examination, multifocal alopecia, erythema, crusting and greasy adherent brownish scales were variably distributed on all cats. Cytological examination revealed Malassezia spp. overgrowth with/without bacterial infection in facial skin (n = 11), ventral neck (n = 6), abdomen (n = 6), ear canal (n = 4), chin (n = 2), ear pinnae (n = 2), interdigital (n = 1) and claw folds skin (n = 1). Moreover, in two cats Malassezia pachydermatis was isolated in fungal cultures from lesional skin. Azoles therapy alone was prescribed in seven, azoles and antibacterial therapy in eight and azoles with both antibacterial and anti-inflammatory therapy in three of the cats. After 3-4 weeks of treatment, substantial reduction of pruritus and skin lesions was observed in all 11 cats treated with a combined therapy and in five of seven treated solely with azoles. Malassezia spp. overgrowth may represent a secondary cutaneous problem in allergic cats particularly in those presented for dermatological examination displaying greasy adherent brownish scales. The favourable response to treatment with antifungal treatments alone suggests that, as in dogs, Malassezia spp. may be partly responsible for both pruritus and cutaneous lesions in allergic cats.

  5. Domain Modeling: NP_001743.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available azole c1th4d_ chr11/NP_001743.1/NP_001743.1_holo_4-502.pdb blast 61M,64F,65D,72R,73...NP_001743.1 chr11 crystal structure of NADPH depleted bovine liver catalase complexed with 3-amino-1,2,4-tri

  6. Experiment list: SRX455442 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available azole http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3... || genotype=MATa can1-100 his3-11 leu2-3,112 lys2delta trp1-1 ura3-1 hta2-htb2delta::TRP1 HA-6His-HTB1::HIS3 || treatment=3-aminotri

  7. Experiment list: SRX455435 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available azole http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3...t 2 || strain=YDC439 || genotype=MATa ade2-1 leu2-3,112 trp1-1 ura3-1 hht1-hhf1delta::LEU2 URA3::HHT2-HA-HHF2 || treatment=3-aminotri

  8. Experiment list: SRX455444 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available azole http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3... || genotype=MATa can1-100 his3-11 leu2-3,112 lys2delta trp1-1 ura3-1 hta2-htb2delta::TRP1 HA-6His-HTB1::HIS3 || treatment=3-aminotri

  9. Experiment list: SRX455437 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available azole http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3...t 3 || strain=YDC439 || genotype=MATa ade2-1 leu2-3,112 trp1-1 ura3-1 hht1-hhf1delta::LEU2 URA3::HHT2-HA-HHF2 || treatment=3-aminotri

  10. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp.

    Science.gov (United States)

    Guerra, Felipe Queiroga Sarmento; de Araújo, Rodrigo Santos Aquino; de Sousa, Janiere Pereira; Pereira, Fillipe de Oliveira; Mendonça-Junior, Francisco J B; Barbosa-Filho, José M; de Oliveira Lima, Edeltrudes

    2015-01-01

    Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol) and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species.

  11. Occurrence of triazole-resistant Aspergillus fumigatus with TR34/L98H mutations in outdoor and hospital environment in Kuwait

    NARCIS (Netherlands)

    Ahmad, S.; Khan, Z.; Hagen, F.; Meis, J.F.G.M.

    2014-01-01

    BACKGROUND: Invasive aspergillosis due to triazole-resistant Aspergillus fumigatus, a common airborne fungal pathogen, has emerged in some European and Asian countries, likely due to exposure to azole fungicides in the environment. This study determined the occurrence of triazole-resistant A. fumiga

  12. Molecular and biochemical mechanisms of drug resistance in fungi.

    Science.gov (United States)

    Yamaguchi, H

    1999-01-01

    This paper reviews the current status of our understanding of resistance mechanisms of three major classes of antifungal drugs for systemic use, amphotericin B (AMPH), flucytosine (5-FC) and several azole antifungals, in particular fluconazole (FLCZ), at the molecular and cellular levels. Although the number of reports of AMPH- or 5-FC-resistant fungal species and strains is limited, several mechanisms of resistance have been described. AMPH-resistant Candida have a marked decrease in ergosterol content compared with AMPH-susceptible control isolates. A lesion in the UMP-pyrophosphorylase is the most frequent determinant of 5-FC resistance in C. albicans. Recently resistance of C. albicans to azoles has become an increasing problem. Extensive biochemical studies have highlighted a significant diversity in mechanisms conferring resistance to FLCZ and other azoles, which include alterations in sterol biosynthesis, target site, uptake and efflux. Among them, the most important mechanism clinically is reduced access of the drug to the intracellular P450 14 DM target, probably because of the action of a multidrug resistance efflux pump, and overproduction of that target. However, other possible resistance mechanisms for azoles remain to be identified.

  13. Overexpression of Erg11p by the Regulatable GAL1 Promoter Confers Fluconazole Resistance in Saccharomyces cerevisiae

    OpenAIRE

    Kontoyiannis, Dimitrios P.; Sagar, Namita; Hirschi, Kendal D.

    1999-01-01

    The contribution of the dosage of target enzyme P-450 14α-demethylase (14αDM) to fluconazole resistance in both Candida albicans and Saccharomyces cerevisiae remains unclear. Here, we show that overexpression of Saccharomyces P-450 14αDM in S. cerevisiae, under the control of the regulatable promoter GAL1, results in azole resistance.

  14. Susceptibility variation of Malassezia pachydermatis to antifungal agents according to isolate source

    Directory of Open Access Journals (Sweden)

    Caroline Borges Weiler

    2013-01-01

    Full Text Available Malassezia pachydermatisis associated with dermatomycoses and otomycosis in dogs and cats. This study compared the susceptibility of M. pachydermatis isolates from sick (G1 and healthy (G2 animals to azole and polyene antifungals using the M27-A3 protocol. Isolates from G1 animals were less sensitive to amphotericin B, nystatin, fluconazole, clotrimazole and miconazole.

  15. MgAtr7, a new type of ABC transporter from Mycosphaerella graminicola involved in iron homeostasis

    NARCIS (Netherlands)

    Zwiers, L.H.; Roohparvar, R.; Waard, de M.A.

    2007-01-01

    The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif character

  16. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance.

    Science.gov (United States)

    Hawkins, Nichola J; Cools, Hans J; Sierotzki, Helge; Shaw, Michael W; Knogge, Wolfgang; Kelly, Steven L; Kelly, Diane E; Fraaije, Bart A

    2014-07-01

    Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.

  17. Combined exposure to endocrine disrupting pesticides impairs parturition and causes pup mortality in rats

    DEFF Research Database (Denmark)

    Hansen, Pernille Reimer; Christiansen, Sofie; Boberg, Julie

    to five pesticides, i.e. procymidone, mancozeb, tebuconazole, epoxiconazole and prochloraz. Common features for the three azole fungicides are that they increase gestational length possibly because of an increase in progesterone levels in dams. Groups of 8 time-mated Wistar rats (HanTac:WH) were gavaged...

  18. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    Science.gov (United States)

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  19. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Felipe Queiroga Sarmento Guerra

    2015-01-01

    Full Text Available Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2, both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species.

  20. Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters

    NARCIS (Netherlands)

    Roohparvar, R.; Huser, A.; Zwiers, L.H.; Waard, de M.A.

    2007-01-01

    Medical drugs known to modulate the activity of human ATP-binding cassette (ABC) transporter proteins (modulators) were tested for the ability to potentiate the activity of the azole fungicide cyproconazole against in vitro growth of Mycosphaerella graminicola and to control disease development due

  1. Meningitis caused by Filobasidium uniguttulatum: case report and overview of the literature.

    NARCIS (Netherlands)

    Pan, W.; Liao, W.; Hagen, F.; Theelen, B.; Shi, W.; Meis, J.F.G.M.; Boekhout, T.

    2012-01-01

    Cryptococcal meningitis is mainly caused by Cryptococcus neoformans and Cryptococcus gattii, but occasionally other Cryptococcus species and phylogenetically related species are involved. Herein, we present a case of cryptococcal meningitis from China, which was caused by an azole and flucytosine re

  2. TOXICITY PROFILES IN RATS TREATED WITH TUMORIGENIC AND NONTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL

    Science.gov (United States)

    Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepa...

  3. Facile Synthesis of Pyrazole- and Benzotriazole-Containing Selenoethers

    Directory of Open Access Journals (Sweden)

    Andrei S. Potapov

    2014-01-01

    Full Text Available Azole-containing selenoethers, 1,5-bis(3,5-dimethylpyrazol-1-yl-3-selena pentane and 1,3-bis(1,2,3-benzotriazol-1-yl-2-selena propane were prepared by the reaction of corresponding tosylate or chloride with sodium selenide generated in situ from elemental selenium and sodium formaldehydesulfoxylate (rongalite.

  4. Vulvovaginal candidiasis in a Flemish patient population

    NARCIS (Netherlands)

    De Vos, MM; Cuenca-Estrella, M; Boekhout, T; Theelen, B; Matthijs, N; Bauters, T; Nailis, H; Dhont, MA; Rodriguez-Tudela, JL; Nelis, HJ

    2005-01-01

    Increased resistance to fluconazole has been reported in oral, oesophageal and urinary Candida isolates, but this has not been observed commonly in genital tract isolates. The rate of isolation of Candida spp. and their susceptibility to amphotericin B, flucytosine and azoles were determined in a nu

  5. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    Directory of Open Access Journals (Sweden)

    Faezeh Mohammadi

    2016-01-01

    Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran.

  6. A prospective survey of Aspergillus spp. in respiratory tract samples: prevalence, clinical impact and antifungal susceptibility

    DEFF Research Database (Denmark)

    Mortensen, K L; Johansen, H K; Fuursted, K;

    2011-01-01

    . Azole MICs were elevated for five isolates as follows (itraconazole, posaconazole, voriconazole MICs [mg/L]): two A. fumigatus isolates (>4; >4; 2 and >4; 0.125; 1), one A. lentulus isolate (2; 2; 0.5) and two A. terreus isolates (2; 2; 2 and 2; 0.125; 1). For four isolates the amphotericin B MIC was >1...

  7. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  8. Proteomic analysis of cytosolic proteins associated with petite mutations in Candida glabrata

    Directory of Open Access Journals (Sweden)

    C.V. Loureiro y Penha

    2010-12-01

    Full Text Available The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azole-resistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.

  9. Susceptibility breakpoints and target values for therapeutic drug monitoring of voriconazole and Aspergillus fumigatus in an in vitro pharmacokinetic/pharmacodynamic model

    NARCIS (Netherlands)

    Siopi, M.; Mavridou, E.; Mouton, J.W.; Verweij, P.E.; Zerva, L.; Meletiadis, J.

    2014-01-01

    BACKGROUND: Although voriconazole reached the bedside 10 years ago and became the standard care in the treatment of invasive aspergillosis, reliable clinical breakpoints are still in high demand. Moreover, this has increased due to the recent emergence of azole resistance. METHODS: Four clinical wil

  10. In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries.

    NARCIS (Netherlands)

    Verweij, P.E.; Gonzalez, G.M.; Wiedrhold, N.P.; Lass-Florl, C.; Warn, P.; Heep, M.; Ghannoum, M.A.; Guinea, J.

    2009-01-01

    Although mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The obje

  11. Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat

    NARCIS (Netherlands)

    Fraaije, Bart A.; Bayon, Carlos; Atkins, Sarah; Cools, Hans J.; Lucas, John A.; Fraaije, Marco W.

    2012-01-01

    Chemical control of Septoria leaf blotch, caused by Mycosphaerella graminicola, is essential to ensure wheat yield and food security in most European countries. Mycosphaerella graminicola has developed resistance to several classes of fungicide and, with the efficacy of azoles gradually declining ov

  12. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    Science.gov (United States)

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  13. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

    Science.gov (United States)

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz

    2015-04-17

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.

  14. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia

    Directory of Open Access Journals (Sweden)

    Anuradha eChowdhary

    2015-05-01

    Full Text Available Aspergillus fumigatus causes varied clinical syndromes ranging from colonization to deep infections. The mainstay of therapy of Aspergillus diseases is triazoles but several studies globally highlighted variable prevalence of triazole resistance, which hampers the management of aspergillosis. We studied the prevalence of resistance in clinical A. fumigatus isolates during 4 years in a referral Chest Hospital in Delhi, India and reviewed the scenario in Asia and the Middle East. Aspergillus species (n=2117 were screened with selective plates for azole resistance. The isolates included 45.4% A. flavus, followed by 32.4% A. fumigatus, 15.6% Aspergillus species and 6.6% A. terreus. Azole resistance was found in only 12 (1.7% A. fumigatus isolates.These triazole resistant A. fumigatus (TRAF isolates were subjected to (a calmodulin and β tubulin gene sequencing (b in vitro antifungal susceptibility testing against triazoles using CLSI M38-A2 (c sequencing of cyp51A gene and real-time PCR assay for detection of mutations and (d microsatellite typing of the resistant isolates. TRAF harbored TR34/L98H mutation in 10 (83.3% isolates with a pan-azole resistant phenotype. Among the remaining 2 TRAF isolates, one had G54E and the other had three non-synonymous point mutations. The majority of patients were diagnosed as invasive aspergillosis followed by allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. The Indian TR34/L98H isolates had a unique genotype and were distinct from the Chinese, Middle East and European TR34/L98H strains. This resistance mechanism has been linked to the use of fungicide azoles in agricultural practices in Europe as it has been mainly reported from azole naïve patients. Reports published from Asia demonstrate the same environmental resistance mechanism in A. fumigatus isolates from two highly populated countries in Asia i.e., China and India and also from the neighboring Middle East.

  15. Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.

    Science.gov (United States)

    Vasicek, Erin M; Berkow, Elizabeth L; Bruno, Vincent M; Mitchell, Aaron P; Wiederhold, Nathan P; Barker, Katherine S; Rogers, P David

    2014-11-01

    Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 μg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 μg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.

  16. A triad of rhenium-mediated transformations

    Indian Academy of Sciences (India)

    Jaydip Gangopadhyay; Samir Das; Suman Sengupta; Indranil Chakraborty; Animesh Chakravorty

    2003-10-01

    The title transformations are oxygen atom transfer, twin isomerization and regiospecific imine oxidation. Bispyridyldiazole ligands have furnished new oxygen atom transfer reagents of coordination type ReVOCl3(NN) which undergo a slower transfer to PPh3 than the corresponding azole reagents. The rate of twin isomerization (linkage and geometrical) of meridional azole complexes of coordination type ReIII(OPnP)Cl3(NN) to facial ReIII(PnPO)Cl3(NN) decreases rapidly as increases in the interval 1-4 (PnP is Ph2P(CH2)PPh2). An -diimine chelate of type ReV(NPh)Cl3(NN) is shown to undergo facile oxidation to the corresponding iminoamide complex ReVI(NPh)Cl3(NN) upon treating with dilute nitric acid. The reaction proceeds via regiospecific nucleophilic addition of water to the more polarized imine function.

  17. [Clinical usefulness of triazole derivatives in the management of fungal infections].

    Science.gov (United States)

    Carrillo-Muñoz, Alfonso Javier; Giusiano, Gustavo; Arechavala, Alicia; Tur-Tur, Cristina; Eraso, Elena; Jauregizar, Nerea; Quindós, Guillermo; Negroni, Ricardo

    2015-08-01

    Current therapy for mycoses is limited to the use of a relative reduced number of antifungal drugs. Although amphotericin B still remains considered as the "gold standard" for treatment, acute and chronic toxicity, such as impairment of renal function, limits its use and enhances the investigation and clinical use other chemical families of antifungal drugs. One of these chemical class of active drugs are azole derivatives, discovered in 70s and introduced in clinical practice in 80s. Being the most prolific antifungal class, investigation about more molecules, with a safer and better pharmacological profile, active against a wide spectrum of fungi, with a wide range of administration routes gives us some azole representatives.

  18. [Pharmacology of the antifungals used in the treatment of aspergillosis].

    Science.gov (United States)

    Azanza, José Ramón; Sádaba, Belén; Gómez-Guíu, Almudena

    2014-01-01

    The treatment of invasive aspergillosis requires the use of drugs that characteristically have complex pharmacokinetic properties, the knowledge of which is essential to achieve maximum efficacy with minimal risk to the patient. The lipid-based amphotericin B formulations vary significantly in their pharmacokinetic behaviour, with very high plasma concentrations of the liposomal form, probably related to the presence of cholesterol in their structure. Azoles have a variable absorption profile, particularly in the case of itraconazole and posaconazole, with the latter very dependent on multiple factors. This may also lead to variations in voriconazole, which requires considering the possibility of monitoring plasma concentrations. The aim of this article is to review some of the most relevant aspects of the pharmacology of the antifungals used in the prophylaxis and treatment of the Aspergillus infection. For this reason, it includes the most relevant features of some of the azoles normally prescribed in this infection (itraconazole, posaconazole and voriconazole) and the amphotericin B formulations.

  19. Treatment of vulvovaginal candidiasis: a review of the literature.

    Science.gov (United States)

    Dovnik, Andraž; Golle, Andrej; Novak, Dušan; Arko, Darja; Takač, Iztok

    2015-01-01

    Vulvovaginal candidiasis (VVC) affects around three-quarters of all women during their reproductive age, although the exact incidence of VVC is difficult to determine because many patients are self-treated. The infections are divided into complicated and uncomplicated. Uncomplicated VVC is most effectively treated with local azoles. Oral treatment with a single dose of fluconazole is also effective for treating uncomplicated VVC. Treatment of complicated VVC is prolonged and most commonly consists of multiple doses of oral fluconazole or at least 1 week of local azoles. The role of probiotics in treating VVC is still disputed. This article presents a review of the literature on the various treatment options for VVC. Treatment for the most common pathogens that cause complicated VVC is also discussed.

  20. Susceptibility pattern of Malassezia species to selected plant extracts and antifungal agents

    Directory of Open Access Journals (Sweden)

    G Sibi

    2014-01-01

    Full Text Available Objective: Malassezia is associated with dandruff, seborrhoeic dermatitis, pityriasis versicolor folliculitis and atopic eczema. This study determined the susceptibility pattern of Malassezia furfur, M. globosa, M. obtusa, M. restricta, M. slooffiae and M. sympodialis isolated from patients diagnosed with dandruff against plant extracts and antifungal agents. Materials and Methods: Twenty aqueous plant extracts and five azole drugs were tested against the isolates by well diffusion and broth dilution method. Results: Among the plant extracts, Phyllanthus emblica (fruits, Hibiscus rosa sinensis (flowers and Acacia concinna (pods have demonstrated significant antidandruff activity. Minimum inhibitory concentration values revealed that ketoconazole as the most effective drug followed by itraconazole. Conclusion: M. furfur and M. globosa were found as the most susceptible organisms against the aqueous extracts of Phyllanthus emblica (fruits, Hibiscus rosa sinensis (flowers, Acacia concinna (pods and azole drugs.

  1. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals.

    Science.gov (United States)

    Ying, Chunmei; Zhang, Hongju; Tang, Zhenhua; Chen, Huifen; Gao, Jing; Yue, Chaoyan

    2016-05-01

    In our multicenter study, we studied the distribution of Candida species in vulvovaginal candidiasis patients and investigated antifungal susceptibility profile and genotype of Candida albicans in vaginal swab. A total of 115 Candida albicans strains were detected in 135 clinical isolates. Minimum inhibitory concentration determinations showed that 83% and 81% of the 115 Candida albicans strains were susceptible to fluconazole and voriconazole. Randomly amplified polymorphic DNA analysis (RAPD) was applied to identify clonally related isolates from different patients at the local level. All tested strains were classified into genotype A (77.4%), genotype B (18.3%), and genotype C (4.3%). Genotype A was further classified into five subtypes and genotype B into two subtypes.Candida albicans was the dominant pathogen of vulvovaginal candidiasis, the majority belonging to genotype A in this study. Exposure to azoles is a risk factor for the emergence of azole resistance among Candida albicans isolated from VVC patients.

  2. The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates

    Directory of Open Access Journals (Sweden)

    Débora Alves Nunes Mario

    2012-05-01

    Full Text Available The extensive use of azole antifungal agents has promoted the resistance of Candida spp to these drugs. Candida glabrata is a problematic yeast because it presents a high degree of primary or secondary resistance to fluconazole. In Brazil, C. glabrata has been less studied than other species. In this paper, we compared the activity of three major classes of antifungal agents (azoles, echinocandins and polyenes against fluconazole-susceptible (FS and fluconazole-resistant (FR C. glabrata strains. Cross-resistance between fluconazole and voriconazole was remarkable. Among the antifungal agents, the echinocandins were the most effective against FS and FR C. glabrata and micafungin showed the lowest minimal inhibitory concentrations.

  3. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    Science.gov (United States)

    Monroy-Pérez, Eric; Paniagua-Contreras, Gloria Luz; Rodríguez-Purata, Pamela; Vaca-Paniagua, Felipe; Vázquez-Villaseñor, Marco; Díaz-Velásquez, Clara; Uribe-García, Alina

    2016-01-01

    Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC). The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes and azole resistance genes MDR1 and CDR1 were performed using PCR and RT-PCR, respectively. All strains were sensitive to nystatin and 38 (97.4%) and 37 (94.9%) were resistant to ketoconazole and fluconazole, respectively. ALS1, SAP4–SAP6, LIP1, LIP2, LIP4, LIP6, LIP7, LIP9, LIP10, and PLB1-PLB2 were present in all strains; SAP1 was identified in 37 (94.8%) isolates, HWP1 in 35 (89.7%), ALS3 in 14 (35.8%), and CDR1 in 26 (66.6%). In nearly all of the strains, ALS1, HWP1, SAP4–SAP6, LIP1–LIP10, PLB1, and PLB2 were expressed, whereas CDR1 was expressed in 20 (51.3%) and ALS3 in 14 (35.8%). In our in vitro model of infection with C. albicans, the clinical strains showed different expression profiles of virulence genes in association with the azole resistance gene CDR1. The results indicate that the strains that infect Mexican patients suffering from VVC are highly virulent and virtually all are insensitive to azoles. PMID:28058052

  4. In Vitro Activities of New and Conventional Antifungal Agents against Clinical Scedosporium Isolates

    OpenAIRE

    Meletiadis, Joseph; Meis, Jacques F. G. M.; Mouton, Johan W.; Rodriquez-Tudela, Juan Luis; Donnelly, J. Peter; Verweij, Paul E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro ...

  5. A flexible porous Cu(II) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 capture.

    Science.gov (United States)

    Zhou, Dong-Dong; He, Chun-Ting; Liao, Pei-Qin; Xue, Wei; Zhang, Wei-Xiong; Zhou, Hao-Long; Zhang, Jie-Peng; Chen, Xiao-Ming

    2013-12-28

    By virtue of planar Cu2(μ-OH)2(2+) cluster units, a flexible porous metal azolate framework not only adsorbs large amounts of CO2 (19.6 wt% or 266 g L(-1) at 298 K and 1 atm) with a high zero-coverage adsorption enthalpy (-47 kJ mol(-1)), but also desorbs quickly at very low temperatures.

  6. The Antidepressant Sertraline Provides a Promising Therapeutic Option for Neurotropic Cryptococcal Infections

    OpenAIRE

    Zhai, Bing; Wu, Cheng; Wang, Linqi; Sachs, Matthew S.; Lin, Xiaorong

    2012-01-01

    Therapeutic treatment for systemic mycoses is severely hampered by the extremely limited number of antifungals. The difficulty of treatment of fungal infections in the central nervous system is further compounded by the poor central nervous system (CNS) penetration of most antifungals due to the blood-brain barrier. Only a few fungistatic azole drugs, such as fluconazole, show reasonable CNS penetration. Here we demonstrate that sertraline (Zoloft), the most frequently prescribed antidepressa...

  7. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi

    2015-11-01

    Aspergillus biofilms were prepared from Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus via a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B against Aspergillus biofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity against Aspergillus biofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.

  8. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.

    Science.gov (United States)

    Mane, Arati; Vidhate, Pallavi; Kusro, Chanchal; Waman, Vaishali; Saxena, Vandana; Kulkarni-Kale, Urmila; Risbud, Arun

    2016-02-01

    Resistance to azole antifungals is a significant problem in Candida albicans. An understanding of resistance at molecular level is essential for the development of strategies to tackle resistance and rationale design of newer antifungals and target-based molecular approaches. This study presents the first evaluation of molecular mechanisms associated with fluconazole resistance in clinical C.albicans isolates from India. Target site (ERG11) alterations were determined by DNA sequencing, whereas real-time PCRs were performed to quantify target and efflux pump genes (CDR1, CDR2, MDR1) in 87 [Fluconazole susceptible (n = 30), susceptible-dose dependent (n = 30) and resistant (n = 27)] C.albicans isolates. Cross-resistance to fluconazole, ketoconazole and itraconazole was observed in 74.1% isolates. Six amino acid substitutions were identified, including 4 (E116D, F145L, E226D, I437V) previously reported ones and 2 (P406L, Q474H) new ones. CDR1 over-expression was seen in 77.7% resistant isolates. CDR2 was exclusively expressed with CDR1 and their concomitant over-expression was associated with azole cross-resistance. MDR1 and ERG11 over-expression did not seem to be associated with resistance. Our results show that drug efflux mediated by Adenosine-5'-triphosphate (ATP)-binding cassette transporters, especially CDR1 is the predominant mechanism of fluconazole resistance and azole cross-resistance in C. albicans and indicate the need for research directed towards developing strategies to tackle efflux mediated resistance to salvage azoles.

  9. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation

    OpenAIRE

    2016-01-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris ...

  10. Structure of Pyrazole Derivatives Impact their Affinity, Stoichiometry, and Cooperative Interactions for CYP2E1 Complexes

    Science.gov (United States)

    Hartman, Jessica H.; Bradley, Amber M.; Laddusaw, Ryan M; Perry, Martin D.; Miller, Grover P.

    2013-01-01

    CYP2E1 plays a critical role in detoxication and carcinogenic activation of drugs, pollutants, and dietary compounds; however, these metabolic processes can involve poorly characterized cooperative interactions that compromise the ability to understand and predict CYP2E1 metabolism. Herein, we employed an array of ten azoles with an emphasis on pyrazoles to establish the selectivity of catalytic and cooperative CYP2E1 sites through binding and catalytic studies. Spectral binding studies for monocyclic azoles suggested two binding events, while bicyclic azoles suggested one. Pyrazole had moderate affinity toward the CYP2E1 catalytic site that improved when a methyl group was introduced at either position 3 or 4. The presence of methyl groups simultaneously at positions 3 and 5 blocked binding, and a phenyl group at position 3 did not improve binding affinity. In contrast, pyrazole fusion to a benzene or cyclohexane ring greatly increased affinity. The consequences of these binding events on CYP2E1 catalysis were studied through inhibition studies with 4-nitrophenol, a substrate known to bind both sites. Most pyrazoles shared a common mixed cooperative inhibition mechanism in which pyrazole binding rescued CYP2E1 from substrate inhibition. Overall, inhibitor affinities toward the CYP2E1 catalytic site were similar to those reported in binding studies, and the same trend was observed for binding at the cooperative site. Taken together, these studies identified key structural determinants in the affinity and stoichiometry of azole interactions with CYP2E1 and consequences on catalysis that further advance an understanding of the relationship between structure and function for this enzyme. PMID:23811196

  11. Structure of Pyrazole Derivatives Impact their Affinity, Stoichiometry, and Cooperative Interactions for CYP2E1 Complexes

    OpenAIRE

    2013-01-01

    CYP2E1 plays a critical role in detoxication and carcinogenic activation of drugs, pollutants, and dietary compounds; however, these metabolic processes can involve poorly characterized cooperative interactions that compromise the ability to understand and predict CYP2E1 metabolism. Herein, we employed an array of ten azoles with an emphasis on pyrazoles to establish the selectivity of catalytic and cooperative CYP2E1 sites through binding and catalytic studies. Spectral binding studies for m...

  12. Study on Bamboo Treatment Technology with CuAz Preservative

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to research the effect of preservative penetrability, CuAz (copper azole) was used for the preservative, and pieces of Moso bamboo (Phyllostachys pubescens) were used for the experimental materials in this study. The vacuum pressure process was used to treat bamboo pieces. The results showed as follows: 1) Main treatment factors were preservative concentration and applied pressure; 2) In the same technology, both the retention and the weight proportion gain of the samples without node were less tha...

  13. Synthesis of some new flurbiprofen analogues as anti-inflammatory agents.

    Science.gov (United States)

    Nitlikar, Laxmikant H; Sangshetti, Jaiprakash N; Shinde, Devanand B

    2014-01-01

    A series of new α-aryl propionic acid derivatives had been synthesized through different synthetic routes from the readily available 2-fluoronitrobenzene as key starter. The synthesized compounds were screened for their antiinflammatory activity using rat paw edema method. Azoles (6c, 6h and 6i) have showed considerable good antiinflammatory activity. The present series with some modification may serve as important core for the development of new anti-inflammatory agents.

  14. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    OpenAIRE

    Monroy-Pérez, Eric; Paniagua-Contreras, Gloria Luz; Rodríguez-Purata, Pamela; Vaca-Paniagua, Felipe; Vázquez-Villaseñor, Marco; Díaz-Velásquez, Clara; Uribe-García, Alina; Vaca, Sergio

    2016-01-01

    Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC). The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes...

  15. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    Directory of Open Access Journals (Sweden)

    Eric Monroy-Pérez

    2016-01-01

    Full Text Available Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC. The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes and azole resistance genes MDR1 and CDR1 were performed using PCR and RT-PCR, respectively. All strains were sensitive to nystatin and 38 (97.4% and 37 (94.9% were resistant to ketoconazole and fluconazole, respectively. ALS1, SAP4–SAP6, LIP1, LIP2, LIP4, LIP6, LIP7, LIP9, LIP10, and PLB1-PLB2 were present in all strains; SAP1 was identified in 37 (94.8% isolates, HWP1 in 35 (89.7%, ALS3 in 14 (35.8%, and CDR1 in 26 (66.6%. In nearly all of the strains, ALS1, HWP1, SAP4–SAP6, LIP1–LIP10, PLB1, and PLB2 were expressed, whereas CDR1 was expressed in 20 (51.3% and ALS3 in 14 (35.8%. In our in vitro model of infection with C. albicans, the clinical strains showed different expression profiles of virulence genes in association with the azole resistance gene CDR1. The results indicate that the strains that infect Mexican patients suffering from VVC are highly virulent and virtually all are insensitive to azoles.

  16. Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro.

    OpenAIRE

    Back, D J; Stevenson, P.; Tjia, J F

    1989-01-01

    Two antimycotic agents, the azole ketoconazole and the allylamine terbinafine, have been examined for their effects on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes (n = 4) in vitro. Ketoconazole caused marked inhibition of all enzyme activities with mean IC50 values (concentration producing 50% inhibition) of 17.9 microM (tolbutamide hydroxylase), 1.9 microM (ethinyloestradiol 2-hydroxylase), 2.0 microM (cyclosporin N-demethylase),...

  17. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.

    Directory of Open Access Journals (Sweden)

    Chiung-Kuang Chen

    Full Text Available BACKGROUND: Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51, which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A, and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A, co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target. CONCLUSIONS/SIGNIFICANCE: The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and

  18. Assessment of the In Vitro Kinetic Activity of Caspofungin against Candida glabrata ▿

    OpenAIRE

    Nagappan, V.; Boikov, D; Vazquez, J A

    2009-01-01

    Echinocandins have become the drug of choice in infections caused by Candida glabrata. The objective of this study was to evaluate the in vitro activity of caspofungin alone and in combination against C. glabrata. In vitro assays demonstrated that caspofungin alone showed excellent fungicidal activity against C. glabrata, including fluconazole-resistant strains. The combination of caspofungin and azole antifungals showed potential synergy against C. glabrata. Overall, caspofungin demonstrated...

  19. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion

    OpenAIRE

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    Background We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Results Our resul...

  20. Special Issue: Novel Antifungal Drug Discovery

    Directory of Open Access Journals (Sweden)

    Maurizio Del Poeta

    2016-12-01

    Full Text Available This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.

  1. Heterocyclic Anions of Astrobiological Interest

    Science.gov (United States)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  2. Functional characterization of Candida albicans Hos2 histone deacetylase [v3; ref status: indexed, http://f1000r.es/3xh

    Directory of Open Access Journals (Sweden)

    G Karthikeyan

    2014-07-01

    Full Text Available Candida albicans is a mucosal commensal organism capable of causing superficial (oral and vaginal thrush infections in immune normal hosts, but is a major pathogen causing systemic and mucosal infections in immunocompromised individuals. Azoles have been very effective anti-fungal agents and the mainstay in treating opportunistic mold and yeast infections. Azole resistant strains have emerged compromising the utility of this class of drugs. It has been shown that azole resistance can be reversed by the co-administration of a histone deacetylase (HDAC inhibitor, suggesting that resistance is mediated by epigenetic mechanisms possibly involving Hos2, a fungal deacetylase. We report here the cloning and functional characterization of HOS2 (HighOsmolarity Sensitive, a gene coding for fungal histone deacetylase from C. albicans. Inhibition studies showed that Hos2 is susceptible to pan inhibitors such as trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA, but is not inhibited by class I inhibitors such as MS-275. This in vitro enzymatic assay, which is amenable to high throughput could be used for screening potent fungal Hos2 inhibitors that could be a potential anti-fungal adjuvant. Purified Hos2 protein consistently deacetylated tubulins, rather than histones from TSA-treated cells. Hos2 has been reported to be a putative NAD+ dependent histone deacetylase, a feature of sirtuins. We assayed for sirtuin activation with resveratrol and purified Hos2 protein and did not find any sirtuin activity.

  3. Influence of moisture on the availability and persistence of clotrimazole and fluconazole in sludge-amended soil.

    Science.gov (United States)

    García-Valcárcel, Ana I; Tadeo, José L

    2012-03-01

    Applying sewage sludge to soil is a common practice in many parts of the world. Thus, pharmaceutical compounds, such as azoles, can be released into the environment after sludge is applied to soil. To understand the fate of clotrimazole and fluconazole (pharmaceuticals used as antifungals in humans) in soil after its amendment with sludge, a reliable and sensitive method has been developed to determine these compounds in the solid and aqueous phases of soil. Desorption of clotrimazole from soil amended with sludge was negligible, whereas a rapid desorption of fluconazole was observed. Dissipation rates of these azoles were determined in amended soil incubated at 25°C with moisture contents ranging from 4.5 to 20%. Clotrimazole was more persistent than fluconazole in dry soil, whereas the contrary occurred in wet soil. Partitioning soil:soil solution of these azoles varied with time and moisture contents. Clotrimazole was found in soil with negligible amounts in soil solution, whereas fluconazole was approximately partitioned 50:50 during the assay time (60 d) at any soil moisture content. Occasional rainfall coupled with a relatively low binding soil capacity can result in the contamination of surface and groundwaters by fluconazole, whereas clotrimazole will remain in the soil.

  4. The essential oil of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis.

    Science.gov (United States)

    Ninomiya, Kentaro; Maruyama, Naho; Inoue, Shigeharu; Ishibashi, Hiroko; Takizawa, Toshio; Oshima, Haruyuki; Abe, Shigeru

    2012-01-01

    The therapeutic efficacy of tea tree oil (TTO), Melaleuca alternifolia, and its main component, terpinen-4-ol, were evaluated in a murine oral candidiasis model. Prednisolone -pretreated mice were orally infected with a fluconazole-susceptible (TIMM 2640) or a resistant (TIMM 3163) strain of Candida albicans to induce oral candidiasis. TTO or terpinen-4-ol was administrated with a cotton swab 3 h and 24 h after candida infection. These treatments clearly showed a decrease in the symptom score of tongues and in the viable candida cell number in the oral cavity at 2 d after azole-susceptible C. albicans infection, although the degree of the efficacy was less than that of fluconazole. Even against oral candidiasis caused by azole-resistant C. albicans, TTO and terpinen-4-ol were similarly effective, while fluconazole appeared ineffective. These results suggest that TTO and terpinen-4-ol may have the potential of therapeutic ability for mucosal candidiasis which may also be applicable to C. albicans oral candidiasis induced by the azole-resistant strain.

  5. CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand.

    Science.gov (United States)

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Wang, Wan-Hui; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2015-06-01

    The catalytic cycle for the production of formic acid by CO2 hydrogenation and the reverse reaction have received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO2 hydrogenation catalyzed by iridium complexes bearing sophisticated N^N-bidentate ligands is reported. We describe how a ligand containing hydroxy groups as proton-responsive substituents enhances the catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interactions. In particular, [(Cp*IrCl)2(TH2BPM)]Cl2 (Cp* = pentamethylcyclopentadienyl; TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) enormously promotes the catalytic hydrogenation of CO2 in basic water by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands were applied to CO2 hydrogenation. The catalytic efficiencies of the azole-type complexes were much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH2)]SO4. Furthermore, the introduction of one or more hydroxy groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxypyrimidine, and 4-pyrazolyl-2,6-dihydroxypyrimidine enhanced the catalytic activity. It is clear that the incorporation of additional electron-donating functionalities into proton-responsive azole-type ligands is effective for promoting further enhanced hydrogenation of CO2.

  6. Candida dubliniensis identification in Brazilian yeast stock collection

    Directory of Open Access Journals (Sweden)

    Priscilla de Laet Sant'Ana Mariano

    2003-06-01

    Full Text Available We investigated the presence of Candida dubliniensis among isolates previously identified as Candida albicans and maintained in a yeast stock collection from 1994 to 2000. All isolates were serotyped and further evaluated for antifungal susceptibility profile. After doing a screening test for C. dubliniensis isolates based on the capability of colonies to grow at 42°C, its final identification was obtained by randomly amplified polymorphic DNA (RAPD analysis using three different primers. A total of 46 out of 548 screened isolates did not exhibit growth at 42°C and were further genotyped by RAPD. Eleven isolates were identified as C. dubliniensis with RAPD analysis. Regarding serotypes, 81.5% of C. albicans and all C. dubliniensis isolates belonged to serotype A. Of note, 9 out of 11 C. dubliniensis isolates were obtained from patients with acquired immunodeficiency syndrome (Aids and all of them were susceptible to azoles and amphotericin B. We found 17 (3% C. albicans isolates that were dose-dependent susceptibility or resistant to azoles. In conclusion, we found a low rate of C. dubliniensis isolates among stock cultures of yeasts previously identified as C. albicans. Most of these isolates were recovered from oral samples of Aids patients and exhibited high susceptibility to amphotericin B and azoles. C. albicans serotype A susceptible to all antifungal drugs is the major phenotype found in our stock culture.

  7. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis.

    Science.gov (United States)

    Chen, Ying-Lien; Brand, Alexandra; Morrison, Emma L; Silao, Fitz Gerald S; Bigol, Ursela G; Malbas, Fedelino F; Nett, Jeniel E; Andes, David R; Solis, Norma V; Filler, Scott G; Averette, Anna; Heitman, Joseph

    2011-06-01

    Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.

  8. Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole.

    Directory of Open Access Journals (Sweden)

    Yun-Liang Yang

    Full Text Available Infections caused by treatment-resistant non-albicans Candida species, such as C. tropicalis, has increased, which is an emerging challenge in the management of fungal infections. Genetically related diploid sequence type (DST strains of C. tropicalis exhibiting reduced susceptibility to fluconazole circulated widely in Taiwan. To identify the potential source of these wildly distributed DST strains, we investigated the possibility of the presence in soil of such C. tropicalis strains by pulsed field gel electrophoresis (PFGE and DST typing methods. A total of 56 C. tropicalis isolates were recovered from 26 out of 477 soil samples. Among the 18 isolates with reduced susceptibility to fluconazole, 9 belonged to DST149 and 3 belonged to DST140. Both DSTs have been recovered from our previous studies on clinical isolates from the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY program. Furthermore, these isolates were more resistant to agricultural azoles. We have found genetically related C. tropicalis exhibiting reduced susceptibility to fluconazole from the human hosts and environmental samples. Therefore, to prevent patients from acquiring C. tropicalis with reduced susceptibility to azoles, prudent use of azoles in both clinical and agricultural settings is advocated.

  9. Posaconazole: when and how? The clinician's view.

    Science.gov (United States)

    Katragkou, Aspasia; Tsikopoulou, Fotini; Roilides, Emmanuel; Zaoutis, Theoklis E

    2012-03-01

    Posaconazole is the newest triazole antifungal agent available as an oral suspension with an extended spectrum of activity against Candida species, Aspergillus species, Cryptococcus neoformans, Zygomycetes and endemic fungi. Among posaconazole advantages are the relatively low potential of cross-resistance with other azoles, few drug interactions compared with other azoles and its activity against Zygomycetes. Randomised, double-blind trials have shown that posaconazole is effective for prophylaxis against invasive fungal infections (IFI), especially aspergillosis, in high-risk patients. Results of Phase III clinical trials and case/series reports indicate that posaconazole is effective in treating oesophageal candidiasis, including azole-refractory disease, and other IFI refractory to standard antifungal therapies. To date, posaconazole has appeared to be well tolerated even in long-term courses; it has an excellent safety profile with gastrointestinal disturbances being the most common adverse events reported. The dose of posaconazole is 200 mg three times daily for prophylaxis, 800 mg daily in two or four divided doses for the treatment of IFI and 100 mg daily (200 mg loading dose) for the treatment of oropharyngeal candidiasis. On the basis of early clinical experience, it appears that posaconazole will be a valuable aid in the management of life-threatening fungal infections.

  10. Voriconazole salvage treatment of invasive candidiasis.

    Science.gov (United States)

    Ostrosky-Zeichner, L; Oude Lashof, A M L; Kullberg, B J; Rex, J H

    2003-11-01

    Data on the salvage treatment of invasive candidiasis with voriconazole in 52 patients intolerant of other antifungal agents or with infection refractory to other antifungal agents were analyzed. Patients had received a mean of two previous antifungal agents (range, 1-4 agents), and 83% had received an azole. Manifestations of invasive candidiasis included candidemia (37%), disseminated disease (25%), and infection of other sites (38%). The median duration of voriconazole therapy was 60 days (range, 1-314 days). The overall rate of response was 56% (95%CI, 41-70), with the following response rates observed for individual Candida species: Candida albicans, 44% (20-70); Candida glabrata, 38% (14-68); Candida krusei, 70% (35-93); Candida tropicalis, 67% (30-93); and other Candida spp., 100% (40-100). The response rate in patients who had failed previous azole therapy was 58% (42-73). Common adverse events (~20%) included nausea and emesis, abnormal liver enzymes, and visual disturbances. Serious adverse events occurred in four patients, and nine patients died. Voriconazole has promise as a salvage agent for the treatment of invasive candidiasis, even in the settings of previous azole therapy and infection due to Candida krusei.

  11. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  12. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  13. Heterocyclic anions of astrobiological interest

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Callie A.; Demarais, Nicholas J.; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309 (United States); Yang, Zhibo [Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019 (United States); Snow, Theodore P., E-mail: Callie.Cole@colorado.edu, E-mail: Nicholas.Demarais@colorado.edu, E-mail: Veronica.Bierbaum@colorado.edu, E-mail: Zhibo.Yang@ou.edu, E-mail: Theodore.Snow@colorado.edu [Department of Astrophysical and Planetary Sciences, 391 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2013-12-20

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N{sub 2}O, O{sub 2}, CO, OCS, CO{sub 2}, and SO{sub 2}) and other reactive species (CS{sub 2}, CH{sub 3}Cl, (CH{sub 3}){sub 3}CCl, and (CH{sub 3}){sub 3}CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  14. Investigation of ERG11 gene expression among fluconazole-resistant Candida albicans: first report from an Iranian referral paediatric hospital.

    Science.gov (United States)

    Teymuri, M; Mamishi, S; Pourakbari, B; Mahmoudi, S; Ashtiani, M T; Sadeghi, R H; Yadegari, M H

    2015-01-01

    The multiplicity of mechanisms of resistance to azole antifungal agents has been described. As fluconazole-resistant clinical Candida albicans isolates that constitutively over-express ERG11 have been identified in previous studies, the aim of this study is to investigate this molecular mechanism involved in fluconazole resistance of C. albicans clinical isolates. Fluconazole susceptibility testing was carried out on clinical isolates of Candida spp. obtained from hospitalised children in an Iranian referral children's hospital. A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique was used to differentiate Candida spp. The resistant C. albicans isolates were subjected to RT-qPCR using primers that identify ERG11 gene expression. Of the 142 Candida spp. isolates studied, C. albicans was the most predominant isolate, occurring in 68.3% (97/142) of the patients. According to the CLSI method, the majority of the C. albicans isolates (91.7%, 89/97), categorised as susceptible (minimum inhibitory concentration [MIC] ≤8 μg/mL), five isolates were considered resistant (MIC ≤64 μg/mL) and three had dose-dependent susceptibility (MIC = 8.16-32 μg/mL). The ERG11 gene in the five fluconazole-resistant C. albicans isolates was upregulated 4.15-5.84-fold relative to the ATCC 10231 control strain. In this study, the expression of ERG11 was upregulated in all the fluconazole-resistant C. albicans isolates. There are limited data on the antifungal susceptibility of Candida spp. as well as the molecular mechanism of azole resistance in Iran, especially for isolates causing infections in children. Therefore, the surveillance of antifungal resistance patterns and investigation of other mechanisms of azole resistance in all Candida spp. isolates is recommended.

  15. Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans.

    Science.gov (United States)

    Thomas, Edwina; Roman, Elvira; Claypool, Steven; Manzoor, Nikhat; Pla, Jesús; Panwar, Sneh Lata

    2013-11-01

    Mitochondrial dysfunction in Candida albicans is known to be associated with drug susceptibility, cell wall integrity, phospholipid homeostasis, and virulence. In this study, we deleted CaFZO1, a key component required during biogenesis of functional mitochondria. Cells with FZO1 deleted displayed fragmented mitochondria, mitochondrial genome loss, and reduced mitochondrial membrane potential and were rendered sensitive to azoles and peroxide. In order to understand the cellular response to dysfunctional mitochondria, genome-wide expression profiling of fzo1Δ/Δ cells was performed. Our results show that the increased susceptibility to azoles was likely due to reduced efflux activity of CDR efflux pumps, caused by the missorting of Cdr1p into the vacuole. In addition, fzo1Δ/Δ cells showed upregulation of genes involved in iron assimilation, in iron-sufficient conditions, characteristic of iron-starved cells. One of the consequent effects was downregulation of genes of the ergosterol biosynthesis pathway with a commensurate decrease in cellular ergosterol levels. We therefore connect deregulated iron metabolism to ergosterol biosynthesis pathway in response to dysfunctional mitochondria. Impaired activation of the Hog1 pathway in the mutant was the basis for increased susceptibility to peroxide and increase in reactive oxygen species, indicating the importance of functional mitochondria in controlling Hog1-mediated oxidative stress response. Mitochondrial phospholipid levels were also altered as indicated by an increase in phosphatidylserine and phosphatidylethanolamine and decrease in phosphatidylcholine in fzo1Δ/Δ cells. Collectively, these findings reinforce the connection between functional mitochondria and azole tolerance, oxidant-mediated stress, and iron homeostasis in C. albicans.

  16. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

    Directory of Open Access Journals (Sweden)

    Sheena D Singh

    2009-07-01

    Full Text Available Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely

  17. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  18. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous measurement of voriconazole, posaconazole and itraconazole.

    Science.gov (United States)

    Wadsworth, John M; Milan, Anna M; Anson, James; Davison, Andrew S

    2017-01-01

    Background Azole-based antifungals are the first-line therapy for some of the most common mycoses and are now also being used prophylactically to protect immunocompromised patients. However, due to variability in both their metabolism and bioavailability, therapeutic drug monitoring is essential to avoid toxicity but still gain maximum efficacy. Methods Following protein precipitation of serum with acetonitrile, 20  µL of extract was injected onto a 2.1 × 50 mm Waters Atlantis dC18 3  µm column. Detection was via a Waters Quattro Premier XE tandem mass spectrometer operating in ESI-positive mode. Multiple reaction monitoring (MRM) detected two product ions for each compound and one for each isotopically labelled internal standard. Ion suppression, linearity, stability, matrix effects, recovery, imprecision, lower limits of measuring interval and detection were all assessed. Results Optimal chromatographic separation was achieved using gradient elution over 8 minutes. Voriconazole, posaconazole and itraconazole eluted at 1.71, 2.73 and 3.41 min, respectively. The lower limits of measuring interval for all three compounds was 0.1 mg/L. The assay was linear to 10 mg/L for voriconazole (R(2 )= 0.995) and 5 mg/L for posaconazole (R(2 )= 0.990) and itraconazole (R(2 )= 0.991). The assay was both highly accurate and precise with % bias of voriconazole, posaconazole and itraconazole, respectively, when compared with previous NEQAS samples. The intra-assay precision (CV%) was 1.6%, 2.5% and 1.9% for voriconazole, posaconazole and itraconazole, respectively, across the linear range. Conclusion A simple and robust method has been validated for azole antifungal therapeutic drug monitoring. This new assay will result in a greatly improved sample turnaround time and will therefore vastly increase the clinical utility of azole antifungal drug monitoring.

  19. Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida albicans.

    Science.gov (United States)

    Mora-Navarro, Camilo; Caraballo-León, Jean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2015-12-01

    Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. β-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a β-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained.

  20. Human mycoses and advances in antifungal therapy.

    Science.gov (United States)

    Fromtling, R A

    2001-04-01

    The 11th Focus on Fungal Infections meeting was held in Washington, D.C., U.S.A., March 1416, 2001. At the conference, there were well-attended sessions that focused on the pathogenesis and therapy of fungal disease. This report focuses on new information on fungal incidence and pathogenesis as well as on the in vitro and clinical experience of established antifungal drugs (fluconazole, itraconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine) and the newer antifungal compounds approved for use (e.g., caspofungin) and in development (the new-generation azoles: voriconazole, posaconazole, ravuconazole, and the candins, micafungin and anidulafungin).

  1. Subculture on potato dextrose agar as a complement to the broth microdilution assay for Malassezia pachydermatis.

    Science.gov (United States)

    Prado, Marilena R; Brito, Erika H S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Leite, João J G; Sidrim, José J C; Rocha, Marcos F G

    2008-10-01

    The main aim of this study was to verify the efficacy of subculture on potato dextrose agar (PDA) as a complement to the in vitro susceptibility test for Malassezia pachydermatis strains by a broth microdilution method, as well as to determine the MIC and MFC of azole derivatives, amphotericin B and caspofungin. The microdilution assay was performed in 96-well plates using a modified RPMI 1640 medium. The M. pachydermatis strains were resistant to caspofungin. All strains (n=50) had shown MIC values of subculture on PDA improved the analysis of the in vitro antifungal susceptibility of M. pachydermatis.

  2. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  3. Synthesis of some novel hydrazono acyclic nucleoside analogues

    Directory of Open Access Journals (Sweden)

    Mohammad N. Soltani Rad

    2010-05-01

    Full Text Available The syntheses of novel hydrazono acyclic nucleosides similar to miconazole scaffolds are described. In this series of acyclic nucleosides, pyrimidine as well as purine and other azole derivatives replaced the imidazole function in miconazole and the ether group was replaced with a hydrazone moiety using phenylhydrazine. To interpret the dominant formation of (E-hydrazone derivatives rather than (Z-isomers, PM3 semiempirical quantum mechanic calculations were carried out which indicated that the (E-isomers had the lower heats of formation.

  4. Fixation Property of Copper Triazole Wood Preservatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to AWPA E11-2006 standard,copper fixation rates of several copper-based formulations,such as ammoniacal copper,amine copper,and ammoniacal-ethanolamine copper,as well as alkaline copper quaternary(ACQ),were tested and compared in this paper.And the fixation rates of tebuconazole(TEB) and propiconazole(PPZ) in several formulations,such as copper azole,emulsified type and solvent type,were also compared.The determination of copper content in the leachate was analyzed by atomic absorption spectrom...

  5. Fungal arthritis and osteomyelitis.

    Science.gov (United States)

    Kohli, Rakhi; Hadley, Susan

    2005-12-01

    Fungal arthritis and osteomyelitis are uncommon diseases and generally present in an indolent fashion. The incidence of fungal bone and joint dis-ease is increasing with an increase in the prevalence of factors predisposing to invasive fungal disease, such as the use of central venous catheters, broad spectrum antibiotics, immunosuppression, and abdominal surgery. Definitive diagnosis relies on bone or synovial culture or biopsy. Successful management has traditionally consisted of amphotericin B in combination with surgical debridement. Given the rarity of this disease, treatment is not well defined, but reports of success with the use of azole antifungal agents, including itraconazole, fluconazole, voriconazole, and posaconazole, are promising.

  6. Antifungal susceptibility profile of cryptic species of Aspergillus.

    Science.gov (United States)

    Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Cuenca-Estrella, Manuel

    2014-12-01

    The use of molecular tools has led to the description of new cryptic species among different Aspergillus species complexes. Their frequency in the clinical setting has been reported to be between 10 and 15%. The susceptibility to azoles and amphotericin B of many of these species is low, and some of them, such as Aspergillus calidoustus or Aspergillus lentulus, are considered multi-resistant. The changing epidemiology, the frequency of cryptic species, and the different susceptibility profiles make antifungal susceptibility testing an important tool to identify the optimal antifungal agent to treat the infections caused by these species.

  7. Elevated fluoride levels and periostitis in pediatric hematopoietic stem cell transplant recipients receiving long-term voriconazole.

    Science.gov (United States)

    Tarlock, Katherine; Johnson, Darren; Cornell, Cathy; Parnell, Shawn; Meshinchi, Soheil; Baker, K Scott; Englund, Janet A

    2015-05-01

    Azole therapy is widely utilized in hematopoietic stem cell transplant (HCT) recipients for the treatment of aspergillus. Complications of voriconazole treatment related to its elevated fluoride content have been described in adults, including reports of symptomatic skeletal fluorosis. We review fluoride levels, clinical, and laboratory data in five pediatric HCT recipients on long-term voriconazole therapy, all found to have elevated serum fluoride levels. Two patients had toxic fluoride levels, one infant had symptoms of significant pain with movement and radiographs confirmed skeletal fluorosis. Monitoring fluoride levels in children, especially with skeletal symptoms, should be considered in patients on long-term voriconazole.

  8. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation.

    Science.gov (United States)

    Sharma, C; Kumar, N; Pandey, R; Meis, J F; Chowdhary, A

    2016-09-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L).

  9. Eumycetoma of the foot caused by Exophiala jeanselmei in a Guinean woman.

    Science.gov (United States)

    Desoubeaux, G; Millon, A; Freychet, B; de Muret, A; Garcia-Hermoso, D; Bailly, E; Rosset, P; Chandenier, J; Bernard, L

    2013-09-01

    Eumycetomas are chronic infectious entities characterized by presence of mycotic grains in (sub-)cutaneous tissues, after accidental inoculation of an exogenous filamentous fungus in the skin. The lesions evolve towards painless pseudotumor of the soft parts. We report the original case of a Guinean woman exhibiting eumycetoma of the right foot. Both laboratory tests identified a dematiaceous fungus, Exophiala jeanselmei, as the responsible infectious agent. A medical treatment with voriconazole alone was sufficient to notice a substantial clinical improvement. This finding is unusual as E. jeanselmei is uncommon in Guinea-Conakry, and as optimal treatment rather associate antifungal azoles and surgical excision.

  10. Candidíase em pacientes aidéticos

    Directory of Open Access Journals (Sweden)

    C.E.O.P. Campos

    1992-09-01

    Full Text Available Trinta e cinco aidéticos entre 19 e 55 anos admitidos e tratados de candidíase no Hospital Emílio Ribas, SP, com ELISA positivo para HIV e confirmado pelo Western Blot. Tuberculose em 9 sendo 2 com pericardite; neurotoxoplasmose em 6; neurocriptococose em 5; herpes labial em 4; pneumocistose em 3 e sarcoma de Kaposi em 2, achavam-se associadas. A concentração inibitória mínima 50% (MIC 50% para os azoles foi: ketoconazol= 2,2 µg/ml; itraconazol- 21,0 µg/ml; fluconazol = 19,0 µg/ml. O MIC 50% para ospolienos: nistatina- 50,0 µg/ml; anfotericina B= 0,12 µg/ml e para 5 fluorcitosina= 1,6 µg/ml nas 35 amostras de Candida isoladas. Testes não paramétricos de Siegel revelaram significante identificação (80% das Candida albicans na candidíase, e que a dose de AMB não modificou o número de óbitos, precoce e tardio, ocorridos nesses aidéticos. O uso prévio dos azoles e da nistatina explicaria, talvez, o elevado MIC 50% observado nas amostras de Candida isoladas.A total of 35 in patients admitted at Emilio Ribas Hospital - São Paulo, Brazil, with digestive candidiasis and AIDS clinical diagnostic were evaluated 10 month later, being 29 male and 6 female; white outnumbering black with age ranged from 30 to 50 years old. Agar Sabouraud culture and tube germinative tests identified 28 (80% Candida albicans out 35 strains. Minimum inhibitory concentration (MIC 50% was against azoles (ketoconazole= 2.2 µg/ml; itraconazole = 21.0 µg/ml and fluconazole- 19.0 µg/ml; polyenes (ny statine - 50.0 µg/ml and amphotericin B= 0.12 µg/ml and 5 fluorcytosine= 1.6µg/ml. Siegeltests showed significant Candida albicans proportions in strains isolated from 35 AIDS patients. There was no significant relation between AMB dosis and early or late death. Conclusions: candidiasis in AIDS patients showed high MIC 50% to azoles and nystatine and significant Candida albicans proportion in all strains isolated from AIDS patients. Previous amphotericin B

  11. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine Lydia

    2011-01-01

    different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after...... tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts...

  12. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    , and f) effect on PPAR α and γ using a transactivation assay. For the in vitro metabolism studies, ten selected EDCs: five azole fungicides, three parabens, and two phthalates, were tested in vitro in the T-screen assay to determine possible changes in the ability of the EDCs to bind to and activate......) and diethyl phthalate (DEP). The two in vitro metabolizing systems tested gave an almost complete metabolic transformation of the tested parabens and phthalates, with a recovery rate of the parent compounds of less than 1%. However, a difference was found between the human S9 and rat microsome assay systems...

  13. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas;

    2017-01-01

    on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test.......7 fold higher than the horizontal assessments. Using passive dosing rather than dilution series or spiking did not lower the threshold significantly. Below the threshold for synergy, slight antagony could often be observed. This is most likely due to induction of enzymes active in metabolization of alpha...

  14. Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4'-Bis(5-nitro-1,2,3-2H-triazole) Derivatives.

    Science.gov (United States)

    He, Chunlin; Shreeve, Jean'ne M

    2015-05-18

    Using a variety of functionalization strategies, derivatives of 4, 4'-bis(5-nitro-1,2,3-2H-triazole) were designed, synthesized, and characterized. The isomers were separated, their structures were confirmed with single-crystal X-ray analysis, and their properties were determined by differential scanning calorimetry, density, impact sensitivity, heat of formation, and detonation velocity and pressure (calculated by EXPLO5 V6.01). Those materials were found to exhibit superior detonation performance when compared with the other fully carbon-nitrated bis(azoles).

  15. Design synthesis and biological evaluation of 3-substituted triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Bao Gang Wang; Shi Chong Yu; Xiao Yun Chai; Yong Zheng Yan; Hong Gang Hu; Qiu Ye Wu

    2011-01-01

    Based on the active site of lanosterol 14α-demethylase of azole antifungal agents, sixteen l-(lH-l,2,4-triazole-l-yl)- 2-(2,4-difluorophenyl)-3-(N-n-butyl-N-l-substitutedbenzyl-4-methylene-lH-l,2,3-triazole)-2-propanols have been designed, synthesized and evaluated as antifungal agents. Results of preliminary antifungal tests against eight human pathogenic fungi in vitro showed that some of the compounds exhibited excellent activities with broad spectrum.

  16. Medicinal Chemistry Perspective of Fused Isoxazole Derivatives.

    Science.gov (United States)

    Barmade, Mahesh A; Murumkar, Prashant R; Sharma, Mayank Kumar; Yadav, Mange Ram

    2016-01-01

    Nitrogen containing heterocyclic rings with an oxygen atom is considered as one of the best combination in medicinal chemistry due to their diversified biological activities. Isoxazole, a five membered heterocyclic azole ring is found in naturally occuring ibetonic acid along with some of the marketed drugs such as valdecoxib, flucloxacillin, cloxacillin, dicloxacillin, and danazol. It is also significant for showing antipsychotic activity in risperidone and anticonvulsant activity in zonisamide, the marketed drugs. This review article covers research articles reported till date covering biological activity along with SAR of fused isoxazole derivatives.

  17. Synthesis of annulated 2H-indazoles and 1,2,3- and 1,2,4-triazoles via a one-pot palladium-catalyzed alkylation/direct arylation reaction.

    Science.gov (United States)

    Laleu, Benoît; Lautens, Mark

    2008-11-21

    A variety of six-membered-ring annulated 2H-indazoles and 1,2,3- and 1,2,4-triazoles were synthesized in good to excellent yields from the corresponding bromoethyl azoles and aryl iodides. The annulation process involves a one-pot norbornene-mediated palladium-catalyzed sequence whereby an alkyl-aryl bond and an aryl-heteroaryl bond are successively formed through two C-H bond activations. Subsequent functionalizations of the resulting polycyclic through cross-coupling reactions are also presented.

  18. Una nueva acción farmacológica de la cocaína la acción anticonvulsivante

    OpenAIRE

    C. Gutiérrez-Noriega; V. Zapata Ortiz

    2013-01-01

    Se han estudiado los efectos de la cocaína sobre el sistema nervioso central en relación a otros neuroestimulantes. Los resultados son los siguientes : 1. La cocaína a dosis subconvulsivantes actúa como antagonista del cardíazol a dosis convulsivante. Se demostró que en los ratones y conejillos disminuye la frecuencia de las convulsiones cardiazólicas y de otras reacciones originadas por la acción estimulante del cardiazol sobre el sistema nervioso central. También se observó que la cocaína d...

  19. Prophylaxis and treatment of invasive candidiasis in the intensive care setting.

    Science.gov (United States)

    Ostrosky-Zeichner, L

    2004-10-01

    The term "invasive candidiasis" encompasses a group of infections of increasing relevance in the intensive care setting. Prophylaxis is an attractive strategy when dealing with diseases of high prevalence, morbidity, and mortality. The success of prophylaxis is determined by the selection of a population at high risk and the use of the safest and most effective drug. Although risk factors for this disease are known, risk assessment strategies need to be developed to predict a high likelihood of disease so that targeted prophylaxis can be offered. Recent advances in antifungal therapy, such as development of the azoles and echinocandins, have resulted in excellent prophylactic and therapeutic choices for the management of this problem.

  20. An insight into the antifungal pipeline: selected new molecules and beyond.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Casadevall, Arturo; Galgiani, John N; Odds, Frank C; Rex, John H

    2010-09-01

    Invasive fungal infections are increasing in incidence and are associated with substantial mortality. Improved diagnostics and the availability of new antifungals have revolutionized the field of medical mycology in the past decades. This Review focuses on recent developments in the antifungal pipeline, concentrating on promising candidates such as new azoles, polyenes and echinocandins, as well as agents such as nikkomycin Z and the sordarins. Developments in vaccines and antibody-based immunotherapy are also discussed. Few therapeutic products are currently in active development, and progression of therapeutic agents with fungus-specific mechanisms of action is of key importance.

  1. Conazoles

    Directory of Open Access Journals (Sweden)

    Jan Heeres

    2010-06-01

    Full Text Available This review provides a historical overview of the analog based drug discovery of miconazole and its congeners, and is focused on marketed azole antifungals bearing the generic suffix “conazole”. The antifungal activity of miconazole, one of the first broad-spectrum antimycotic agents has been mainly restricted to topical applications. The attractive in vitro antifungal spectrum was a starting point to design more potent and especially orally active antifungal agents such as ketoconazole, itraconazole, posaconazole, fluconazole and voriconazole. The chemistry, in vitro and in vivo antifungal activity, pharmacology, and clinical applications of these marketed conazoles has been described.

  2. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.

    Science.gov (United States)

    Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

    2014-10-01

    Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.

  3. Searching for novel scaffold of triazole non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    Science.gov (United States)

    Frączek, Tomasz; Paneth, Agata; Kamiński, Rafał; Krakowiak, Agnieszka; Paneth, Piotr

    2016-01-01

    Azoles are a promising class of the new generation of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. In order to find novel extensions for this basic scaffold, we explored the 5-position substitution pattern of triazole NNRTIs using molecular docking followed by the synthesis of selected compounds. We found that heterocyclic substituents in the 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with four-membered thioglycolamide linker and this substitution seems to be viable only for compounds with shorter two-membered linker. Promising compound, N-(4-carboxy-2-chlorophenyl)-2-((4-benzyl-5-methyl-4H-1,2,4-triazol-3-yl)sulfanyl)acetamide, with potent inhibitory activity and acceptable aqueous solubility has been identified in this study that could serve as lead scaffold for the development of novel water-soluble salts of triazole NNRTIs.

  4. Strategies for managing systemic fungal infection and the place of itraconazole.

    Science.gov (United States)

    Potter, Michael

    2005-09-01

    Systemic fungal infections are an increasing cause of mortality and morbidity in patients with haematological malignancies and certain other conditions associated with profound immunosuppression. The majority of such infections are caused by Aspergillus and Candida species. In recent years, the number of available drugs effective in the therapy of these difficult infections has expanded. Large clinical trials have been performed in different settings such as prophylaxis, empirical and first-line therapy. For prophylaxis, the azoles fluconazole and itraconazole have been most widely studied. These azoles are available in both oral and intravenous formulations. Itraconazole has a wide spectrum of activity including Aspergillus, Candida albicans and non-albicans species. Two large studies comparing the use of itraconazole with fluconazole for primary prophylaxis in high-risk patients who were recipients of allogeneic stem cell transplants have recently been reported. These have confirmed that itraconazole is effective in this setting in reducing the rate of systemic fungal infections. However, there are concerns with regard to increased toxicity and the potential for drug interactions with itraconazole compared with fluconazole. In the empirical setting, large randomized studies support the use of caspofungin and liposomal amphotericin B. Voriconazole and lipid-associated amphotericin B have been shown to be effective in first-line therapy and caspofungin for salvage. New approaches to management include efforts at improving diagnosis, combination antifungal therapy and treatment strategies for emerging moulds.

  5. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    Science.gov (United States)

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport.

  6. Solder flow over fine line PWB surface finishes

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Hernandez, C.L.

    1998-08-01

    The rapid advancement of interconnect technology has stimulated the development of alternative printed wiring board (PWB) surface finishes to enhance the solderability of standard copper and solder-coated surfaces. These new finishes are based on either metallic or organic chemistries. As part of an ongoing solderability study, Sandia National Laboratories has investigated the solder flow behavior of two azole-based organic solderability preservations, immersion Au, immersion Ag, electroless Pd, and electroless Pd/Ni on fine line copper features. The coated substrates were solder tested in the as-fabricated and environmentally-stressed conditions. Samples were processed through an inerted reflow machine. The azole-based coatings generally provided the most effective protection after aging. Thin Pd over Cu yielded the best wetting results of the metallic coatings, with complete dissolution of the Pd overcoat and wetting of the underlying Cu by the flowing solder. Limited wetting was measured on the thicker Pd and Pd over Ni finishes, which were not completely dissolved by the molten solder. The immersion Au and Ag finishes yielded the lowest wetted lengths, respectively. These general differences in solderability were directly attributed to the type of surface finish which the solder came in contact with. The effects of circuit geometry, surface finish, stressing, and solder processing conditions are discussed.

  7. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    Directory of Open Access Journals (Sweden)

    Chiara Civardi

    Full Text Available Recently introduced micronized copper (MC formulations, consisting of a nanosized fraction of basic copper (Cu carbonate (CuCO3·Cu(OH2 nanoparticles (NPs, were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA. In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  8. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Rijs Antonius JMM

    2008-08-01

    Full Text Available Abstract Background In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. Methods A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients with oropharyngeal candidiasis at the Muhimbili National Hospital, Dar es Salaam, Tanzania. Identification of the yeasts was performed using standard phenotypic methods. Antifungal susceptibility to fluconazole, itraconazole, miconazole, clotrimazole, amphotericin B and nystatin was assessed using a broth microdilution format according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI; M27-A2. Results Candida albicans was the most frequently isolated species from 250 (84.5% patients followed by C. glabrata from 20 (6.8% patients, and C. krusei from 10 (3.4% patients. There was no observed significant difference in species distribution between patients with primary and recurrent oropharyngeal candidiasis, but isolates cultured from patients previously treated were significantly less susceptible to the azole compounds compared to those cultured from antifungal naïve patients. Conclusion C. albicans was the most frequently isolated species from patients with oropharyngeal candidiasis. Oral yeast isolates from Tanzania had high level susceptibility to the antifungal agents tested. Recurrent oropharyngeal candidiasis and previous antifungal therapy significantly correlated with reduced susceptibility to azoles antifungal agents.

  9. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis.

    Science.gov (United States)

    Vila, Taissa Vieira Machado; Chaturvedi, Ashok K; Rozental, Sonia; Lopez-Ribot, Jose L

    2015-12-01

    The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis.

  10. Multicenter Brazilian Study of Oral Candida Species Isolated from Aids Patients

    Directory of Open Access Journals (Sweden)

    Priscilla de Laet Sant'Ana

    2002-03-01

    Full Text Available Oropharyngeal candidiasis continues to be considered the most common opportunistic disease in Aids patients. This study was designed to investigate species distribution, serotype and antifungal susceptibility profile among Candida spp. isolated from the oral cavity of Aids patients recruited from six Brazilian university centers. Oral swabs from 130 Aids patients were plated onto CHROMagar Candida medium and 142 isolates were recovered. Yeast isolates were identified by classical methods and serotyped using the Candida Check® system-Iatron. Antifungal susceptibility testing was performed according to the NCCLS microbroth assay. C. albicans was the most frequently isolated species (91%, and 70% of the isolates belonged to serotype A. We detected 12 episodes of co-infection (9%, including co-infection with both serotypes of C. albicans. Non-albicans species were isolated from 12 episodes, 50% of them exhibited DDS or resistance to azoles. Otherwise, only 8 out 130 isolates of C. albicans exhibited DDS or resistance to azoles. Brazilian Aids patients are infected mainly by C. albicans serotype A, most of them susceptible to all antifungal drugs.

  11. Systemic vs. Topical Therapy for the Treatment of Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Sebastian Faro

    1994-01-01

    Full Text Available It is estimated that 75% of all women will experience at least 1 episode of vulvovaginal candidiasis (VVC during their lifetimes. Most patients with acute VVC can be treated with short-term regimens that optimize compliance. Since current topical and oral antifungals have shown comparably high efficacy rates, other issues should be considered in determining the most appropriate therapy. It is possible that the use of short-duration narrow-spectrum agents may increase selection of more resistant organisms which will result in an increase of recurrent VVC (RVVC. Women who are known or suspected to be pregnant and women of childbearing age who are not using a reliable means of contraception should receive topical therapy, as should those who are breast-feeding or receiving drugs that can interact with an oral azole and those who have previously experienced adverse effects during azole therapy. Because of the potential risks associated with systemic treatment, topical therapy with a broad-spectrum agent should be the method of choice for VVC, whereas systemic therapy should be reserved for either RVVC or cases where the benefits outweigh any possible adverse reactions.

  12. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  13. Structural complex of sterol 14[alpha]-demethylase (CYP51) with 14[alpha]-methylenecyclopropyl-[delta]7-24, 25-dihydrolanosterol[S

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-06-28

    Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.

  14. Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius(®) assay.

    Science.gov (United States)

    Chong, G M; Vonk, A G; Meis, J F; Dingemans, G J H; Houbraken, J; Hagen, F; Gaajetaan, G R; van Tegelen, D W E; Simons, G F M; Rijnders, B J A

    2017-03-01

    The AsperGenius(®) assay detects several Aspergillus species and the A. fumigatus Cyp51A mutations TR34/L98H/T289A/Y121F that are associated with azole resistance. We evaluated its contribution in identifying A. lentulus and A. felis, 2 rare but intrinsically azole-resistant sibling species within the Aspergillus section Fumigati. Identification of these species with conventional culture techniques is difficult and time-consuming. The assay was tested on (i) 2 A. lentulus and A. felis strains obtained from biopsy proven invasive aspergillosis and (ii) control A. fumigatus (n=3), A. lentulus (n=6) and A. felis species complex (n=12) strains. The AsperGenius(®) resistance PCR did not detect the TR34 target in A. lentulus and A. felis in contrast to A. fumigatus. Melting peaks for L98H and Y121F markers differed and those of the Y121F marker were particularly suitable to discriminate the 3 species. In conclusion, the assay can be used to rapidly discriminate A. fumigatus, A. lentulus and A. felis.

  15. Mutation of G234 amino acid residue in Candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport

    Science.gov (United States)

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca2+ did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  16. [A study for testing the antifungal susceptibility of yeast by the Japanese Society for Medical Mycology (JSMM) method. The proposal of the modified JSMM method 2009].

    Science.gov (United States)

    Nishiyama, Yayoi; Abe, Michiko; Ikeda, Reiko; Uno, Jun; Oguri, Toyoko; Shibuya, Kazutoshi; Maesaki, Shigefumi; Mohri, Shinobu; Yamada, Tsuyoshi; Ishibashi, Hiroko; Hasumi, Yayoi; Abe, Shigeru

    2010-01-01

    The Japanese Society for Medical Mycology (JSMM) method used for testing the antifungal susceptibility of yeast, the MIC end point for azole antifungal agents, is currently set at IC(80). It was recently shown, however that there is an inconsistency in the MIC value between the JSMM method and the CLSI M27-A2 (CLSI) method, in which the end- point was to read as IC(50). To resolve this discrepancy and reassess the JSMM method, the MIC for three azoles, fluconazole, itraconazole and voriconazole were compared to 5 strains of each of the following Candida species: C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, for a total of 25 comparisons, using the JSMM method, a modified JSMM method, and the CLSI method. The results showed that when the MIC end- point criterion of the JSMM method was changed from IC(80) to IC(50) (the modified JSMM method) , the MIC value was consistent and compatible with the CLSI method. Finally, it should be emphasized that the JSMM method, using a spectrophotometer for MIC measurement, was superior in both stability and reproducibility, as compared to the CLSI method in which growth was assessed by visual observation.

  17. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    Energy Technology Data Exchange (ETDEWEB)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike (Vanderbilt)

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  18. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin D Harrison

    2014-03-01

    Full Text Available Candida albicans, the most prevalent human fungal pathogen, is generally diploid. However, 50% of isolates that are resistant to fluconazole (FLC, the most widely used antifungal, are aneuploid and some aneuploidies can confer FLC resistance. To ask if FLC exposure causes or only selects for aneuploidy, we analyzed diploid strains during exposure to FLC using flow cytometry and epifluorescence microscopy. FLC exposure caused a consistent deviation from normal cell cycle regulation: nuclear and spindle cycles initiated prior to bud emergence, leading to "trimeras," three connected cells composed of a mother, daughter, and granddaughter bud. Initially binucleate, trimeras underwent coordinated nuclear division yielding four daughter nuclei, two of which underwent mitotic collapse to form a tetraploid cell with extra spindle components. In subsequent cell cycles, the abnormal number of spindles resulted in unequal DNA segregation and viable aneuploid progeny. The process of aneuploid formation in C. albicans is highly reminiscent of early stages in human tumorigenesis in that aneuploidy arises through a tetraploid intermediate and subsequent unequal DNA segregation driven by multiple spindles coupled with a subsequent selective advantage conferred by at least some aneuploidies during growth under stress. Finally, trimera formation was detected in response to other azole antifungals, in related Candida species, and in an in vivo model for Candida infection, suggesting that aneuploids arise due to azole treatment of several pathogenic yeasts and that this can occur during the infection process.

  19. Candidíase em pacientes aidéticos

    Directory of Open Access Journals (Sweden)

    C.E.O.P. Campos

    1992-09-01

    Full Text Available Trinta e cinco aidéticos entre 19 e 55 anos admitidos e tratados de candidíase no Hospital Emílio Ribas, SP, com ELISA positivo para HIV e confirmado pelo Western Blot. Tuberculose em 9 sendo 2 com pericardite; neurotoxoplasmose em 6; neurocriptococose em 5; herpes labial em 4; pneumocistose em 3 e sarcoma de Kaposi em 2, achavam-se associadas. A concentração inibitória mínima 50% (MIC 50% para os azoles foi: ketoconazol= 2,2 µg/ml; itraconazol- 21,0 µg/ml; fluconazol = 19,0 µg/ml. O MIC 50% para ospolienos: nistatina- 50,0 µg/ml; anfotericina B= 0,12 µg/ml e para 5 fluorcitosina= 1,6 µg/ml nas 35 amostras de Candida isoladas. Testes não paramétricos de Siegel revelaram significante identificação (80% das Candida albicans na candidíase, e que a dose de AMB não modificou o número de óbitos, precoce e tardio, ocorridos nesses aidéticos. O uso prévio dos azoles e da nistatina explicaria, talvez, o elevado MIC 50% observado nas amostras de Candida isoladas.

  20. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole.

    Science.gov (United States)

    Harrison, Benjamin D; Hashemi, Jordan; Bibi, Maayan; Pulver, Rebecca; Bavli, Danny; Nahmias, Yaakov; Wellington, Melanie; Sapiro, Guillermo; Berman, Judith

    2014-03-01

    Candida albicans, the most prevalent human fungal pathogen, is generally diploid. However, 50% of isolates that are resistant to fluconazole (FLC), the most widely used antifungal, are aneuploid and some aneuploidies can confer FLC resistance. To ask if FLC exposure causes or only selects for aneuploidy, we analyzed diploid strains during exposure to FLC using flow cytometry and epifluorescence microscopy. FLC exposure caused a consistent deviation from normal cell cycle regulation: nuclear and spindle cycles initiated prior to bud emergence, leading to "trimeras," three connected cells composed of a mother, daughter, and granddaughter bud. Initially binucleate, trimeras underwent coordinated nuclear division yielding four daughter nuclei, two of which underwent mitotic collapse to form a tetraploid cell with extra spindle components. In subsequent cell cycles, the abnormal number of spindles resulted in unequal DNA segregation and viable aneuploid progeny. The process of aneuploid formation in C. albicans is highly reminiscent of early stages in human tumorigenesis in that aneuploidy arises through a tetraploid intermediate and subsequent unequal DNA segregation driven by multiple spindles coupled with a subsequent selective advantage conferred by at least some aneuploidies during growth under stress. Finally, trimera formation was detected in response to other azole antifungals, in related Candida species, and in an in vivo model for Candida infection, suggesting that aneuploids arise due to azole treatment of several pathogenic yeasts and that this can occur during the infection process.

  1. Fluconazole Alters the Polysaccharide Capsule of Cryptococcus gattii and Leads to Distinct Behaviors in Murine Cryptococcosis

    Science.gov (United States)

    Santos, Julliana Ribeiro Alves; Holanda, Rodrigo Assunção; Frases, Susana; Bravim, Mayara; Araujo, Glauber de S.; Santos, Patrícia Campi; Costa, Marliete Carvalho; Ribeiro, Maira Juliana Andrade; Ferreira, Gabriella Freitas; Baltazar, Ludmila Matos; Miranda, Aline Silva; Oliveira, Danilo Bretas; Santos, Carolina Maria Araújo; Fontes, Alide Caroline Lima; Gouveia, Ludmila Ferreira; Resende-Stoianoff, Maria Aparecida; Abrahão, Jonatas Santos; Teixeira, Antônio Lúcio; Paixão, Tatiane Alves; Souza, Danielle G.; Santos, Daniel Assis

    2014-01-01

    Cryptococcus gattii is an emergent human pathogen. Fluconazole is commonly used for treatment of cryptococcosis, but the emergence of less susceptible strains to this azole is a global problem and also the data regarding fluconazole-resistant cryptococcosis are scarce. We evaluate the influence of fluconazole on murine cryptococcosis and whether this azole alters the polysaccharide (PS) from cryptococcal cells. L27/01 strain of C. gattii was cultivated in high fluconazole concentrations and developed decreased drug susceptibility. This phenotype was named L27/01F, that was less virulent than L27/01 in mice. The physical, structural and electrophoretic properties of the PS capsule of L27/01F were altered by fluconazole. L27/01F presented lower antiphagocytic properties and reduced survival inside macrophages. The L27/01F did not affect the central nervous system, while the effect in brain caused by L27/01 strain began after only 12 hours. Mice infected with L27/01F presented lower production of the pro-inflammatory cytokines, with increased cellular recruitment in the lungs and severe pulmonary disease. The behavioral alterations were affected by L27/01, but no effects were detected after infection with L27/01F. Our results suggest that stress to fluconazole alters the capsule of C. gattii and influences the clinical manifestations of cryptococcosis. PMID:25392951

  2. Electrochemical behavior of the antifungal agents itraconazole, posaconazole and ketoconazole at a glassy carbon electrode.

    Science.gov (United States)

    Knoth, H; Scriba, G K E; Buettner, B

    2015-06-01

    The electrochemical behavior of the azole antifungal agents itraconazole, posaconazole and ketoconazole has been investigated at a glassy carbon working electrode using cyclic voltammetry. All measurements were carried out in a supporting electrolyte solution consisting of a 1:1 (v/v) mixture of 0.1 mol L(-1) sodium phosphate buffers and acetonitrile at various substance concentrations and pH values. An amperometric cell with a three electrode system consisting of a working electrode, a palladium reference electrode and a platinum disk as the auxiliary electrode was used in all experiments. All azoles showed a similar electrochemical behavior involving two reactions. An irreversible oxidation occurred at potentials of about 0.5V. A reduction peak was detected at potentials between -0.28V and -0.14V with an associated oxidation peak, which was observed in consecutive repeated measurements at potentials between -0.03 and 0.28 V. The reduction and corresponding oxidation can be regarded as a quasi-reversible process. The proposed reaction mechanisms are an irreversible oxidation of the piperazine moiety at higher potentials as well as a reduction at lower potentials of the carbonyl group of the triazolone moiety in the case of itraconazole and posaconazole or a reduction of the methoxy group of ketoconazole.

  3. Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection

    Science.gov (United States)

    de Castro, Patrícia Alves; Fortes, Vanessa Silveira; Bom, Vinícius Pedro; Nascimento, Andresa Piacezzi; Marquele-Oliveira, Franciane; Pedrazzi, Vinícius; Ramalho, Leandra Naira Zambelli; Goldman, Gustavo Henrique

    2013-01-01

    Vulvovaginal candidiasis is the second cause of vaginal infection in the USA. Clinical treatment of C. albicans infections is routinely performed with polyenes and azole derivatives. However, these drugs are responsible for undesirable side effects and toxicity. In addition, C. albicans azole and echinocandin resistance has been described. Propolis is a bee product traditionally used due to its antimicrobial, anti-inflammatory, and other properties. Therefore, the present work aimed to evaluate different propolis presentations in order to evaluate their in vitro and in vivo efficacy. The methodologies involved antifungal evaluation, chemical analysis, and the effects of the rheological and mucoadhesive properties of propolis based gels. The obtained results demonstrated the fungicide action of propolis extracts against all three morphotypes (yeast, pseudohyphae, and hyphae) studied. The highest level of fungal cytotoxicity was reached at 6–8 hours of propolis cell incubation. Among the based gel formulations developed, the rheological and mucoadhesive results suggest that propolis based carbopol (CP1%) and chitosan gels were the most pseudoplastic ones. CP1% was the most mucoadhesive preparation, and all of them presented low thixotropy. Results of in vivo efficacy demonstrated that propolis based gels present antifungal action similar to clotrimazole cream, suggesting that future clinical studies should be performed. PMID:23997797

  4. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans

    Science.gov (United States)

    Tournu, Helene; Carroll, Jennifer; Latimer, Brian; Dragoi, Ana-Maria; Dykes, Samantha; Cardelli, James; Peters, Tracy L.; Eberle, Karen E.; Palmer, Glen E.

    2017-01-01

    The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs). Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles) a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans. PMID:28151949

  5. Performance evaluation of multiplex PCR including Aspergillus-not so simple!

    Science.gov (United States)

    Alanio, Alexandre; Bretagne, Stéphane

    2017-01-01

    Multiplex PCRs have been designed for including species other than Aspergillus fumigatus for the diagnosis of invasive aspergillosis, such as microarrays, liquid-phase array, and electrospray-ionization mass spectrometry (PCR/ESI MS). These methods are based on the selection of multiple primers to amplify different species with the specificity checked by hybridization to a probe or by base composition of the amplicon for the PCR/ESI MS. When testing complex samples such as respiratory specimens, some clinically relevant species can be missed. Indeed, it is impossible to design primers able to amplify all the known fungal species with the same efficiency. Therefore, the best amplified species may not be the most clinically relevant. Multiplex assays have also been proposed to detect A. fumigatus DNA and azole resistance. Since the gene responsible for azole resistance is single copy and the gene used for detection is multicopy, only the high fungal loads can be evaluated. Thus, although interesting for investigating mycobiome, the multiplex assays should be used with cautious for the diagnosis of IA or the detection of resistance. For the diagnosis of invasive aspergillosis, validated quantitative PCRs specifically targeting A. fumigatus or a limited set of species to increase sensitivity is a safer option.

  6. Ground- and excited-state structural orientation of 2-(2`-hydroxyphenyl)benzazoles in cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.L.; Dey, J.; Warner, I.M. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-12

    The effects of {alpha}-, {beta}-, {gamma}-, and 2,6-di-O-methyl-{beta}-cyclodextrins (CDs) on the ground- and excited-state properties of 2-(2`-hydroxyphenyl)benzoxazole, 2-(2`-hydroxyphenyl)benzothiazole, and 2-(2`-hydroxyphenyl)benzimidazole in aqueous media are investigated. Steady-state fluorescence measurements are used to characterize the interaction of CDs with these azoles. Absorbance measurements indicate increased solubility of the azoles in aqueous solutions of CDs. Measurements of acidity constants (pK{sub a}) and data from induced circular dichroism indicate increased ground- and excited-state acidities of the phenolic protons of the molecules in the presence of CDs and axial orientation of the molecules within the CD cavity, respectively. The data further suggest a planar structure for HBO and a twisted confirmation for both HBT and HBI. The association constants of the inclusion complexes have also been estimated. These studies are further supplemented by comparative spectroscopic studies of 2-(2`-methoxyphenyl)benzothiazole in aqueous solutions of CDs. On the basis of the spectral data acquired, it is believed that the HBA molecules exist as zwitterionic tautomers in the presence of CDs. 35 refs., 6 figs., 2 tabs.

  7. Prophylaxis and treatment of invasive fungal infections in hematological patients

    Directory of Open Access Journals (Sweden)

    Alessandro Busca

    2013-01-01

    Full Text Available The evidence from the literature strongly support antifungal prophylaxis in high risk haematological patients, such as patients with AML during remission induction chemotherapy and alloHSCT patients. Current antifungal prophylaxis guidelines for high risk patients recommend azoles (fluconazole, posaconazole, voriconazole and echinocandins (micafungin with the strongest level of evidence. In terms of treatment, the choice between empiric therapy (or fever driven and pre-emptive therapy (or diagnostic driven is still debated. Not a single therapeutic strategy is appropriate in every patients, in particular empirical antifungal therapy may be recommended in patients at very high risk, while a pre-emptive approach may be advised for those at standard risk. In order to exploit the synergistic and/or additive effect of two antifungal drugs it’s possible to combine two agents that work with different mechanisms of action (e.g. echinocandins + azoles or polyenes. Once the treatment has been initiated we should consider the therapeutic drug monitoring (TDM of the drugs, especially when the pharmacokinetic variability is high and the dose-concentration effect relationships is not predictable (e.g. for itraconazole, voriconazole and posaconazole.

  8. Susceptibility profile of Candida spp. isolated from humans and dogs with stomatitis to the essential oil of Thymus vulgaris

    Directory of Open Access Journals (Sweden)

    Živković R.

    2013-01-01

    Full Text Available Candida spp. form a part of human and animal oral cavity flora. However Candida spp. is the main cause of dental related stomatitis in humans and stomatitis in dogs. Stomatitis treatment implies the use of azoles and polyenes to which yeasts build up resistance. The research is directed to the use of natural compounds such as essential oils. The aim of this paper is to define the antifungal activity of thyme oil on 15 clinical strains of Candida spp., isolated from humans and dogs and to determine if there is a difference in susceptibility between human and dog isolates. Sampling in patients with stomatitis was done by swabbing the denture or oral mucosa swab while sampling in dogs was done by swabbing the oral cavity mucosa after stomatitis has been diagnosed. In order to investigate the antifungal activity of thyme oil in vitro, microdilution method was used. Thyme oil expressed antifungal effects on all investigated strains. Also, our data show that the values of minimum fungicide concentration (MFC and minimum inhibitory concentration (MIC are lower in human strains. Explanation is that in most cases, stomatitis in humans is asymptomatic and thus not treated, so Candida strains have not developed resistance. On the other hand, stomatitis in dogs is followed by a marked clinical picture and treated is by antimicotics (mostly by azoles, therefore resistant Candida strains are more likely to occur.

  9. Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Rodrigues, Pedro Henrique de Aragão; de Alencar, Lucas Pereira; Riello, Giovanna Barbosa; Ribeiro, Joyce Fonteles; de Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Rocha, Marcos Fábio Gadelha; Cordeiro, Rossana de Aguiar; Moreira, José Luciano Bezerra; Sidrim, José Júlio Costa

    2015-12-01

    The aim of this study was to evaluate the antifungal susceptibility of Candida spp. recovered from tortoises (Chelonoidis spp.) and sea turtles (Chelonia mydas, Caretta caretta, Lepidochelys olivacea, Eretmochelys imbricata). For this purpose, material from the oral cavity and cloaca of 77 animals (60 tortoises and 17 sea turtles) was collected. The collected specimens were seeded on 2% Sabouraud dextrose agar with chloramphenicol, and the identification was carried out by morphological and biochemical methods. Sixty-six isolates were recovered from tortoises, out of which 27 were C. tropicalis, 27 C. famata, 7 C. albicans, 4 C. guilliermondii and 1 C. intermedia, whereas 12 strains were obtained from sea turtles, which were identified as Candida parapsilosis (n = 4), Candida guilliermondii (n = 4), Candida tropicalis (n = 2), Candida albicans (n = 1) and Candida intermedia (n = 1). The minimum inhibitory concentrations for amphotericin B, itraconazole and fluconazole ranged from 0.03125 to 0.5, 0.03125 to >16 and 0.125 to >64, respectively. Overall, 19 azole-resistant strains (14 C. tropicalis and 5 C. albicans) were found. Thus, this study shows that Testudines carry azole-resistant Candida spp.

  10. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans

    Indian Academy of Sciences (India)

    Avmeet Kohli; Vinita Gupta; Shankarling Krishnamurthy; Seyed E Hasnain; Rajendra Prasad

    2001-09-01

    CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p in Sf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, were independently expressed in a common hypersensitive host JG436 of Saccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.

  11. Improved Homology Model of the Human all-trans Retinoic Acid Metabolizing Enzyme CYP26A1

    Directory of Open Access Journals (Sweden)

    Mohamed K. A. Awadalla

    2016-03-01

    Full Text Available A new CYP26A1 homology model was built based on the crystal structure of cyanobacterial CYP120A1. The model quality was examined for stereochemical accuracy, folding reliability, and absolute quality using a variety of different bioinformatics tools. Furthermore, the docking capabilities of the model were assessed by docking of the natural substrate all-trans-retinoic acid (atRA, and a group of known azole- and tetralone-based CYP26A1 inhibitors. The preferred binding pose of atRA suggests the (4S-OH-atRA metabolite production, in agreement with recently available experimental data. The distances between the ligands and the heme group iron of the enzyme are in agreement with corresponding distances obtained for substrates and azole inhibitors for other cytochrome systems. The calculated theoretical binding energies agree with recently reported experimental data and show that the model is capable of discriminating between natural substrate, strong inhibitors (R116010 and R115866, and weak inhibitors (liarozole, fluconazole, tetralone derivatives.

  12. Pesticides in the Ebro River basin: Occurrence and risk assessment.

    Science.gov (United States)

    Ccanccapa, Alexander; Masiá, Ana; Navarro-Ortega, Alícia; Picó, Yolanda; Barceló, Damià

    2016-04-01

    In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g(-1)). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values pesticide residues present.

  13. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients.

    Directory of Open Access Journals (Sweden)

    Alexander J Moorhouse

    Full Text Available Chronic mucocutaneous candidiasis (CMC is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST. Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC.

  14. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

    KAUST Repository

    Kuo, Dwight

    2010-07-23

    Background: Fungal infections are an emerging health risk, especially those involving yeast that are resistant to antifungal agents. To understand the range of mechanisms by which yeasts can respond to anti-fungals, we compared gene expression patterns across three evolutionarily distant species - Saccharomyces cerevisiae, Candida glabrata and Kluyveromyces lactis - over time following fluconazole exposure. Results: Conserved and diverged expression patterns were identified using a novel soft clustering algorithm that concurrently clusters data from all species while incorporating sequence orthology. The analysis suggests complementary strategies for coping with ergosterol depletion by azoles - Saccharomyces imports exogenous ergosterol, Candida exports fluconazole, while Kluyveromyces does neither, leading to extreme sensitivity. In support of this hypothesis we find that only Saccharomyces becomes more azole resistant in ergosterol-supplemented media; that this depends on sterol importers Aus1 and Pdr11; and that transgenic expression of sterol importers in Kluyveromyces alleviates its drug sensitivity. Conclusions: We have compared the dynamic transcriptional responses of three diverse yeast species to fluconazole treatment using a novel clustering algorithm. This approach revealed significant divergence among regulatory programs associated with fluconazole sensitivity. In future, such approaches might be used to survey a wider range of species, drug concentrations and stimuli to reveal conserved and divergent molecular response pathways.

  15. Application of 2-Trichloromethylbenzimidazole in Analytical Chemistry: A Highly Selective Chromogenic Reagent for Thin-Layer Chromatography and Some Other Analytical Uses

    Directory of Open Access Journals (Sweden)

    Leszek Konopski

    2012-01-01

    Full Text Available 2-Trichloromethylbenzimidazole (TCMB was used as a chromogenic reagent in organic or inorganic analysis, mainly in thin-layer chromatography (TLC. In reactions of TCMB with some heteroaromatic nitrogen containing compounds, such as azines, azoles and benzazoles, a formation of high colored products occurred. For azines, the chromogenic reaction was highly regioselective, since the both adjacent α-positions versus the nitrogen atom(s must not be substituted. A TLC method of detection was developed. Thirty azines, azoles, and benzazoles were detected at the detection limit 10 ng to 1 μg. This method was also applied for detection of heteroaromatic pesticides, and the attempts to construct active and passive dosimeters for nicotine were made. In a prechromatographic reaction of aromatic o-diamines with methyl trichloroacetimidate, TCMB or its derivatives were formed in situ. Followed by TLC and visualization in pyridine vapors, this procedure was applied for detection of o-phenylenediamine derivatives. The reaction product of TCMB and pyridine (LI Complex was identified and fully characterized. Two different reaction mechanisms: with electron deficient basic heteroaromatic compounds, like pyridine, and with more acidic compounds, for example, pyrrole, were discussed. In aqueous solutions, the LI Complex may be also used as a new indicator for complexometric, adsorption and acid-base titration of inorganic compounds.

  16. Aspergillus fumigatus Intrinsic Fluconazole Resistance Is Due to the Naturally Occurring T301I Substitution in Cyp51Ap.

    Science.gov (United States)

    Leonardelli, Florencia; Macedo, Daiana; Dudiuk, Catiana; Cabeza, Matias S; Gamarra, Soledad; Garcia-Effron, Guillermo

    2016-09-01

    Aspergillus fumigatus intrinsic fluconazole resistance has been demonstrated to be linked to the CYP51A gene, although the precise molecular mechanism has not been elucidated yet. Comparisons between A. fumigatus Cyp51Ap and Candida albicans Erg11p sequences showed differences in amino acid residues already associated with fluconazole resistance in C. albicans The aim of this study was to analyze the role of the natural polymorphism I301 in Aspergillus fumigatus Cyp51Ap in the intrinsic fluconazole resistance phenotype of this pathogen. The I301 residue in A. fumigatus Cyp51Ap was replaced with a threonine (analogue to T315 at Candida albicans fluconazole-susceptible Erg11p) by changing one single nucleotide in the CYP51A gene. Also, a CYP51A knockout strain was obtained using the same parental strain. Both mutants' antifungal susceptibilities were tested. The I301T mutant exhibited a lower level of resistance to fluconazole (MIC, 20 μg/ml) than the parental strain (MIC, 640 μg/ml), while no changes in MIC were observed for other azole- and non-azole-based drugs. These data strongly implicate the A. fumigatus Cyp51Ap I301 residue in the intrinsic resistance to fluconazole.

  17. Posaconazole: An Update of Its Clinical Use

    Directory of Open Access Journals (Sweden)

    Simon Leung

    2015-10-01

    Full Text Available Posaconazole (PCZ is a relatively new addition to the azole antifungals. It has fungicidal activities against Aspergillus fumigatus, Blastomyces dermatitidis, selected Candida species, Crytopcoccus neoformans, and Trichosporon. PCZ also has fungistatic activities against Candida, Coccidioides, selected Fusarium spp., Histoplasma, Scedosporium and Zygomycetes. In addition, combining the drug with caspofungin or amphotericin B results in a synergistic interaction against A. fumigatus, C. glabrata and C. neoformans. The absorption of PCZ suspension is enhanced when given with food, nutritional supplements, and carbonated beverages. Oral administration of PCZ in divided doses also increases its bioavailability. PCZ has a large volume of distribution and is highly protein bound (>95%. The main elimination route of PCZ is fecal. PCZ is an inhibitor of the CYP3A4 enzyme; therefore, monitoring for drug-drug interactions is warranted with other CYP3A4 substrates/inhibitors/inducers. The most common adverse effects include headache, fatigue, nausea, vomiting and elevated hepatic enzymes. PCZ, with its unique antifungal activities, expands the azole class of antifungal agents. Because of its limit in formulation, PCZ oral suspension is recommended in immunocompromised patients with functional gastrointestinaltracts who fail conventional antifungal therapies or who are suspected to have a breakthrough fungal infection. However, a delayed-release tablet formulation and intravenous (IV injection became available in 2014, expanding the use of PCZ in other patient populations, including individuals who are unable to take oral formulations.

  18. Posaconazole-Vincristine Coadministration Triggers Seizure in a Young Female Adult: A Case Report

    Directory of Open Access Journals (Sweden)

    Dalia A. Hamdy

    2012-01-01

    Full Text Available Coadministration of azoles and vincristine has been shown to increase vincristine neurotoxic effects due to the inhibition of cytochrome P450 (CYP isoform 3A4, for which vincristine is a substrate. Despite the absence of any casual relationship between seizure and coadministration of azoles, few case reports of vincristine-induced seizure have been documented after coadministration of fluconazole or posaconazole in children. In this paper we are reporting the first young female adult who experienced generalized seizure after coadministration of posaconazole and vincristine. The 19-year-old female was diagnosed with acute lymphoblastic leukemia. She started induction phase of Berlin Frankfurt Muenster protocol along with posaconazole 200 mg three times daily as prophylactic antifungal therapy. Five days after the third vincristine dose, she developed generalized seizure accompanied by high blood pressure and SIADH. Her neurological exam/CT scan did not show any abnormality. In conclusion, this study reports a novel finding in the sense that all previous case reports pertaining to posaconazole-vincristine-induced seizure in literature involved children. Physicians should be made aware of this rare possible outcome to closely monitor their patients and take appropriate measures to prevent such possible adverse effect.

  19. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Rex, John H; Pappas, Peter G; Hamill, Richard J; Larsen, Robert A; Horowitz, Harold W; Powderly, William G; Hyslop, Newton; Kauffman, Carol A; Cleary, John; Mangino, Julie E; Lee, Jeannette

    2003-10-01

    Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

  20. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  1. Fluconazole alters the polysaccharide capsule of Cryptococcus gattii and leads to distinct behaviors in murine Cryptococcosis.

    Science.gov (United States)

    Santos, Julliana Ribeiro Alves; Holanda, Rodrigo Assunção; Frases, Susana; Bravim, Mayara; Araujo, Glauber de S; Santos, Patrícia Campi; Costa, Marliete Carvalho; Ribeiro, Maira Juliana Andrade; Ferreira, Gabriella Freitas; Baltazar, Ludmila Matos; Miranda, Aline Silva; Oliveira, Danilo Bretas; Santos, Carolina Maria Araújo; Fontes, Alide Caroline Lima; Gouveia, Ludmila Ferreira; Resende-Stoianoff, Maria Aparecida; Abrahão, Jonatas Santos; Teixeira, Antônio Lúcio; Paixão, Tatiane Alves; Souza, Danielle G; Santos, Daniel Assis

    2014-01-01

    Cryptococcus gattii is an emergent human pathogen. Fluconazole is commonly used for treatment of cryptococcosis, but the emergence of less susceptible strains to this azole is a global problem and also the data regarding fluconazole-resistant cryptococcosis are scarce. We evaluate the influence of fluconazole on murine cryptococcosis and whether this azole alters the polysaccharide (PS) from cryptococcal cells. L27/01 strain of C. gattii was cultivated in high fluconazole concentrations and developed decreased drug susceptibility. This phenotype was named L27/01F, that was less virulent than L27/01 in mice. The physical, structural and electrophoretic properties of the PS capsule of L27/01F were altered by fluconazole. L27/01F presented lower antiphagocytic properties and reduced survival inside macrophages. The L27/01F did not affect the central nervous system, while the effect in brain caused by L27/01 strain began after only 12 hours. Mice infected with L27/01F presented lower production of the pro-inflammatory cytokines, with increased cellular recruitment in the lungs and severe pulmonary disease. The behavioral alterations were affected by L27/01, but no effects were detected after infection with L27/01F. Our results suggest that stress to fluconazole alters the capsule of C. gattii and influences the clinical manifestations of cryptococcosis.

  2. Evaluation of Susceptibility of Strains of Candida Albicans Isolated from AIDS Patients to Fluconazole and Determination of CDR2 Resistance Gene in Resistant Strains by RT-PCR Method

    Directory of Open Access Journals (Sweden)

    E Farahbakhsh

    2011-08-01

    Full Text Available Introduction & Objective: Nowadays, opportunistic fungi especially Candida albicans are the most common cause of life-threatening infections in immunodeficiency patients. Increasing Azole-resistant strains of C.albicans are a main problem in human immunodeficiency virus-infected patients. The aim of this study was to evaluate the CDR2 gene in C.albicans azole resistant strains, isolated from AIDS patients with oropharyngeal candidiasis by RT-PCR method. Materials & Methods: The present experimental study was conducted at Tarbiat Modares University of Medical Sciences in 2009. C. albicans isolates from HIV infected patients were identified by standard procedures, including germ tube formation, clamidospor and color of colonies on CHROM agar. At first, susceptibility of C. albicans isolates was assessed by disk diffusion agar technique. Then, CDR2 resistance gene was analyzed by RT-PCR and electrophoresis of the PCR products. Finally, patterns of the resulted bands were compared with standard fluconazole resistant strains. The collected data was analyzed using the SPSS software. Results: The results of drug sensitivity of 66 C. albicans isolates from AIDS patients revealed that 62.6% were susceptible, 8.6% were susceptible-dose dependent (SDD and 28.7% were resistant. In RT-PCR analysis, 6% of patients had the CDR2 gene. Conclusion: The use of phenotypic methods like disk diffusion agar, which is cheaper, along with genotypic methods, like RT-PCR, which provide the possibility of studying the mechanism of drug resistance, is recommended.

  3. Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

    Science.gov (United States)

    Rosana, Yeva; Yasmon, Andi; Lestari, Delly Chipta

    2015-09-01

    Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of ERG11, CDR1, CDR2 and MDR1 gene overexpression and mutations in the ERG11 gene as a genetic mechanism of fluconazole resistance in Candida albicans isolated from HIV patients in Indonesia. Overexpression of ERG11, CDR1, CDR2 and MDR1 was analysed by real-time reverse transcription PCR, while ERG11 gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of C. albicans isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of ERG11 was found in C. albicans resistant to single fluconazole, while the highest gene overexpression of CDR2 was detected in all isolates of C. albicans resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of CDR2 and ERG11 and mutation in the ERG11 gene was found to be a genetic mechanism of fluconazole resistance in C. albicans isolated from HIV patients in Indonesia.

  4. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer; Kleshchenko, Yuliya; Furtak, Vyacheslav; Wawrzak, Zdzislaw; Villalta, Fernando; Waterman, Michael R. (Vanderbilt); (NWU); (Meharry)

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.

  5. The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels

    Directory of Open Access Journals (Sweden)

    Lulu Dai

    2015-05-01

    Full Text Available Leptographium qinlingensis is a fungal associate of the Chinese white pine beetle (Dendroctonus armandi and a pathogen of the Chinese white pine (Pinus armandi that must overcome the terpenoid oleoresin defenses of host trees. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include export and the use of these compounds as a carbon source. As one of the fungal cytochrome P450 proteins (CYPs, which play important roles in general metabolism, CYP51 (lanosterol 14-α demethylase can catalyze the biosynthesis of ergosterol and is a target for antifungal drug. We have identified an L. qinlingensis CYP51F1 gene, and the phylogenetic analysis shows the highest homology with the 14-α-demethylase sequence from Grosmannia clavigera (a fungal associate of Dendroctonus ponderosae. The transcription level of CYP51F1 following treatment with terpenes and pine phloem extracts was upregulated, while using monoterpenes as the only carbon source led to the downregulation of CYP5F1 expression. The homology modeling structure of CYP51F1 is similar to the structure of the lanosterol 14-α demethylase protein of Saccharomyces cerevisiae YJM789, which has an N-terminal membrane helix 1 (MH1 and transmembrane helix 1 (TMH1. The minimal inhibitory concentrations (MIC of terpenoid and azole fungicides (itraconazole (ITC and the docking of terpenoid molecules, lanosterol and ITC in the protein structure suggested that CYP51F1 may be inhibited by terpenoid molecules by competitive binding with azole fungicides.

  6. Evaluation of Mucoadhesive Gels with Propolis (EPP-AF in Preclinical Treatment of Candidiasis Vulvovaginal Infection

    Directory of Open Access Journals (Sweden)

    Andresa Aparecida Berretta

    2013-01-01

    Full Text Available Vulvovaginal candidiasis is the second cause of vaginal infection in the USA. Clinical treatment of C. albicans infections is routinely performed with polyenes and azole derivatives. However, these drugs are responsible for undesirable side effects and toxicity. In addition, C. albicans azole and echinocandin resistance has been described. Propolis is a bee product traditionally used due to its antimicrobial, anti-inflammatory, and other properties. Therefore, the present work aimed to evaluate different propolis presentations in order to evaluate their in vitro and in vivo efficacy. The methodologies involved antifungal evaluation, chemical analysis, and the effects of the rheological and mucoadhesive properties of propolis based gels. The obtained results demonstrated the fungicide action of propolis extracts against all three morphotypes (yeast, pseudohyphae, and hyphae studied. The highest level of fungal cytotoxicity was reached at 6–8 hours of propolis cell incubation. Among the based gel formulations developed, the rheological and mucoadhesive results suggest that propolis based carbopol (CP1% and chitosan gels were the most pseudoplastic ones. CP1% was the most mucoadhesive preparation, and all of them presented low thixotropy. Results of in vivo efficacy demonstrated that propolis based gels present antifungal action similar to clotrimazole cream, suggesting that future clinical studies should be performed.

  7. Limitations of caspofungin in the treatment of obstructive pyonephrosis due to Candida glabrata infection

    Directory of Open Access Journals (Sweden)

    Ross Calum N

    2006-08-01

    Full Text Available Abstract Background Caspofungin is a new antifungal agent with high-level activity against a number of Candida species including those that are resistant to azoles. Its good safety profile and low nephrotoxicity makes it an attractive drug to treat fungal infections in patients with compromised renal function. However, little is known about the clinical efficacy in the treatment of complicated urinary tract infections due to Candida species such as pyonephrosis. Case presentation We report a case of obstructive pyonephrosis due to an azole (fluconazole and itraconazole resistant Candida glabrata strain that failed to respond to intravenous treatment with caspofungin. A sustained clinical and microbiological response was only achieved after percutaneous drainage and instillation of amphotericin B deoxycholate into the renal pelvis in combination with intravenous liposomal amphotericin B. Conclusion This case demonstrates the limitation of intravenous antifungal agents such as caspofungin as the sole treatment of an obstructive upper urinary tract infection due to Candida species. In order to achieve long term sustained cure from an obstructive pyonephrosis, pus and fungal balls should be drained and an anti-fungal agent such as amphotericin B deoxycholate instilled locally. The pharmacokinetics and role of caspofungin in the treatment of complicated Candida urinary tract infection is reviewed.

  8. Environmental impact of pesticides after sewage treatment plants removal in four Spanish Mediterranean rivers

    Science.gov (United States)

    Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda; Andreu, Vicente

    2013-04-01

    The re-use of sewage treatment plant (STP) effluents is currently one of the most employed strategies in several countries to deal with the water shortage problem. Some pesticides are bio-accumulative and due to their toxicity they can affect non-target organisms, especially in the aquatic ecosystems, threating their ecological status. Despite these facts, and to our knowledge, there are few peer-reviewed articles that report concentrations of pesticides in Spanish STPs. This work presents the results of an extensive survey that was carried out in October of 2010 in 15 of the STPs of Ebro, Guadalquivir, Jucar and Llobregat rivers in Spain. Forty-three currently used pesticides, belonging to anilide, neonicotinoid, thiocarbamate, acaricide, juvenile hormone mimic, insect growth regulator, urea, azole, carbamate, chloroacetanilide, triazine and organophosphorus, have been monitored. Integrated samples of influent and effluent, and dehydrated, lyophilized sludge from 15 STPs located along the rivers were analyzed for pesticide residues. With these data, removal efficiencies are also calculated. Extraction of water samples was performed through Solid Phase Extraction (SPE) and sludge samples were extracted using the QuEchERS method. Pesticide determination was carried out using Liquid Chromatograph - tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 48% to 70%, in water samples, and from 40 to 105 %, in sludge samples. The limits of quantification were 0.01-5 ng L-1 for the former, and 0.1-5.0 ng g-1 for the latter. In terms of frequency of detection, 31 analytes were detected in influent, 29 in effluent and 11 in sludge samples. Organophosphorus pesticides were the most frequently detected in all wastewater samples, but azole, urea, triazine, neonicotinoid and the insect growth regulator were also commonly found. Imazalil revealed the maximum concentration in wastewater samples from all rivers except the Guadalquivir, in which diuron presented the maximum

  9. MDR- and CYP3A4-mediated drug-drug interactions.

    Science.gov (United States)

    Pal, Dhananjay; Mitra, Ashim K

    2006-09-01

    P-glycoprotein (P-gp), multiple drug resistance associated proteins (MRPs), and cytochrome P450 3A4 together constitute a highly efficient barrier for many orally absorbed drugs. Multidrug regimens and corresponding drug-drug interactions are known to cause many adverse drug reactions and treatment failures. Available literature, clinical reports, and in vitro studies from our laboratory indicate that many drugs are substrates for both P-gp and CYP3A4. Our primary hypothesis is that transport and metabolism of protease inhibitors (PIs) and NNRTIs will be altered when administered in combination with azole antifungals, macrolide, fluroquinolone antibiotics, statins, cardiovascular agents, immune modulators, and recreational drugs [benzodiazepines, cocaine, lysergic acid dithylamide (LSD), marijuana, amphetamine (Meth), 3,4-methylenedioxymethamphetamine (MDMA), and opiates] due to efflux, and/or metabolism at cellular targets. Therefore, such drug combinations could be a reason for the unexpected and unexplainable therapeutic outcomes. A number of clinical reports on drug interaction between PIs and other classes (macrolide antibiotics, azole antifungals, cholesterol lowering statins, cardiovascular medicines, and immunomodulators) are discussed in this article. MDCKII-MDR1 was employed as an in vitro model to evaluate the effects of antiretrovirals, azole antifungals, macrolide, and fluroquinolone antibiotics on efflux transporters. Ketoconazole (50 muM) enhanced the intracellular concentration of (3)H ritonavir. The inhibitory effects of ketoconazole and MK 571 on the efflux of (3)H ritonavir were comparable. An additive effect was observed with simultaneous incorporation of ketoconazole and MK 571. Results of (3)H ritonavir uptake studies were confirmed with transcellular transport studies. Several fluroquinolones were also evaluated on P-gp-mediated efflux of (3)H cyclosporin and 14C erythromycin. These in vitro studies indicate that grepafloxacin, levofloxacin

  10. Mutation analysis of ERG 11 gene in Candida albicans isolates from patients with acquired immunodeficiency syndrome (AIDS)%艾滋病患者白念珠菌ERG11基因突变的研究

    Institute of Scientific and Technical Information of China (English)

    王丽; 惠艳; 张丽娟; 张巧巧; 邓淑文; 帕丽达·阿布利孜; 王慧

    2012-01-01

    目的 探讨艾滋病患者的白念珠菌唑类耐药株中唑类抗真菌药物(氟康唑、伊曲康唑、伏立康唑)的作用靶位基因ERG 11基因突变与耐药的关系.方法 用PCR对临床分离的93株白念珠菌的Erg11基因进行扩增、测序,DNAman软件将测序结果与基因库中的X13296进行比对,将突变碱基翻译为氨基酸,确定是否发生错义突变.结果 共检出40个碱基突变位点,包括27个同义突变位点和13个错义突变位点.耐一种药物的突变菌株中每株菌只发生一处错义突变或无错义突变,而耐二种或三种药物的菌株中每株菌还可以同时出现两处或三处错义突变.结论 ERG 11基因错义突变与白念珠菌耐药有关.%Objective To investigate the relationship between the mutation of ERG11 gene,a target of azole antifungal drugs (fluconazole,itraconazole,voriconazole),and azole-resistance in Candida albicans isolates from patients with AIDS.Methods Ninety-three Candida albicans strains were isolated from patients with AIDS.DNA was extracted from these isolates,and ERG11 gene was amplified by PCR followed by bidirectional sequencing.DNAman software was used to compare the resultant sequence with the reference sequence of ERG11 gene (GenBank accession no.X13296).Then,different base sequences were translated into amino acid sequences to determine whether missense mutations occured.Results A total of 40 mutation sites were identified in these isolates,including 27 silent mutations and 13 missense mutations.One or no missense mutation was detected in Candida albicans strains resistant to 1 antifungal agent,while those resistant to 2 or 3 antifungal agents simultaneously harbored 2 or 3 missense mutations.Conclusion The missense mutations in ERG11 gene are probably connected with azole resistance in Candida albicans.

  11. The difficulties of polytherapy: examples from antimicrobial chemotherapy.

    Science.gov (United States)

    Mazzei, Teresita

    2011-10-01

    Medical therapy in patients with more than one pathology means using more pharmaceuticals, which results in a higher risk of drug interactions which are modifications in the action of one drug when it is administered in the presence of another. The consequences can be diminished therapeutic effect or increased adverse reactions. The pharmacological interactions can be either physico-chemical, pharmacokinetic or pharmacodynamic, on the basis of their mechanisms. Pharmacokinetic interactions are the most important and can emerge during various phases of absorption, distribution, metabolism and drug elimination. The absorption of many antimicrobial agents can be modified through various mechanisms. Some drugs (for example the anticholinergics and opiates) or food can slow gastric motility, slowing the absorption and reducing maximum concentrations of the antibiotic. Variations in gastric pH can alter the solubility or chemical stability of molecules such as the beta-lactams, the natural macrolides and some azoles. The bioavailability of these drugs can be reduced due to molecules used to raise gastric pH. Antibiotics such as tetracycline or the fluoroquinolones have reduced bioavailability due to chelation from bi- and trivalent cations. The primary number of clinically relevant pharmacological interactions is correlated with modifications of biotransformation of drugs due to Cytochrome P450 (CYP) hepatic enzymes which are involved in oxidative drug processes, including lipophilic antimicrobial drugs such as the macrolides, the fluoroquinolones (to be considered amphoteric) and the antifungal azole derivatives. CYP3A is probably one of the most important isoenzymes since it contributes to at least the partial transformation of 60% of drugs that undergo oxidation: erythromycin and clarithromycin are CYP3A4 substrates. Many isoenzymes can also be inhibited by antimicrobial drugs, including both antibacterials and antifungals (for example the macrolides, fluoroquinolones

  12. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.

    Directory of Open Access Journals (Sweden)

    Thomas Lettner

    Full Text Available BACKGROUND: Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE: The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it

  13. Quantitative Analysis of Single-Nucleotide Polymorphism for Rapid Detection of TR34/L98H- and TR46/Y121F/T289A-Positive Aspergillus fumigatus Isolates Obtained from Patients in Iran from 2010 to 2014.

    Science.gov (United States)

    Mohammadi, Faezeh; Hashemi, Seyed Jamal; Zoll, Jan; Melchers, Willem J G; Rafati, Haleh; Dehghan, Parvin; Rezaie, Sasan; Tolooe, Ali; Tamadon, Yalda; van der Lee, Henrich A; Verweij, Paul E; Seyedmousavi, Seyedmojtaba

    2015-11-02

    We employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with a substitution at codon L98) and the TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with substitutions at codons Y121 and T289) among clinical Aspergillus fumigatus isolates obtained from different regions of Iran over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172 clinical A. fumigatus isolates were investigated using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, the cyp51A gene and its promoter were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in the cyp51A gene of all isolates. Of the 172 A. fumigatus isolates tested, the MIC values of itraconazole (≥16 mg/liter) and voriconazole (>4 mg/liter) were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in the cyp51A genes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of the cyp51A gene confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was not a significant increase in the prevalence of azole-resistant A. fumigatus isolates harboring the TR34/L98H resistance mechanism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single

  14. An experimental and clinical assay with ketoconazole in the treatment of Chagas disease

    Directory of Open Access Journals (Sweden)

    Zigman Brener

    1993-03-01

    Full Text Available Ketoconazole an azole antifungic drug which is already in the market has also been demonstrated to be active against Trypanossoma cruzi experimental infections. In this paper we confirmed the drug effect and investigated its range of activity against different T. cruzi strains naturally resistant or susceptible to both standard drugs Nifurtimox and Benznidazole used clinically in Chagas disease. Moreover, we have shown that the association of Ketoconazole plus Lovastatin (an inhibitor of sterol synthesis, which has an antiproliferative effect against T. cruzi in vitro, failed to enhance the supressive effect of Ketoconazole displayed when administered alone to infected mice. Finally, administration in chronic chagasic patients of Ketoconazole at doses used in the treatment of deep mycosis also failed to induce cure as demonstrated by parasitological and serological tests. The strategy of identify and test drugs which are already in the market and fortuitously are active against T. cruzi has been discussed.

  15. Triazole antifungals: a review.

    Science.gov (United States)

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole.

  16. High-Pressure Synthesis of a Pentazolate Salt

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; Zaug, Joseph M.; Prakapenka, Vitali B.; Oleynik, Ivan I.

    2017-01-24

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5–, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.

  17. [Fungal infections in children with malignant disease].

    Science.gov (United States)

    Michel, G

    2011-05-01

    Intensified chemotherapy and hematopoietic stem cell transplantation result in severe and prolonged granulocytopenia with an increased risk of invasive fungal infections. The major fungal species that cause serious infections in cancer patients are Candida species and Aspergillus species. The main features of Candida infection in this context are oropharyngeal candidiasis and Candida esophagitis, chronic disseminated candidiasis, also known as hepatosplenic candidiasis, and candidemia. Aspergillus can cause severe lung infection but also sinusal or CNS infection. Because invasive fungal infections are severe and often life-threatening, preventive and empirical managements have become standard practice. An increasing number of antifungal drugs is now available, notably lipid formulations of amphotericin B (liposomal amphotericin B), new azoles with broad spectrum of activity and echinocandin.

  18. Susceptibility to Melaleuca alternifolia (tea tree) oil of yeasts isolated from the mouths of patients with advanced cancer.

    Science.gov (United States)

    Bagg, Jeremy; Jackson, Margaret S; Petrina Sweeney, M; Ramage, Gordon; Davies, Andrew N

    2006-05-01

    Yeasts that are resistant to azole antifungal drugs are increasingly isolated from the mouths of cancer patients suffering from oral fungal infections. Tea tree oil is an agent possessing antimicrobial properties that may prove useful in the prevention and management of infections caused by these organisms. In this study, 301 yeasts isolated from the mouths of 199 patients suffering from advanced cancer were examined by an in vitro agar dilution assay for susceptibility to tea tree oil. All of the isolates tested were susceptible, including 41 that were known to be resistant to both fluconazole and itraconazole. Clinical studies of tea tree oil as an agent for the prevention and treatment of oral fungal infections in immunocompromised patients merit consideration.

  19. Synthesis, DNA-binding and photocleavage studies of ruthenium(Ⅱ) complexes [Ru(btz)3]2+ and [Ru(btz)(dppz)2]2+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new ruthenium(Ⅱ) complexes, [Ru(btz)3](ClO4)2 (1) and [Ru(btz)(dppz)2](ClO4)2 (2) (btz = 4,4′-bithi-azole, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), have been synthesized and characterized by elemental analysis, 1H NMR, ES-MS and X-ray crystallography. The DNA binding behaviors of two complexes have been studied by spectroscopic and viscosity measurements. The results suggest that complex 1 binds to CT-DNA via an electrostatic mode, while complex 2 via an intercalative mode. Under irradiation at 365 nm, both complexes were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form Ⅰ to nicked form Ⅱ. The mechanism studies reveal that singlet oxygen 1O2 and hydroxyl radical (OH-) play a significant role in the photocleavage process.

  20. 泮托拉唑联合复方丹参治疗胃溃疡的临床分析%Clinical Analysis of Pantoprazole Combined with Compound Danshen in Treatment of Gastric Ulcer

    Institute of Scientific and Technical Information of China (English)

    丁晓云; 罗建平; 王舒云; 袁珍娥

    2013-01-01

    Objective:To study the compound salvia miltiorrhiza combined with diazepam tora clinical curative effect of treatment for gastric ulcer. Method:A retrospective analysis of our hospital in recent years,diagnosed and treated 86 patients with gastric ulcer,of which 43 cases were treated with pantoprazole treatment oceanic record for the control group. The other 43 cases with diazepam tora azole sodium enteric-coated metformin hydrochloride in compound danshen dropping pill+healer for combined group. To compare the two groups of clinical curative effect and drug safety situation. Result:The combined group the cure rate was 27.9%,the total efficiency of 90.7%,higher than in the control group(P<0.05);void rate of 9.3%,significantly lower than the control group 16.3%(P<0.01). Joint group of adverse drug reaction of 16.3%,no significant difference compared with the control group of 18.6%. Conclusion:Diazepam tora azole panxi tora azole+compound danshen dropping pill treatment of gastric ulcer clinical efficacy is superior to single panxi tora azole therapy,and drug safety guaranteed,is worthy of popularization and application.%目的:研究复方丹参联合泮托拉唑治疗胃溃疡的临床疗效。方法:回顾性分析本院近年确诊并收治的胃溃疡患者86例,其中43例采用洋托拉唑治疗者为对照组,另43例采用泮托拉唑钠肠溶片+复方丹参滴丸治疗者为联合组,比较两组临床疗效及用药安全性情况。结果:联合组治愈率27.9%、总有效率90.7%,均明显高于对照组(P<0.05);无效率9.3%,显著低于对照组的16.3%(P<0.01)。联合组用药不良反应16.3%,与对照组的18.6%比较差异无统计学意义。结论:泮托拉唑+复方丹参滴丸治疗胃溃疡临床疗效明显优于单一的泮托拉唑疗法,且用药安全性有保障,值得推广应用。

  1. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: patients with HIV infection or AIDS.

    Science.gov (United States)

    Lortholary, O; Petrikkos, G; Akova, M; Arendrup, M C; Arikan-Akdagli, S; Bassetti, M; Bille, J; Calandra, T; Castagnola, E; Cornely, O A; Cuenca-Estrella, M; Donnelly, J P; Garbino, J; Groll, A H; Herbrecht, R; Hope, W W; Jensen, H E; Kullberg, B J; Lass-Flörl, C; Meersseman, W; Richardson, M D; Roilides, E; Verweij, P E; Viscoli, C; Ullmann, A J

    2012-12-01

    Mucosal candidiasis is frequent in immunocompromised HIV-infected highly active antiretroviral (HAART) naive patients or those who have failed therapy. Mucosal candidiasis is a marker of progressive immune deficiency. Because of the frequently marked and prompt immune reconstitution induced by HAART, there is no recommendation for primary antifungal prophylaxis of mucosal candidiasis in the HIV setting in Europe, although it has been evidenced as effective in the pre-HAART era. Fluconazole remains the first line of therapy for both oropharyngeal candidiasis and oesophageal candidiasis and should be preferred to itraconazole oral solution (or capsules when not available) due to fewer side effects. For patients who still present with fluconazole-refractory mucosal candidiasis, oral treatment with any other azole should be preferred based on precise Candida species identification and susceptibility testing results in addition to the optimization of HAART when feasible. For vaginal candidiasis, topical therapy is preferred.

  2. Practical aspects of apixaban use in clinical practice: continuing the theme

    Directory of Open Access Journals (Sweden)

    S. N. Bel'diev

    2015-01-01

    Full Text Available Currently there are no generally accepted guidelines for the use of apixaban together with CYP3A4 and/or P-glycoprotein (P-gp inhibitors. Analysis of clinical and pharmacological studies suggests that apixaban dose should be reduced to 2.5 mg twice daily when co-administered with a strong CYP3A4 and P-gp inhibitors, such as azole antimycotics, HIV protease inhibitors and clarithromycin. However, it is preferred to avoid apixaban combination with strong CYP3A4 and P-gp inhibitors in patients with a creatinine clearance (CrCl <30 mL/min. According to preliminary calculations, apixaban dose should also be adjusted in patients with CrCl <70-80 ml/min, receiving less potent inhibitors of CYP3A4 and/or P-gp, such as diltiazem, naproxen, verapamil, amiodarone and quinidine. 

  3. Trichophyton tonsurans-Ringworm in an NICU.

    Science.gov (United States)

    Sproul, Ann Vivian; Whitehall, John; Engler, Cathy

    2009-01-01

    Ringworm is very rarely found in the neonate, especially infants who have been confined from birth to an intensive care unit. We report an infection with the dermatophyte Trichophyton tonsurans, the most common cause of tinea capitis in children but not yet described in a premature baby who has never left the nursery. Our case illustrates the need to consider this diagnosis among the causes of dermatitis in the newborn, especially in at-risk populations such as indigenous Australians. Though our infant's presentation was the classic "ring" shape, a literature review revealed varied presentations. In contrast to the usual need for long-term antifungal medication, our case responded rapidly to a topical azole preparation. Although we did not screen visiting family members, screening would have been appropriate, and those found positive might have benefited from at least antifungal shampoo.

  4. [Role of voriconazole in critically ill patients with invasive mycoses].

    Science.gov (United States)

    Alvarez Lerma, Francisco

    2007-09-30

    This observational study of the use of voriconazole conducted in Spain has identified reasons, characteristics, and forms of use of voriconazole in critically ill patients admitted to the ICU. Voriconale was used for directed treatment (63%), by the intravenous route (75%), as rescue treatment (41%) in severely ill patients (APACHE 21) with high need of resources and therapeutic interventions. Satisfactory clinical response was obtained in 50% of cases, related adverse events were scarce (16%), and withdrawal of voriconazole was not necessary. Clinical indications included empirical, etiologic, and rescue treatment of infections caused by Aspergillus, Candida albicans and most species different than C. albicans. Voriconazole can be used for preemptive therapy in patients at risk of invasive candidasis. When selecting voriconazole, liver function, renal function (i.v. formulation) and history of azoles use should be considered, although none of these circumstances is an absolute contraindication for the prescription of voriconazole in critically ill patients.

  5. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42.

    Science.gov (United States)

    Scholz, Romy; Molohon, Katie J; Nachtigall, Jonny; Vater, Joachim; Markley, Andrew L; Süssmuth, Roderich D; Mitchell, Douglas A; Borriss, Rainer

    2011-01-01

    Here we report on a novel thiazole/oxazole-modified microcin (TOMM) from Bacillus amyloliquefaciens FZB42, a Gram-positive soil bacterium. This organism is well known for stimulating plant growth and biosynthesizing complex small molecules that suppress the growth of bacterial and fungal plant pathogens. Like microcin B17 and streptolysin S, the TOMM from B. amyloliquefaciens FZB42 undergoes extensive posttranslational modification to become a bioactive natural product. Our data show that the modified peptide bears a molecular mass of 1,335 Da and displays antibacterial activity toward closely related Gram-positive bacteria. A cluster of 12 genes that covers ∼10 kb is essential for the production, modification, export, and self-immunity of this natural product. We have named this compound plantazolicin (PZN), based on the association of several producing organisms with plants and the incorporation of azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide.

  6. [General epidemiology of invasive fungal disease].

    Science.gov (United States)

    Pemán, Javier; Salavert, Miguel

    2012-02-01

    Invasive mycoses associated with high morbidity and mortality rates are increasing among immunocompromised or severely ill patients. Candida, Cryptococcus, Pneumocystis and Aspergillus are most prevalent agents with varying distribution as regards geography, patient condition and hospital units. The latest multicentre candidaemia survey conducted in Spain, showed C. albicans as the most frequently isolated species followed by C. parapsilosis, C. glabrata, C. tropicalis and C. krusei in contrast with other European or American studies where C. glabrata was second in rank. Aspergillus spp. is the leading agent causing invasive mycoses among filamentous fungi followed by Fusarium spp., Scedosporium spp. and zygomycetes. Aspergillus fumigatus is the most common agent in invasive aspergillosis (and azole-resistant isolates have been reported) but in the last few years Aspergillus flavus, Aspergillus nidulans and Aspergillus terreus have been isolated with increasing frequency variable with geographical factors, patients' underlying conditions or previous antifungal treatments.

  7. Role of inhaled amphotericin in allergic bronchopulmonary aspergillosis

    Directory of Open Access Journals (Sweden)

    I S Sehgal

    2014-01-01

    Full Text Available Allergic bronchopulmonary aspergillosis (ABPA is an immunological pulmonary disorder caused by immune reactions mounted against the ubiquitous fungus Aspergillus fumigatus. The disease clinically manifests with poorly controlled asthma, hemoptysis, systemic manifestations like fever, anorexia and weight loss, fleeting pulmonary opacities and bronchiectasis. The natural course of the disease is characterized by repeated episodes of exacerbations. Almost 30-40% of the patients require prolonged therapy, which currently consists of corticosteroids and anti-fungal azoles; both these agents have significant adverse reactions. Amphotericin B administered via the inhaled route can achieve a high concentration in the small airways with minimal systemic side-effects. Nebulized amphotericin B has been used in the management of invasive pulmonary aspergillosis. The aim of this review is to study the utility of inhaled amphotericin in ABPA.

  8. Organonickel(II) complexes with anionic tridentate 1, 3-bis(azolylmethyl)phenyl ligands. synthesis, structural characterization and catalytic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, John; Rojas, Rene; Valderrama, Mauricio, E-mail: jmvalder@puc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Ibanez, Andres [Centro para la Investigacion Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT), Santiago (Chile); Froehlich, Roland [Organisch Chemisches Institut der Universitaet Muenster, Muenster (Germany)

    2011-09-15

    The reaction of 2-bromo-1,3-bis(bromomethyl)benzene with 3,5-dimethylpyrazole and {sup 1}H-indazole yields the tridentate ligands 2-bromo-1,3-bis(3,5-dimethylpirazol-1-ylmethyl)benzene (1) and 2-bromo-1,3-bis(indazol-2-ylmethyl)benzene (2). These compounds react with [Ni(cod)2] in tetrahydrofuran (thf) to form the oxidative addition complexes [NiBr{l_brace}1,3-bis(azolylmethyl)phenyl-N,C,N{r_brace}], azol 3,5-dimethylpyrazol (3), indazol (4), which were isolated in good yields as stable yellow solids and characterized by elemental analysis, Fourier-transform infrared spectroscopy (FTIR), mass spectroscopy and nuclear magnetic resonance (NMR). In addition, the molecular structures of 2 and 4 were determined by single-crystal X-ray diffraction analysis. Complex 4 was tested as a catalyst in ethylene polymerization reaction. (author)

  9. Heterogeneously porous γ-MnO₂-catalyzed direct oxidative amination of benzoxazole through C-H activation in the presence of O₂.

    Science.gov (United States)

    Pal, Provas; Giri, Arnab Kanti; Singh, Harshvardhan; Ghosh, Subhash Chandra; Panda, Asit Baran

    2014-09-01

    Oxidative amination of azoles through catalytic C-H bond activation is a very important reaction due to the presence of 2-aminoazoles in several biologically active compounds. However, most of the reported methods are performed under homogeneous reaction conditions using excess reagents and additives. Herein, we report the heterogeneous, porous γ-MnO2-catalyzed direct amination of benzoxazole with wide range of primary and secondary amines. The amination was carried under mild reaction conditions and using molecular oxygen as a green oxidant, without any additives. The catalyst can easily be separated by filtration and reused several times without a significant loss of its catalytic performance. Of note, the reaction tolerates a functional group such as alcohol, thus indicating the broad applicability of this reaction.

  10. In vitro antifungal activity of 2-(2'-hydroxy-5'-aminophenyl)benzoxazole in Candida spp. strains.

    Science.gov (United States)

    Daboit, Tatiane Caroline; Stopiglia, Cheila Denise Ottonelli; Carissimi, Mariana; Corbellini, Valeriano Antonio; Stefani, Valter; Scroferneker, Maria Lúcia

    2009-11-01

    The development of azole antifungals has allowed for the treatment of several fungal infections. However, the use of these compounds is restricted because of their hepatotoxicity or because they need to be administered together with other drugs in order to prevent resistance to monotherapy. Benzoxazole derivatives are among the most thriving molecular prototypes for the development of antifungal agents. 2-(2'-hydroxyphenyl) benzoxazoles are versatile molecules that emit fluorescence and have antibacterial, antiviral and antifungal properties. 2-(2'-hydroxy-5'-aminophenyl) benzoxazole (HAMBO) was tested against Candida yeast. The inhibition provided by HAMBO was lower than that of fluconazole, showing low antifungal activity against Candida spp., but equivalent to that of benzoxazoles tested in similar studies. HAMBO showed fungistatic activity against all analysed strains. This class of novel benzoxazole compounds may be used as template to produce better antifungal drugs.

  11. Oxazoles revisited: On the nature of binding of benzoxazole and 2-methylbenzoxazole with the zinc and palladium halides.

    Science.gov (United States)

    Jones, Roderick C; Chojnacka, Maja W; Quail, J Wilson; Gardiner, Michael G; Decken, Andreas; Yates, Brian F; Gossage, Robert A

    2011-02-21

    A synthetic and structural (X-ray) investigation into the bonding modes of benzoxazole (box) and 2-methylbenzoxazole (Mebox) ligands with halide precursors of Zn and Pd has been undertaken to clarify earlier discrepancies concerning the nature of the bonding mode(s) of the two azoles. In four structurally characterised examples, all contain the title ligands in a κ(1)N bonding motif. Calculations at the density functional level (DFT) of theory (B3LYP) confirm the ground state stability of this class of coordination for several hypothetical Pd and Zn (gas phase) compounds. The attempt to obtain suitable crystalline material of PdCl(2)(box)(2) (i.e., 5) leads to substantial complex degradation. One minor product of this process has been identified (X-ray) as the diarylformamidinato complex C(26)H(22)N(4)O(4)Pd, presumably formed via a complex combination of the decomposition products of both free box and 5.

  12. Antifungal pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Lepak, Alexander J; Andes, David R

    2014-11-10

    Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.

  13. Management of invasive fungal infections: a role for polyenes.

    Science.gov (United States)

    Chandrasekar, Pranatharthi

    2011-03-01

    The spectrum of invasive fungal infections (IFIs) continues to evolve with the emergence of rare and resistant fungal pathogens. Clinicians are faced with difficult diagnostic and treatment challenges in the management of immunocompromised patients at high risk of developing IFIs. Early and appropriate antifungal therapy is essential for a successful outcome when treating invasive mycoses. The armamentarium of antifungal drugs continues to grow; the three main classes of commonly administered drugs are the polyenes, azoles and echinocandins. The newer triazoles and the echinocandins have changed primary treatment options for some fungal infections, such as aspergillosis and candidiasis. However, despite their toxic potential, the oldest antifungal drugs, polyenes, remain useful in the treatment of IFIs because of their broad-spectrum activity, low rates of resistance and established clinical record, particularly in immunocompromised patients with breakthrough fungal infections. This review highlights important issues in the treatment of IFIs for consideration by clinicians.

  14. Safety and efficacy of liposomal amphotericin B for the empirical therapy of invasive fungal infections in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    Miceli MH

    2012-01-01

    Full Text Available Marisa H Miceli1, Pranatharthi Chandrasekar21Oakwood Hospital and Medical Center, Dearborn, 2Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USAAbstract: Liposomal amphotericin B is a "true" liposomal formulation of amphotericin B with greatly reduced nephrotoxicity and minimal infusion-related toxicity. This broad spectrum polyene is well tolerated and effective against most invasive fungal infections. In view of the current limitations on diagnostic capability of invasive fungal infections, most clinicians are often compelled to use antifungal drugs in an empiric manner; liposomal amphotericin B continues to play an important role in the empiric management of invasive fungal infections, despite the recent availability of several other drugs in the azole and echinocandin classes.Keywords: invasive fungal infections, immunocompromised hosts, empiric therapy, polyenes, efficacy and safety

  15. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Wenjun Guan

    Full Text Available Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.

  16. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  17. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  18. Posaconazole: A New Agent for the Prevention and Management of Severe, Refractory or Invasive Fungal Infections

    Directory of Open Access Journals (Sweden)

    Andrea V Page

    2008-01-01

    Full Text Available Posaconazole is the newest antifungal agent to be approved for use in Canada. With excellent in vitro activity against a broad spectrum of yeasts and filamentous fungi, as well as having a well-tolerated oral formulation, posaconazole offers many potential advantages. Of particular interest are its seemingly lower potential for cross-resistance with other azoles and its activity (unique among oral antifungal agents against the zygomycetes. As the incidence of both common and uncommon fungal infections increases commensurate with the growing population of immunocompromised individuals, posaconazole may ultimately become an important therapeutic option. The present article reviews the in vitro and in vivo data describing its activity, and focuses on both the proven and the potential clinical applications of this new triazole agent.

  19. Development, clinical utility, and place in therapy of posaconazole for prevention and treatment of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Emily Zoller

    2010-11-01

    Full Text Available Emily Zoller, Connie Valente, Kyle Baker, Michael E KlepserFerris State University College of Pharmacy, Kalamazoo, Michigan, USAAbstract: Posaconazole is an extended-spectrum azole antifungal that exhibits activity against a broad range of fungal pathogens, including yeasts and moulds. Clinical data have demonstrated the clinical utility of posaconazole against many therapy-refractory pathogens, including Aspergillus spp, Fusarium spp, and Zygomycetes. These data have provided clinicians with hope in these difficult situations. Some of the limitations that have emerged with the use of posaconazole are the lack of an intravenous formulation and erratic drug absorption. This fact is further complicated by the existence of saturable posaconazole absorption. Despite these drawbacks, posaconazole appears poised to become a prominent therapeutic modality for the prophylaxis and management of various fungal infections among high-risk patients.Keywords: posaconazole, pharmacokinetics, fungal infections

  20. Deeply invasive candidiasis.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Rex, John H; Bennett, John; Kullberg, Bart-Jan

    2002-12-01

    The incidence of invasive candidiasis is on the rise because of increasing numbers of immunocompromised hosts and more invasive medical technology. Recovery of Candida spp from several body sites in a critically ill or immunocompromised patient should raise the question of disseminated disease. Although identification to the species level and antifungal susceptibility testing should guide therapy, at this time amphotericin B preparations are the usual initial therapy for severe life-threatening disease. Azole therapy has an expanding body of evidence that proves it is as effective as and safer than amphotericin B therapy. Some forms of candidiasis (e.g., those with ocular, bone, or heart involvement) require a combined medical and surgical approach.

  1. Novel approaches to antifungal prophylaxis.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis

    2004-06-01

    Antifungal prophylaxis represents a significant advance in the management of patients at risk from fungal infections in a variety of settings. Identification of patients at the highest risk and the utilisation of safe and effective drugs maximises the benefits of prophylaxis. Situations in which antifungal prophylaxis has been shown to be useful are bone marrow transplantation, liver and lung transplantation, surgical and neonatal intensive care units, secondary prophylaxis of fungal infections associated with HIV and neutropenia associated haematological malignancies and their treatment. New antifungal agents, such as the echinocandins and the new azoles, are available and have a potential role in antifungal prophylaxis. Future studies should evaluate which strategy is more useful; prophylaxis or pre-emptive therapy.

  2. Nucleophilic reactivities of the anions of nucleobases and their subunits.

    Science.gov (United States)

    Breugst, Martin; Corral Bautista, Francisco; Mayr, Herbert

    2012-01-02

    The kinetics of the reactions of different heterocyclic anions derived from imidazoles, purines, pyrimidines, and related compounds with benzhydrylium ions and structurally related quinone methides have been studied in DMSO and water. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of the electrophiles according to the correlation log k(2) = s(N)(N+E) (H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990-1010; Angew. Chem. Int. Ed. Engl. 1994, 33, 938-957) allowing us to determine the nucleophilicity parameters N and s(N) for these anions. In DMSO, the reactivities of these heterocyclic anions vary by more than six orders of magnitude and are comparable to carbanions, amide and imide anions, or amines. The azole anions are generally four to five orders of magnitude more reactive than their conjugate acids.

  3. Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents.

    Science.gov (United States)

    Hashemi, Seyedeh Mahdieh; Badali, Hamid; Irannejad, Hamid; Shokrzadeh, Mohammad; Emami, Saeed

    2015-04-01

    In order to find new azole antifungals, we have recently designed a series of triazole alcohols in which one of the 1,2,4-triazol-1-yl group in fluconazole structure has been replaced with 4-amino-5-aryl-3-mercapto-1,2,4-triazole motif. In this paper, we focused on the structural refinement of the primary lead, by removing the amino group from the structure to achieve 5-aryl-3-mercapto-1,2,4-triazole derivatives 10a-i and 11a-i. The in vitro antifungal susceptibility testing of title compounds demonstrated that most compounds had potent inhibitory activity against Candida species. Among them, 5-(2,4-dichlorophenyl)triazole analogs 10h and 11h with MIC values of fluconazole against Candida species.

  4. Multidrug resistance as a dominant molecular marker in transformation of wine yeast.

    Science.gov (United States)

    Kozovska, Z; Maraz, A; Magyar, I; Subik, J

    2001-12-14

    Pure wine yeast cultures are increasingly used in winemaking to perform controlled fermentations and produce wine of reproducible quality. For the genetic manipulation of natural wine yeast strains dominant selective markers are obviously useful. Here we demonstrate the successful use of the mutated PDR3 gene as a dominant molecular marker for the selection of transformants of prototrophic wine yeast Saccharomyces cerevisiae. The selected transformants displayed a multidrug resistance phenotype that was resistant to strobilurin derivatives and azoles used to control pathogenic fungi in agriculture and medicine, respectively. Random amplification of DNA sequences and electrophoretic karyotyping of the host and transformed strains after microvinification experiments resulted in the same gel electrophoresis patterns. The chemical and sensory analysis of experimental wines proved that the used transformants preserved all their useful winemaking properties indicating that the pdr3-9 allele does not deteriorate the technological properties of the transformed wine yeast strain.

  5. THE IMPACT OF ANTIFUNGALS ON TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    Mircea Radu Mihu

    2014-03-01

    Full Text Available Fungi are increasingly recognized as major pathogens in immunocompromised individuals. The most common invasive fungal infections are caused by Candida spp., Aspergillus spp. and Cryptococcus spp. Amphotericin B has remained the cornerstone of therapy against many fulminant fungal infections but its use is limited by its multitude of side effects. Echinocandins are a newer class of antifungal drugs with activity against Candida spp. and Aspergillus spp. and constitutes an alternative to amphotericin B due to superior patient tolerability and fewer side effects. Due to their excellent bioavailability and oral availability, azoles continue to be heavily used for simple, such as fluconazole for candidal vaginitis, and complex diseases, such as voriconazole for aspergilloisis. The objective of this paper is to present current knowledge regarding the multiple interactions between the broad spectrum antifungals and the innate immune response, primarily focusing on the toll-like receptors.

  6. Clinical utility of caspofungin eye drops in fungal keratitis.

    Science.gov (United States)

    Neoh, Chin Fen; Daniell, Mark; Chen, Sharon C-A; Stewart, Kay; Kong, David C M

    2014-08-01

    Treatment of fungal keratitis remains challenging. To date, only the polyenes and azoles are commonly used topically in the management of fungal keratitis. Natamycin, a polyene, is the only antifungal eye drop that is commercially available; the remainder are prepared in-house and are used in an 'off-label' manner. Failure of medical treatment for fungal keratitis is common, hence there is a need for more effective topical antifungal therapy. To increase the antifungal eye drop armamentarium, it is important to investigate the utility of other classes of antifungal agents for topical use. Caspofungin, an echinocandin antifungal agent, could potentially be used to address the existing shortcomings. However, little is known about the usefulness of topically administered caspofungin. This review will briefly explore the incidence, epidemiology and antifungal treatment of fungal keratitis. It will focus primarily on evidence related to the efficacy, safety and practicality of using caspofungin eye drops in fungal keratitis.

  7. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation

    Directory of Open Access Journals (Sweden)

    C. Sharma

    2016-09-01

    Full Text Available Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L.

  8. Excited state tautomerization of 7-azaindole catalyzed by pyrazole

    Science.gov (United States)

    Karmakar, Shreetama; Mukherjee, Moitrayee; Chakraborty, Tapas

    2013-03-01

    Pyrazole, a five member cyclic azole, is reported here as an efficient catalyst for excited state tautomeric conversion of 7-azaindole. In hydrocarbon solution the two compounds efficiently form a doubly hydrogen-bonded 1:1 cyclic complex whose association constant value is found comparable with 7-azaindole dimerization constant, and according to B3LYP/6-311G++∗∗ calculation the binding energies of the complex and dimer are nearly same. In the excited state (S1), the TDDFT calculation predicts tautomer of the complex to be 13.4 kcal/mol more stable than normal form. Fluorescence spectra reveal that upon UV excitation the complex emits exclusively from the tautomeric form.

  9. Severe Dermatophytosis and Acquired or Innate Immunodeficiency: A Review

    Directory of Open Access Journals (Sweden)

    Claire Rouzaud

    2015-12-01

    Full Text Available Dermatophytes are keratinophilic fungi responsible for benign and common forms of infection worldwide. However, they can lead to rare and severe diseases in immunocompromised patients. Severe forms include extensive and/or invasive dermatophytosis, i.e., deep dermatophytosis and Majocchi’s granuloma. They are reported in immunocompromised hosts with primary (autosomal recessive CARD9 deficiency or acquired (solid organ transplantation, autoimmune diseases requiring immunosuppressive treatments, HIV infection immunodeficiencies. The clinical manifestations of the infection are not specific. Lymph node and organ involvement may also occur. Diagnosis requires both mycological and histological findings. There is no consensus on treatment. Systemic antifungal agents such as terbinafine and azoles (itraconazole or posaconazole are effective. However, long-term outcome and treatment management depend on the site and extent of the infection and the nature of the underlying immunodeficiency.

  10. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Monberg, Rikke Juul; Baattrup-Pedersen, Annette; Cedergreen, Nina; Wiberg-Larsen, Peter; Strobel, Bjarne; Kronvang, Brian

    2012-08-15

    Previously, laboratory experiments have revealed that freely diluted azole fungicides potentiate the direct toxic effect of pyrethroid insecticides on Daphnia magna. More ecologically relevant exposure scenarios where pesticides are adsorbed have not been addressed. In this study we exposed beech leaves (Fagus sylvatica) to the azole fungicide propiconazole (50 or 500 μg L(-1)), the pyrethroid insecticide alpha-cypermethrin (0.1 or 1 μg L(-1)) or any combination of the two for 3h. Exposed leaves were transferred to aquaria with or without an assemblage of macroinvertebrate shredders, and we studied treatment effects on rates of microbial leaf decomposition, microbial biomass (using C:N ratio as a surrogate measure) and macroinvertebrate shredding activity during 26 days post-exposure. Microbial leaf decomposition rates were significantly reduced in the propiconazole treatments, and the reduction in microbial activity was significantly correlated with loss of microbial biomass (increased C:N ratio). Macroinvertebrate shredding activity was significantly reduced in the alpha-cypermethrin treatments. In addition, the macroinvertebrate assemblage responded to the propiconazole treatments by increasing their consumption of leaf litter with lower microbial biomass, probably to compensate for the reduced nutritional quality of this leaf litter. We found no interaction between the two pesticides on macroinvertebrate shredding activity, using Independent Action as a reference model. In terms of microbial leaf decomposition rates, however, alpha-cypermethrin acted as an antagonist on propiconazole. Based on these results we emphasise the importance of considering indirect effects of pesticides in the risk assessment of surface water ecosystems.

  11. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.

    Science.gov (United States)

    Tyndall, Joel D A; Sabherwal, Manya; Sagatova, Alia A; Keniya, Mikhail V; Negroni, Jacopo; Wilson, Rajni K; Woods, Matthew A; Tietjen, Klaus; Monk, Brian C

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs.

  12. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.

    Directory of Open Access Journals (Sweden)

    Li-Jun Ma

    2009-07-01

    Full Text Available Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs, comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11, could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.

  13. Investigation on Copper-Catalyzed Vinylation of N-and S-Centered Nucleophiles%铜催化含氮和硫化物的乙烯基化反应研究

    Institute of Scientific and Technical Information of China (English)

    廖骞; 席婵娟

    2012-01-01

    以铜为催化剂,结合不同的反应条件,分别阐述了酰胺、胺、唑类化合物和硫化物与卤代烯烃的交叉偶联反应,从而分别得到了各种烯酰胺、烯胺、N-烯基唑类化合物和烯基硫醚化合物.上述亲核试剂与1,4-二卤-1,3-二烯化合物反应,经过两次乙烯基化反应,可以高效地得到各种取代的吡咯和噻吩衍生物.进一步阐述了N-H键以及其邻位C-H键也能够和1,4-二卤-1,3-二烯反应,生成唑并吡啶衍生物.%Copper could be catalyst on the alkenylation reactions of amides, amines, azoles and sulfides, which afforded efficient methods for the synthesis of alkenylamides, enamines, alkenylazoles and alkenylsulfides. Under the conditions of the coupling processes, it would be possible to effect a related transformation as a means to access heterocycles in one-pot. Accordingly, copper-catalyzed double alkenylations of amides, amines and sulfides to afford pyrroles and thiophenes have been expatiated. Furthermore, copper-catalyzed tandem alkenylations of azoles to afford nitrogen-bridgehead azolopyridine derivatives via an N—H bond and its adjacent C—H bond activation have been illustrated.

  14. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    Science.gov (United States)

    Meletiadis, Joseph; Meis, Jacques F G M; Mouton, Johan W; Rodriquez-Tudela, Juan Luis; Donnelly, J Peter; Verweij, Paul E

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC(90)s) being >8 microg/ml; the MIC(90)s of voriconazole and UR-9825, however, were 4 microg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC(90)s, 0.5 microg/ml), followed by miconazole (MIC(90)s, 1 microg/ml), UR-9825 and posaconazole (MIC(90)s, 2 microg/ml), and itraconazole (MIC(90)s, 4 microg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.

  15. Invasive aspergillosis: new insights into disease, diagnostic and treatment.

    Science.gov (United States)

    Karthaus, Meinolf; Buchheidt, Dieter

    2013-01-01

    Aspergillus infections are a threat to in patients with hematological malignancies. Known risk factors are profound and long lasting neutropenia, uncontrolled graft versus host disease, continuous administration of steroids and environmental factors such as hospital construction. Numerous efforts have been undertaken for prophylaxis of invasive aspergillosis in high-risk populations. Most of them failed to demonstrate survival advantages. Prophylaxis makes sense, since diagnosis and treatment of invasive aspergillosis remain difficult. The introduction of non-culture based tools for the diagnosis of invasive aspergillosis is an important step forward for early and sensitive diagnosis of invasive aspergillosis. Early treatment is the cornerstone of a successful management of invasive aspergillosis. Substantial improvement came with the introduction of lipid formulations of amphotericin B in the early 1990s. Voriconazole was the first azole that improved the overall survival for patients with invasive aspergillosis. Newer azoles and the echinocandins were introduced for the treatment of invasive aspergillosis in the late 1990s. Voriconazole and liposomal amphotericin B allow a safer and more effective treatment of invasive aspergillosis when compared with amphotericin B-desoxycholate. Combination of antifungal agents has been introduced in clinical trials. Up to now no significant benefit has been obtained with antifungal combination compared to voriconazole alone. Because mortality of invasive aspergillosis remains up to more than 50%, prophylaxis, early diagnosis and early initiation of antifungal therapy are of utmost importance for the reduction of invasive aspergillosis related mortality. Despite all advances in the management of invasive aspergillosis important questions remain unresolved. This article reviews the current state and new insights in the management of invasive aspergillosis and points out clinicians unmet needs.

  16. Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution, and the emergence of itraconazole resistance.

    LENUS (Irish Health Repository)

    Fleischhacker, M

    2010-05-01

    We investigated the population structure of 208 Candida dubliniensis isolates obtained from 29 patients (25 human immunodeficiency virus [HIV] positive and 4 HIV negative) as part of a longitudinal study. The isolates were identified as C. dubliniensis by arbitrarily primed PCR (AP-PCR) and then genotyped using the Cd25 probe specific for C. dubliniensis. The majority of the isolates (55 of 58) were unique to individual patients, and more than one genotype was recovered from 15 of 29 patients. A total of 21 HIV-positive patients were sampled on more than one occasion (2 to 36 times). Sequential isolates recovered from these patients were all closely related, as demonstrated by hybridization with Cd25 and genotyping by PCR. Six patients were colonized by the same genotype of C. dubliniensis on repeated sampling, while strains exhibiting altered genotypes were recovered from 15 of 21 patients. The majority of these isolates demonstrated minor genetic alterations, i.e., microevolution, while one patient acquired an unrelated strain. The C. dubliniensis strains could not be separated into genetically distinct groups based on patient viral load, CD4 cell count, or oropharyngeal candidosis. However, C. dubliniensis isolates obtained from HIV-positive patients were more closely related than those recovered from HIV-negative patients. Approximately 8% (16 of 194) of isolates exhibited itraconazole resistance. Cross-resistance to fluconazole was only observed in one of these patients. Two patients harboring itraconazole-resistant isolates had not received any previous azole therapy. In conclusion, longitudinal genotyping of C. dubliniensis isolates from HIV-infected patients reveals that isolates from the same patient are generally closely related and may undergo microevolution. In addition, isolates may acquire itraconazole resistance, even in the absence of prior azole therapy.

  17. Polyimides with improved operational by properties

    Institute of Scientific and Technical Information of China (English)

    Oranova; T.; I.; Mamisheva; I.M.

    2005-01-01

    One of directions of basic researches in the field of chemical process engineerings is making new polymeric materials for electronics and aviation technique distinguished by boosted production characteristics.The value of aromatic polyimides (PI) as industrial thermally sound polymers is well-known. However alongside with a complex of valuable properties they have also series of shortages: high temperatures and difficulty of reaching of 100% conversion at ring formation polyamic acids (PAA) and their instability in time, low stability to hydrolysis, poor adhesion to line of substratums etc. all this in some cases restricts or makes to impossible application PI in practice.The complex examinations, spent by us, the solid-phase of thermal cyclyzation PAA and its model junctions have reduced in an establishment of correlation associations between a degree and velocity of ring-formation, thermal stability and reagent resistance, stregth that has allowed to govern process of deriving PI with a necessary level of production characteristics. Use of some components, for example, heterocyclic basic amines-azoles, promotes acceleration and lowering of a temperature band of ring-formation PAA, and also magnification of a degree of ring-formation, that reduces in a considerable raise thermal and chemical resistance, mechanical and dielectric parameters and insulant properties which are not varying at long-lived operation.The modes of deriving of various materials designed on the basis of industrial PAA of a lacquer consisting in introduction of azoles, plasticizing and adhesion components. It is shown, that the coats obtained from modified polymers, have boosted adhesion, high thermal, mechanical, insulant and other properties maintained in requirements of climatic trials.

  18. Design, synthesis and antifungal activity of novel triazole derivatives%新型三唑类化合物的设计、合成和抗真菌活性研究

    Institute of Scientific and Technical Information of China (English)

    李洋洋; 刘华; 刘宏; 张永强; 张万年; 盛春泉

    2013-01-01

    目的 基于唑类药物合理优化的分子设计模型,设计新型三唑类化合物,并测试其对常见致病真菌的抑制活性.方法 采用环氧化物开环法合成目标化合物,通过1H NMR和MS确证其化学结构,经微量液基豨释法测试体外抗真菌活性.结果 合成了2个含三唑酮侧链的新型唑类化合物,它们均显示了优秀的广谱抗真菌活性.结论 目标化合物对白色念珠菌的活性优于对照药氟康唑和酮康唑,值得进一步深入构效关系研究.%Objective To design the novel triazole derivatives and test their in vitro antifungal activities on the basis of the molecular design model for rational optimization of azole drugs. Methods Ring-open reaction of the oxiranes was used to synthesize the target compounds, whose chemical structures were confirmed by 'H NMR and MS. Serial dilution method was used to determine the in vitro antifungal activities. Results Two novel azole compounds containing trizaolone side chains were synthesized which showed excellent and broad-spectrum antifungal activity. Conclusion The targeted compounds showed better antifungal activity against Candida al-bicans than the positive drugs fluconazole and ketoconazole, which was worth to further investigate the structure-activity relationship.

  19. Clinical Curative Effect of Octreotide Combined with Pantozol in Treatment of Bleeding Gastroduodenal Ulcer%奥曲肽联合泮托拉唑治疗胃十二指肠溃疡出血的临床疗效探讨

    Institute of Scientific and Technical Information of China (English)

    孙绍伟; 毕永辉

    2015-01-01

    Objective To study the clinical curative effect of octreotide combined with pantozol in treatment of bleeding gastroduo-denal ulcer. Methods Medical records of 100 cases of gastric duodenal ulcer hemorrhage patients admitted to our hospital from December 2012 to February 2014 were retrospectively analyzed and randomly divided into control group and treatment group, 50 cases in control group patients taking panxi tora azole treatment, the treatment group patients taking the octreotide combined with panxi tora azole treatment. Hemostatic effect of two groups of patients, clinical efficacy and adverse reactions were compared. Re-sults The treatment group patients after treatment of 1 d hemostatic effect was obvious due to the control group,P0.05, no significant difference. The clinical total effective rate of treatment group patients was significantly greater than the control group, P0.05,差异无统计学意义。治疗组患者的临床总有效率明显大于对照组,P<0.05,治疗组患者不良反应发生率小于对照组,P<0.05。结论胃十二指肠溃疡出血患者实施奥曲肽联合泮托拉唑治疗,有较好的止血效果和较少的不良反应,临床疗效显著,有一定的安全性和可行性,值得临床推广应用。

  20. ISOLATION AND SPECIATION OF CANDIDA FROM CLINICAL SAMPLES IN A TERTIARY CARE HOSPITAL AT KURNOOL, ANDHRAPRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    Dasari

    2014-12-01

    Full Text Available : Candida is one of the most frequently encountered opportunistic fungi that cause infection in humans. The pathogenesis of Candida is complex and probably varies with each infection. This study was conducted to understand the prevalence of Candida from various clinical specimens of patients and to show the emergence of Non albicans Candida in clinical samples. This study also focused on the antifungal susceptibility which guides the clinicians to treat the infection effectively. METHODS: Clinical samples were collected from outpatients and inpatients of Government General Hospital, Kurnool over a period of one year from March2008 to June2009. Isolation, culture, speciation of Candida was done by using standard methods. Antifungal susceptibility testing was done by disc diffusion technique against amphotericin B, nystatin, fluconazole and clotrimazole. RESULTS: Candida manifests in various sites depending on the predisposing factors and immune status of the person. In this study we found the association of Candida with various predisposing factors (Pregnancy, Oral contraceptive pills’s, Immune suppression, Diabetes. This study observed the dominance of non-albicans Candida (51% in the clinical samples over Candida albicans (49%. The maximum antifungal susceptibility was observed against amphotericin B in both the albicans and non-albicans Candia, but non-albicans Candida showed maximum resistance to azoles. CONCLUSION: Candida albicans was the most predominant species (49% isolated in various clinical samples. There was an increase in the prevalence of non albicans Candida in this study. Among the nonalbicans Candida (51% Candid tropicalis was the commonest species isolated. Candida albicans showed maximum susceptibility to amphotericin B and maximum resistance to azoles was seen in nonalbicans Candida.

  1. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases

    Science.gov (United States)

    Richter, Sandra S.; Galask, Rudolph P.; Messer, Shawn A.; Hollis, Richard J.; Diekema, Daniel J.; Pfaller, Michael A.

    2005-01-01

    There are limited data regarding the antifungal susceptibility of yeast causing vulvovaginal candidiasis, since cultures are rarely performed. Susceptibility testing was performed on vaginal yeast isolates collected from January 1998 to March 2001 from 429 patients with suspected vulvovaginal candidiasis. The charts of 84 patients with multiple positive cultures were reviewed. The 593 yeast isolates were Candida albicans (n = 420), Candida glabrata (n = 112), Candida parapsilosis (n = 30), Candida krusei (n = 12), Saccharomyces cerevisiae ( n = 9), Candida tropicalis (n = 8), Candida lusitaniae (n = 1), and Trichosporon sp. (n = 1). Multiple species suggesting mixed infection were isolated from 27 cultures. Resistance to fluconazole and flucytosine was observed infrequently (3.7% and 3.0%); 16.2% of isolates were resistant to itraconazole (MIC ≥ 1 μg/ml). The four imidazoles (econazole, clotrimazole, miconazole, and ketoconazole) were active: 94.3 to 98.5% were susceptible at ≤1 μg/ml. Among different species, elevated fluconazole MICs (≥16 μg/ml) were only observed in C. glabrata (15.2% resistant [R], 51.8% susceptible-dose dependent [S-DD]), C. parapsilosis (3.3% S-DD), S. cerevisiae (11.1% S-DD), and C. krusei (50% S-DD, 41.7% R, considered intrinsically fluconazole resistant). Resistance to itraconazole was observed among C. glabrata (74.1%), C. krusei (58.3%), S. cerevisiae (55.6%), and C. parapsilosis (3.4%). Among 84 patients with recurrent episodes, non-albicans species were more common (42% versus 20%). A ≥4-fold rise in fluconazole MIC was observed in only one patient with C. parapsilosis. These results support the use of azoles for empirical therapy of uncomplicated candidal vulvovaginitis. Recurrent episodes are more often caused by non-albicans species, for which azole agents are less likely to be effective. PMID:15872235

  2. Non-cancer uses of histone deacetylase inhibitors: effects on infectious diseases and beta-hemoglobinopathies.

    Science.gov (United States)

    Rotili, Dante; Simonetti, Giovanna; Savarino, Andrea; Palamara, Anna T; Migliaccio, Anna R; Mai, Antonello

    2009-01-01

    After the approval of suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) for the treatment of cutaneous T cell lymphoma (CTCL), a number of HDAC inhibitors (HDACi) are currently in Phase II or III clinical trials (alone or in combination) for the treatment of a great number of tumors. In addition to these cancer uses, HDACi can be successfully used in non-cancer diseases. In this review we focused on the uses of HDACi in some infectious diseases and beta-hemoglobinopaties. In C. albicans cultures, HDACi increased the frequency of cell switching (a relevant virulence trait) in the white-to-opaque transition, reduced the azole trailing effect through reduction in azole-dependent upregulation of CDR and ERG genes, and inhibited the fluconazole-dependent resistance induction. Moreover, they inhibited germination in several strains, and caused 90% reduction in the adherence of C. albicans to human cultured pneumocytes. In HIV-1-infected cells, the treatment with HDACi reactivates the HIV-1 expression in latent cellular reservoirs. Thus, the use of HDACi as adjuvant to highly active antiretroviral therapy (HAART) can represent a new potential therapeutic strategy to eradicate the viral infection. A number of HDACi have been reported as active against P. falciparum infection. Two recent papers show some 2-aminosuberic acid-based compounds as well as a series of phenylthiazolyl suberoyl hydroxamates as very potent and selective antimalarial agents. Among the many agents capable to perform post-natal reactivation of fetal hemoglobin production, HDACi for their capacity to de-repress gamma-globin gene expression in adult red cell, are presently considered promising molecules for personalized therapy of beta-hemoglobinopathies.

  3. 硝基咪唑类 PET 肿瘤乏氧显像剂的研究总结和展望%Progress of Tumor Hypoxia Imaging Agents Containing Nitroimidazole for Positron Emission Tomography

    Institute of Scientific and Technical Information of China (English)

    于倩; 王振光; 陈成成; 刘思敏; 石彬

    2015-01-01

    乏氧显像剂能选择性的滞留在乏氧组织或细胞中。随着正电子发射计算机断层显像(PET)技术的发展,PET 肿瘤乏氧显像可无创性评估实体瘤的乏氧状态,对肿瘤的治疗指导、疗效评价和预后判断具有重要的临床应用价值。18 F-硝基咪唑(18 F-FMISO)是目前广泛用于临床研究的硝基咪唑类乏氧显像剂,然而其存在某些缺点,新的硝基咪唑类乏氧显像剂正在广泛研究。本文就近年来正电子核素标记的硝基咪唑类肿瘤乏氧显像剂的研究进展进行简要概述。%Hypoxia imaging agents can selectively accumulate in hypoxic tissues or cells. With the advance of PET imaging technique,tumor hypoxia imaging for PET has great clini-cal value for guiding tumor therapy,evaluating therapeutic efficacy and estimating progno-sis.1 8 F-FMISO is the widely studied PET tumor hypoxia imaging agent containing nitroimid-azole,but it still has some disadvantages.Up to now,more and more novel PET tumor hypoxia imaging agents containing nitroimidazole are under investigation.This review briefly introduced some the research progress of tumor hypoxia imaging agents containing nitroimid-azole for PET.

  4. [A case of chronic mucocutaneous candidasis cured with micafungin].

    Science.gov (United States)

    Suzuki, Tomokazu; Imamura, Akifumi

    2005-02-01

    Chronic mucocutaneous candidasis (CMC) is a chronic intractable infection of skin, nails, and mucous membrane with Candida. Until very recently, the main stay of therapy had been the use of transfer factor or antifungal azole derivatives. Although they show definite benefits, the effects are temporal and recurrences are inevitable. Furthermore, the prolonged use of antifungals will sometimes induce resistant strains, making the treatment more difficult. Recently we experienced a case of CMC caused by resistant Candida spp. and treated it successfully with a new antifungal agent, micafungin (MCFG). The patient is a 37-year-old woman. She was eight month, her tongue was covered with a white coat. Two months later, intractable cutaneous eruptions appeared on the head and back and the diagnosis of CMC was made. Since then she has been treated on multiple occasions with transfer factor, recombinant IL-2, ketoconazole or clotrimazole. She was referred to us because of esophageal candidiasis. On admission, oral and esophageal mucous membranes were thickly coated with white pseudomembranes. The titer of Candida antigen test was less than twice ; plasma beta-D-gulcan was 20.14 pg/mL ; and CD4 was 376/microL. A few Candida albicans and (1+) Candida glabrata were cultured from oral swab. Both species were resistant to itraconazole but sensitive to MCFG and amphotericin B (MIC: < 0.03microg/ml for both). A drip infusion of MCFG (75mg/day) was started and three days later the oral lesions disappeared. At the end of a 2-week course of i. v. MCFG, the interior of the esophagus was clear. No recurrence was noted in one month. Less toxic than amphotericin B, MCFG will be a drug of choice in patients infected with azole-resistant fungi. To avoid the abuse of MCFG and the development of the resistant strains, the susceptibility test is recommended in every case of systemic candidiasis.

  5. Species distribution and in vitro antifungal susceptibility profiles of yeast isolates from invasive infections during a Portuguese multicenter survey.

    Science.gov (United States)

    Faria-Ramos, I; Neves-Maia, J; Ricardo, E; Santos-Antunes, J; Silva, A T; Costa-de-Oliveira, S; Cantón, E; Rodrigues, A G; Pina-Vaz, C

    2014-12-01

    This is the first Portuguese multicenter observational and descriptive study that provides insights on the species distribution and susceptibility profiles of yeast isolates from fungemia episodes. Ten district hospitals across Portugal contributed by collecting yeast isolates from blood cultures and answering questionnaires concerning patients' data during a 12-month period. Molecular identification of cryptic species of Candida parapsilosis and C. glabrata complex was performed. The susceptibility profile of each isolate, considering eight of the most often used antifungals, was determined. Both Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocols were applied. The incidence of 240 episodes of fungemia was 0.88/1,000 admissions. Fifteen different species were found, with C. albicans (40 %) being the most prevalent, followed by C. parapsilosis (23 %) and C. glabrata (13 %). Most isolates were recovered from patients admitted to surgical wards or intensive care units, with 57 % being males and 32 % aged between 41 and 60 years. For both the CLSI and EUCAST protocols, the overall susceptibility rates ranged from 74 to 97 % for echinocandins and from 84 to 98 % for azoles. Important resistance rate discrepancies between protocols were observed in C. albicans and C. glabrata for echinocandins and in C. parapsilosis and C. tropicalis for azoles. Death associated with fungemia occurred in 25 % of the cases, with more than half of C. glabrata infections being fatal. The great number of Candida non-albicans is noteworthy despite a relatively low antifungal resistance rate. Studies like this are essential in order to improve empirical treatment guidelines.

  6. Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans.

    Science.gov (United States)

    Wang, Ying; Liu, Jin-Yan; Shi, Ce; Li, Wen-Jing; Zhao, Yue; Yan, Lan; Xiang, Ming-Jie

    2015-11-01

    The Candida albicans zinc cluster proteins are a family of transcription factors (TFs) that play essential roles in the development of antifungal drug resistance. Gain-of-function mutations in several TFs, such as Tac1p, Mrr1p and Upc2p, have been previously well documented in azole-resistant clinical C. albicans isolates. Mrr2p (multidrug resistance regulator 2) is a novel TF controlling expression of the ABC transporter gene CDR1 and mediating fluconazole resistance. In this study, the relationship between naturally occurring mutations in MRR2 and fluconazole resistance in clinical C. albicans isolates was investigated. Among a group of 20 fluconazole-resistant clinical C. albicans and 10 fluconazole-susceptible C. albicans, 12 fluconazole-resistant isolates overexpressed CDR1 by at least two-fold compared with the fluconazole-susceptible isolates. Of these 12 resistant isolates, three (C7, C9, C15) contained 11 identical missense mutations, 6 of which occurred only in the azole-resistant isolates. The contribution of these mutations to CDR1 overexpression and therefore to fluconazole resistance was further verified by generating recombinant strains containing the mutated MRR2 gene. The mutated MRR2 alleles from isolate C9 contributed to an almost six-fold increase in CDR1 expression and an eight-fold increase in fluconazole resistance; the missense mutations S466L and T470N resulted in an increase in CDR1 expression of more than two-fold and a four-fold increase in fluconazole resistance. In contrast, the other four missense mutations conferred only two- to four-fold increases in fluconazole resistance, with no significant increase in CDR1 expression. These findings provide some insight into the mechanism by which MRR2 regulates C. albicans multidrug resistance.

  7. Stairway to Heaven or Hell? Perspectives and Limitations of Chagas Disease Chemotherapy.

    Science.gov (United States)

    Salomao, Kelly; Menna-Barreto, Rubem Figueiredo Sadok; de Castro, Solange Lisboa

    2016-01-01

    In this review, we intend to provide a general view of the evolution of experimental studies in the area of chemotherapy for Chagas disease. We can follow the process of drug development through three phases. The first phase began almost at the same time as the discovery made by Carlos Chagas and proceeds to 1970, during which time an extensive list of compounds was subjected to preclinical and clinical trials. The second phase began with the introduction of nifurtimox and benznidazole into the clinical setting, followed with the search for alternative drugs. In this phase, a dichotomy existed between rational and empirical approaches in preclinical studies. The third phase began with the unravelling of the T. cruzi genome. The development of transgenic parasites has allowed the development of solid HTS protocols, and the establishment of bioluminescent T. cruzi has allowed in vivo drug evaluations using a reduced number of animals. Among the wide variety of compounds subjected to preclinical studies, we have discovered azolic and non-azolic inhibitors of sterol C14α-demethylase (CYP51) and nitro compounds. Two compounds evaluated during the second phase, namely, MK-436 and allopurinol, could be revisited. Clinical studies of posaconazole and E1224 yielded disappointing results, and it is critical to understand the reason for their failure as a monotherapy. Currently, the combination and repositioning of drugs with different mechanisms of action are complementary approaches. The use of drug combinations, particularly those of nitro compounds with CYP51 inhibitors, is considered a real alternative for the treatment of Chagas disease.

  8. Challenges in microbiological diagnosis of invasive Aspergillus infections.

    Science.gov (United States)

    Alanio, Alexandre; Bretagne, Stéphane

    2017-01-01

    Invasive aspergillosis (IA) has been increasingly reported in populations other than the historical hematology patients and there are new questions about the performance of microbiological tools. Microscopy and culture have been completed by biomarkers, either antigens or DNA, and in blood or respiratory specimens or both. First studied in hematology, the antigen galactomannan performance in serum is low in other patient populations where the pathophysiology of the infection can be different and the prevalence of IA is much lower. DNA detection with polymerase chain reaction (PCR) in blood or serum (or both) has reached a certain level of acceptance thanks to consensus methods based on real-time quantitative PCR (qPCR). When used on respiratory specimens, galactomannan and qPCR depend on standardization of the sampling and the diverse mycological procedures. Thus, culture remains the main diagnostic criterion in critically ill patients. The current trend toward more effective anti-mold prophylaxis in hematology hampers the yield of a screening strategy, as is usually performed in hematology. Therefore, circulating biomarkers as confirmatory tests should be considered and their performance should be reappraised in each new setting. The use of azole prophylaxis also raises the issue of selecting azole-resistance Aspergillus fumigatus isolates. Ideally, the biomarkers will be more efficient when individual genetic risks of IA are defined. Culture, though not standardized, remains a key element for the diagnosis of IA and has the advantage to easily detect molds other than A. fumigatus. It is still unclear whether next-generation sequencing will replace culture in the future.

  9. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata.

    Science.gov (United States)

    Vandeputte, Patrick; Tronchin, Guy; Larcher, Gérald; Ernoult, Emilie; Bergès, Thierry; Chabasse, Dominique; Bouchara, Jean-Philippe

    2008-10-01

    Unlike the molecular mechanisms that lead to azole drug resistance, the molecular mechanisms that lead to polyene resistance are poorly documented, especially in pathogenic yeasts. We investigated the molecular mechanisms responsible for the reduced susceptibility to polyenes of a clinical isolate of Candida glabrata. Sterol content was analyzed by gas-phase chromatography, and we determined the sequences and levels of expression of several genes involved in ergosterol biosynthesis. We also investigated the effects of the mutation harbored by this isolate on the morphology and ultrastructure of the cell, cell viability, and vitality and susceptibility to cell wall-perturbing agents. The isolate had a lower ergosterol content in its membranes than the wild type, and the lower ergosterol content was found to be associated with a nonsense mutation in the ERG6 gene and induction of the ergosterol biosynthesis pathway. Modifications of the cell wall were also seen, accompanied by increased susceptibility to cell wall-perturbing agents. Finally, this mutation, which resulted in a marked fitness cost, was associated with a higher rate of cell mortality. Wild-type properties were restored by complementation of the isolate with a centromeric plasmid containing a wild-type copy of the ERG6 gene. In conclusion, we have identified the molecular event responsible for decreased susceptibility to polyenes in a clinical isolate of C. glabrata. The nonsense mutation detected in the ERG6 gene of this isolate led to a decrease in ergosterol content. This isolate may constitute a useful tool for analysis of the relevance of protein trafficking in the phenomena of azole resistance and pseudohyphal growth.

  10. Economic considerations of antifungal prophylaxis in patients undergoing surgical procedures

    Directory of Open Access Journals (Sweden)

    Maria Adriana Cataldo

    2011-01-01

    Full Text Available Maria Adriana Cataldo, Nicola PetrosilloSecond Infectious Diseases Division, National Institute for Infectious Diseases, “Lazzaro Spallanzani”, Rome, ItalyAbstract: Fungi are a frequent cause of nosocomial infections, with an incidence that has increased significantly in recent years, especially among critically ill patients who require intensive care unit (ICU admission. Among ICU patients, postsurgical patients have a higher risk of Candida infections in the bloodstream. In consideration of the high incidence of fungal infections in these patients, their strong impact on mortality rate, and of the difficulties in Candida diagnosis, some experts suggest the use of antifungal prophylaxis in critically ill surgical patients. A clinical benefit from this strategy has been demonstrated, but the economic impact of the use of antifungal prophylaxis in surgical patients has not been systematically evaluated, and its cost–benefit ratio has not been defined. Whereas the costs associated with treating fungal infections are very high, the cost of antifungal drugs varies from affordable (ie, the older azoles to expensive (ie, echinocandins, polyenes, and the newer azoles. Adverse drug-related effects and the possibly increased incidence of fluconazole resistance and of isolates other than Candida albicans must also be taken into account. From the published studies of antifungal prophylaxis in surgical patients, a likely economic benefit of this strategy could be inferred, but its usefulness and cost–benefits should be evaluated in light of local data, because the available evidence does not permit general recommendations.Keywords: antifungal prophylaxis, cost-effectiveness, economics, surgery, fungal infection 

  11. Candida colonization of the vagina of HIV-seropositive pregnant women and their seronegative counterparts at selected health-care centers in Akure, Ondo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Blessing Itohan Ebhodaghe

    2016-01-01

    Full Text Available Background: Candida colonization of the vagina is a risk factor in pregnancy. Candida isolates have been implicated in adverse pregnancy outcomes. The study determined the incidence of Candida species recovered from the vagina of HIV-seropositive and HIV-seronegative pregnant women that attended antenatal clinics in Akure, Ondo State between November 2014 and December 2015. Materials and Methods: Two hundred and forty pregnant women aged 19–43 participated in the study, which included 114 HIV-seropositive subjects with mean age 31.81 years and 126 HIV-seronegative subjects with mean age 29.05 years as controls. High vaginal swab was collected from each subject using sterile cotton-tipped applicator, streaked onto Mycological Agar - supplemented with streptomycin. Each sample was incubated 24 h for yeast and 72–120 h for the growth of molds. Yeast colonies that grew on Mycological Agar were picked and studied. Thereafter, colonies resembling Candida were identified using sugar assimilation and fermentation. Candida isolates were further speciated using Candida Ident Agar, modified. Antifungal resistance profile was identified with azoles, polyenes, echinocandins, flucytosine, and griseofulvin drugs. Antifungal resistant assay was determined by disc and agar well diffusion. Results: Altogether, 157 Candida isolates were recovered from HIV-seropositive and HIV-seronegative subjects. Candida albicans constituted 46.5%, Candida dubliniensis and Candida glabrata 15.3% each, Candida krusei 12.1%, Candida spp. 5.7%, and Candida tropicalis and Candida pseudotropicalis 2.5% each. Antifungal resistance was widespread with azoles, polyenes, echinocandins, flucytosine, and griseofulvin. Conclusion: C. albicans was the predominant isolate recovered (17.2% HIV-seropositive and 29.3% HIV-seronegative subjects. Widespread antifungal resistance seems high and suggests possible abuse of these drugs.

  12. Hsp90 governs dispersion and drug resistance of fungal biofilms.

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2011-09-01

    Full Text Available Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving

  13. Posaconazole: Use in the Prophylaxis and Treatment of Fungal Infections.

    Science.gov (United States)

    Clark, Nina M; Grim, Shellee A; Lynch, Joseph P

    2015-10-01

    Posaconazole, a fluorinated triazole antifungal drug, is approved by the U.S. Food and Drug Administration (FDA) for (1) prophylaxis against Aspergillus and Candida infections in immunocompromised patients at high risk for these infections and (2) oropharyngeal candidiasis (OPC), including cases refractory to fluconazole and/or itraconazole. The European Medicines Agency (EMA) has approved posaconazole for (1) treatment of aspergillosis, fusariosis, chromoblastomycosis, and coccidioidomycosis in patients who are refractory to or intolerant of other azoles or amphotericin B; (2) first-line therapy for OPC for severe disease or in those unlikely to respond to topical therapy; and (3) prophylaxis of invasive fungal infections in high-risk hematologic patients and stem cell transplant recipients. In addition to approved indications, posaconazole has been used with success as salvage therapy for invasive mold infections and endemic mycoses in patients who are refractory to or intolerant of other antifungal agents, and as prophylaxis or salvage therapy in children, for whom indications are more limited owing to a paucity of data. Posaconazole has potent in vitro activity against a broad range of fungi and molds, including Aspergillus, Candida, Cryptococcus, filamentous fungi, and endemic mycoses including coccidioidomycosis, histoplasmosis, and blastomycosis. Importantly, posaconazole is much more active than other azoles against many Mucorales species and the combination of posaconazole with other antifungal agents may be synergistic. Hence, posaconazole is a potential candidate as a single or combination agent for difficult-to-treat fungal infections. Posaconazole has an excellent safety profile; to date, serious side effects are rare, even with prolonged use. However, newer posaconazole formulations achieve higher blood levels and it remains to be seen whether this may lead to an increase in the rate of adverse effects. Currently, posaconazole is used predominantly

  14. Antifungal prophylaxis with posaconazole vs. fluconazole or itraconazole in pediatric patients with neutropenia.

    Science.gov (United States)

    Döring, M; Eikemeier, M; Cabanillas Stanchi, K M; Hartmann, U; Ebinger, M; Schwarze, C-P; Schulz, A; Handgretinger, R; Müller, I

    2015-06-01

    Pediatric patients with hemato-oncological malignancies and neutropenia resulting from chemotherapy have a high risk of acquiring invasive fungal infections. Oral antifungal prophylaxis with azoles, such as fluconazole or itraconazole, is preferentially used in pediatric patients after chemotherapy. During this retrospective analysis, posaconazole was administered based on favorable results from studies in adult patients with neutropenia and after allogeneic hematopoietic stem cell transplantation. Retrospectively, safety, feasibility, and initial data on the efficacy of posaconazole were compared to fluconazole and itraconazole in pediatric and adolescent patients during neutropenia. Ninety-three pediatric patients with hemato-oncological malignancies with a median age of 12 years (range 9 months to 17.7 years) that had prolonged neutropenia (>5 days) after chemotherapy or due to their underlying disease, and who received fluconazole, itraconazole, or posaconazole as antifungal prophylaxis, were analyzed in this retrospective single-center survey. The incidence of invasive fungal infections in pediatric patients was low under each of the azoles. One case of proven aspergillosis occurred in each group. In addition, there were a few cases of possible invasive fungal infection under fluconazole (n = 1) and itraconazole (n = 2). However, no such cases were observed under posaconazole. The rates of potentially clinical drug-related adverse events were higher in the fluconazole (n = 4) and itraconazole (n = 5) groups compared to patients receiving posaconazole (n = 3). Posaconazole, fluconazole, and itraconazole are comparably effective in preventing invasive fungal infections in pediatric patients. Defining dose recommendations in these patients requires larger studies.

  15. Comparison of solid phase- and liquid/liquid-extraction for the purification of hair extract prior to multi-class pesticides analysis.

    Science.gov (United States)

    Duca, Radu-Corneliu; Salquebre, Guillaume; Hardy, Emilie; Appenzeller, Brice M R

    2014-04-01

    The present study focuses on the influence of a purification step - after extraction of pesticides from hair and before analysis of the extract - on the sensitivity of analytical methods including compounds from different chemical classes (both parent and metabolites). Sixty-seven pesticides and metabolites from different chemical classes were tested here: organochlorines, organophosphates, carbamates, pyrethroids, ureas, azoles, phenylpyrazoles and neonicotinoids. Two gas chromatography-negative chemical ionization-tandem mass spectrometry methods and one based on ultra-performance liquid chromatography-electrospray tandem mass spectrometry were used. Seven solid-phase extraction cartridges: C18, S-DVB, PS-DVB, GCB, GCB/PSA, SAX/PSA and Florisil/PSA were tested and compared to more classical liquid-liquid extraction procedures using ethyl acetate, hexane and dichloromethane. Although LLE allowed obtaining good results for some compounds, on the whole, SPE clearly provided better recovery for the majority of the pesticide residues tested in the present study. GCB/PSA was clearly the best suited to non-polar compounds such as organochlorines, pyrethroids and organophosphates, with recovery ranging from 45.9% (diflufenican) to 117.1% (parathion methyl). For hydrophilic metabolites (e.g. dialkyl phosphates and other organophosphate metabolites, pyrethroid metabolites, phenols and carbamate metabolites), the best results were obtained with PS-DVB, with recovery ranged from 10.3% (malathion monocarboxylic acid) to 93.1% (para-nitrophenol). For hydrophilic parent pesticides (e.g. neonicotinoids, carbamates, azoles) and metabolites without nucleophilic functions, the best recovery was obtained with SAX/PSA, with recovery ranging from 52.1% (3-hydroxycarbofuran) to 100.9% (3,4-dichloroaniline). Solid phase extraction was found to be more suitable than the liquid-liquid extraction for pesticides and their metabolites determination in terms of number of extracted compounds

  16. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    Science.gov (United States)

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed.

  17. Antifungal Susceptibility of 205 Candida spp. Isolated Primarily during Invasive Candidiasis and Comparison of the Vitek 2 System with the CLSI Broth Microdilution and Etest Methods▿

    Science.gov (United States)

    Bourgeois, N.; Dehandschoewercker, L.; Bertout, S.; Bousquet, P.-J.; Rispail, P.; Lachaud, L.

    2010-01-01

    Infections due to Candida spp. are frequent, particularly in immunocompromised and intensive care unit patients. Antifungal susceptibility tests are now required to optimize antifungal treatment given the emergence of acquired antifungal resistance in some Candida species. An antifungal susceptibility automated method, the Vitek 2 system (VK2), was evaluated. VK2 was compared to the CLSI broth microdilution reference method and the Etest procedure. For this purpose, 205 clinical isolates of Candida spp., including 11 different species, were tested for fluconazole, voriconazole, and amphotericin B susceptibility. For azoles, essential agreement ranged from 25% to 100%, depending on the method used and the Candida species tested. Categorical agreements for all of the species averaged 92.2% and ranged from 14.3 to 100%, depending on the 24-h or 48-h MIC reading by the Etest and CLSI methods and on the Candida species. Results obtained for Candida albicans showed excellent categorical and essential agreements with the two comparative methods. For Candida glabrata, the essential agreement was high with the CLSI method but low with the Etest method, and several very major errors in interpretation were observed between VK2 and the Etest method for both azoles. Low MICs of fluconazole were obtained for all of the Candida krusei isolates, but the VK2 expert software corrected all of the results obtained to resistant. Amphotericin B results showed MICs of ≤1 mg/liter for 201 (VK2), 190 (CLSI), and 202 (Etest) isolates. The AST-YS01 Vitek 2 card system (bioMérieux) is a reliable and practical standardized automated antifungal susceptibility test. Nevertheless, more assays are needed to better evaluate C. glabrata fluconazole sensitivity. PMID:19889902

  18. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  19. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation.

    Science.gov (United States)

    Lewis, Jared C; Bergman, Robert G; Ellman, Jonathan A

    2008-08-01

    [Reaction: see text]. Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh- N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy 3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy 3) 2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of

  20. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Eveline Snelders

    Full Text Available BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs. The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34/L98H. We investigated if TR(34/L98H could have developed through exposure to DMIs. METHODS AND FINDINGS: Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in The Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR(34/L98H isolate in 1998. Through microsatellite genotyping of TR(34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR(34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. CONCLUSIONS: Our findings support a fungicide-driven route of TR(34/L98H development in A. fumigatus. Similar molecule structure

  1. Role of isavuconazole in the treatment of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Wilson DT

    2016-08-01

    isavuconazole for invasive candidiasis (relative to comparator agents such as echinocandins is not as robust. Therefore, isavuconazole use for invasive candidiasis may initially be reserved as a step-down oral option in those patients who cannot receive other azoles due to tolerability or spectrum of activity limitations. Post-marketing surveillance of isavuconazole will be important to better understand the safety and efficacy of this agent, as well as to better define the need for isavuconazole serum concentration monitoring. Keywords: isavuconazole, azole, antifungal, aspergillosis, Mucormycetes, mucormycosis

  2. Candida dubliniensis in a Brazilian family with an HIV 1- infected child: identification, antifungal susceptibility, drug accumulation and sterol composition Candida dubliniensis em uma família brasileira com uma criança infectada pelo vírus HIV: identificação susceptibilidade a antifúngicos, acúmulo de fluconazol e composição de esteróis

    Directory of Open Access Journals (Sweden)

    Nadja Rodrigues de Melo

    2006-09-01

    Full Text Available This study investigated the prevalence of C. dubliniensis in a Brazilian family with an HIV - infected child. A total of 42 oral isolates were obtained from eight family members. The identification of C. dubliniensis was performed by polymerase chain reactions (PCR using primers against a specific sequence of the C. dubliniensis cytochrome b gene. Only the HIV-infected child and his grandmother were colonized by C. dubliniensis. In this study C. dubliniensis isolated from the HIV-infected child exhibited high susceptibility for azoles tested with MICs of 0.125 and 0.5 µg/mL for voriconazole and fluconazole, respectively. Accumulation of [³H] fluconazole in C. dubliniensis isolated from the HIV-infected child was slightly reduced in comparison to the reference susceptible strain. C. dubliniensis isolates had significantly lower ergosterol levels in comparison to C. albicans reference strains.O presente estudo investigou a prevalência de C. dubliniensis em uma família brasileira com uma criança infectada pelo vírus HIV. Um total de 42 isolados orais foram obtidos de 8 membros da família. A identificação de C. dubliniensis foi realizada por polymerase chain reactions (PCR usando primers contra a sequência específica para o gene C. dubliniensis cytochrome b. Apenas a criança infectada pelo vírus HIV e a avó estavam colonizados por C. dubliniensis. Neste estudo C. dubliniensis isolado da criança infectada pelo vírus HIV exibiu alta susceptibilidade para azoles com concentração mínima inibitória de 0.125 and 0.5 µg/mL para voriconazole and fluconazole respectivamente. Acúmulo de [³H] fluconazol intra-celular foi ligeiramente reduzido em C. dubliniensis isolado da criança infectada pelo vírus HIV em comparação com a cepa referência sensível ao fluconazole. Isolados de C. dubliniensis neste estudo apresentaram níveis significantemente reduzidos de ergosterol da membrane celular em comparação com C. albicans.

  3. Growth inhibition and ultrastructural alterations induced by Δ24(25-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms

    Directory of Open Access Journals (Sweden)

    Nakamura Celso

    2009-04-01

    Full Text Available Abstract Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25-sterol methyltransferase (24-SMTI, 20-piperidin-2-yl-5α-pregnan-3β-20(R-diol (AZA, and 24(R,S,25-epiminolanosterol (EIL, against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including

  4. Epidemiology and treatment approaches in management of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Kriengkauykiat J, Ito JI

    2011-05-01

    Full Text Available Jane Kriengkauykiat1,2, James I Ito2, Sanjeet S Dadwal21Department of Pharmacy, 2Division of Infectious Diseases, City of Hope, Duarte, CA, USAAbstract: Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate "preemptive" therapy. Also, the Aspergillus galactomannan test gives a false negative

  5. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika [Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India); Sanglard, Dominique [Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne (Switzerland); Prasad, Rajendra, E-mail: rp47jnu@gmail.com [Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  6. Primary or secondary antifungal prophylaxis in patients with hematological maligancies: efficacy and damage

    Directory of Open Access Journals (Sweden)

    Gedik H

    2014-04-01

    were 33% in the firstyear, 22% in the second year, and 27% overall.Conclusion: Primary antifungal prophylaxis should be administered to selected patients on the basis of consideration of efficacy, cost, and potential harm. Use of secondary prophylaxis may reduce systemic antifungal use and IFI frequency but may increase risk of colonization and infection with azole-resistant fungal strains.Keywords: azole resistance, febrile neutropenia, hematological malignancy, invasive fungal infection, primary antifungal prophylaxis, secondary antifungal prophylaxis

  7. Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients

    Directory of Open Access Journals (Sweden)

    Mussap Michele

    2011-05-01

    Full Text Available Abstract Background Yeasts are a common cause of invasive fungal infections in critically ill patients. Antifungal susceptibility testing results of clinically significant fungal strains are of interest to physicians, enabling them to adopt appropriate strategies for empiric and prophylactic therapies. We investigated the antifungal susceptibility of yeasts isolated over a 2-year period from hospitalised patients with invasive yeast infections. Methods 638 yeasts were isolated from the blood, central venous catheters and sterile fluids of 578 patients on general and surgical intensive care units and surgical wards. Etest strips and Sensititre panels were used to test the susceptibility of the isolates to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole in 13 laboratories centres (LC and two co-ordinating centres (CC. The Clinical and Laboratory Standards Institute (CLSI reference broth microdilution method was used at the CCs for comparison. Results Etest and Sensititre (LC/CC MIC90 values were, respectively: amphotericin B 0.5/0.38, 1/1 mg/L; anidulafungin 2/1.5 and 1/1 mg/L; caspofungin 1/0.75 and 0.5/0.5 mg/L; fluconazole 12/8 and 16/16 mg/L; itraconazole 1/1.5, 0.5/0.5 mg/L; posaconazole 0.5 mg/L and voriconazole 0.25 mg/L for all. The overall MIC90 values were influenced by the reduced susceptibility of Candida parapsilosis isolates to echinocandins and a reduced or lack of susceptibility of Candida glabrata and Candida krusei to azoles, in particular fluconazole and itraconazole. Comparison of the LC and CC results showed good Essential Agreement (90.3% for Etest and 92.9% for Sensititre, and even higher Categorical Agreement (93.9% for Etest and 96% for Sensititre; differences were observed according to the species, method, and antifungal drug. No cross-resistance between echinocandins and triazoles was detected. Conclusions Our data confirm the different antifungal susceptibility

  8. Wild-type MIC distributions and epidemiologic cutoff values for fluconazole, posaconazole, and voriconazole when testing Cryptococcus neoformans as determined by the CLSI broth microdilution method.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana; Diekema, Daniel J; Messer, Shawn A; Jones, Ronald N

    2011-11-01

    When clinical susceptibility breakpoints (CBPs) are absent, establishing wild-type (WT) MIC distributions and epidemiologic cutoff values (ECVs) provides a sensitive means for detecting emerging resistance to antimicrobials. We determined species-specific ECVs for fluconazole (FLC), posaconazole (PSC), and voriconazole (VRC) using a large global collection of Cryptococcus neoformans (CNEO) isolates obtained from the ARTEMIS and SENTRY Antimicrobial Surveillance Programs. From 2006 to 2009, 285 invasive clinical isolates of CNEO were collected from 61 centers worldwide (178 isolates from ARTEMIS and 107 from SENTRY) and susceptibility testing was performed against FLC, PSC, and VRC using Clinical and Laboratory Standards Institute M27-A3 broth microdilution method (72 h of incubation). The ARTEMIS isolates were tested at the University of Iowa and the SENTRY Program isolates were tested at JMI Laboratories, and the results were combined for analysis. An additional collection of 986 isolates tested against FLC between 1996 and 2008 were used to assess temporal trends in the frequency of non-WT isolates. The modal MICs (mg/L) for FLC, PSC, and VRC were 4, 0.12, and 0.06, respectively. The ECVs expressed as milligrams per liter (% of isolates that had MIC ≤ECV) for FLC, PSC, and VRC were 8 (96.9), 0.25 (96.5), and 0.12 (95.1), respectively. Temporal trends in the emergence of non-WT strains (% of isolate MICs >ECV) for the time periods 1996-2000, 2001-2004, and 2005-2008 for FLC were 4.2, 3.8, and 0.5, respectively. In the absence of CBPs for FLC, PSC, and VRC, these WT MIC distributions and ECVs will be useful in surveillance for detection of emergence of azole reduced susceptibility among CNEO. Application of the FLC ECV to a large collection of CNEO tested over time (1996-2008) revealed a decrease in the frequency of non-WT strains. These findings are consistent with those of more limited surveys in developed countries, suggesting that CNEO susceptibility to FLC

  9. In Vitro Activity of a Novel Broad-Spectrum Antifungal, E1210, Tested against Aspergillus spp. Determined by CLSI and EUCAST Broth Microdilution Methods ▿

    Science.gov (United States)

    Pfaller, Michael A.; Duncanson, Frederick; Messer, Shawn A.; Moet, Gary J.; Jones, Ronald N.; Castanheira, Mariana

    2011-01-01

    E1210 is a first-in-class broad-spectrum antifungal that suppresses hyphal growth by inhibiting fungal glycophosphatidylinositol (GPI) biosynthesis. In the present study, we extend these findings by examining the activity of E1210 and comparator antifungal agents against Aspergillus spp. by using the methods of the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) to test wild-type (WT) as well as amphotericin B (AMB)-resistant (-R) and azole-R strains (as determined by CLSI methods). Seventy-eight clinical isolates of Aspergillus were tested including 20 isolates of Aspergillus flavus species complex (SC), 22 of A. fumigatus SC, 13 of A. niger SC, and 23 of A. terreus SC. The collection included 15 AMB-R (MIC, ≥2 μg/ml) isolates of A. terreus SC and 10 itraconazole-R (MIC, ≥4 μg/ml) isolates of A. fumigatus SC (7 isolates), A. niger SC (2 isolates), and A. terreus SC (1 isolate). Comparator antifungal agents included anidulafungin, caspofungin, amphotericin B, itraconazole, posaconzole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparators. The essential agreement (EA; ±2 log2 dilution steps) was 100% for all comparisons with the exception of posaconazole versus A. terreus SC (EA = 91.3%). The minimum effective concentration (MEC)/MIC90 values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, and voriconazole, respectively, were as follows for each species: for A. flavus SC, 0.03, ≤0.008, 0.12, 1, 1, and 1; for A. fumigatus SC, 0.06, 0.015, 0.12, >8, 1, and 4; for A. niger SC, 0.015, 0.03, 0.12, 4, 1, and 2; and for A. terreus SC, 0.06, 0.015, 0.12, 1, 0.5, and 1. E1210 was very active against AMB-R strains of A. terreus SC (MEC range, 0.015 to 0.06 μg/ml) and itraconazole-R strains of A. fumigatus SC (MEC range, 0.03 to 0.12 μg/ml), A. niger SC (MEC, 0.008 μg/ml), and A. terreus SC (MEC, 0.015

  10. [Species distribution and antifungal susceptibility of Candida spp. causing superficial mycosis. Coro, Falcon state, Venezuela].

    Science.gov (United States)

    Saúl-García, Yotsabeth; Humbría-García, Leyla; Hernández-Valles, Rosaura

    2015-09-01

    Candida species other than C. albicans are often described as causative agents of superficial mycosis and are more resistant to treatment with azoles. In order to determine the distribution of species and in vitro antifungal susceptibility of Candida spp., one ambispective study, which analyzed 18 yeast isolates obtained from samples from patients diagnosed with superficial mycosis, was performed. Taxonomic identification was performed by macroscopic visualization of the growth characteristics in chromogenic agar and by conventional methods. The susceptibility to fluconazole and voriconazole was evaluated by the disc diffusion method. Most of the isolates (88.8%), came from nail samples. C. parapsilosis was the most common species, followed by C. tropicalis, C. albicans and C. krusei, which confirmed the prevalence of non-albicans species as a cause of superficial mycoses. The pattern of susceptibility to fluconazole and voriconazole was similar: all isolates of C. parapsilosis and C. albicans were susceptible, while 83.3% of C. tropicalis showed sensitivity to both antifungals. C. krusei, fluconazole-resistant species showed intermediate susceptibility io voriconazole. The use of chromogenic agar allowed to detect mixed infections in nail samples, involving Candida spp. and C. tropicalis in one case, the latter with resistance to both fluconazole and voriconazole. The results demonstrate the importance of species identification and susceptibility testing to avoid therapeutic failures in superficial mycoses.

  11. Identification and characterization of Daldinia eschscholtzii isolated from skin scrapings, nails, and blood

    Science.gov (United States)

    Ng, Kee Peng; Chan, Chai Ling; Yew, Su Mei; Yeo, Siok Koon; Toh, Yue Fen; Looi, Hong Keat; Na, Shiang Ling; Lee, Kok Wei; Yee, Wai-Yan

    2016-01-01

    Background Daldinia eschscholtzii is a filamentous wood-inhabiting endophyte commonly found in woody plants. Here, we report the identification and characterization of nine D. eschscholtzii isolates from skin scrapings, nail clippings, and blood. Methods The nine isolates were identified based on colony morphology, light microscopy, and internal transcribed spacer (ITS)-based phylogeny. In vitro antifungal susceptibility of the fungal isolates was evaluated by the Etest to determine the minimum inhibitory concentration (MIC). Results The nine isolates examined were confirmed as D. eschscholtzii. They exhibited typical features of Daldinia sp. on Sabouraud Dextrose Agar, with white felty colonies and black-gray coloration on the reverse side. Septate hyphae, branching conidiophore with conidiogenous cells budding from its terminus, and nodulisporium-like conidiophores were observed under the microscope. Phylogenetic analysis revealed that the nine isolates were clustered within the D. eschscholtzii species complex. All the isolates exhibited low MICs against azole agents (voriconazole, posaconazole, itraconazole, and ketoconazole), as well as amphotericin B, with MIC of less than 1 µg/ml. Discussion Early and definitive identification of D. eschscholtzii is vital to reducing misuse of antimicrobial agents. Detailed morphological and molecular characterization as well as antifungal profiling of D. eschscholtzii provide the basis for future studies on its biology, pathogenicity, and medicinal potential. PMID:28028453

  12. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species

    Science.gov (United States)

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N.; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315

  13. Effects of nitrogen atoms of benzotriazole and its derivatives on the properties of electrodeposited Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoe Chul; Kim, Myung Jun; Lim, Taeho; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe [School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Gwanak 1, Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Soo-Kil, E-mail: sookilkim@cau.ac.kr [School of Integrative Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Kim, Jae Jeong, E-mail: jjkimm@snu.ac.kr [School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Gwanak 1, Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2014-01-01

    Additives having azole groups with different numbers of nitrogen atoms, such as indole, benzimidazole, indazole, benzotriazole (BTA), and 1H-benzotriazole-methanol (BTA-MeOH) were adopted to improve the mechanical hardness of electrodeposited Cu films. The effects of these additives on the film properties were elucidated in relation to their number of nitrogen atoms. Electrochemical current–potential behaviors showed that the additives containing three nitrogen atoms (BTA and BTA-MeOH) more effectively inhibited Cu electrodeposition. The inhibition strongly affected the film properties, resulting in reduced grain size and surface roughness, and increased resistivity and hardness. Cu films deposited with BTA or BTA-MeOH also exhibited 35% reduced grain size and 1.5-time higher hardness than Cu films deposited in electrolyte containing other BTA-derivatives having fewer nitrogen atoms. This notable grain refining effect of BTA and BTA-MeOH can be evaluated with respect to the strong interaction of their nitrogen atoms with the substrate and the copper ions, as well. - Highlights: • Additives of similar structure containing 1, 2, and 3 nitrogen atoms were used. • Additives with 3 nitrogen atoms more strongly inhibited Cu deposition than others. • Additives containing 3 nitrogen atoms efficiently affected film properties. • Additives having 3 nitrogen atoms remarkably improved film hardness.

  14. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole.

    Science.gov (United States)

    Gattinoni, Chiara; Michaelides, Angelos

    2015-01-01

    The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor.

  15. A New Aspergillus fumigatus Typing Method Based on Hypervariable Tandem Repeats Located within Exons of Surface Protein Coding Genes (TRESP)

    Science.gov (United States)

    Garcia-Rubio, Rocio; Gil, Horacio; Monteiro, Maria Candida; Pelaez, Teresa; Mellado, Emilia

    2016-01-01

    Aspergillus fumigatus is a saprotrophic mold fungus ubiquitously found in the environment and is the most common species causing invasive aspergillosis in immunocompromised individuals. For A. fumigatus genotyping, the short tandem repeat method (STRAf) is widely accepted as the first choice. However, difficulties associated with PCR product size and required technology have encouraged the development of novel typing techniques. In this study, a new genotyping method based on hypervariable tandem repeats within exons of surface protein coding genes (TRESP) was designed. A. fumigatus isolates were characterized by PCR amplification and sequencing with a panel of three TRESP encoding genes: cell surface protein A; MP-2 antigenic galactomannan protein; and hypothetical protein with a CFEM domain. The allele sequence repeats of each of the three targets were combined to assign a specific genotype. For the evaluation of this method, 126 unrelated A. fumigatus strains were analyzed and 96 different genotypes were identified, showing a high level of discrimination [Simpson’s index of diversity (D) 0.994]. In addition, 49 azole resistant strains were analyzed identifying 26 genotypes and showing a lower D value (0.890) among them. This value could indicate that these resistant strains are closely related and share a common origin, although more studies are needed to confirm this hypothesis. In summary, a novel genotyping method for A. fumigatus has been developed which is reproducible, easy to perform, highly discriminatory and could be especially useful for studying outbreaks. PMID:27701437

  16. Deprotometalation-iodolysis and computed CH acidity of 1,2,3- and 1,2,4-triazoles. Application to the synthesis of resveratrol analogues.

    Science.gov (United States)

    Nagaradja, Elisabeth; Bentabed-Ababsa, Ghenia; Scalabrini, Mathieu; Chevallier, Floris; Philippot, Stéphanie; Fontanay, Stéphane; Duval, Raphaël E; Halauko, Yury S; Ivashkevich, Oleg A; Matulis, Vadim E; Roisnel, Thierry; Mongin, Florence

    2015-10-01

    1-Aryl- and 2-aryl-1,2,3-triazoles were synthesized by N-arylation of the corresponding azoles using aryl iodides. The deprotometalations of 1-phenyl-1,2,3-triazole and -1,2,4-triazole were performed using a 2,2,6,6-tetramethylpiperidino-based mixed lithium-zinc combination and occurred at the most acidic site, affording by iodolysis the 5-substituted derivatives. Dideprotonation was noted from 1-(2-thienyl)-1,2,4-triazole by increasing the amount of base. From 2-phenyl-1,2,3-triazoles, and in particular from 2-(4-trifluoromethoxy)phenyl-1,2,3-triazole, reactions at the 4 position of the triazolyl, but also ortho to the triazolyl on the phenyl group, were observed. The results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method. 4-Iodo-2-phenyl-1,2,3-triazole and 4-iodo-2-(2-iodophenyl)-1,2,3-triazole were next involved in Suzuki coupling reactions to furnish the corresponding 4-arylated and 4,2'-diarylated derivatives. When evaluated for biological activities, the latter (which are resveratrol analogues) showed moderate antibacterial activity and promising antiproliferative effect against MDA-MB-231 cell line.

  17. Cutaneous Leishmaniasis in a Nonendemic Area of South Rajasthan: A Prospective Study

    Science.gov (United States)

    Balai, Manisha; Gupta, Lalit Kumar; Khare, Ashok Kumar; Srivastava, Ankita; Mittal, Asit; Singh, Ajit

    2016-01-01

    Background: Cutaneous leishmaniasis (CL) usually occurs in areas with hot and dry climate. In India, the desert areas of Rajasthan, Gujarat, and the plains of Northwestern frontier are endemic for this disorder. Aims and Objectives: The present study was aimed to describe clinicoepidemiological profile of the cases of CL from South Rajasthan, which is a nonendemic area of Rajasthan. Materials and Methods: During a period of 4 years (2010–2014), a total of 23 patients with CL were diagnosed. All the suspected cases of CL were interrogated in detail regarding visit to areas where CL is known to occur. This was followed by clinical examination, relevant investigations, and treatment. All except one patient were treated with azole antifungals. In one patient, CO2 laser ablation was done. Results: There were 12 (52.17%) males and 11 (47.83%) females with age ranging from 3 to 72 years. Duration of disease ranged from 7 days to 10 months. Face (15; 65.22%) and extremities (12; 52.17%) were involved in majority of the patients. Common morphologies were noduloulcerative lesions and crusted plaques. Tissue smear for Leishmania donovani bodies was positive in all except one patient. Conclusion: The present report highlights occurrence of CL in nonendemic area. Further epidemiological studies are required for identification of vector and strain of Leishmania involved. PMID:27688441

  18. Assessing liver injury associated with antimycotics:Concise literature review and clues from data mining of the FAERS database

    Institute of Scientific and Technical Information of China (English)

    Emanuel; Raschi; Elisabetta; Poluzzi; Ariola; Koci; Paolo; Caraceni; Fabrizio; De; Ponti

    2014-01-01

    AIM: To inform clinicians on the level of hepatotoxicrisk among antimycotics in the post-marketing setting,following the marketing suspension of oral ketocon-azole for drug-induced liver injury(DILI).METHODS: The publicly available international FAERSdatabase(2004-2011) was used to extract DILI cases(including acute liver failure events), where antimycot-ics with systemic use or potential systemic absorptionwere reported as suspect or interacting agents. The re-porting pattern was analyzed by calculating the report-ing odds ratio and corresponding 95%CI, a measure ofdisproportionality, with time-trend analysis where ap-propriate.RESULTS: From 1687284 reports submitted over the8-year period, 68115 regarded liver injury. Of these,2.9% are related to antimycotics(1964 cases, of which 112 of acute liver failure). Eleven systemic antimycotics(including ketoconazole and the newer triazole deriva-tives voriconazole and posaconazole) and terbinafine(used systemically to treat onychomicosis) generated a significant disproportionality, indicating a post-market-ing signal of risk.CONCLUSION: Virtually all antimycotics with systemic action or absorption are commonly reported in clinically significant cases of DILI. Clinicians must be aware of this aspect and monitor patients in case switch is con-sidered, especially in critical poly-treated patients under chronic treatment.

  19. What is the current and future status of conventional amphotericin B?

    Science.gov (United States)

    Kleinberg, Michael

    2006-06-01

    Amphotericin B deoxycholate has been the 'gold standard' treatment for invasive fungal infections for over 40 years. Driven to improve on the renal toxicity of amphotericin B deoxycholate, extensive pharmaceutical research has led to the development of several new antifungals including lipid formulations of amphotericin B, broad-spectrum azoles and echinocandins. Compared with amphotericin B deoxycholate, the lipid formulations of amphotericin B (amphotericin B lipid complex, amphotericin B colloidal dispersion and liposomal amphotericin B) share distinct advantages in improved drug safety, in particular reduced incidence and severity of amphotericin B deoxycholate-related nephrotoxicity. However, the lipid formulations of amphotericin B are significantly more expensive than amphotericin B deoxycholate and, as for many of these new antifungals, there are as yet insufficient published studies to guide clinicians. This paper examines aspects of safety, efficacy, and health economic data for the lipid formulations of amphotericin B in particular, in order to provide a rationale to justify substituting amphotericin B deoxycholate with the lipid formulations of amphotericin B.

  20. Antifungal drug discovery and development--fourth international summit. 10-11 March 1999, Princeton, New Jersey, USA.

    Science.gov (United States)

    Ryder, N

    1999-05-01

    Genetic and genomic approaches to discovery, selection and evaluation of antifungal targets were extensively discussed by several speakers at this meeting. Experimental targets with early lead compounds available from screening programs include translation (Ribogene Inc), transcription (SCRIPTGEN Pharmaceuticals Inc), and protein geranylgeranylation (Mitotix Inc). Classes of compounds which are more advanced in preclinical evaluation include the sordarins, inhibitors of fungal elongation factor 2 under development by Glaxo Wellcome plc and Merck and Co Inc, and a series of fungicidal peptides originally derived from a domain of the human neutrophil bactericidal permeability-increasing protein (BPI, Xoma Ltd). Preclinical and early clinical data were presented for two compounds: caspofungin (MK-0991, Merck and Co Inc), an echinocandin with a broad-spectrum of activity for parenteral application, and Sch-56592 (Schering-Plough Corp), an orally active triazole. The oral antimycotic, terbinafine (Novartis AG), primarily used in dermatological infections, shows potent synergy with azoles and has potential applications against several serious and drug-resistant fungal pathogens. Amphotericin B, which has long been the gold standard for therapy of life-threatening infections, is now available in several liposomal formulations, including AmBisome (Fujisawa Pharmaceutical Co Ltd) and Abelcet (The Liposome Company Inc) which show a reduced incidence of adverse events.

  1. Characterization of active site structure in CYP121. A cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv.

    Science.gov (United States)

    McLean, Kirsty J; Carroll, Paul; Lewis, D Geraint; Dunford, Adrian J; Seward, Harriet E; Neeli, Rajasekhar; Cheesman, Myles R; Marsollier, Laurent; Douglas, Philip; Smith, W Ewen; Rosenkrands, Ida; Cole, Stewart T; Leys, David; Parish, Tanya; Munro, Andrew W

    2008-11-28

    Mycobacterium tuberculosis (Mtb) cytochrome P450 gene CYP121 is shown to be essential for viability of the bacterium in vitro by gene knock-out with complementation. Production of CYP121 protein in Mtb cells is demonstrated. Minimum inhibitory concentration values for azole drugs against Mtb H37Rv were determined, the rank order of which correlated well with Kd values for their binding to CYP121. Solution-state spectroscopic, kinetic, and thermodynamic studies and crystal structure determination for a series of CYP121 active site mutants provide further insights into structure and biophysical features of the enzyme. Pro346 was shown to control heme cofactor conformation, whereas Arg386 is a critical determinant of heme potential, with an unprecedented 280-mV increase in heme iron redox potential in a R386L mutant. A homologous Mtb redox partner system was reconstituted and transported electrons faster to CYP121 R386L than to wild type CYP121. Heme potential was not perturbed in a F338H mutant, suggesting that a proposed P450 superfamily-wide role for the phylogenetically conserved phenylalanine in heme thermodynamic regulation is unlikely. Collectively, data point to an important cellular role for CYP121 and highlight its potential as a novel Mtb drug target.

  2. The advances in the treatment of fungal keratitis%真菌性角膜炎治疗进展

    Institute of Scientific and Technical Information of China (English)

    刘欣; 曾庆延

    2015-01-01

    真菌性角膜炎是一种严重的致盲性眼病,近年来治疗真菌性角膜炎新的药物有四代唑类、聚六甲基双胍、钙调磷酸酶抑制剂等,新药物剂型有凝胶缓释剂、克霉唑-β-环糊精等,新的手术方式有角膜胶原交联术、准分子激光治疗性角膜切削术、深板层角膜移植术等.%Fungal keratitis is a serious blindness leading disease.In recent years, new treatment included new medicines such as fourth generation azoles, poly hexamethylene biguanide, calcineurin inhibitors, and new dosage forms such as mucoadhesive gels and Clotrimazole-β-Cyclodextrin, new operation such as corneal collagen cross-linking, excimer laser phototherapeutic keratectomy, deep lamellar keratoplasty,etc.

  3. Filamentous fungal infections of the cornea: a global overview of epidemiology and drug sensitivity.

    Science.gov (United States)

    Kredics, László; Narendran, Venkatapathy; Shobana, Coimbatore Subramanian; Vágvölgyi, Csaba; Manikandan, Palanisamy

    2015-04-01

    Fungal keratitis is a serious suppurative, usually ulcerative corneal infection which may result in blindness or reduced vision. Epidemiological studies indicate that the occurrence of fungal keratitis is higher in warm, humid regions with agricultural economy. The most frequent filamentous fungal genera among the causal agents are Fusarium, Aspergillus and Curvularia. A more successful therapy of fungal keratitis relies on precise identification of the pathogen to the species level using molecular tools. As the sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal RNA gene cluster (rDNA) is not discriminative enough to reveal a species-level diagnosis for several filamentous fungal species highly relevant in keratitis infections, analysis of other loci is also required for an exact diagnosis. Molecular identifications may also reveal the involvement of fungal species which were not previously reported from corneal infections. The routinely applied chemotherapy of fungal keratitis is based on the topical and systemic administration of polyenes and azole compounds. Antifungal susceptibility testing of the causal agents is of special importance due to the emergence and spread of resistance. Testing the applicability of further available antifungals and screening for new, potential compounds for the therapy of fungal keratitis are of highlighted interest.

  4. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    Science.gov (United States)

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  5. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes.

    Science.gov (United States)

    Won, Kyung-Jong; Lin, Hai Yue; Jung, Soohyun; Cho, Soo Min; Shin, Ho-Chul; Bae, Young Min; Lee, Seung Hyun; Kim, Hyun-Jung; Jeon, Byeong Hwa; Kim, Bokyung

    2012-04-01

    Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.

  6. Prevalence and Fluconazole Susceptibility Profile of Candida spp. Clinical Isolates in a Brazilian Tertiary Hospital in Minas Gerais, Brazil.

    Science.gov (United States)

    Neves-Junior, Athayde; Cartágenes-Pinto, Ana Carolina; Rocha, Débora A S; de Sá, Leandro F Reis; Junqueira, Maria de Lourdes; Ferreira-Pereira, Antonio

    2015-08-01

    Candidiasis has become an important concern for clinical practice, especially with the increasing incidence of immunocompromised patients. In this scenario, the development resistance to fluconazole presents a challenge for treating these opportunistic infections. The aim of this study was to evaluate some epidemiology features of Candida infections in a Brazilian University Hospital using data, previously unavailable. We observed that 44% of the 93 clinical isolates tested, belonged to Candida albicans species and 56% belonged to non-Candida albicans species (mainly Candida tropicalis and Candida glabrata). Most strains were isolated from urine samples where C. albicans was predominantly detected. 29 strains presented a fluconazole resistance phenotype and of these, 22 were chemosensitised by FK506, a classical inhibitor of ABC transporters related to azoles resistance. These data suggest the probable role of efflux pumps in this resistance phenotype. Our study highlights the need for developing effective control measures for fungal infections, rational use of antifungal drugs and development of new molecules able to abrogate the active transport of antifungals.

  7. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    Science.gov (United States)

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-08-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.

  8. Isolation and Characterization of an Atypical Metschnikowia sp. Strain from the Skin Scraping of a Dermatitis Patient.

    Science.gov (United States)

    Kuan, Chee Sian; Ismail, Rokiah; Kwan, Zhenli; Yew, Su Mei; Yeo, Siok Koon; Chan, Chai Ling; Toh, Yue Fen; Na, Shiang Ling; Lee, Kok Wei; Hoh, Chee-Choong; Yee, Wai-Yan; Ng, Kee Peng

    2016-01-01

    A yeast-like organism was isolated from the skin scraping sample of a stasis dermatitis patient in the Mycology Unit Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The isolate produced no pigment and was not identifiable using chromogenic agar and API 20C AUX. The fungus was identified as Metschnikowia sp. strain UM 1034, which is close to that of Metschnikowia drosophilae based on ITS- and D1/D2 domain-based phylogenetic analysis. However, the physiology of the strain was not associated to M. drosophilae. This pathogen exhibited low sensitivity to all tested azoles, echinocandins, 5-flucytosine and amphotericin B. This study provided insight into Metschnikowia sp. strain UM 1034 phenotype profiles using a Biolog phenotypic microarray (PM). The isolate utilized 373 nutrients of 760 nutrient sources and could adapt to a broad range of osmotic and pH environments. To our knowledge, this is the first report of the isolation of Metschnikowia non-pulcherrima sp. from skin scraping, revealing this rare yeast species as a potential human pathogen that may be misidentified as Candida sp. using conventional methods. Metschnikowia sp. strain UM 1034 can survive in flexible and diverse environments with a generalist lifestyle.

  9. Inhibition of cytochrome P450 3A: relevant drug interactions in gastroenterology.

    Science.gov (United States)

    Sagir, A; Schmitt, M; Dilger, K; Häussinger, D

    2003-01-01

    Cytochrome P450 3A (CYP3A) is involved in biotransformation of more than half of all drugs currently available. Drug interactions by inhibition of CYP3A are of major interest in patients receiving combinations of drugs. Some interactions with CYP3A inhibitors also involve inhibition of the multidrug export pump, P-glycoprotein. An increasing number of adverse drug reactions might be avoided on the basis of knowledge about CYP3A substrates and inhibitors. This article summarizes some examples of such interactions relevant to gastroenterologists. Serious cases by coadministration of CYP3A inhibitors resulting in acute hepatitis, hypotension, rhabdomyolyis, torsade de pointes, sedation, or ergotism are presented: interactions with azole antifungals (ketoconazole, itraconazole, fluconazole), HIV protease inhibitors (ritonavir, indinavir, saquinavir, nelfinavir), macrolide antibiotics (clarithromycin, erythromycin), and grapefruit juice. In addition, 1 case is reported who presented the highest trough levels of the CYP3A substrate budesonide in serum ever measured. Practitioners have to be aware of the high potential of metabolic drug interactions when they prescribe a CYP3A inhibitor. It is wise to check carefully comedication in patients complaining of side effects with substrates of CYP3A.

  10. Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran

    Directory of Open Access Journals (Sweden)

    Ensieh LOTFALI

    2016-03-01

    Full Text Available Background: Candida parapsilosis is an emergent agent of invasive fungal infections. This yeast is one of the five most widespread yeasts concerned in invasive candidiasis.C. parapsilosis stands out as the second most common yeast species isolated from patients with bloodstream infections especially in neonates with catheter.Recently several reports suggested that its reduced susceptibility to azoles and polyene might become a cause for clinical concern, although C. parapsilosis is not believed to be intensely prone to the development of antifungal resistance.Methods: In the present report, One hundred and twenty clinical isolates of C. parapsilosis complex were identified and differentiated by using PCR-RFLP analysis. The isolates were then analyzed to determine their susceptibility profile to fluconazole (FLU, itraconazole (ITC and amphotericin B. The minimum inhibitory concentration (MIC results were analyzed according to the standard CLSI guide.Results: All of isolates were identified as C. parapsilosis. No C. metapsilosis and C. orthopsilosis strains were found. Evaluation of the antifungal susceptibility profile showed that only three (2.5% C. parapsilosis were resistant to fluconazole, three (2.5% C. parapsilosis were resistant to itraconazole and two (1.7% C. parapsilosis were amphotericin B resistant.Conclusion: Profiles in clinical isolates of C. parapsilosis can provide important information for the control of antifungal resistance as well as distribution and susceptibility profiles in populations. Keywords: Candida parapsilosis, Antifungal susceptibility, Resistant, Iran

  11. Prevalence, distribution, and antifungal susceptibility profiles of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis in a tertiary care hospital.

    Science.gov (United States)

    Silva, Ana P; Miranda, Isabel M; Lisboa, Carmen; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2009-08-01

    Candida parapsilosis, an emergent agent of nosocomial infections, was previously made up of a complex of three genetically distinct groups (groups I, II, and III). Recently, the C. parapsilosis groups have been renamed as distinct species: C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis. In Portugal, no data pertaining to the distribution and antifungal susceptibility of these Candida species are yet available. In the present report, we describe the incidence and distribution of C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis among 175 clinical and environmental isolates previously identified by conventional methods as C. parapsilosis. We also evaluated the in vitro susceptibilities of the isolates to fluconazole, voriconazole, posaconazole, amphotericin B, and two echinocandins, caspofungin and anidulafungin. Of the 175 isolates tested, 160 (91.4%) were identified as C. parapsilosis sensu stricto, 4 (2.3%) were identified as C. orthopsilosis, and 5 (2.9%) were identified as C. metapsilosis. Six isolates corresponded to species other than the C. parapsilosis group. Interestingly, all isolates from blood cultures corresponded to C. parapsilosis sensu stricto. Evaluation of the antifungal susceptibility profile showed that only nine (5.6%) C. parapsilosis sensu stricto strains were susceptible-dose dependent or resistant to fluconazole, and a single strain displayed a multiazole-resistant phenotype; two (1.3%) C. parapsilosis sensu stricto strains were amphotericin B resistant. All C. orthopsilosis and C. metapsilosis isolates were susceptible to azoles and amphotericin B. A high number of strains were nonsusceptible to the echinocandins (caspofungin and anidulafungin).

  12. Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran

    Science.gov (United States)

    LOTFALI, Ensieh; KORDBACHEH, Parivash; MIRHENDI, Hossein; ZAINI, Farideh; GHAJARI, Ali; MOHAMMADI, Rasoul; NOORBAKHSH, Fatemeh; MOAZENI, Maryam; FALLAHI, Aliakbar; REZAIE, Sassan

    2016-01-01

    Background: Candida parapsilosis is an emergent agent of invasive fungal infections. This yeast is one of the five most widespread yeasts concerned in invasive candidiasis. C. parapsilosis stands out as the second most common yeast species isolated from patients with bloodstream infections especially in neonates with catheter. Recently several reports suggested that its reduced susceptibility to azoles and polyene might become a cause for clinical concern, although C. parapsilosis is not believed to be intensely prone to the development of antifungal resistance. Methods: In the present report, One hundred and twenty clinical isolates of C. parapsilosis complex were identified and differentiated by using PCR-RFLP analysis. The isolates were then analyzed to determine their susceptibility profile to fluconazole (FLU), itraconazole (ITC) and amphotericin B. The minimum inhibitory concentration (MIC) results were analyzed according to the standard CLSI guide. Results: All of isolates were identified as C. parapsilosis. No C. metapsilosis and C. orthopsilosis strains were found. Evaluation of the antifungal susceptibility profile showed that only three (2.5%) C. parapsilosis were resistant to fluconazole, three (2.5%) C. parapsilosis were resistant to itraconazole and two (1.7%) C. parapsilosis were amphotericin B resistant. Conclusion: Profiles in clinical isolates of C. parapsilosis can provide important information for the control of antifungal resistance as well as distribution and susceptibility profiles in populations. PMID:27141494

  13. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.

  14. Functional characterization of the small heat shock protein Hsp12p from Candida albicans.

    Directory of Open Access Journals (Sweden)

    Man-Shun Fu

    Full Text Available Hsp12p is considered to be a small heat shock protein and conserved among fungal species. To investigate the expression of this heat shock protein in the fungal pathogen Candida albicans we developed an anti-CaHsp12p antibody. We show that this protein is induced during stationary phase growth and under stress conditions including heat shock, osmotic, oxidative and heavy metal stress. Furthermore, we find that CaHsp12p expression is influenced by the quorum sensing molecule farnesol, the change of CO(2 concentration and pH. Notably we show that the key transcription factor Efg1p acts as a positive regulator of CaHsp12p in response to heat shock and oxidative stress and demonstrate that CaHsp12p expression is additionally modulated by Hog1p and the cAMP-PKA signaling pathway. To study the function of Hsp12p in C. albicans we generated a null mutant, in which all four CaHSP12 genes have been deleted. Phenotypic analysis of the strain shows that CaHSP12 is not essential for stress resistance, morphogenesis or virulence when tested in a Drosophila model of infection. However, when overexpressed, CaHSP12 significantly enhanced cell-cell adhesion, germ tube formation and susceptibility to azole antifungal agents whilst desensitizing C. albicans to the quorum sensing molecule farnesol.

  15. Medical image of the week: actinomycosis

    Directory of Open Access Journals (Sweden)

    Siddiqi TA

    2015-05-01

    Full Text Available No abstract available. Article truncated at 150 words. A 55-year-old man with history of tobacco and alcohol abuse, presented with unresolving pneumonia despite treatment with moxifloxacin. It was thought to be possible coccidioidomycosis and an azole was started. However, he returned with increasing dyspnea and hypoxemia. He had leukocytosis with a thoracic CT revealing a loculated empyema, multifocal necrotizing infection and a large intrapulmonary abscess (Figure 1. He was admitted to MICU, intubated and ventilated. He was in septic shock requiring fluid resuscitation, vasopressors, and broad antibiotics. Bronchoscopy revealed erythematous and edematous airways, with drainage of over one liter of purulent fluid. A chest tube was placed to drain pleural fluid with removal of around two liters of blood-tinged, purulent fluid. His condition worsened with development of disseminated intravascular coagulation leading to hemorrhagic shock. He arrested and died. Gram stain on bronchoalveolar lavage fluid showed mixed gram negative and gram variable rods, and cultures grew lactobacillus species. GMS ...

  16. Theoretical Studies on Structural and Spectroscopic Properties of Photoelectrochemical Cell Ruthenium Sensitizers——the Derivatives of N3

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; WANG Jian; BAI Fu-quan; ZHENG Qing-chuan; ZHANG Hong-xing

    2012-01-01

    A series of dye molecules was designed theoretically.Particularly,azoles and their derivatives were chosen as the modifying groups linking to ancillary ligands of [Ru(dcbpyH2)2(NCS)2](N3,dcbpy=4,4'-dicarboxy2,2'-bipyridine; NCS=thiocyanato).Density functional theory(DFT) based approaches were applied to exploring the electronic structures and properties of all these systems.The dye molecule with 1,2,4-triazole groups which exhibits a very high intensity of absorption in visible region,was obtained.Time-dependent DFT(TD-DFT) results indicate that the ancillary ligand dominates the molecular orbital(MO) energy levels and masters the absorption transition nature to a certain extent.The deprotonation of anchoring ligand not only affects the frontier MO energy levels but also controls the energy gaps of the highest occupied MO(HOMO) to the lowest unoccupied MO(LUMO) and LUMO to LUMO+ 1 orbital.If the gap between LUMO-LUMO+1 is small enough,the higher efficiency of dye-sensitized solar cell(DSSC) should be expected.

  17. Fluconazole therapy for treatment of invasive candidiasis in Intensive Care patients. Is it still valid from a pharmacological point of view?

    Directory of Open Access Journals (Sweden)

    Mario Musu

    2014-01-01

    Full Text Available Fluconazole – antimycotic belonging to the first generation azoles – is widely used as treatment for invasive candidiasis and candidemia in numerous clinical settings as Neonatal Intensive Care Unit (NICU and adult Intensive Care Unit (ICU, as well as oncology, onco-hematology and solid organ transplantation. More recently use of antimycotics has spread to medical divisions, where fungal infections represent an emerging problem due to population’s ageing, malnourishment and important comorbidities. Fluconazole is effective against numerous Candida species, particularly against albicans, tropicalis and parapsilosis strains. On the other hand, C. krusei is intrinsically resistant to fluconazole and C. glabrata can be sensitive or resistant in a dose dependent fashion. Epidemiological variability is noteworthy and depends on the geographical location of the institution, the clinical setting, and the frequency and intensity of fluconazole employment for invasive candidiasis. In many ICUs fluconazole sensitive C. albicans is cultured in 50% of positive samples, while the remaining 50% show growth of variably sensitive fungal species, often resistant to fluconazole. Due to increasingly frequent emergence of resistant strains of Candida spp., American guidelines (IDSA in 2009, and European ones (ESCMID in 2012, recommended substitution of fluconazole with echinocandines as first line therapy in patients with severe disease, as defined by an APACHE II score greater than 15. Thus fluconazole must be limited to low risk cases, treatment of sensitive strains and de-escalation from echinocandin therapy, after microbiological diagnosis and drug resistance profile characterization.

  18. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.

    Science.gov (United States)

    Ghannoum, M A; Rice, L B

    1999-10-01

    The increased use of antibacterial and antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antimicrobial resistance from different angles. Areas addressed include mechanisms underlying this resistance, improved methods to detect resistance when it occurs, alternate options for the treatment of infections caused by resistant organisms, and strategies to prevent and control the emergence and spread of resistance. In this review, the mode of action of antifungals and their mechanisms of resistance are discussed. Additionally, an attempt is made to discuss the correlation between fungal and bacterial resistance. Antifungals can be grouped into three classes based on their site of action: azoles, which inhibit the synthesis of ergosterol (the main fungal sterol); polyenes, which interact with fungal membrane sterols physicochemically; and 5-fluorocytosine, which inhibits macromolecular synthesis. Many different types of mechanisms contribute to the development of resistance to antifungals. These mechanisms include alteration in drug target, alteration in sterol biosynthesis, reduction in the intercellular concentration of target enzyme, and overexpression of the antifungal drug target. Although the comparison between the mechanisms of resistance to antifungals and antibacterials is necessarily limited by several factors defined in the review, a correlation between the two exists. For example, modification of enzymes which serve as targets for antimicrobial action and the involvement of membrane pumps in the extrusion of drugs are well characterized in both the eukaryotic and prokaryotic cells.

  19. New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans.

    Science.gov (United States)

    Sadowska, Beata; Budzyńska, Aleksandra; Więckowska-Szakiel, Marzena; Paszkiewicz, Małgorzata; Stochmal, Anna; Moniuszko-Szajwaj, Barbara; Kowalczyk, Mariusz; Różalska, Barbara

    2014-08-01

    The antifungal activity of the saponin-rich fractions (SFs) from Medicago sativa (aerial parts and roots) and Saponaria officinalis (used as a well-known source of plant saponins) against Candida albicans reference and clinical strains, their yeast-to-hyphal conversion, adhesion, and biofilm formation was investigated. Direct fungicidal/fungistatic properties of the tested phytochemicals used alone, as well as their synergy with azoles (probably resulting from yeast cell wall instability) were demonstrated. Here, to the best of our knowledge, we report for the first time the ability of saponin-rich extracts of M. sativa and S. officinalis to inhibit C. albicans germ tube formation, limit hyphal growth, reduce yeast adherence and biofilm formation, and eradicate mature (24 h) Candida biofilm. Moreover, M. sativa SFs (mainly obtained from aerial parts), in the range of concentrations which were active modulators of Candida virulence factors, exhibited low cytotoxicity against the mouse fibroblast line L929. These properties seem to be very promising in the context of using plant-derived SFs as potential novel antifungal therapeutics supporting classic drugs or as ingredients of disinfectants.

  20. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans.

    Science.gov (United States)

    Shah, Abdul Haseeb; Singh, Ashutosh; Dhamgaye, Sanjiveeni; Chauhan, Neeraj; Vandeputte, Patrick; Suneetha, Korivi Jyothiraj; Kaur, Rupinder; Mukherjee, Pranab K; Chandra, Jyotsna; Ghannoum, Mahmoud A; Sanglard, Dominique; Goswami, Shyamal K; Prasad, Rajendra

    2014-06-01

    The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.

  1. Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai, India.

    Science.gov (United States)

    Tupaki-Sreepurna, Ananya; Al-Hatmi, Abdullah M S; Kindo, Anupma J; Sundaram, Murugan; de Hoog, G Sybren

    2017-04-01

    In this study, we aimed to present the first molecular epidemiological data from Chennai, India, analyse keratitis cases that have been monitored in a university hospital during 2 years, identify the responsible Fusarium species and determine antifungal susceptibilities. A total of 10 cases of keratitis were included in the study. Fusarium isolates were identified using the second largest subunit of the RNA polymerase gene (RPB2) and the translation elongation factor 1 alpha (TEF1). Antifungal susceptibility was tested by the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) methodology. The aetiological agents belonged to Fusarium solani species complex (FSSC) (n = 9) and Fusarium sambucinum species complex (FSAMSC) (n = 1), and the identified species were Fusarium keratoplasticum (n = 7), Fusarium falciforme (n = 2) and Fusarium sporotrichioides (n = 1). All strains showed multidrug resistance to azoles and caspofungin but exhibited lower minimum inhibitory concentration (MIC) to natamycin and amphotericin B. Fusarium keratoplasticum and Fusarium falciforme belonging to the Fusarium solani species complex were the major aetiological agents of Fusarium keratitis in this study. Early presentation and 5% topical natamycin was associated with better patient outcome. Preventative measures and monitoring of local epidemiological data play an important role in clinical practice.

  2. Antifungal Resistance and Virulence Among Candida spp. from Captive Amazonian manatees and West Indian Manatees: Potential Impacts on Animal and Environmental Health.

    Science.gov (United States)

    Sidrim, José Júlio Costa; Carvalho, Vitor Luz; de Souza Collares Maia Castelo-Branco, Débora; Brilhante, Raimunda Sâmia Nogueira; de Melo Guedes, Gláucia Morgana; Barbosa, Giovanna Riello; Lazzarini, Stella Maris; Oliveira, Daniella Carvalho Ribeiro; de Meirelles, Ana Carolina Oliveira; Attademo, Fernanda Löffler Niemeyer; da Bôaviagem Freire, Augusto Carlos; de Aquino Pereira-Neto, Waldemiro; de Aguiar Cordeiro, Rossana; Moreira, José Luciano Bezerra; Rocha, Marcos Fábio Gadelha

    2016-06-01

    This work aimed at evaluating the antifungal susceptibility and production of virulence factors by Candida spp. isolated from sirenians in Brazil. The isolates (n = 105) were recovered from the natural cavities of Amazonian and West Indian manatees and were tested for the susceptibility to amphotericin B, itraconazole, and fluconazole and for the production of phospholipases, proteases, and biofilm. The minimum inhibitory concentrations (MICs) for amphotericin B ranged from 0.03 to 1 µg/mL, and no resistant isolates were detected. Itraconazole and fluconazole MICs ranged from 0.03 to 16 µg/mL and from 0.125 to 64 µg/mL, respectively, and 35.2% (37/105) of the isolates were resistant to at least one of these azole drugs. Concerning the production of virulence factors, phospholipase activity was observed in 67.6% (71/105) of the isolates, while protease activity and biofilm production were detected in 50.5% (53/105) and 32.4% (34/105) of the isolates, respectively. Since the natural cavities of manatees are colonized by resistant and virulent strains of Candida spp., these animals can act as sources of resistance and virulence genes for the environment, conspecifics and other animal species, demonstrating the potential environmental impacts associated with their release back into their natural habitat.

  3. Modelling inorganic biocide emission from treated wood in water.

    Science.gov (United States)

    Tiruta-Barna, Ligia; Schiopu, Nicoleta

    2011-09-15

    The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC(®) (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO(4)(-2), dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.

  4. Invasive Trichosporon Infection: A systematic review on a re-emerging fungal pathogen

    Directory of Open Access Journals (Sweden)

    João Nobrega De Almeida Júnior

    2016-10-01

    Full Text Available Objectives: This review aimed to better depict the clinical features and address the issue of therapeutic management of Trichosporon deep-seated infections.Methods: We comprehensively reviewed the cases of invasive Trichosporon infection reported in the literature from 1994 (date of taxonomic modification to 2015. Data from antifungal susceptibility testing (AST studies were also analyzed. Results: Two hundred and three cases were retained and split into four groups: hemopathy (n=79, other immunodeficiency conditions (n =41, miscellaneous (n=58 and newborns (n=25. Trichosporon asahii was the main causative species (46.7% and may exhibit cross-resistance to different antifungal classes. The unfavorable outcome rate was at 44.3%. By multivariate analysis, breakthrough infection (OR 2.45 was associated with unfavorable outcome, whilst the use of an azole-based therapy improved the prognosis (OR 0.16. Voriconazole-based treatment was associated with favorable outcome in hematological patients (73.6% vs. 41.8%; p=0.016. Compiled data from AST demonstrated that (i T. asahii exhibits the highest MICs to amphotericin B and (ii voriconazole has the best in vitro efficacy against clinical isolates of Trichosporon spp. Conclusions: Trichosporon infection is not only restricted to hematological patients. Analysis of compiled data from AST and clinical outcome support the use of voriconazole as first line therapy.

  5. Detection and quantification of fluconazole within Candida glabrata biofilms.

    Science.gov (United States)

    Rodrigues, Célia F; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2015-06-01

    Candida infections are often associated with biofilms and consequent high resistance to most common drugs (e.g. azoles). These resistance mechanisms are not only associated with the biofilm yeast physiology, but also with the presence of a diffusional barrier imposed by the biofilm matrix; however, the real biochemical role of the biofilm components remains very unclear. So, in order to further clarify this issue, we intend to determine, for the first time, fluconazole in biofilms within both supernatants and matrices. Candida biofilms were formed in the presence of fluconazole, and it was recovered from both supernatant and matrix cell-free fractions. Then, high-pressure liquid chromatography was used to identify and quantify the amount of drug that was present in the two fractions. Moreover, this study also showed that the presence of fluconazole in both fractions indicated that the drug administrated did not completely reach the cells, so this phenomena can easily be associated with lower biofilm susceptibility, since the drug administered did not completely reach the cells.

  6. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients.

    Science.gov (United States)

    Cornely, O A; Bassetti, M; Calandra, T; Garbino, J; Kullberg, B J; Lortholary, O; Meersseman, W; Akova, M; Arendrup, M C; Arikan-Akdagli, S; Bille, J; Castagnola, E; Cuenca-Estrella, M; Donnelly, J P; Groll, A H; Herbrecht, R; Hope, W W; Jensen, H E; Lass-Flörl, C; Petrikkos, G; Richardson, M D; Roilides, E; Verweij, P E; Viscoli, C; Ullmann, A J

    2012-12-01

    This part of the EFISG guidelines focuses on non-neutropenic adult patients. Only a few of the numerous recommendations can be summarized in the abstract. Prophylactic usage of fluconazole is supported in patients with recent abdominal surgery and recurrent gastrointestinal perforations or anastomotic leakages. Candida isolation from respiratory secretions alone should never prompt treatment. For the targeted initial treatment of candidaemia, echinocandins are strongly recommended while liposomal amphotericin B and voriconazole are supported with moderate, and fluconazole with marginal strength. Treatment duration for candidaemia should be a minimum of 14 days after the end of candidaemia, which can be determined by one blood culture per day until negativity. Switching to oral treatment after 10 days of intravenous therapy has been safe in stable patients with susceptible Candida species. In candidaemia, removal of indwelling catheters is strongly recommended. If catheters cannot be removed, lipid-based amphotericin B or echinocandins should be preferred over azoles. Transoesophageal echocardiography and fundoscopy should be performed to detect organ involvement. Native valve endocarditis requires surgery within a week, while in prosthetic valve endocarditis, earlier surgery may be beneficial. The antifungal regimen of choice is liposomal amphotericin B +/- flucytosine. In ocular candidiasis, liposomal amphotericin B +/- flucytosine is recommended when the susceptibility of the isolate is unknown, and in susceptible isolates, fluconazole and voriconazole are alternatives. Amphotericin B deoxycholate is not recommended for any indication due to severe side effects.

  7. [Effects of cultural factors on yield of Linum usitatissimum (Tianya 9)].

    Science.gov (United States)

    He, Li; Zhang, Jin; Du, Yan-bin; Cui, Tong-xia; Wang, Li-jun

    2016-02-01

    Cultural factors influencing high yield and good quality Linum usitatissimum (Tianya 9) were investigated. The correlations between these factors and its yield were analyzed. Path coefficient and principal component analysis were conducted, adopting uniform design of the 8 cultivating factors, i.e. planting density (X1), base nitrogen quantity (X2), base phosphorus quantity (X3), base potassium quantity (X4), foliar fertilizer (potassium dihydrogen phosphate, X5), foliar fertilizer (boron fertilizer, X6), growth regulator (multi-effect azole, X7) and growth duration irrigation amount (X8), aiming at exploring better cultivating plan of L. usitatissimum for Gansu Province. The results indicated that the factors influencing the yield of L. usitatissimum were X1, X7, X2, X3, X5 and X4 in a descending order. Simulation and optimization of the highest yield was further implemented. Frequency analysis showed that the cultivating factors resulting in yield higher than 173.58 kg . hm-2 were 4. 68 - 4. 92 kg . hm-2 (X1) , 11. 59 - 14. 75 kg . hm-2 (X2), 17.26- 21.95 kg . hm-2 (X3), 7.00-12.50 kg . hm-2 (X4) , 1.41-1.81 kg . hm-2 (X5) and 751.74- 954.04 g . hm-2 (X7).

  8. Cdr2p contributes to fluconazole resistance in Candida dubliniensis clinical isolates.

    LENUS (Irish Health Repository)

    2011-05-01

    The development of resistance to azole antifungals used in the treatment of fungal infections can be a serious medical problem. Here, we investigate the molecular mechanisms associated with reduced susceptibility to fluconazole in clinical isolates of Candida dubliniensis , showing evidence of the trailing growth phenomenon. The changes in membrane sterol composition were studied in the presence of subinhibitory fluconazole concentrations. Despite lanosterol and eburicol accumulating as the most prevalent sterols after fluconazole treatment, these ergosterol precursors still support growth of Candida isolates. The overexpression of ABC transporters was demonstrated by immunoblotting employing specific antibodies against Cdr1p and Cdr2p. The presence of a full-length 170 kDa protein Cdr1p was detected in two isolates, while a truncated form of Cdr1p with the molecular mass of 85 kDa was observed in isolate 966\\/3(2). Notably, Cdr2p was detected in this isolate, and the expression of this transporter was modulated by subinhibitory concentrations of fluconazole. These results suggest that C. dubliniensis can display the trailing growth phenomenon, and such isolates express similar molecular mechanisms like that of fluconazole-resistant isolates and can therefore be associated with recurrent infections.

  9. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    Science.gov (United States)

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  10. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis.

    Science.gov (United States)

    Hata, Katsura; Horii, Takaaki; Miyazaki, Mamiko; Watanabe, Nao-Aki; Okubo, Miyuki; Sonoda, Jiro; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-10-01

    E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action-inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated.

  11. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    Science.gov (United States)

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, /=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P OPEC due to C. albicans.

  12. [Cutaneous Malassezia infections and Malassezia associated dermatoses: An update].

    Science.gov (United States)

    Nenoff, P; Krüger, C; Mayser, P

    2015-06-01

    The lipophilic yeast fungus Malassezia (M.) spp. is the only fungal genus or species which is part of the physiological human microbiome. Today, at least 14 different Malassezia species are known; most of them can only be identified using molecular biological techniques. As a facultative pathogenic microorganism, Malassezia represents the causative agent both of superficial cutaneous infections and of blood stream infections. Pityriasis versicolor is the probably most frequent infection caused by Malassezia. Less common, Malassezia folliculitis occurs. There is only an episodic report on Malassezia-induced onychomycosis. Seborrhoeic dermatitis represents a Malassezia-associated inflammatory dermatosis. In addition, Malassezia allergenes should be considered as the trigger of "Head-Neck"-type atopic dermatitis. Ketoconazole possesses the strongest in vitro activity against Malassezia, and represents the treatment of choice for topical therapy of pityriasis versicolor. Alternatives include other azole antifungals but also the allylamine terbinafine and the hydroxypyridone antifungal agent ciclopirox olamine. "Antiseborrhoeic" agents, e.g. zinc pyrithione, selenium disulfide, and salicylic acid, are also effective in pityriasis versicolor. The drug of choice for oral treatment of pityriasis versicolor is itraconazole; an effective alternative represents fluconazole. Seborrhoeic dermatitis is best treated with topical medication, including topical corticosteroids and antifungal agents like ketoconazole or sertaconazole. Calcineurin inhibitors, e.g. pimecrolimus and tacrolimus, are reliable in seborrhoeic dermatitis, however are used off-label.

  13. Prevalence of non-albican candida infection in Maharashtrian women with leucorrhea

    Directory of Open Access Journals (Sweden)

    Seema M Bankar

    2012-01-01

    Full Text Available Background: Candida is the most common agent causing leucorrhea affecting the women of all strata. It is becoming difficult to completely eradicate the infection mainly due to recurrence caused by non-albican species of Candida. Most of the non-albican species of Candida are resistant to commonly used antifungal agent - azole. Therefore, studying the prevalence of Candida species in vaginal secretion is of great significance. Objective: To study the prevalence of different species of Candida and the efficiency of different Candida detection methods in women from low socio-economic setup of Miraj and Sangli, Maharashtra, India. Materials and Methods: The study was conducted on 150 patients with specific complaints of leucorrhea. In the control group, 50 asymptomatic women were included for comparison. Results: In 33% of the women the leucorrhea was due to Candida infection with highest incidence in women of sexually active age (20-40 years. Sabouraud′s culture was the most efficient method (100% efficiency to detect the Candida compared to wet mount, KOH and gram stain method. Candida albicans was the most common strain identified and Candida krusei was the least common one. Conclusion: Candida infection is the commonest reason for leucorrhea and non-albican candida species significantly contribute to candidiasis in women of Miraj and Sangli.

  14. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development

    Science.gov (United States)

    Dhingra, Sourabh; Cramer, Robert A.

    2017-01-01

    Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors. PMID:28203225

  15. Voriconazole and the liver

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Voriconazole is an azole useful for the prophylaxis andthe treatment of aspergillosis and other fungal infectionsin immunosuppressed subjects, as those found in aplasiaafter aggressive polychemotherapy treatments, afterhematopoietic stem cell, liver or lung transplantation.Its administration in therapeutic doses lead to extremelyvaried serum levels from patient to patient and even tothe same patient. The explanations are varied nonlinearpharmacokinetics, certain patient-related factors,including genetic polymorphisms in the cytochrome P4502C19 gene, the kidney and liver function, simultaneousadministration with other drugs metabolised by the samecytochrome. It is recommended to maintain the serumconcentrations of voriconazole between 1.5 and 4 μg/mL.At lower values its efficacy decreases and at highervalues the risk of neurological toxicity increases. Evenat these concentrations it is not excluded the possibleappearance of a variety of toxic effects, including onthe liver, manifested by cholestasis, hepatocytolisis, ortheir combination. It is recommended to monitor theclinical and laboratory evolution of all patients treatedwith voriconazole, and of the serum levels of the drugof those who belong to risk groups, even if there is stillno consensus on this issue, given the lack of correlationbetween the serum level and the occurrence of adverseeffects in many patients.

  16. Fungal spondylodiscitis in a patient recovered from H7N9 virus infection: a case study and a literature review of the differences between Candida and Aspergillus spondylodiscitis * #

    Science.gov (United States)

    Yu, Lie-dao; Feng, Zhi-yun; Wang, Xuan-wei; Ling, Zhi-heng; Lin, Xiang-jin

    2016-01-01

    To report a rare case of fungal spondylodiscitis in a patient recovered from H7N9 virus infection and perform a literature review of the different characteristics of Candida and Aspergillus spondylodiscitis, we reviewed cases of spondylodiscitis caused by Candida and Aspergillus species. Data, including patients’ information, pathogenic species, treatment strategy, outcomes, and relapses, were collected and summarized. The characteristics of Candida and Aspergillus spondylodiscitis were compared to see if any differences in clinical features, management, or consequences could be detected. The subject of the case study was first misdiagnosed as having a vertebral tumor, and then, following open biopsy, was diagnosed as having fungal spondylodiscitis. The patient made a good recovery following radical debridement. Seventy-seven additional cases of Candida spondylodiscitis and 94 cases of Aspergillus spondylodiscitis were identified in the literature. Patients with Candida spondylodiscitis tended to have a better outcome than patients with Aspergillus spondylodiscitis (cure rate 92.3% vs. 70.2%). Candida was found more frequently (47.8%) than Aspergillus (26.7%) in blood cultures, while neurological deficits were observed more often in patients with Aspergillus spondylodiscitis (43.6% vs. 25.6%). Candida spinal infections were more often treated by radical debridement (60.5% vs. 39.6%). Patients with Candida spondylodiscitis have better outcomes, which may be associated with prompt recognition, radical surgical debridement, and azoles therapy. A good outcome can be expected in fungal spondylodiscitis with appropriate operations and anti-fungal drugs. PMID:27819134

  17. Voriconazole-induced musical hallucinations.

    Science.gov (United States)

    Agrawal, A K; Sherman, L K

    2004-10-01

    1 Voriconazole (Vfend) is a second-generation azole antifungal that is increasing in popularity especially for the treatment of invasive aspergillosis as well as empirically for the febrile neutropenic patient. In addition, voriconazole tends to have a mild side effect profile with reversible visual disturbances being the most widely described effect. We describe a patient who had musical hallucinations secondary to voriconazole. The patient was a 78-year-old man admitted for induction of chemotherapy for acute myelogenous leukemia (AML) who began to have auditory hallucinations, specifically of Christmas music, the 2nd day of voriconazole therapy. His psychiatric evaluation was otherwise unremarkable. After discontinuing voriconazole the hallucinations decreased in intensity by the 2nd day and ceased altogether by the 3rd day. An extensive literature search, including Pfizer drug trial safety data, yielded no other reports of auditory hallucinations with voriconazole. Several other interesting cases of musical hallucinations secondary to a variety of causes have been reported in the literature, and are reviewed. Notably, musical hallucinations tend to occur secondary to temporal lobe insults and often are of a religious or patriotic theme.

  18. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species.

    Science.gov (United States)

    Sakko, M; Moore, C; Novak-Frazer, L; Rautemaa, V; Sorsa, T; Hietala, P; Järvinen, A; Bowyer, P; Tjäderhane, L; Rautemaa, R

    2014-04-01

    The amino acid derivative 2-hydroxyisocaproic acid (HICA) is a nutritional additive used to increase muscle mass. Low levels can be detected in human plasma as a result of leucine metabolism. It has broad antibacterial activity but its efficacy against pathogenic fungi is not known. The aim was to test the efficacy of HICA against Candida and Aspergillus species. Efficacy of HICA against 19 clinical and reference isolates representing five Candida and three Aspergillus species with variable azole antifungal sensitivity profiles was tested using a microdilution method. The concentrations were 18, 36 and 72 mg ml(-1) . Growth was determined spectrophotometrically for Candida isolates and by visual inspection for Aspergillus isolates, viability was tested by culture and impact on morphology by microscopy. HICA of 72 mg ml(-1) was fungicidal against all Candida and Aspergillus fumigatus and Aspergillus terreus isolates. Lower concentrations were fungistatic. Aspergillus flavus was not inhibited by HICA. HICA inhibited hyphal formation in susceptible Candida albicans and A. fumigatus isolates and affected cell wall integrity. In conclusion, HICA has broad antifungal activity against Candida and Aspergillus at concentrations relevant for topical therapy. As a fungicidal agent with broad-spectrum bactericidal activity, it may be useful in the topical treatment of multispecies superficial infections.

  19. Aspergillus oerlinghausenensis, a new mould species closely related to A. fumigatus.

    Science.gov (United States)

    Houbraken, Jos; Weig, Michael; Groß, Uwe; Meijer, Martin; Bader, Oliver

    2016-02-01

    Two isolates belonging to Aspergillus section Fumigati were recovered from German soil on itraconazole containing agar media. Phylogenetic analysis and phenotypic characterization of both isolates show that they represent a novel species named Aspergillus oerlinghausenensis (holotype CBS H-22119(HT), ex-type CBS 139183(T) = IBT 33878 = DTO 316-A3). The species is phylogenetically related to A. fischeri and A. fumigatus. Aspergillus oerlinghausenensis can be differentiated from A. fischeri by its higher growth rate at 50°C. Furthermore, A. oerlinghausenensis is protoheterothallic as only the MAT1-1 idiomorph was detected, while A. fischeri is homothallic. The species differs from A. fumigatus by a weak sporulation on malt extract agar at 25°C, a floccose colony texture on Czapek yeast extract agar and malt extract agar and subglobose instead of subclavate vesicles. The cyp51A promoter region of A. oerlinghausenensis deviates from the previously reported cyp51A promoter regions in A. fumigatus and potentially presents a novel azole resistance conferring modification. Due to the close relationship of A. oerlinghausenensis with A. fischeri and A. fumigatus, this species is placed in a good position for comparative studies involving these species.

  20. HPLC-DAD for the determination of three different classes of antifungals: method characterization, statistical approach, and application to a permeation study.

    Science.gov (United States)

    Miron, Diogo; Lange, Alini; Zimmer, Aline R; Mayorga, Paulo; Schapoval, Elfrides E S

    2014-12-01

    This study describes and characterizes methods for high-performance liquid chromatography diode array detection (HPLC-DAD) analysis of formulations containing molecules with antifungal activity of three different classes: terbinafine and butenafine (allylamines), miconazole and fluconazole (azoles), and geraniol, neral and geranial (monoterpenes). All methods used the same chromatographic column (RP18 ), enabling the analysis to be performed in a single batch. The specificity was extensively discussed through the establishment of purity peak methods. The analytical parameters (linearity, precision and accuracy) were calculated and discussed in detail using specific statistical approaches. All substances showed satisfactory results for chromatographic and analytical parameters. Limits of 1.3% to mean repeatability and 2.0% for intermediate precision are suggested as acceptance criteria in validation of methods by HPLC-DAD, in situations where there is no extensive pretreatment of the samples. The methods proved to be robust and significant factors were discussed regarding their influence on chromatographic parameters (retention time, resolution, tailing factor and column efficiency). Finally, the application of the developed methods was demonstrated by the results of a permeation study of the antifungal agents through bovine hoof membranes.