WorldWideScience

Sample records for azobenzene polyesters surface

  1. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... in the appearance of a surface relief with doubled frequency....

  2. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  3. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... and erasing was tested. The ability of azobenzene polyester for rewriting was found satisfactory after many writing-erasing cycles....

  4. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... in high-density optical storage and high-resolution lithography....

  5. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  6. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering characteris...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...

  7. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    . Atomic force and scanning near-held optical microscopic investigations of gratings prepared with orthogonally polarized overlapping beams have demonstrated that the anisotropy is preserved in the film despite extensive mass transport and surface corrugation after the irradiation process. However......A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent...... on azobenzene, iii- the methylene main-chain segment length, and iv-the polyester molecular mass, all influence the optical storage properties. A general synthetic route to novel mesogenic azobenzene diols comprising parameters i and ii is outlined. Polyesters with molecular masses (parameter iv) up to 100...

  8. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  9. Azobenzene Polyesters Used as Gate‐Like Scaffolds in Nanoscopic Hybrid Systems

    DEFF Research Database (Denmark)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli

    2012-01-01

    The synthesis and characterisation of new capped silica mesoporous nanoparticles for on‐command delivery applications is reported. Functional capped hybrid systems consist of MCM‐41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B...... with the cytotoxic drug camptothecin (CPT‐PAzo6‐S). Following cell internalisation and lysosome resident enzyme‐dependent gate opening, CPT‐PAzo6‐S induced CPT‐dependent cell death in HeLa cells....

  10. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Ramanujam, P.S.

    1997-01-01

    We have examined in detail the formation of surface relief structures in azobenzene polyesters formed by polarization holography with orthogonally circularly polarized laser beams, We show that it is possible to separate the contribution to the diffraction efficiency into an anisotropic part and ...

  11. Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage

    DEFF Research Database (Denmark)

    Nedelchev, Lian; Matharu, Avtar S.; Hvilsted, Søren

    2003-01-01

    We investigate parameters associated with optical data storage in a variety of amorphous side-chain azobenzene-containing polyesters denoted as E1aX. The polyesters possess a common cyano-substituted azobenzene chromophore as a side chain, but differ in their main-chain polyester composition....... Seventeen different polymers from the E1aX family divided into four classes, depending on the type of the main-chain substituent (one-, two-, and three-ring aromatic or alicyclic) have been thoroughly investigated. Various parameters characterizing the photoinduced birefringence in these materials...

  12. An Improved Method for Separating the Kinetics of the Induction of Anisotropic and Topographic Gratings in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Helgert, M.; Fleck, B.; Wenke, L.

    2000-01-01

    The induction of anisotropy gratings in side-chain azobenzene polyesters is accompanied by the formation of surface relief. We introduce an improved holographic method to separate the contributions of the anisotropic and the topographic part to the diffraction efficiency by analyzing the polariza......The induction of anisotropy gratings in side-chain azobenzene polyesters is accompanied by the formation of surface relief. We introduce an improved holographic method to separate the contributions of the anisotropic and the topographic part to the diffraction efficiency by analyzing...

  13. Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems.

    Science.gov (United States)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli; Mas, Núria; de la Torre, Cristina; Martínez-Máñez, Ramón; Sancenón, Félix; Barat, José M; Hvilsted, Søren; Orzaez, Mar; Pérez-Payá, Enríque; Amorós, Pedro

    2012-10-08

    The synthesis and characterisation of new capped silica mesoporous nanoparticles for on-command delivery applications is reported. Functional capped hybrid systems consist of MCM-41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B inside the mesopores. Two solid materials, Rh-PAzo8-S and Rh-PAzo6-S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh-PAzo8-S and Rh-PAzo6-S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh-PAzo8-S and Rh-PAzo6-S were used to study the controlled release of the dye in intracellular media. Nanoparticles were not toxic for HeLa cells and endocytosis-mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug-delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded with the cytotoxic drug camptothecin (CPT-PAzo6-S). Following cell internalisation and lysosome resident enzyme-dependent gate opening, CPT-PAzo6-S induced CPT-dependent cell death in HeLa cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating......-field optical microscopic scanning of the grating reveals, however, that the bulk of the film remains optically anisotropic. (C) 1996 American Institute of Physics....

  15. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...... light from a krypton laser at 351 nm. The efficiency of the system shows several exponential decays, presumably associated ci with the azobenzene chromophores' aligning out of the plane of the film and the lifetime of the cis state of the azobenzene. A local temperature increase may also play a role...

  16. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...... with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample...... is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate....

  17. Influence of UV irradiation on the blue and red light photoinduced processes in azobenzene polyesters

    DEFF Research Database (Denmark)

    Rodríguez, F.J.; Sánchez, C.; Villacampa, B.

    2004-01-01

    Birefringence induced in a series of liquid crystalline side-chain azobenzene polyesters with different substituent groups was investigated under irradiation with 488 and 633 nm linearly polarized lights. Two different initial conditions have been used: the effect of a previous irradiation with UV...... light irradiation creates a high concentration of cis isomers and breaks the aggregates, but they are formed again after a few days in dark at RT. Orientation of the chromophores perpendicular to the polarization of the 488 nm light and parallel to the polarization of the 633 nm light was confirmed...

  18. Photoorientation of a liquid crystalline polyester with azobenzene side groups

    DEFF Research Database (Denmark)

    Zebger, I; Rutloh, M; Hoffmann, U

    2002-01-01

    The photoorientation process in a polyester with 4-cyano-4'-alkoxyazobenzene side group and long methylene spacers in the side and the main-chain was studied as a function of irradiation with linearly polarized light of 488 nm under systematic variation of the power density and temperature....... This model polymer is characterized by liquid crystallinity (g 24 S-X 26 S-A 34 n 47 i) and a strong aggregation tendency. The photoorientation is cooperative, i.e., the orientation of the photochromic side group induces the alignment of the ester unit (which is a part of the main-chain) and both methylene...... segments in the side- and main-chain. The very high values of the normalized linear dichroism up to 0.8 and the birefringence (above 0.3) are due to the interaction of photoorientation and thermotropic self-organization. The induction of anisotropy shows a pronounced dependence on the power density...

  19. Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces

    Science.gov (United States)

    Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.

    2008-05-01

    The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.

  20. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    International Nuclear Information System (INIS)

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. [copyright] 2001 American Institute of Physics

  1. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending...... on the architecture of the polymer. Extensive mass transport over long distances has been observed, paving the way for easy replication of nanostructures. We also show that it is possible to store microscopic images as topographic features in the polymers just through polarized light irradiation. (C) 1999 American...

  2. Influence of the substituent on azobenzene side-chain polyester optical storage materials

    DEFF Research Database (Denmark)

    Pedersen, M; Hvilsted, Søren; Holme, NCR

    1999-01-01

    , chloro, and bromo. C-13 NMR spectroscopic and molecular mass investigations substantiate good film forming characteristics. The optical storage performance of thin polyester films are investigated through polarization holography. The resulting diffraction efficiency is mapped and discussed as a function...

  3. Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.

    Science.gov (United States)

    Willenbockel, Martin; Maurer, Reinhard J; Bronner, Christopher; Schulze, Michael; Stadtmüller, Benjamin; Soubatch, Serguei; Tegeder, Petra; Reuter, Karsten; Stefan Tautz, F

    2015-10-25

    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.

  4. Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study

    OpenAIRE

    Stumpel, Jelle E.; Marco, Saccone; Valentina, Dichiarante; Ossi, Lehtonen; Matti, Virkki; Pierangelo, Metrangolo; Arri, Priimagi

    2017-01-01

    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer-azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, a...

  5. Surface relief gratings in azobenzene supramolecular systems based on polyimides

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Sobolewska, Anna; Stumpe, Joachim; Hamryszak, Lukasz; Bujak, Piotr

    2012-12-01

    The paper describes formation of new supramolecular azopolymers based on hydrogen bonds as perspective materials for laser induced surface relief gratings (SRGs) and for polarization gratings. Supramolecular films were built on the basis of hydrogen bonds between the functional groups of polymer and azobenzene derivatives, that is 4-[4-(3-hydroxypropyloxy)phenylazo]-pyridine and 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for polymer-dye supramolecular systems. They revealed glass transition temperatures (Tg) in the range of 170-260 °C, whereas supramolecular systems exhibited lower Tg (88-187 °C). The polymers were easily soluble in aprotic polar solvents and exhibited remarkable good film forming properties. Moreover, new chromophore 4-[4-(3-hydroxypropyloxy)phenylazo]pyridine was synthesized and characterized. The light induced SRGs formation and simultaneous formation of the polarization gratings were explored in prepared polymer-chromophore assembles films using a holographic grating recording technique. First time to the best of our knowledge SRGs were formed in hydrogen-bonded supramolecular systems based on polyimides. The highest SRG amplitude and thus the highest diffraction efficiency were obtained in poly(esterimide)s with the hydroxyl functional group. Additionally, the thermal stability of the photoinduced surface gratings and polarization gratings were tested revealing in the case of the SRGs partial stability and almost complete erasure of the polarization gratings.

  6. Reversible photoswitching of azobenzene-based monolayers physisorbed on a mica surface.

    Science.gov (United States)

    El Garah, Mohamed; Palmino, Frank; Cherioux, Frederic

    2010-01-19

    The formation of compact and large-scale self-assembled monolayers (SAMs) adsorbed on a mica surface has been achieved by insertion of alkyl chains on azobenzene derivatives, leading to strong intermolecular van der Waals interactions and hydrogen bonding. The reversible photoswitching of monolayers was investigated by monitoring the variation of the thickness of the SAMs during the cis-trans isomerization of the azobenzene cores with an atomic force microscope (AFM). The absence of covalent bonds between molecules and substrate induces a molecular diffusion which leads to the complete isomerization of the molecules constituting the SAMs.

  7. An improved method for separating the kinetics of anisotropic and topographic gratings in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Helgert, M.; Fleck, B.; Wenke, L.

    2000-01-01

    the polarization of the first-order diffracted beam. The main advantage of this method is that both parts can be determined simultaneously by only one measurement. Furthermore the displacement between both gratings can be determined in a similar manner. Experimental results obtained with two different polyesters...

  8. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates.

    Science.gov (United States)

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer

    2014-09-01

    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study

    Directory of Open Access Journals (Sweden)

    Jelle E. Stumpel

    2017-10-01

    Full Text Available In recent years, supramolecular complexes comprising a poly(4-vinylpyridine backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs. The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer–azobenzene complexes.

  10. Surface-Relief Gratings in Halogen-Bonded Polymer-Azobenzene Complexes: A Concentration-Dependence Study.

    Science.gov (United States)

    Stumpel, Jelle E; Saccone, Marco; Dichiarante, Valentina; Lehtonen, Ossi; Virkki, Matti; Metrangolo, Pierangelo; Priimagi, Arri

    2017-10-28

    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer-azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer-azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer-azobenzene complexes.

  11. Surface hopping dynamics of direct trans --> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries

    Science.gov (United States)

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-01

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ*-excited states which are non-adiabatically coupled among themselves and to a nπ*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed.

  12. Interactions of Lysozyme and Azobenzene Derivatives in the Solution and on a Surface

    Science.gov (United States)

    Wei, Tao; Shing, Katherine

    2015-03-01

    The reversible isomerization of the azobenzene and its derivatives can control protein structure in an aqueous environment with the alternation of visible and UV lights for very promising applications in drug delivery. However, an atomistic description of Azo-molecules and protein amino acid residues is still lacking. In this study we performed atomistic molecular dynamics simulation to study the interactions between a lysozyme molecule and the Azobenzene derivative (in the bulk solution and grafted on the Silica surfaces). Protein structural arrangements (i.e., the shape and secondary structures) and its mobility, as a function of tran/cis ratio in the bulk solution and on the self-assembling monolayer surface's density and morphology, are systematically investigated.

  13. Photo-driven directional motion of droplets on the surface of a liquid crystal doped with photochromic azobenzene: theory

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Kazuhiko; Tachiya, M [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

    2005-12-14

    Recently, photo-driven directional motion of glycerol droplets on the surface of a liquid crystal doped with photochromic azobenzene derivatives has been reported. We present a theoretical model for this phenomenon. The motion of droplets is induced by a gradient in surface tension, which is produced by the combined effect of photo-isomerization and diffusion of surface azobenzenes. The theoretical relation between the surface tension and the surface concentration of cis isomers is proposed. The experimentally observed depletion zone of droplets can be reasonably well explained in terms of diffusion of droplets in the presence of the gradient in the surface tension.

  14. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    International Nuclear Information System (INIS)

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-01-01

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials

  15. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  16. Holographic recording of surface relief gratings in stilbene azobenzene derivatives at 633 nm

    Energy Technology Data Exchange (ETDEWEB)

    Ozols, A; Saharov, D; Kokars, V; Kampars, V; Maleckis, A; Mezinskis, G; Pludons, A, E-mail: aozols@latnet.l [Faculty of Material Science and Applied Chemistry, Riga Technical University, Azenes iela 14/24, LV-1048, Riga (Latvia)

    2010-11-01

    Holographic recording in stilbene azobenzene derivatives by He-Ne 633 nm laser light has been experimentally studied. It was found that surface relief gratings (SRG) can be recorded by red light. Usually shorter wavelengths are used to induce the trans-cis photo-isomerization in organic materials. SRG with 2 {mu}m period and an amplitude of 130 nm have been recorded with 0.88 W/cm{sup 2} light in about 20 minutes in amorphous films of 3-(4-(bis(2-(trityloxy)ethyl)amino)phenyl)-2-(4-(2-bromo-4-nitrophenyl) diazenyl)phenyl)acrylonitrile spin-coated on glass substrates. Self-diffraction efficiency up to 17.4% and specific recording energy down to 114 J/(cm{sup 2}%) were measured. The recorded SRG were stable as proved by subsequent AFM measurements. The photo-induced changes in absorption spectra did not reveal noticeable signs of trans-cis transformations. Rather, spectrally uniform bleaching of the films took place. We conclude that a photothermally stimulated photo-destruction of chromophores is responsible for the SRG recording. The recording of stable SRG in the stilbene azobenzene derivatives we studied is accompanied by the recording of relaxing volume-phase gratings due to the photo-orientation of chromophores by the linearly polarized recording light. It should also be noted that holographic recording efficiency in stilbene azobenzene derivatives exhibit an unusual non-monotonic sample storage-time dependence presumably caused by the peculiarities of structural relaxation of the films.

  17. Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer

    International Nuclear Information System (INIS)

    Theamdee, Pawinee; Traiphol, Rakchart; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2011-01-01

    We here report the synthesis of magnetite nanoparticle (MNP) grafted with poly (ethylene glycol) methyl ether methacrylate (PEGMA)-azobenzene acrylate (ABA) statistical copolymer via atom transfer radical polymerization (ATRP) for drug entrapment and photocontrolled release. MNP was synthesized via thermal decomposition of iron (III) acetylacetonate in benzyl alcohol and surface functionalized to obtain ATRP initiating sites. Molar compositions of the copolymer on MNP surface were systematically varied (100:0, 90:10, 70:30, and 50:50 of PEGMA:ABA, respectively) to obtain water dispersible particles with various amounts of azobenzene. The presence of polymeric shell on MNP core was evidenced by transmission electron microscopy (TEM). Drug loading and entrapment efficiencies as well as drug release behavior of the copolymer–MNP complexes were investigated. It was found that when percent of ABA in the copolymers was increased, entrapment and loading efficiencies of prednisolone model drug were enhanced. Releasing rate and percent of the released prednisolone of the complex exposed in UV light were slightly enhanced as compared to the system without UV irradiation. This copolymer–MNP complex with photocontrollable drug release and magnetic field-directed properties is warranted for further studies for potential uses as a novel drug delivery vehicle.

  18. Tuning the collective switching behavior of azobenzene/Au hybrid materials: flexible versus rigid azobenzene backbones and Au(111) surfaces versus curved Au nanoparticles.

    Science.gov (United States)

    Liu, Chunyan; Zheng, Dong; Hu, Weigang; Zhu, Qiang; Tian, Ziqi; Zhao, Jun; Zhu, Yan; Ma, Jing

    2017-11-09

    The combination of photo-responsive azobenzene (AB) and biocompatible Au nanomaterials possesses potential applications in diverse fields such as biosensing and thermotherapy. To explore the influence of azobenzene moieties and Au substrates on the collective switching behavior, two different azobenzene derivatives (rigid biphenyl-controlled versus flexible alkoxyl chain-linked) and three different Au substrates (a planar Au(111) surface, curved Au 102 (SR) 44 and Au 25 (SR) 18 clusters) were chosen to form six Au@AB combinations. A reactive molecular dynamics (RMD) model considering both the torsion and inversion path was implemented to simulate the collective photo-induced cis-to-trans switching process of AB monolayers on Au substrates. The major driving force for isomerization is demonstrated to be the torsion of the C-N[double bond, length as m-dash]N-C dihedral angle, in addition to the minor contribution from an inversion pathway. The isomerization process can be divided into the preliminary conformation switching stage and the later relaxation stage, in which a gradual self-organization is observed for 40 ps. The Au substrate affects the packing structure of the AB monolayer, while the choice of different kinds of ABs tunes the intermolecular interaction in the monolayer. Flexible alkoxyl-linked F-AB may achieve much faster conversion on Au clusters than on the surface. For rigid biphenyl-based R-AB anchored on Au nanoparticles (AuNPs), a competitive torsion between the biphenyl and C-N[double bond, length as m-dash]N-C dihedral may delay the C-N[double bond, length as m-dash]N-C dihedral torsion and the following isomerization process. After the R-AB molecules were anchored on the Au(111) surface, the strong π-π stacking between biphenyl units accelerates the collective isomerization process. A curvature-dependent effect is observed for R-AB SAMs on different-sized substrates. The cooperation between functional AB monolayers and the Au substrate

  19. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.

    Science.gov (United States)

    Korbus, Michael; Backé, Sarah; Meyer-Almes, Franz-Josef

    2015-03-01

    The photocontrol of protein function like enzyme activity has been the subject of many investigations to enable reversible and spatiotemporally defined cascading biochemical reactions without the need for separation in miniaturized and parallelized assay setups for academic and industrial applications. A photoswitchable amidohydrolase variant from Bordetella/Alcaligenes with the longest reported half-life (approximately 30 h) for the cis-state of the attached azobenzene group was chosen as a model system to dissect the underlying mechanism and molecular interactions that caused the enormous deceleration of the thermal cis-to-trans relaxation of the azobenzene photoswitch. A systematic site-directed mutagenesis study on the basis of molecular dynamics simulation data was employed to investigate enzyme and thermal cis-to-trans relaxation kinetics in dependence on selected amino acid substitution, which revealed a prominent histidine and a hydrophobic cluster as molecular determinants for the stabilization of the cis-isomer of the attached azobenzene moiety on the protein surface. The nature of the involved interactions consists of polar, hydrophobic, and possibly aromatic Π-Π contributions. The elucidated principles behind the stabilization of the cis-state of azobenzene derivatives on a protein surface can be exploited to design improved biologically inspired photoswitches. Moreover, the findings open the door to highly long-lived cis-states of azobenzene groups yielding improved bistable photoswitches that can be controlled by single light-pulses rather than continuous irradiation with UV light that causes potential photodamage to the employed biomolecules. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are particul...

  1. Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

    OpenAIRE

    Merve Küçük; M. Lütfi Öveçoğlu

    2016-01-01

    Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution ...

  2. Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity.

    Science.gov (United States)

    Biundo, Antonino; Ribitsch, Doris; Guebitz, Georg M

    2018-04-01

    Certain members of the carboxylesterase superfamily can act at the interface between water and water-insoluble substrates. However, nonnatural bulky polyesters usually are not efficiently hydrolyzed. In the recent years, the potential of enzyme engineering to improve hydrolysis of synthetic polyesters has been demonstrated. Regions on the enzyme surface have been modified by using site-directed mutagenesis in order to tune sorption processes through increased hydrophobicity of the enzyme surface. Such modifications can involve specific amino acid substitutions, addition of binding modules, or truncation of entire domains improving sorption properties and/or dynamics of the enzyme. In this review, we provide a comprehensive overview on different strategies developed in the recent years for enzyme surface engineering to improve the activity of polyester-hydrolyzing enzymes.

  3. Photoorientation of a liquid-crystalline polyester with azobenzene side groups: Effects of irradiation with linearly polarized red light after photochemical pretreatment

    DEFF Research Database (Denmark)

    Zebger, Ingo; Rutloh, Michael; Hoffmann, Uwe

    2003-01-01

    light. The polyester is characterized by smectic and nematic phases g24SX26SA34N46i and a strong tendency to form J-aggregates. The process requires a photochemical pretreatment by irradiation with UV light or an exposure to visible light of high power density to produce a certain concentration of the Z......In contrast to the conventional photoorientation process with blue light, an orientation of 4-cyano-4'-alkoxyazobenzene side groups parallel to the electric field vector of the incident light is generated upon irradiating films of a liquid-crystalline side-chain polymer with linearly polarized red......-isomer, which destroys any initial orientational order and J-aggregates. The orientation process is cooperative, whereas the light-induced orientation of the photochromic moiety causes an ordering of the alkylene spacers and even of the main-chain segments into the same direction. The most probable mechanism...

  4. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    International Nuclear Information System (INIS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-01-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n→π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields

  5. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  6. Surface Modification of Polyester by Nano Titanium Dioxide in Alkaline Media and Their Synergism Effect on the Fabric

    Directory of Open Access Journals (Sweden)

    V. Allahyarzadeh

    2014-01-01

    Full Text Available The effect of alkaline hydrolysis with sodium hydroxide on nano titanium dioxide (nano TiO2 adsorption was studied on polyester fabric surface as well as the influence of nano TiO2 on the alkaline hydrolysis of polyester. To do this, the polyester fabrics were treated with different concentrations of nano TiO2 and boiling sodium hydroxide solution for 1 h. The results revealed that alkaline hydrolysis reduced the weight of the fabric, which was more prominent in presence of nano TiO2. Field emission scanning electronic microscope and energy dispersive X-ray confirmed the presence of nano TiO2 on the polyester fabric surface. Increasing sodium hydroxide and nanoTiO2 concentrations led to higher loading of nano particles on the polyester fabric surface. Also, the photocatalytic activity of nano TiO2 particles on the polyester fabric was confirmed by the degradation of methylene blue as a model stain under daylight irradiation. The results indicated that increasing sodium hydroxide and nano TiO2 concentrations led to higher photocatalytic activities of the alkali-treated polyester fabrics. Further, the bending rigidity of the treated polyester fabrics decreased while the water absorption of the fabric improved. Unexpectedly, the tensile strength of the nano TiO2 treated polyester fabrics improved even with the action of alkali and surface hydrolysis that usually produce fabric with lower tensile strength. The synergism influence of nano TiO2 particles in alkali hydrolysis of polyester fabric indicated to lower weight fabrics. Overall, this treatment was considered as another useful property such as higher self-cleaning, hydrophilicity and tensile strength.

  7. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  8. Co-immobilization of different enzyme activities to non-woven polyester surfaces.

    Science.gov (United States)

    Nouaimi-Bachmann, Meryem; Skilewitsch, Olga; Senhaji-Dachtler, Saida; Bisswanger, Hans

    2007-03-01

    Co-immobilization was applied to combine complementary enzyme reactions. Therefore, trypsin was co-immobilized together with both, lipase and alpha-amylase, onto the surface of non-woven polyester material. The progress of the immobilization reaction was directly monitored by investigating covalent fixation of the enzymes to the polyester flees using (1)H-MAS-NMR. Co-immobilization of the different types of enzymes to the polyester support showed retained enzymatic activity. However, a competition of binding to the support was observed. Increasing amounts of one type of enzyme reduced the degree of immobilization for the other type. In order to investigate the distribution of trypsin and alpha-amylase on the polyester support, the flees was treated with a mixture of rhodamine isothiocyanate labeled with anti-trypsin antibodies and fluorescein isothiocyanate labeled with anti-alpha-amylase antibodies. Using fluorescence microscopy, the co-immobilization was analyzed by selective excitation of both chromophores at 480 and 530 nm, respectively. In addition, fluorescence spectroscopy was applied by direct labeling of trypsin and lipase prior to co-immobilization to the polyester support. A special prism of plexiglass was constructed, which fit into a 10 x 10 mm fluorescence cuvette in that way that a diagonal plane was formed within the cuvette. The non-woven support was fixed in the cuvette and fluorescence spectra were obtained to characterize the amount of different enzymes linked to the support. Using FRET it was demonstrated that a uniform distribution of the various enzyme species was achieved, where the different enzyme activities are bound on the support in close neighborhood to one another.

  9. Hydrogen bonds induced supramolecular self-assembly of azobenzene derivatives on the highly oriented pyrolytic graphite surface

    Science.gov (United States)

    Miao, Xinrui; Cheng, Zhiyu; Ren, Biye; Deng, Wenli

    2012-08-01

    The self-assembly of azobenzene derivatives (CnAzCOOH) with various lengths of peripheral alkyl chains (with carbon number of n = 8, 10, 12, 14, 16) were observed by scanning tunneling microscopy on highly oriented pyrolytic graphite (HOPG) surface. The effect of van der Waals interactions and the intermolecular hydrogen bonding on the two-dimensional self-assembly was systematically studied. No alkyl-chain length effect was observed according to the STM images. All kinds of CnAzCOOH adopting the same pattern self-assembled on the HOPG surface, suggesting the formation of the two-dimensional structures was dominated by the hydrogen bonding of the functional groups. It could be found that two CnAzCOOH molecules formed a hydrogen-bonded dimer with “head-to-head” fashion as expected; however, the dimers organized themselves in the form of relative complex lamellae. Three dimers as a group arranged side by side and formed a well-defined stripe with periodic dislocations due to the registry mechanism of the alkyl chain with the underlying HOPG surface. The hydrogen bonds between the adjacent dimers in one lamella were formed and dominated the self-assembled pattern.

  10. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren

    1996-01-01

    and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.......Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...

  11. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  12. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  13. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  14. Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability

    Science.gov (United States)

    Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent

    2017-06-01

    Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.

  15. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...... that ultrasonic irradiation reduced the OH rotational temperature of the gliding arc. The wettability of the GFRP surface was significantly improved by the plasma treatment without ultrasonic irradiation, and tended to improve furthermore at higher power to the plasma. Ultrasonic irradiation during the plasma......A gliding arc is a plasma generated between diverging electrodes and extended by a high speed gas flow. It can be operated in air at atmospheric pressure. It potentially enables selective chemical processing with high productivity, and is useful for adhesion improvement of material surfaces...

  16. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...

  17. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline.

    Science.gov (United States)

    Zhao, Liu-Bin; Huang, Yi-Fan; Liu, Xiu-Min; Anema, Jason R; Wu, De-Yin; Ren, Bin; Tian, Zhong-Qun

    2012-10-05

    We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain the transformations observed in para-substituted ArNO(2) and ArNH(2) on nanostructured silver due to the surface plasmon resonance effect. Theoretical calculations show that the initial reaction takes place through excitation of an electron from the filled level of silver to the lowest unoccupied molecular orbital (LUMO) of an adsorbed ArNO(2) molecule, and from the highest occupied molecular orbital (HOMO) of an adsorbed ArNH(2) molecule to the unoccupied level of silver, during irradiation with visible light. The para-substituted ArNO(2)(-)˙ and ArNH(2)(+)˙ surface species react further to produce the azobenzene derivatives. Our results may provide a new strategy for the syntheses of aromatic azo dyes from aromatic nitro and amine compounds based on the use of nanostructured silver as a catalyst.

  18. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  19. Review of the recent progress in photoresponsive molecularly imprinted polymers containing azobenzene chromophores.

    Science.gov (United States)

    Wei, Yu-bo; Tang, Qian; Gong, Cheng-bin; Lam, Michael Hon-Wah

    2015-11-05

    Photoresponsive molecularly imprinted polymers (PMIPs) containing azobenzene have received wide research attention in recent years and made notable achievements. This article reviews the recent developments on PMIPs containing azobenzene. Topics include the following: (i) brief introduction of azobenzene, molecularly imprinted polymers, and PMIPs containing azobenzene; (ii) progress in functional monomers, cross-linkers, and polymerization conditions; (iii) preparation methods, properties, applications, as well as advantages and disadvantages of conventional PMIPs; (iv) substrate, preparation method, and applications of photoresponsive surface molecularly imprinted polymers; and (v) some perspectives for further development of PMIPs containing azobenzene. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Science.gov (United States)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  1. Probing the switching state of a surface-mounted azobenzene derivative using femtosecond XUV photoemission

    Science.gov (United States)

    Grunau, Jan; Heinemann, Nils; Rohwer, Timm; Zargarani, Dordaneh; Kuhn, Sonja; Jung, Ullrich; Kipp, Lutz; Magnussen, Olaf; Herges, Rainer; Bauer, Michael

    2012-03-01

    Photoemission spectroscopy using femtosecond XUV light pulses is applied to probe the isomerization state of the molecular switch 3-(4-(4-hexyl-phenylazo)-phenoxy)-propane-1-thiol deposited by liquid phase self-assembly on Au(111). Spectral shifts of valence-electronic signatures that we associate with the carbon C2s orbital enable us to distinguish the trans and the cis isomerization state of the adsorbed molecules. These preliminary results envision the potential to probe reversible switching processes of surface-mounted molecules in real time by tracking the temporal evolution of the electronic and nuclear degrees of freedom in a femtosecond XUV photoemission experiment.

  2. The azobenzene derivatives

    Science.gov (United States)

    Ionita, Ionica; Radulescu, Cristiana; Poinescu, Aurora Anca; Anghelina, Florina Violeta; Bunghez, Raluca; Ion, Rodica-Mariana

    2015-02-01

    Azobenzene derivatives constitute a group of dyes which have photochromic properties and have been investigated as promising systems for diverse applications in the unconventional optic area, their properties can be moulded with help of light.

  3. The utility of polyester and cotton as swabbing substrates for the removal of cellular material from surfaces.

    Science.gov (United States)

    Mulligan, Christina M; Kaufman, Stacie R; Quarino, Lawrence

    2011-03-01

    Various types of cotton and polyester fabrics were tested to ascertain the optimal physical and chemical characteristics of fabrics needed for the removal of cellular material from surfaces. DNA quantitation values obtained on dried saliva stains showed no difference between cotton and polyester across all constructions and solvent conditions. Fabrics used dry and with water yielded higher quantitation values than those used with isopropanol. Quantitation values were also higher for wovens and nonwovens than knits across all solvent conditions. Low thread count fabrics used with water yielded higher quantitation values, but no correlation between thread count and quantitation values was observed with dry fabrics. A low thread count woven fabric, however, outperformed other tested fabrics when swabbing object surfaces in a highly used room. Full DNA profiles from fingerprints on glass surfaces were obtained with low thread count woven and nonwoven fabrics but not with the knit fabric tested. © 2011 American Academy of Forensic Sciences.

  4. Surface coatings of unsaturated polyester resin Kamper wood (Dry obalan ops spp.) by using UV radiation

    International Nuclear Information System (INIS)

    Sugiarto Danu; Yusuf Sudo Hadi; Novi Eka Putri

    1999-01-01

    Kamper wood (Dryobalanops spp.) has high contribution in wood working industry and most of them need surface coating process. Radiation curing of surface coating, especially the use of ultra-violet (UV) light have potential to give contribution in the wood finishing. The experiment on surface coating of kamper wood has been conducted by using UV-radiation. Unsaturated polyester resin with the commercial name of Yucalac type 157 was used as coating materials after being added with styrene monomer, some fillers and radical photoinitiator of 2-hydroxy-2-2-methyl-l- phenyl propanone. Four photoinitiator concentration levels of 1.5 ; 2 ; 2.5 and 3 % by weight of resin were used. The coating materials were coated onto the wood panel samples by using high pressure sprayer. The wood samples were then exposed to irradiation by using 80 Watts/cm UV-source with variable conveyor speed of 3 ; 4 ; 5 and 5.8 m/min. Formulation of coating materials, pendulum hardness, adhesion, and gloss of cured films were evaluated

  5. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  6. [Influence of polyester gauze on evaporation capacity and healing of the surface of microskin graft wound after escharectomy].

    Science.gov (United States)

    Chen, Jiong; Tang, Zhi-Jian; Xia, Zhao-Fan; Zheng, Xu-Dong; Zhang, Li-Cheng

    2009-01-13

    To investigate the influence of polyester gauze on evaporation capacity and its clinical effect after escharectomy of deep burn wound and micro-skin grafting. Twenty patients with deep burn admitted within 24 hours after injury underwent escharectomy and Meek skin grafting. Two surfaces of wound with the area of about 1% as the whole wound surface were used, one covered by Meek skin graft and polyester gauze as inner dressing (polyester gauze group), and the other covered by split-thickness skin sheet 0.3 mm x 0.3 mm in size and vaseline oil gauze as inner dressing (vaseline oil gauze group). Five days after skin grafting, the evaporation capacities of the surface of inner dressing, wound surface without dressing (nude wound), and normal skin near the wound were tested by evaporation test equipment. The complete healing time and survival rate of skin sheet in both groups were observed. The degree of pain during dressing change was evaluated with visual analog scale. The evaporation capacity of the inner dressing surface of polyester gauze group was (24.8 +/- 5.2) ml x h(-1) x m(-2), significantly lower than those of the vaseline oil gauze group [(35.4 +/- 5.0) ml x h(-1) x m(-2), P 0.05]. The evaporation capacity of the inner dressing surface of vaseline oil gauze group was significantly lower than nude wound [(40.7 +/- 3.6) ml x h(-1) x m(-2), P 0.05). The wound healing rates on days 10, 15, and 20 of the polyester gauze group were 80% +/- 20%, 96% +/- 7%, and 100% respectively, all significantly higher than those of the vaseline oil gauze group (70% +/- 33%, 81% +/- 21%, and 97% +/- 11% respectively, all P < 0.01). The complete healing time of the polyester gauze group was (13.6 +/- 1.9) days, significantly shorter than that of the vaseline oil gauze group [(16.7 +/- 2.6) days, P < 0.01]. The pain scores during dressing change 5 and 10 days after grafting of the polyester gauze group were (3.2 +/- 0.8) and (4.9 +/- 0.4) respectively, both significantly lower than

  7. Study of the effect of surface treatment of kenaf fibre on mechanical properties of kenaf filled unsaturated polyester composite

    Science.gov (United States)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.

  8. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  9. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    International Nuclear Information System (INIS)

    Wang, C.X.; Lv, J.C.; Ren, Y.; Zhi, T.; Chen, J.Y.; Zhou, Q.Q.; Lu, Z.Q.; Gao, D.W.; Jin, L.M.

    2015-01-01

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O 2 plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O 2 plasma treated and SWCNT coated PET fabric was better and worse than that of N 2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated

  10. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    OpenAIRE

    Uichi Akiba; Daichi Minaki; Jun-ichi Anzai

    2017-01-01

    This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL) films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, wh...

  11. The Effect of Nylon and Polyester Peel Ply Surface Preparation on the Bond Quality of Composite Laminates

    Science.gov (United States)

    Moench, Molly K.

    The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle

  12. Simulation of Photo-isomerization of Functionalized Azobenzene Derivatives

    Science.gov (United States)

    Tavazohi, Pedram; Herberger, Zachary; Lewis, James

    Photo-isomerization is the process of changing the isomer (cis , trans) of a molecule using light. In azobenzene this process can be utilized in a Metal Organic Framework (MOF) for adsorption of CO2. MOFs are created by two major components, metal ions, and organic molecules which are called linkers. The metal ions and linkers can be coordinated in a way that they form a porous material. In the cis isomer of azobenzene, the MOF's pore is available to be filled by CO2, but in the trans isomer the pore is filled with a benzene ring. The change from cis to trans will evacuate the pore if CO2 is present. The important considerations in using azobenzene photo-isomerization as a photo-switch in MOFs are, the quantum yield of the process, and the wavelength of the light which triggers photo-isomerization. By substitution of the functional groups of azobenzene and using the fewest switches surface-hopping algorithm in FIREBALL to simulate the photo-isomerization process we can tune the properties of the molecule as we desire and predict the best substitution sites for azobenzene functional groups. We studied the effects of functionalizing the molecule with OH, CH3, NH2, NO2 and COOH on isomerization quantum yield.

  13. Recording medium based on the films of azobenzene copolymer with free surface and in sandwich-structures for polarization holography

    Science.gov (United States)

    Davidenko, N. A.; Davidenko, I. I.; Pavlov, V. A.; Chuprina, N. G.; Mokrinskaya, E. V.; Tarasenko, V. V.; Tonkopieva, L. S.; Kravchenko, V. V.

    2018-02-01

    Peculiarities of the polarization holographic recording in the samples with the films of copolymer poly[4-((2-nitrophenyl)diazenyl)phenylmethacrylate-co-octylmethacrylate] with free surface and in the sandwich-structures with solid covering layer are investigated. Time of the holographic recording and its storage is less in the sandwich-structures. It was concluded, that in the sandwich-structures, geometric relief of the film surface does not appear during the recording.

  14. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces

    NARCIS (Netherlands)

    Ullien, D.; Thüne, P.C.; Jager, W.F.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2014-01-01

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2–7 nm, which indicate multilayer formation.

  15. Physical processes in azobenzene polymers on irradiation with polarized light

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Norris, T.B.

    1999-01-01

    . A transition route based on experimental results for the theoretically calculated energy level scheme is proposed. Physical observations of surface relief in thin films of azobenzene polymers when irradiated with polarized light are reported. These include two beam polarization holographic observations...

  16. Functionalization, self-assembly, and photoswitching quenching for azobenzene derivatives adsorbed on Au(111).

    Science.gov (United States)

    Cho, Jongweon; Berbil-Bautista, L; Levy, Niv; Poulsen, Daniel; Fréchet, Jean M J; Crommie, Michael F

    2010-12-21

    We have used scanning tunneling microscopy to investigate the structure and photoswitching behavior of azobenzene molecules functionalized with bulky spacer groups and adsorbed onto Au(111). We find that positioning tert-butyl "legs" in a canted arrangement on the azobenzene phenyl rings quenches photoisomerizability of the molecule on Au(111). Addition of cyano groups at the para positions changes the molecular self-assembly significantly, but does not alter the quenched photoisomerizability. This behavior likely arises from a combination of molecule-surface interactions, molecule-molecule interactions, and alteration of azobenzene electronic structure resulting from the position-specific addition of tert-butyl groups.

  17. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces.

    Science.gov (United States)

    Ullien, Daniela; Thüne, Peter C; Jager, Wolter F; Sudhölter, Ernst J R; de Smet, Louis C P M

    2014-09-28

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2-7 nm, which indicate multilayer formation. Decreasing the diazonium salt concentration and the reaction time resulted in a smaller layer thickness, but did not prevent the formation of multilayers. It was demonstrated, mainly by X-ray photoelectron spectroscopy (XPS), that the diazonium salts not only react with the H-terminated Si surface, but also with electrografted phenyl groups via azo-bond formation. These azo bonds can be electrochemically reduced at Ered = -1.5 V, leading to the corresponding amino groups. This reduction resulted in a modest decrease in layer thickness, and did not yield monolayers. This indicates that other coupling reactions, notably a biphenyl coupling, induced by electrochemically produced phenyl radicals, take place as well. In addition to the azo functionalities, the nitro functionalities in electrografted layers of 4-NBD were independently reduced to amino functionalities at a lower potential (Ered = -2.1 V). The presence of amino functionalities on fully reduced layers, both from 4-NBD- and 4-BBD-modified Si, was shown by the presence of fluorine after reaction with trifluoroacetic anhydride (TFAA). This study shows that the electrochemical reduction of azo bonds generates amino functionalities on layers produced by electrografting of aryldiazonium derivatives. In this way multifunctional layers can be formed by employing functional aryldiazonium salts, which is believed to be very practical in the fabrication of sensor platforms, including those made of multi-array silicon nanowires.

  18. Gliding arc surface treatment of glass fibre reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    that polar functional groups were introduced at the surface by the gliding arc treatment, and that the treatment efficiency was enhanced by the ultrasonic irradiation, indicating that the adhesive property would be improved. The results are extensively discussed in terms of the plasma conditions......During atmospheric pressure plasma surface treatment, reactive species generated in the plasma diffuse through a boundary gas layer which sticks at the material surface. Due to the short lifetime of these species only a small fraction can reach the surface, limiting the surface treatment efficiency...... of approximately 150 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The water contact angle of the GFRP surface dropped markedly with no ultrasonic irradiation, and tended to decrease furthermore at higher power. Ultrasonic irradiation during the plasma treatment consistently...

  19. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    .295, 0.385 and 0.447, respectively. This indicated that the plasma treatment oxidized and roughened the GFRP surface, and the ultrasonic irradiation further enhanced the oxidation. It is concluded that plasma treatment efficiency for adhesion improvement of GFRPs is enhanced by the ultrasonic irradiation.......During atmospheric pressure plasma treatment, reactive species generated in the plasma diffuse through a boundary gas layer which is adsorbed at the material surface. Many of the reactive species become inactivated before reaching the surface due to their short lifetime. The efficiency of plasma....... The surface characterizations were performed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force mictroscopy (AFM). O/C ratios at the GFRP surfaces before the treatments, after 30-s plasma treatment, and after 30-s plasma treatment with ultrasonic irradiation were 0...

  20. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  1. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2017-10-01

    Full Text Available This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.

  2. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  3. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  4. Photoisomerization in different classes of azobenzene.

    Science.gov (United States)

    Bandara, H M Dhammika; Burdette, Shawn C

    2012-03-07

    Azobenzene undergoes trans→cis isomerization when irradiated with light tuned to an appropriate wavelength. The reverse cis→trans isomerization can be driven by light or occurs thermally in the dark. Azobenzene's photochromatic properties make it an ideal component of numerous molecular devices and functional materials. Despite the abundance of application-driven research, azobenzene photochemistry and the isomerization mechanism remain topics of investigation. Additional substituents on the azobenzene ring system change the spectroscopic properties and isomerization mechanism. This critical review details the studies completed to date on the 3 main classes of azobenzene derivatives. Understanding the differences in photochemistry, which originate from substitution, is imperative in exploiting azobenzene in the desired applications. This journal is © The Royal Society of Chemistry 2012

  5. Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester

    Czech Academy of Sciences Publication Activity Database

    Džunuzović, J. V.; Pergal, M. V.; Poreba, Rafal; Vodnik, V. V.; Simonović, B. R.; Špírková, Milena; Jovanović, S.

    2012-01-01

    Roč. 358, č. 23 (2012), s. 3161-3169 ISSN 0022-3093 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyurethane network * hyperbranched polyester * poly(dimethylsiloxane) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.597, year: 2012

  6. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  7. Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-03-30

    Graphical abstract: - Highlights: • PET in form of film or membrane is hydrophobic and its wetting behavior follows the Wenzel wetting theory. In the form of textile materials it shows hydrophilicity. • rGO coated PET fabric shows hydrophobicity and its wetting behavior places between Wenzel and Cassie–Baxter models. • PET coated fabric by PPy shows superhydrophobicity and its wetting behavior is consistence with Cassie–Baxter model. • Due to oxidation of the rGO during in situ synthesis of PPy the rGO–PPy coated PET shows hydrophilicity. - Abstract: In this study, the influence of coating polyethylene terephthalate (PET) fabric with reduced graphene oxide (rGO) and polypyrrole (PPy), individually or in combination (rGO–PPy), on surface chemistry and roughness (focusing on wetting behavior), were analyzed systematically. Characterization was carried out by observing the topography (atomic force microscopy – AFM) and stating surface analysis (X-ray photoelectron spectroscopy – XPS), contact angles (goniometry), water shedding angles, and surface energy values of the samples. The results showed that the contact angles of pristine (uncoated), GO and rGO–PPy coated samples were 0°, while it was 92°, 123° and 151° for hot pressed (2nd pristine sample), rGO and PPy samples, respectively. A zero contact angle for PET sample was due to its wicking ability. Results were interpreted with Young, Wenzel and Cassie Baxter equations. It was found that PPy coated samples were consistent with Cassie–Baxter equation, while rGO placed between Wenzel and Cassie–Baxter wetting models.

  8. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    Science.gov (United States)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  9. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  10. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost

    Photo-switchable molecules such as azobenzene are of high interest for “smart” surfaces. Such “smart” surfaces respond to external light excitation by changing their macroscopic properties. The absorbance of light on a single normal path through a layer of azobenzene immobilized on a surface...... is small and thus a high excitation light intensity is required. We investigate the enhancement of the local energy density using periodically nanostructured surfaces in a high refractive index material. Such photonic crystals support quasi-guided modes visible as resonances in the reflection as well...... as in the transmission light spectrum. These guided modes have field contributions decaying exponentially in the near field of the photonic crystal. Azobenzene immobilized on the photonic crystal surface will experience a significantly increased light intensity compared to non-resonant surfaces. We performed finite...

  11. Fabrication of polyester microchannel with functional surface for electro-chromatography - Incorporation of detection devices into the microchip -

    International Nuclear Information System (INIS)

    Uchiyama, Katsumi; Qiu, Jing Miao; Hobo, Toshiyuki

    2001-01-01

    In recent years, new analytical techniques using microchip devise have been extensively studied (micro-TAS). One of the most successful examples is capillary electrophoresis (CE) with glass plate fabricated by photolithography followed by the chemical or physical etching process. Micro CE one of the most excellent separation techniques, performs separations in microchannel formed in appreciate substrate material. We developed a fabrication method for polyester micro channels with aikene alcohol inside the wall of the channel and demonstrated the usefulness of the polymer microchip. Although many researchers have been studying microchannel or micro-devices for analytical use, miniaturization of the total system including sample introduction, separation, detection and data treatment is still under development. Especially, the miniaturization of the detection system will be a hard bar to be overcome. Our method, based upon the in situ polymerization of polyester resin on an appreciate template, can be exported to let some parts incorporated directly into the microchip during the polymerization process. In this paper, we will describe the incorporation of detection components (light emitting diode and optical fiber) into polyester microchip and the application of the microchip to the analysis of amino acids separated by electrophoresis.

  12. In situ Raman spectroelectrochemistry of azobenzene monolayers on glassy carbon.

    Science.gov (United States)

    Itoh, Takashi; McCreery, Richard L

    2007-05-01

    In situ Raman spectra of chemisorbed azobenzene (AB) monolayers on glassy carbon (GC) electrodes were observed under potentiostatic conditions in acetonitrile (ACN) with tetrabutyl-ammonium tetrafluoroborate (TBA-BF4). The Raman intensities of these spectra were high below -1000 mV, and this is attributed to the change in absorbance of AB on GC. In this paper, we describe chemisorbed AB molecules on GC electrode surfaces under potentiostatic conditions.

  13. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    It is well known that irradiation of azobenzene polymer films between 490 and 530nm results in alignment of molecules perpendicular to the polarization of the incident beam. I have recently found that irradiation of amorphous azobenzene polymers with linearly polarized light at wavelengths between...

  14. Azobenzene photoisomerization quantum yields in methanol redetermined.

    Science.gov (United States)

    Ladányi, Vít; Dvořák, Pavel; Al Anshori, Jamaludin; Vetráková, Ľubica; Wirz, Jakob; Heger, Dominik

    2017-12-06

    The quantum yields of azobenzene photoisomerization in methanol solution were redetermined using newly obtained molar absorption coefficients of its cis- and trans-isomers. The results differ substantially from those published previously, especially in the range of the nπ* absorption band. Besides actinometry, these findings are relevant for applications of azobenzene derivatives in optical switching.

  15. Interpretation of colloidal dyeing of polyester fabrics pretreated with ethyl xanthogenate in terms of zeta potential and surface free energy balance.

    Science.gov (United States)

    Espinosa-Jiménez, M; Padilla-Weigand, R; Ontiveros-Ortega, A; Ramos-Tejada, M M; Perea-Carpio, R

    2003-09-15

    Data are presented on the adsorption of the colloidal dye Disperse Blue 3 onto polyester fabric (Dacron 54, Stile 777), the fabric being pretreated with different amounts of the surfactant potassium ethyl xanthogenate (PEX). This study has been made by means of both the evolution of the zeta potential of the fiber/dye interface and the behaviour of the surface free energy components of the above systems. The kinetics of adsorption of the process of dyeing, using 10(-4) M of PEX in the pretreatment of the fabric, shows that increasing temperature of adsorption decrease the amount of colloidal dye adsorbed onto the fabric. This fact shows that the principal mechanism involved in this adsorption process is physical in nature. The adsorption isotherms of the colloidal dye onto polyester pretreated with different amounts of PEX, shows that the adsorption of the dye is favored with the increase in the concentration of the surfactant used in the pretreatment. This fact shows that the pretreatment with PEX is a very interesting aspect of interest in textile industry. The zeta potential of the system fabric/surfactant shows that this parameter is negative (about -25 mV) for the untreated fiber and decreases in absolute value for increasing concentration of the surfactant on the fiber, the value of the zeta potential of the system being -5 mV for 10(-2) M of PEX. This behavior can be explained for the chemical reaction nucleophilic attack between the carboxyl groups of polyester, ionized at pH 8, and the thiocarbonyl group of the xanthogenate ion. On the other hand, the zeta potential of the system polyester pretreated with PEX/Disperse Blue 3 at increasing concentrations of the surfactant and the dye shows that this parameter increases its negative value strongly with increasing concentration of the surfactant used in the treatment. This can be explained for the hydrogen bonds between the hydroxy groups of the dye and the S- ions of the thiocarbonyl group of the surfactant

  16. Study of the effect of surface treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite

    Science.gov (United States)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. The Fourier transform infrared (FT-IR) spectra of kenaf fiber shows high intensity of the peak around 3300-3400 cm-1, which is attributed to the hydrogen bonded O-H stretching. However, the treated kenaf fiber with stearic acid shows the elimination of O-H group and this peak is vanished. This is due to the reaction of (-COOH) group of stearic with (-OH) group of kenaf fiber. The results of water absorption study revealed that increasing the loading of KF in the composite will result is increasing the tendency to absorb water. However, the absorption was significantly decreased after treatment with stearic acid as well as the time to reach to the equilibrium state.

  17. Azobenzene-containing triazatriangulenium adlayers on Au(111): structural and spectroscopic characterization.

    Science.gov (United States)

    Jung, Ulrich; Kuhn, Sonja; Cornelissen, Ursula; Tuczek, Felix; Strunskus, Thomas; Zaporojtchenko, Vladimir; Kubitschke, Jens; Herges, Rainer; Magnussen, Olaf

    2011-05-17

    Adlayers of different azobenzene-functionalized derivatives of the triazatriangulenium (TATA) platform on Au(111) surfaces were studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS), and cyclic voltammetry (CV). The chemical composition of the adlayers is in good agreement with the molecular structure, i.e., different chemical groups attached to the azobenzene functionality were identified. Furthermore, the presence of the azobenzene moieties in the adlayers was verified by the vibration spectra and electrochemical data. These results indicate that the molecules remain intact upon adsorption with the freestanding functional groups oriented perpendicularly to the TATA platform and thus also to the substrate surface.

  18. The absorption spectrum of cis-azobenzene.

    Science.gov (United States)

    Vetráková, Ľubica; Ladányi, Vít; Al Anshori, Jamaludin; Dvořák, Pavel; Wirz, Jakob; Heger, Dominik

    2017-12-06

    Azobenzene is a prototypical photochromic molecule existing in two isomeric forms, which has numerous photochemical applications that rely on a precise knowledge of the molar absorption coefficients (ε). Careful analysis revealed that the previously reported absorption spectra of the "pure" isomers were in fact mutually contaminated by small amounts of the other isomer. Therefore, the absorption spectra of both trans- and cis-azobenzene in methanol were re-determined at temperatures of 5-45 °C. The thermodynamically more stable trans-azobenzene was prepared by warming the solution in the dark. To obtain the spectrum of cis-azobenzene three methods were used, which gave consistent results within the limits of error. The method based on the subtraction of derivative spectra coupled with a global analysis of the spectra recorded during thermal cis-trans isomerization is shown to give slightly more reliable results than the method using isomeric ratios determined by 1 H-NMR. The described methods are readily generalizable to other azobenzene derivatives and to other photochromic systems. The practical implication of the re-determined ε values is demonstrated by a very high precision of spectrophotometric species analysis in azobenzene isomeric mixtures. The new ε values imply that the previously reported quantum yields must be revised.

  19. Polymers films with indandione derivatives as alternatives to azobenzene polymers for optical patterning

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, B. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany)], E-mail: busti@rz.uni-potsdam.de; Saphiannikova, M. [Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden (Germany); Morawetz, K. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Ilnytskyi, J. [Institute for Condensed Matter Physics, 1 Svientsitskii Str., 79011, Lviv (Ukraine); Neher, D. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Muzikante, I. [Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, Riga, LV 1063 (Latvia); Pastors, P.; Kampars, V. [Riga Technical University, Azenes Str. 14/24, Riga LV-1048 (Latvia)

    2008-10-31

    Surface relief gratings (SRGs) on organic thin films are studied extensively for both scientific interest and in relevance to the applications. Among the chromophores being used the azobenzenes showed the best performance, but the use of alternative photo-sensitive groups provides better general understanding of the phenomena. A thermodynamic theory and molecular dynamics simulations of photoinduced effects are discussed. In this study we use indandione derivatives, known as promising materials for photonics applications, as an alternative to the azobenzenes. We consider their photoreactions when incorporated into a polymer film. One of interesting features is the spectral dependence of the diffraction of indandione containing gratings, which is observed and discussed.

  20. Optical patterning in azobenzene polymer films.

    Science.gov (United States)

    Stiller, B; Geue, T; Morawetz, K; Saphiannikova, M

    2005-09-01

    Thin azobenzene polymer films show a very unusual property, namely optically induced material transport. The underlying physics for this phenomenon has not yet been thoroughly explained. Nevertheless, this effect enables one to inscribe different patterns onto film surfaces, including one- and two-dimensional periodic structures. Typical sizes of such structures are of the order of micrometers, i.e. related to the interference pattern made by the laser used for optical excitation. In this study we have measured the mechanical properties of one- and two-dimensional gratings, with a high lateral resolution, using force-distance curves and pulse force mode of the atomic force microscope. We also report on the generation of considerably finer structures, with a typical size of 100 nm, which were inscribed onto the polymer surface by the tip of a scanning near-field optical microscope used as an optical pen. Such inscription not only opens new application possibilities but also gives deeper insight into the fundamentals physics underlying optically induced material transport.

  1. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective.

    Science.gov (United States)

    Koch, Markus; Saphiannikova, Marina; Santer, Svetlana; Guskova, Olga

    2017-09-21

    This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.

  2. Design of photocontrolled biomolecules based on azobenzene derivatives

    Science.gov (United States)

    Zatsepin, T. S.; Abrosimova, L. A.; Monakhova, M. V.; Thi Hien, Le; Pingoud, A.; Kubareva, E. A.; Oretskaya, T. S.

    2013-10-01

    This review focuses on methods of designing photocontrolled proteins and nucleic acids. Data on preparation and modification of proteins and nucleic acids with azobenzene derivatives are summarized. Examples of using photoswitchable proteins, their substrates, inhibitors and ligands containing azobenzene, as well as azobenzene derivatives of nucleic acids, for design of nanomachines are considered. The bibliography includes 122 references.

  3. Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups.

    Science.gov (United States)

    Mouri, Makoto; Ikawa, Taiji; Narita, Mamiko; Hoshino, Fumihiko; Watanabe, Osamu

    2010-06-11

    In our photo-induced immobilization technique for an antibody (IgG) using azopolymers, the introduction of COOH and NMe(2) into the azopolymers, which can introduce surface charges, strongly affected the immobilization properties such as the efficiency of immobilization and the activity of the immobilized IgG (i.e., the orientation of the immobilized IgG). The introduction of COOH promoted a more active orientation of the immobilized IgG. The orientation was determined during the adsorption process onto the azopolymer surface in solution before photo-immobilization, and was maintained during the photo-immobilization. The surface charge of the azopolymer appears to be an important factor for IgG orientation, which involves electrostatic interactions between its Fab and the azopolymer surface.

  4. Synchrotron macro ATR-FTIR microspectroscopic analysis of silica nanoparticle-embedded polyester coated steel surfaces subjected to prolonged UV and humidity exposure.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Truong, Vi Khanh; Al Kobaisi, Mohammad; Maclaughlin, Shane; Tobin, Mark J; Crawford, Russell J; Ivanova, Elena P

    2017-01-01

    Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the

  5. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  6. Azobenzene Photoswitches for Staudinger-Bertozzi Ligation

    NARCIS (Netherlands)

    Szymanski, Wiktor; Wu, Bian; Poloni, Claudia; Janssen, Dick B.; Feringa, Ben L.

    2013-01-01

    A novel family of azobenzenes containing residues needed for aqueous Staudinger–Bertozzi ligation to azides was designed. The resulting photochromes show stable and reversible switching behavior in water, with a photostationary state (PSS) of up to 95:5 cis/trans. Applications in model systems

  7. Relaxation effect of stilbene azobenzene derivatives on their holographic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saharov, D; Ozols, A; Kokars, V; Kampars, V; Mezinskis, G; Maleckis, A; Pludons, A; Jansone, M [Riga Technical University, Faculty of Material Science and Applied Chemistry, Azenes 14/24, LV-1048, Riga (Latvia)

    2007-12-15

    The material relaxation effect on holographic properties of stilbene azobenzene derivatives in the form of glassy films has been experimentally studied. Holographic grating recording with the period of 2 {mu}m was made by a He-Ne laser at 633 nm in the self-diffraction mode. The readout was made simultaneously in order to follow the fast self-diffraction efficiency changes. The existence of the optimal material storage time (6-51 day) is established enabling the most efficient recording. Material relaxation amplitude and the holographic recording efficiency increased when the chromophore concentration was increased, especially above the threshold of about 70 mass %. It is also found that 633 nm recording due to the modulation of refraction and absorption indices is accompanied by the formation of surface relief grating. The conclusion is made that holographic recording in stilbene azobenzene derivatives at 633 nm is due to the chromophore reorientation by linearly polarized light possibly including trans-cis-trans transformations.

  8. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  10. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    International Nuclear Information System (INIS)

    Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L.

    2016-01-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  11. Photoisomerization of azobenzene moiety in crosslinking polymer materials

    Science.gov (United States)

    Wang, Hui; Chen, Wei-Qiang; Jin, Feng; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-10-01

    In this study, a series of acryloyloxy-substituted azobenzene derivatives, 3-(tert-butyl)-4,4'-bisacryoloxy-azobenzene (tBu-Azo-AO), 3-(tert-butyl)-4,4'-bis[3-(acryoloxy)propoxy]-azobenzene (tBu-Azo-AO3) and 3-(tert-butyl)-4,4'-bis[6-(acryoloxy)hexyloxy]-azobenzene (tBu-Azo-AO6) were synthesized and employed as monomers to prepare polymer films by copolymerizing dipentaerythritol hexaacrylate (DPE-6A) and methyl methacrylate (MMA), respectively. When exposed to a nanosecond laser beam at the wavelength of 355 nm, ultraviolet-visible (UV-Vis) absorption spectra of the resultant polymer films with different irradiation time were monitored. On the basis of the absorbance of the π-π* electronic transition, the kinetics of trans-to-cis photoisomerization of three kinds of azobenzene moieties were demonstrated and found to be influenced by both the pump energy and azobenzene concentration.

  12. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  13. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  14. Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates.

    Science.gov (United States)

    Yoon, Jun Hee; Yoon, Sangwoon

    2011-07-28

    Photoisomerization is an important reaction that confers photoresponsive functionality on nanoparticles. Although photoisomerization of molecules forming self-assembled monolayers on two-dimensional surfaces or three-dimensional clusters has been studied, a detailed picture of interactions of molecules undergoing isomerization with nanoparticles is not available. In this paper, we report on the photoisomerization of azobenzene derivatives spatially confined in gold nanoparticle (AuNP) aggregates. AuNP aggregates allow us to simultaneously probe the structural changes of molecules via surface-enhanced Raman spectroscopy (SERS) and the accompanying changes in interparticle interactions via surface plasmon couplings. AuNP aggregates are formed by the adsorption of synthesized azobenzene-derivatized sulfides (Az) onto the surfaces of AuNPs. The photoisomerization of the adsorbed Az from trans to cis by excitation at 365 nm causes the AuNPs to move close to each other in the aggregates, leading to a redshift of the surface plasmon coupling band in the UV-vis spectra and a concomitant rise in SERS intensity. SERS spectra reveal that the vibrational modes containing the N=N stretching character redshift upon irradiation, suggesting that the N=N bond is significantly weakened when Az is in the cis form in the AuNP aggregates. The weakening of the N=N bond is attributed to the interaction of the N=N bond, which is more exposed to the outside in the cis conformation, with the nearby AuNPs that have come closer by the isomerization of adsorbed Az. We find that backisomerization from cis to trans occurs much faster in the AuNP aggregates (k = 1.9 × 10(-2) min(-1)) than in solution (k = 1.3 × 10(-3) min(-1)) because of the reduced N=N bond order of cis-Az in the aggregates. This journal is © the Owner Societies 2011

  15. Elucidation of Isomerization Pathways of a Single Azobenzene Derivative Using an STM.

    Science.gov (United States)

    Kazuma, Emiko; Han, Mina; Jung, Jaehoon; Oh, Junepyo; Seki, Takahiro; Kim, Yousoo

    2015-11-05

    The predominant pathway for the isomerization between cis- and trans-azobenzenes-either (i) inversion by the bending of an NNC bond or (ii) rotation by the torsion of two phenyl rings-continues to be a controversial topic. To elucidate each isomerization pathway, a strategically designed and synthesized azobenzene derivative was investigated on a Ag(111) surface. This was achieved by exciting the molecule with tunneling electrons from the tip of a scanning tunneling microscope (STM). Structural analyses of the molecularly resolved STM images reveal that both inversion and rotation pathways are available for isomerization on a metal surface and strongly depend on the initial adsorption structures of the molecule. On the basis of the potential energy diagrams for the isomerization, it is concluded that isomerization pathways on a metal surface are not simply related to the excited states.

  16. UV/Vis Spectroscopy Studies of the Photoisomerization Kinetics in Self-Assembled Azobenzene-Containing Adlayers.

    Science.gov (United States)

    Krekiehn, N R; Müller, M; Jung, U; Ulrich, S; Herges, R; Magnussen, O M

    2015-08-04

    Direct comparative studies of the photoisomerization of azobenzene derivatives in self-assembled adlayers on Au and as free molecules in dichloromethane solution were performed using UV/vis spectroscopy. For all studied systems a highly reversible trans-cis isomerization in the adlayer is observed. Quantitative studies of the absorbance changes and photoisomerization kinetics reveal that in azobenzenes mounted as freestanding vertical groups on the surface via triazatriangulene-based molecular platforms photoswitching is nearly uninhibited by the local environment in the adlayer. The blue-shift of the π-π* transition in adlayers of these molecules is in good agreement with theoretical studies of the effect of excitonic coupling between the molecules. In contrast, in azobenzene-containing thiol self-assembled monolayers the fraction of photoswitching molecules and the photoisomerization kinetics are significantly reduced compared to free molecules in solution.

  17. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  18. Stabilized unsaturated polyesters

    Science.gov (United States)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  19. [Isolation and study of azobenzene converting soil bacteria].

    Science.gov (United States)

    Vakkerov-Kouzova, N D

    2005-01-01

    Heterotrophic bacteria were isolated from soil and glass slides and classified as Bacillus cereus SNK12, Paenibacillus polymyxa SNK2, Azotobacter chroococcum ANKII, and Ochrobacterium intermedium ANKI. Their cultures could degrade azobenzene under the conditions of co-metabolism. A rapid test for the ability of bacteria to convert azobenzenes is proposed.

  20. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    concentrations of azobenzene in both linear and cross-linked PIs, 30 mol % azobenzene diamine (4) and 20 mol % of azobenzene triamine (7) were added...AFRL-RX-WP-JA-2014-0204 MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION...August 2014 4. TITLE AND SUBTITLE MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION

  1. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  2. Gold Superparticles Functionalized with Azobenzene Derivatives: SERS Nanotags with Strong Signals.

    Science.gov (United States)

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan

    2017-03-29

    The surface-enhanced Raman spectroscopy (SERS) nanotag was proposed as a substitute for fluorescent dye for imaging and biosensors several decades ago. However, its weak signal and poor reproducibility has hindered its application. Here, we report a new strategy to form Au superparticles (AuSPs) with high SERS enhancement via one-pot formation and self-assembly of Au nanoparticles (NPs). An azobenzene-carrying Raman reporter was synthesized to exhibit a large Raman cross-section and multiple bands. The self-assembly of the Raman reporter on AuSPs generated SERS nanotags with intense signals. A Raman reporter carrying boronic acid and azobenzene groups displayed six distinctive bands. Its corresponding SERS nanotag demonstrated a high sensing ability toward glycoprotein through aggregation-induced SERS enhancement or as a substitute for labeled antibodies in an immunoassay of the glycoprotein.

  3. Photonic manipulation of topological defects in liquid-crystal emulsions doped with azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takahiro [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan) and Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)]. E-mail: takahiro.yamamoto@aist.go.jp; Tabe, Yuka [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan); Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku, 169-8555, Tokyo (Japan); Yokoyama, Hiroshi [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)

    2006-06-19

    By modulating liquid-crystal alignment on a colloidal sphere, we successfully manipulated topological defects in glycerol-droplet/liquid-crystal emulsions doped with amphiphilic azobenzene derivatives. At an initial state, a disclination loop (Saturn ring) could be observed around the droplet, in which the azobenzene molecules should adsorb onto the droplet and liquid crystal molecules align normally to the surface of the droplet. On irradiation with ultra-violet light ({lambda} = 365 nm), the disclination loop was unfastened and transformed into two point defects called boojums. This should be attributed to the alignment change of the liquid crystal molecules from normal to planar arrangement triggered by trans-to-cis photoisomerization of the adsorbed azo-dyes. On irradiation with visible light causing cis-to-trans photoisomerization ({lambda} = 435 nm), the boojums went back to the Saturn ring reversibly.

  4. Island formation and manipulation of prochiral azobenzene derivatives on Au(111)

    Science.gov (United States)

    Selvanathan, Sofia; Peters, Maike V.; Hecht, Stefan; Grill, Leonhard

    2012-09-01

    Based on previous work with very similar azobenzene derivatives, this study of para-TBA (2,2‧,5,5‧-tetra-tert-butylazobenzene) molecules aims to identify single intact molecules and investigate their adsorption behavior on a Au(111) surface. The molecules are found to be mobile on the surface at the deposition temperature, leading to highly ordered and enantiomerically pure molecular islands. Voltage pulses between the surface and the tip of a scanning tunneling microscope are used to change the chirality of the adsorbate molecules. On the Cu(111) surface instead, single molecules are found on the terraces, which points to a stronger molecule-substrate interaction.

  5. Properties of melt processed chitosan and aliphatic polyester blends

    Energy Technology Data Exchange (ETDEWEB)

    Correlo, V.M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Boesel, L.F. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Bhattacharya, M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal)]. E-mail: bhatt002@umn.edu; Mano, J.F. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Neves, N.M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Reis, R.L. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal)

    2005-08-25

    Chitosan was melt blended with poly-{epsilon}-caprolactone (PCL), poly(butylene succinate) (PBS), poly(lactic acid) (PLA), poly(butylene terephthalate adipate) (PBTA), and poly(butylene succinate adipate) (PBSA). For the chitosan/PBS blend, the amount of chitosan was varied from 25% to 70% by weight. The remaining polyesters had 50% of chitosan by weight. Addition of chitosan to PBS or PBSA tends to depress the melting temperature of the polyester. The crystallinity of the polyesters (PCL, PBS, PBSA) containing 50% chitosan decreased. Adding chitosan to the blends decreased the tensile strength but increased the tensile modulus. Chitosan displayed intermediate adhesion to the polyester matrix. Microscopic results indicate that the skin layer is polyester rich, while the core is a blend of chitosan and polyester. Fractured surface of chitosan blended with a high T {sub g} polymer, such as PLA, displayed a brittle fracture. Blends of chitosan with PCL, PBTA, or PBSA display fibrous appearances at the fractured surface due to the stretching of the polymer threads. Increasing the amount of chitosan in the blends also reduced the ductility of the fractured surface. The chitosan phase agglomerated into spherical domains or were clustered into sheaths. Pull-out of chitosan particles is evident in tensile-fractured surfaces for blends of chitosan with ductile polymers but absent in the blends with PLA. PBS displays a less lamellar orientation when compared to PCL or PBSA. The orientation of the polyesters (PCL, PBSA) does not seem to be affected by the addition of chitosan. The two main diffraction peaks observed using WAXS are unaffected by the addition of chitosan.

  6. Photo-induced and thermal reactions in thin films of an azobenzene derivative on Bi(111)

    Science.gov (United States)

    Bronner, Christopher; Tegeder, Petra

    2014-05-01

    Azobenzene is a prototypical molecular switch which can be interconverted with UV and visible light between a trans and a cis isomer in solution. While the ability to control their conformation with light is lost for many molecular photoswitches in the adsorbed state, there are some examples for successful photoisomerization in direct contact with a surface. However, there the process is often driven by a different mechanism than in solution. For instance, photoisomerization of a cyano-substituted azobenzene directly adsorbed on Bi(111) occurs via electronic excitations in the substrate and subsequent charge transfer. In the present study we observe two substrate-mediated trans-cis photoisomerization reactions of the same azobenzene derivative in two different environments within a multilayer thin film on Bi(111). Both processes are associated with photoisomerization and one is around two orders of magnitude more efficient than the other. Furthermore, the cis isomers perform a thermally induced reaction which may be ascribed to a back-isomerization in the electronic ground state or to a phenyl ring rotation of the cis isomer.

  7. Interaction of Azobenzene and Benzalaniline with Strong Amido Bases.

    Science.gov (United States)

    Kornev, Alexander N; Sushev, Vyacheslav V; Zolotareva, Natalia V; Baranov, Evgenii V; Fukin, Georgy K; Abakumov, Gleb A

    2015-12-18

    The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.

  8. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  9. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates

    DEFF Research Database (Denmark)

    Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco

    1999-01-01

    Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...

  10. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  11. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization

    NARCIS (Netherlands)

    Glampedaki, P.; Calvimontes, A.; Dutschk, Victoria; Warmoeskerken, Marinus

    2012-01-01

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate

  12. Azobenzene derivatives carrying a nitroxide radical.

    Science.gov (United States)

    Nakatsuji, Shin'ichi; Fujino, Masahiro; Hasegawa, Satoko; Akutsu, Hiroki; Yamada, Jun-ichi; Gurman, Vladimir S; Kh Vorobiev, Andrey

    2007-03-16

    Several trans-azobenzene derivatives carrying a nitroxide (aminoxyl) radical (2a, 6a-12a) were prepared, and their photoisomerization reactions to the corresponding cis-isomers were investigated. Although no fruitful results could be obtained for the photoisomerizations of the derivatives with para-subsituents (9a-12a), the unsubstututed derivatives at the para-position (2a, 6a, 7a, 8a) were found to show photoisomerizations by irradiation to give the corresponding cis-isomers (2b, 6b, 7b, 8b), being isolated as relatively stable solid materials, and the change of the intermolecular magnetic interactions was apparently observed by the structural change for each photochromic couple.

  13. Self-Assembled Monolayers of an Azobenzene Derivative on Silica and Their Interactions with Lysozyme.

    Science.gov (United States)

    Wei, Tao; Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Ma, Heng; Shing, Katherine

    2015-12-22

    The capability of the photoresponsive isomerization of azobenzene derivatives in self-assembled monolayer (SAM) surfaces to control protein adsorption behavior has very promising applications in antifouling materials and biotechnology. In this study, we performed an atomistic molecular dynamics (MD) simulation in combination with free-energy calculations to study the morphology of azobenzene-terminated SAMs (Azo-SAMs) grafted on a silica substrate and their interactions with lysozyme. Results show that the Azo-SAM surface morphology and the terminal benzene rings' packing are highly correlated with the surface density and the isomer state. Higher surface coverage and the trans-isomer state lead to a more ordered polycrystalline backbone as well as more ordered local packing of benzene rings. On the Azo-SAM surface, water retains a high interfacial diffusivity, whereas the adsorbed lysozyme is found to have extremely low mobility but a relative stable secondary structure. The moderate desorption free energy (∼60 kT) from the trans-Azo-SAM surface was estimated by using both the nonequilibrium-theorem-based Jarzynski's equality and equilibrium umbrella sampling.

  14. Photopiezoelectric Composites of Azobenzene-Functionalized Polyimides and Polyvinylidene Fluoride (Postprint)

    Science.gov (United States)

    2014-10-01

    is a diamine containing two azobenzenes per molecule and synthesized according to our previous publica- tion. [ 25 ] The generic chemical structure...AFRL-RX-WP-JA-2015-0026 PHOTOPIEZOELECTRIC COMPOSITES OF AZOBENZENE -FUNCTIONALIZED POLYIMIDES AND POLYVINYLIDENE FLUORIDE (POSTPRINT...3. DATES COVERED (From – To) 24 December 2009 – 15 September 2014 4. TITLE AND SUBTITLE PHOTOPIEZOELECTRIC COMPOSITES OF AZOBENZENE - FUNCTIONALIZED

  15. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Polyester projects for India, Pakistan

    International Nuclear Information System (INIS)

    Siddiqi, R.

    1993-01-01

    India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and support work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan

  17. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2012-01-01

    Full Text Available Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we introduce recent applications of these materials in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics. The concepts in each application are explained based on the mechanisms of photocontrol. The interesting natures of the photocontrollable materials and the conceptual applications will stimulate novel ideas for future research and development in this field.

  18. Unusual Photo-Induced Behaviour in a Side Chain Liquid Crystalline Azo-Polyester

    DEFF Research Database (Denmark)

    López, D; Rodríguez, F.J.; Sánchez, C.

    2006-01-01

    An unusual behaviour has been observed in the photo-indueed response of an azobenzene side chain liquid erystalline polyester (P6d4). Room temperature irradiation with linearly polarised 488 nm light does not induce any birefringence (An) in films of this polymer that have been quenehed from...... the isotropie state. However, using the same irradiation conditions An is indueed in quenehed films that have been kept in darkness for a few minutes. Besides, no photo-induced An is observed in films irradiated with 488 nm light that have been previously irradiated with UV light. In this ease, An can...... be reeorded if the UV irradiated films have been kept in darkness for several hours. In another set of experiments performed with the P6d4 polymer, irradiation with high intensity linearly polarised 488 nm light induces an initial increase of An and then it goes back to zero. Subsequent irradiation...

  19. Advanced microgel-functionalized polyester textiles adaptive to ambient conditions

    NARCIS (Netherlands)

    Glampedaki, P.

    2011-01-01

    A new approach toward textile-based multi-functional and stimuli-responsive materials is proposed. Polyelectrolyte microgel technology is combined with conventional functionalization methods of photo- and thermo-crosslinking to activate the surface of polyester textiles, making them interactive with

  20. 40 CFR 721.9507 - Polyester silane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...

  1. Nanostructured surfaces for microfluidics and sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel Thomas (Arizona State University); Piech, Marcin (United Technologies Corp.); Schneider, John F.; Vail, Sean (Arizona State University); Hayes, Mark A. (Arizona State University); Garcia, Anthony A.; Bell, Nelson Simmons; Gust, D (Arizona State University); Yang, Dongqing (Arizona State University)

    2007-01-01

    The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.

  2. Mechanical and Morphological Properties of Nano Filler Polyester Composites

    Directory of Open Access Journals (Sweden)

    Bonnia Noor Najmi

    2016-01-01

    Full Text Available This research is focusing on mechanical and morphological properties of unsaturated polyester (UP reinforced with two different types of filler which is nano size clay Cloisite 30B (C30B and Carbon Black (CB. Samples were fabricated via hand lay-up and open molding technique. Percentages of Cloisite 30B & Carbon Black (CB used vary from 0, 2, 4, 6, 8 and 10 wt%. The mechanical properties were evaluated by impact, flexural and hardness testing. Result shows that the mechanical strength of C30B was better compare to CB filled composite. The combination of UP with C30B helps to improve the properties due to the high surface area of nanosize filler in the matrix. The result shows that increasing of filler content had increased mechanical properties of composites. Optimum percentage represent good mechanical properties are 4% for both fillers. SEM images showed that rough surface image indicate to agglomeration of filler in the matrix for CB sample and smooth surface image on C30B sample indicate to homogenous blending between filler and matrix polyester. SEM images proved that mechanical properties result indicate that C30B polyester composite is a good reinforcement compare to CB polyester composite.

  3. Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer in Fibrous Organic Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Rambausek Lina

    2014-09-01

    Full Text Available The idea of wearable electronics automatically leads to the concept of integrating electronic functions on textile substrates. Since this substrate type implies certain challenges in comparison with their rigid electronic companions, it is of utmost importance to investigate the application of materials for generating the electronic functions on the textile substrate. Only when interaction of materials and textile substrate is fully understood, the electronic function can be generated on the textile without changing the textile’s properties, being flexible or stretchable. This research deals with the optimization of the dielectric layer in a fibrous organic field effect transistor (OFET. A transistor can act as an electrical switch in a circuit. In this work, the polyimide layer was dip-coated on a copper-coated polyester filament. After thoroughly investigating the process conditions, best results with minimal thickness and roughness at full insulation could be achieved at a dip-coating speed of 50 mm/min. The polyimide solution was optimal at 15w% and the choice for the solvent NMP was made. In this paper, details on the pre-treatment methods, choice of solvent and dip-coating speed and their effect on layer morphology and thickness, electrical properties and roughness are reported. Results show that the use of polyimide as a dielectric layer in the architecture of a fibrous OFET is promising. Further research deals with the application of the semiconductor layer within the mentioned architecture, to finally build an OFET on a filament for application in smart textiles.

  4. A photoresponsive Au25 nanocluster protected by azobenzene derivative thiolates

    Science.gov (United States)

    Negishi, Yuichi; Kamimura, Ukyo; Ide, Mao; Hirayama, Michiyo

    2012-06-01

    An Au25 cluster protected by azobenzene derivative thiolates (S-Az) ([Au25(S-Az)18]-) was synthesized with the aim of producing a photoresponsive Au25 cluster. The matrix-assisted laser desorption/ionization mass spectrum of the product revealed that [Au25(S-Az)18]- was synthesized in high purity. Optical absorption spectra of [Au25(S-Az)18]- obtained before and after photoirradiation suggest that the azobenzenes in the ligands of Au25(S-Az)18 isomerize with an efficiency of nearly 100%, both from the trans to cis conformation and from the cis to trans conformation. Furthermore, the redox potential and optical absorption of Au25(S-Az)18 were found to change reversibly due to photoisomerization of azobenzenes.An Au25 cluster protected by azobenzene derivative thiolates (S-Az) ([Au25(S-Az)18]-) was synthesized with the aim of producing a photoresponsive Au25 cluster. The matrix-assisted laser desorption/ionization mass spectrum of the product revealed that [Au25(S-Az)18]- was synthesized in high purity. Optical absorption spectra of [Au25(S-Az)18]- obtained before and after photoirradiation suggest that the azobenzenes in the ligands of Au25(S-Az)18 isomerize with an efficiency of nearly 100%, both from the trans to cis conformation and from the cis to trans conformation. Furthermore, the redox potential and optical absorption of Au25(S-Az)18 were found to change reversibly due to photoisomerization of azobenzenes. Electronic supplementary information (ESI) available: Details of the experimental procedure and characterization of the products. See DOI: 10.1039/c2nr30830d

  5. The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael

    2009-01-01

    Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem...... to be suitable for holographic storage applications. However, they still present several problems, mainly those related with light sensitivity, response time and stability of the stored information. In this article we review the work performed on volume holographic storage using azobenzene containing polymers...

  6. Porphyrin-Azobenzene-Bodipy Triads: Syntheses, Structures, and Photophysical Properties.

    Science.gov (United States)

    Yin, Bangshao; Kim, Taeyeon; Zhou, Mingbo; Huang, Weiming; Kim, Dongho; Song, Jianxin

    2017-05-19

    Cyclic and acyclic azobenzene bridged porphyrin-dipyrrin derivatives were successfully prepared via Suzuki-Miyaura coupling reaction of α,α'-diborylated dipyrromethane with bromoazophenyl porphyrin or reaction of borylated porphyrin with dibromoazophenyl dipyrrin, and the corresponding porphyrin-Bodipy derivatives were obtained by subsequent boron complexation. The cyclic porphyrin-dipyrrin compound 3Ni was confirmed by X-ray diffraction. The low fluorescence quantum yields of azobenzene bridged porphyrin-Bodipy can be ascribed to the presence of the intramolecular charge transfer state.

  7. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  8. Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches.

    Science.gov (United States)

    Javed, Hina; Fatima, Kalsoom; Akhter, Zareen; Nadeem, Muhammad Arif; Siddiq, Muhammad; Iqbal, Azhar

    2016-02-01

    We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH 3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans - cis isomerization. The photo-induced trans - cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.

  9. Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kim, Yuna; Tamaoki, Nobuyuki

    2016-02-01

    In this study, we synthesized asymmetric dimeric chiral molecules as photon-mode chiral switches for reversible tuning of self-assembled helical superstructures. The chiral switches bearing two mesogen units-cholesterol and azobenzene moieties connected through flexible alkylenedioxy bridges-were doped into nematic liquid crystals, resulting in a chiral nematic (cholesteric) phase. Under irradiation with UV light, photoisomerization of the azobenzene units led to unprecedented switching of the cholesteric pitch and helical twisting power (HTP, β), with a higher HTP found in the cis-rich state (bent-form) than in the trans-state (rod-form). We attribute this behavior to the elongated cybotactic smectic clusters disrupting the helical orientation of the molecules in the cholesteric liquid crystals; their reversible decay and reassembly was evidenced upon sequential irradiation with UV and visible light, respectively. In addition to the photoisomerization of the azobenzene units, the odd/even parity of the alkylenedioxy linkers of the dimeric dopants also had a dramatic effect on the transitions of the cybotactic smectic domains. On the basis of the large rotational reorganization of the cholesteric helix and HTP switching (Δβ/βini of up to 50%), we could control the macroscopic rotational motion of microsized glass rods upon irradiating the surface of a cholesteric liquid crystal film featuring a polygonal fingerprint texture using UV and visible light.

  10. Fluorescence Enhancement from Self-Assembled Aggregates II: Factors Influencing Florescence Color from Azobenzene Aggregates

    Science.gov (United States)

    Han, Mina

    2013-09-01

    We have chosen two types of azobenzene derivatives to elucidate the correlation between molecular structure and fluorescence color of light-driven azobenzene-based aggregates. The fluorescence color from azobenzene molecules (1 and 2), adopting a planar structure, was obviously red-shifted from that of the corresponding twisted ortho-alkylated azobenzene 3. The steric hindrance resulting from bulky alkyl groups at the ortho position of the azo linkage was considered to lessen the intermolecular π - π stacking between aromatic rings, leading to the relatively smaller spectral shift in fluorescence from the absorption band of the initial azobenzene solution. The substitution of electron-withdrawing groups into the azobenzene core gave rise to a blue-shift in fluorescence wavelength. That is, the extended π-conjugated system consisting of a planar azobenzene core as well as the electronic properties of the substituents are key factors influencing the fluorescence color from the light-driven azobenzene aggregates. Moreover, we could prepare fluorescent polymer films by mixing fluorescent azobenzene aggregates with polymers. The fluorescence colors from the polymer films were comparable to those from the azobenzene aggregates.

  11. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors.

    Science.gov (United States)

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2012-10-24

    Composite films of pentacene and a series of azobenzene derivatives are prepared and used as the active channel material in top-contact, bottom-gate field-effect transistors. The transistors exhibit high field-effect mobility as well as large I-V hysteresis as a function of the gate bias history. The azobenzene moieties, incorporated either in the form of self-assembled monolayer or discrete multilayer clusters at the dielectric surface, result in electric bistability of the pentacene-based transistor either by photoexcitation or gate biasing. The direction of threshold voltage shifts, size of hysteresis, response time, and retention characteristics all strongly depend on the substituent on the benzene ring. The results show that introducing a monolayer of azobenzene moieties results in formation of charge carrier traps responsible for slower switching between the bistable states and longer retention time. With clusters of azobenzene moieties as the trap sites, the switching is faster but the retention is shorter. Detailed film structure analyses and correlation with the transistor/memory properties of these devices are provided.

  12. Photo-orientation in azobenzene containing polybutadiene based polymer

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Nešpůrek, Stanislav; Zakrevskyy, Y.; Stumpe, J.; Sedláková, Zdeňka; Studenovský, Martin

    2005-01-01

    Roč. 7, č. 3 (2005), s. 1371-1375 ISSN 1454-4164 R&D Projects: GA AV ČR IAA4112401 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene * polybutadien * photo-orientation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  13. A Fast, Visible-Light-Sensitive Azobenzene for Bioorthogonal Ligation

    NARCIS (Netherlands)

    Poloni, Claudia; Szymanski, Wiktor; Hou, Lili; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Azobenzenes have been used as photoresponsive units for the control of numerous biological processes. Primary prerequisites for such applications are site-selective incorporation of photoswitchable units into biomolecules and the possibility of using non-destructive and deep-tissue-penetrating

  14. Direct and Versatile Synthesis of Red-Shifted Azobenzenes

    NARCIS (Netherlands)

    Hansen, Mickel J.; Lerch, Michael M.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    A straightforward synthesis of azobenzenes with bathochromically-shifted absorption bands is presented. It employs an ortho-lithiation of aromatic substrates, followed by a coupling reaction with aryldiazonium salts. The products are obtained with good to excellent yields after simple purification.

  15. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  16. Properties of honeycomb polyester knitted fabrics

    Science.gov (United States)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  17. Thermotropic liquid crystalline polyesters derived from 2-chloro ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 9. Thermotropic liquid crystalline polyesters derived from 2-chloro ... These polyesters exhibited thermotropic liquid crystalline behavior and showed nematic texture except decamethylene spacer. Decamethylene spacer based polyester showed marble ...

  18. Synthesis of unsaturated polyesters for improved interfacial strength in carbon fibre composites

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Skrifvars, M.; Jacobsen, T. K.

    2002-01-01

    Carbon fibres are gaining use as reinforcement in glass fibre/polyester composites for increased stiffness as a hybrid composite. The mechanics and chemistry of the carbon fibre–polyester interface should be addressed to achieve an improvement also in fatigue performance and off-axis strength...... of chemical bonding of the double bonds in the polymer to the functional groups of the carbon fibre surface....

  19. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  20. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Science.gov (United States)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  1. Switching Process Consisting of Three Isomeric States of an Azobenzene Unit.

    Science.gov (United States)

    Adam, Abdulselam; Haberhauer, Gebhard

    2017-07-19

    Azobenzene and its derivatives are among the most commonly used switching units in organic chemistry. The switching process consists of two states, in which the trans isomer has a stretched and the cis isomer a compact form. Here, we have designed a system in which all isomeric states of an azobenzene moiety (trans → cis-(M) → cis-(P)) are passed step by step. The first step involves a change in the distance between the benzene units, which is common for azobenzene derivatives. In the second step an inversion of the helicity (M→P) of the cis azobenzene unit takes place. The third step leads back to the stretched trans isomer. This switching cycle is achieved by coupling the azobenzene unit with two chiral clamps and with a further azobenzene switching unit.

  2. Electrospinning of microbial polyester for cell culture

    International Nuclear Information System (INIS)

    Kwon, Oh Hyeong; Lee, Ik Sang; Ko, Young-Gwang; Meng, Wan; Jung, Kyung-Hye; Kang, Inn-Kyu; Ito, Yoshihiro

    2007-01-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  3. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  4. Mechanism of Macroscopic Motion of Oleate Helical Assemblies : Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives

    OpenAIRE

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-01-01

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in co-operation with azobenzene photoisomerization ca...

  5. The effect of autoclave resterilisation on polyester vascular grafts.

    Science.gov (United States)

    Riepe, G; Whiteley, M S; Wente, A; Rogge, A; Schröder, A; Galland, R B; Imig, H

    1999-11-01

    polyester grafts are expensive, single-use items. Some manufacturers of uncoated, woven grafts include instructions for autoclave resterilisation to be performed at the surgeon's own request. Others warn against such manipulation. Theoretically, the glass transition point of polyester at 70-80 degrees C and the possible acceleration of hydrolysis suggest that autoclave resterilisation at 135 degrees C might be a problem. a DeBakey Soft Woven Dacron Vascular Prosthesis (Bard) and a Woven Double Velour Dacron Graft (Meadox) were autoclave-resterilised 0 to 20 times, having been weighed before and after sterilisation. Tactile testing was performed. Mechanical properties were examined by probe puncture and single-filament testing, the surface was examined by scanning electron microscopy and the degree of hydrolysis by infra-red spectroscopy. tactile testing revealed a change of feeling with increasing cycles of resterilisation. Investigation of weight, textile strength, single-filament strength, electron microscopy of the surface and infra-red spectroscopy showed no change of the material. changes felt are presumably a surface phenomenon, not measurably affecting strength or chemistry of material after autoclave resterilisation. We therefore feel that it is safe to use once-autoclave-resterilised surplus uncoated polyester grafts, provided that sterility is guaranteed. Copyright 1999 Harcourt Publishers Ltd.

  6. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  7. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of saturated polyester and nanocomposites derived from glycolyzed PET waste ... construction industries. PET is widely used in the packaging of beverages and drugs. ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the maximum. 277 ...

  8. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    Science.gov (United States)

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  9. Mechanically induced cis to trans reisomerization of azobenzene

    Science.gov (United States)

    Turansky, Robert; Konopka, Martin; Stich, Ivan; Marx, Dominik

    2007-03-01

    Using density functional techniques we study mechanochemistry of the azobenzene molecule. Azobenzene is an optically switchable molecule. Laser light is normally used to achieve molecular switching between the cis and trans isomers. We use mechanochemistry to achieve the switching. Thiolate-gold bond can used to exert mechanical energy on the molecule bonded between two gold electrodes in static AFM apparatus. Our model consists of two realistic gold electrodes bridged by dithioazobenzene. We find that pulling the transisomer leads just to formation of gold nanowires and mechanical breakage of the electrodes. However, mechanochemistry with modest applied forces leads to cis trans reisomerization via rotation mechanism. Contrary, use of simple constraints instead of realistic gold electrodes, leads to cis trans reisomerization, albeit with significantly larger applied forces and via inversion mechanism. Important experimental and theoretical ramifications of these simulations will be discussed.

  10. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  11. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    Science.gov (United States)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  12. Multiresponsive self-assembled liquid crystals with azobenzene groups.

    Science.gov (United States)

    Xu, Miao; Chen, Liqin; Zhou, Yifeng; Yi, Tao; Li, Fuyou; Huang, Chunhui

    2008-10-15

    An optical and electric field-responsive self-assembled complex containing nitril azobenzene groups and 1,3,5-triazine-2,4-diamine was obtained and characterized. Both the azobenzene precursor and the complex form a liquid-crystalline phase in a certain temperature range. The transition temperature from crystalline phase to liquid-crystalline mesophase was obviously decreased in the complex by the self-assembling. The self-assembled liquid crystals revealed good response to both stimuli of light irradiation and electric field, and the induced molecular orientation could be held even after the removal of the stimuli. The structural and mechanical investigation proved that the formation of hydrogen bonds and assembly-induced molecular dipolar change contributed to the multiresponding action. This kind of self-assembled complex thus has potential applications in imaging and data storage.

  13. Herstellung polarisationsholografischer optischer Elemente durch Laserbelichtung in Azobenzen-Polymeren

    OpenAIRE

    Fratz, Markus

    2010-01-01

    Polarisationshologramme sind optische Elemente, deren Wirkung auf der Beeinflussung des Polarisationszustandes elektromagnetischer Wellen beruht. Eine Möglichkeit der Herstellung von Polarisationshologrammen besteht darin, mit Hilfe kurzwelligen, linear polarisierten Lichts (Wellenlänge kleiner 550 nm) Anisotropie in Azobenzen-Polymeren zu erzeugen. Die erzeugte Anisotropie ist nach der Belichtung makroskopisch als Doppelbrechung beobachtbar. Durch hochaufgelöste räumliche Variation dieser Do...

  14. [New derivatives of azobenzene for the directed modification of proteins].

    Science.gov (United States)

    Khien, Le Tkhi; Shirling, B; Riazanova, A Iu; Zatsepin, T S; Volkov, E M; Kubareva, E A; Velichko, T I; Pingoud, A; Oretskaia, T S

    2009-01-01

    Derivatives of azobenzene which contained a maleimide group in one of the benzene rings (for binding to a protein cysteine residue) and maleimide, hydroxyl, or carboxyl substitutes in another benzene ring were synthesized. The reactivity of these compounds towards a cysteine residue of a protein and their optical properties in a free state and after their attachment to the mutant forms of the SsoII restriction endonuclease were studied.

  15. The Azobenzene Optical Storage Puzzle - Demands on the Polymer Scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, PS

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...... materials, both copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these other scaffolds offer materials that allow long-lasting anisotropy to be laser Light induced....

  16. The azobenzene optical storage puzzle - Demands on the polymer scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...... materials, both copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these other scaffolds offer materials that allow long-lasting anisotropy to be laser Light induced....

  17. Azobenzene-based inhibitors of human carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Leander Simon Runtsch

    2015-07-01

    Full Text Available Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII. Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant Ki. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with Ki = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.

  18. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  19. Isomerization and fluorescence characteristics of sterically hindered azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mina, E-mail: mrhan@echem.titech.ac.j [Flucto-Order Functions Asian Collaboration Team, RIKEN Advanced Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ishikawa, Daisuke [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Muto, Emi [Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050 (Japan); Hara, Masahiko [Flucto-Order Functions Asian Collaboration Team, RIKEN Advanced Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2009-10-15

    We report synthesis and isomerization behaviors of sterically hindered azobenzene derivatives (1 and 2) with decyloxy and hydroxy groups, respectively, and their fluorescence enhancement under UV light irradiation characterized by means of absorption and fluorescence spectroscopy measurements. Upon irradiation of as-prepared solution (1) with UV light (approx200 mJ/cm{sup 2}) a cis-rich photostationary state was reached. Obviously different from 2 showing very fast thermal cis-to-trans isomerization within 2 min, slow cis-to-trans thermal back isomerization of 1 with a long alkyl chain at ambient temperature was observed on the time scale of weeks. In contrast to no striking changes in absorption and fluorescence spectra of compound 2, the azobenzene 1 showed green fluorescence upon prolonged irradiation with UV light (about 3-8 J/cm{sup 2} exposure doses), although both the initial trans-rich and cis-rich states of azobenzene molecules were not fluorescent in solution. The stability of fluorescence efficiency caused by drying and redissolving processes was examined.

  20. Photosensitive microgels containing azobenzene surfactants of different charges.

    Science.gov (United States)

    Schimka, Selina; Lomadze, Nino; Rabe, Maren; Kopyshev, Alexey; Lehmann, Maren; von Klitzing, Regine; Rumyantsev, Artem M; Kramarenko, Elena Yu; Santer, Svetlana

    2016-12-21

    We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans-state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine.

  1. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  2. Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch

    NARCIS (Netherlands)

    Robertus, Jort; Reker, Siebren F.; Pijper, Thomas C.; Deuzeman, Albert; Browne, Wesley R.; Feringa, Ben L.

    2012-01-01

    Here we report a photochemical and kinetic study of the thermal relaxation reaction of a double azobenzene system, in which two azobenzene photochromic units are connected via a phenyl ring. Upon UV irradiation, three thermally unstable isomers are formed. Kinetic studies using arrayed H-1-NMR

  3. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, F3-3(250), Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shinomura, Hisashi [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, F3-3(250), Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-02-15

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.

  4. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    International Nuclear Information System (INIS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-01-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr 4 2− layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: ► PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. ► Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. ► PL property of the present hybrid could also be varied by photoisomerization.

  5. Slower processes of the ultrafast photo-isomerization of an azobenzene observed by IR spectroscopy

    NARCIS (Netherlands)

    Koller, F.O.; Sobotta, C.; Schrader, T.E.; Cordes, T.; Schreier, W.J.; Sieg, A.; Gilch, P.

    2007-01-01

    The photo-induced trans–cis isomerization of the azobenzene derivative 4-nitro-4'-(dimethylamino)azobenzene in polar solution was studied by femtosecond UV/Vis and IR spectroscopy. The UV/Vis experiment reveals two excited state processes; the slower one (1 ps) is the internal conversion to the

  6. Synthesis, characterization, and study of photoinduced optical anisotropy in polyimides containing side azobenzene units.

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Siwy, Mariola; Kawalec, Michal; Sobolewska, Anna; Chamera, Agata; Miniewicz, Andrzej

    2009-07-30

    In this paper, novel processable aromatic polymers with imide rings and attached as side-chain azobenzene units are presented. Polymers differ in the chemical structures of chromophores and polymer backbones. Azopolymers were obtained by a two-step synthetic approach. This includes the preparation of a precursor poly(esterimide) and poly(etherimide) with pendant phenolic hydroxyl groups, followed by the covalent bonding of NLO chromophores onto the polyimide backbone by the Mitsunobu reaction. The degree of functionalization of polymers was estimated by UV-vis spectroscopy. Polymers were characterized and evaluated by FT-IR, (1)H NMR, X-ray, UV-vis, DSC, and TGA methods. The synthesized polymers exhibited glass transition temperatures in the range of 167-228 degrees C, thermal stability with decomposition temperatures in the range of 275-446 degrees C, and excellent solubilities in common organic solvents. The light-induced optical anisotropy was studied in obtained azopolymers with the help of a holographic grating recording technique. Two polarization geometries were applied for the grating inscription s-s and p-p. The influence of the polarization geometry on the diffraction efficiency dynamics and on the depth of the surface modulation was not observed, which is different from results reported in the literature. Surface relief gratings, which appeared after the light exposure, were observed by atomic force microscopy. Additionally, the optical anisotropy in poly(esterimide)s was investigated by photoinduced birefringence measurements. For the first time, in polyimide with covalently bonded azobenzene derivatives, the high photoinduced birefringence (Delta n = 0.01) was measured.

  7. Probing highly efficient photoisomerization of a bridged azobenzene by a combination of CASPT2//CASSCF calculation with semiclassical dynamics simulation.

    Science.gov (United States)

    Liu, Lihong; Yuan, Shuai; Fang, Wei-Hai; Zhang, Yong

    2011-09-08

    Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ∼30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.

  8. Synthesis of Bifunctional Azobenzene Glycoconjugates for Cysteine-Based Photosensitive Cross-Linking with Bioactive Peptides.

    Science.gov (United States)

    Müller, Anne; Kobarg, Hauke; Chandrasekaran, Vijayanand; Gronow, Joana; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2015-09-21

    Azobenzene linker molecules can be utilized to control peptide/protein function when they are ligated to appropriately spaced amino acid side chains of the peptide. This is because the photochemical E/Z isomerization of the azobenzene N=N double bond allows to switch peptide conformation between folded and unfolded. In this context, we have introduced carbohydrate-functionalized azobenzene derivatives in order to advance the biocompatible properties of azobenzene peptide linkers. Chloroacetamide-functionalized and O-allylated carbohydrate derivatives were synthesized and conjugated with azobenzene to achieve new bifunctional cross-linkers, in order to allow ligation to cysteine side chains by nucleophilic substitution or thiol-ene reaction, respectively. The photochromic properties of the new linker glycoconjugates were determined and first ligation reactions performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  10. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  11. Fiber Reinforced Polyester Resins Polymerized by Microwave Source

    Science.gov (United States)

    Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.

    2007-12-01

    Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.

  12. Using scanning near-field microscopy to study photo-induced mass motions in azobenzene containing thin films

    Science.gov (United States)

    Vu, A. D.; Fabbri, F.; Desboeufs, N.; Boilot, J.-P.; Gacoin, T.; Lahlil, K.; Lassailly, Y.; Martinelli, L.; Peretti, J.

    2014-10-01

    Scanning near-field optical microscopy (SNOM) is used to study the photo-induced deformation of layered structures containing azobenzene derivatives. This approach is particularly relevant since it allows detecting in real-time, with the same probe the surface topography and the optical field distribution at the nanoscale. The correlation between the local light pattern and the ongoing photo-induced deformation in azobenzene-containing thin films is directly evidenced for different light polarization configurations. This unveils several fundamental photodeformation mechanisms, depending not only on the light field properties, but also on the nature of the material. Controlling the projected electromagnetic field distribution allows inscription of various patterns with a resolution at the diffraction limit, i.e. of a few hundreds of nm. Surface relief patterns with characteristic sizes beyond the diffraction limit can also be produced by using the nearfield probe to locally control the photo-mechanical process. Finally, the photo-mechanical properties of azo-materials are exploited to optically patterned metal/dielectric hybrid structures. Gratings are inscribed this way on thin gold films. The characteristic features (enhancement and localization) of the surface plasmons supported by these noble metal structures are studied by near-field optical microscopy.

  13. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  14. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    Science.gov (United States)

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  16. Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows.

    Science.gov (United States)

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2013-10-09

    Gold nanoparticles (Au-NPs) with surfaces covered with a self-assembled monolayer of azobenzene derivatives were prepared at the interface of dielectric insulator SiO2 and pentacene thin film. Transistors constructed with these composite channel materials exhibited electric bistability upon different gate biases, with the monolayer serving as a barrier layer, a work function modulator, as well as additional charge trapping sites at the Au-NPs/semiconductor interface at the same time. In comparison with simple alkanethiol monolayer-covered Au-NPs, the CH3-substituted azobenzene-functionalized Au-NPs result in a transistor memory device with about 70% more charges trapped, much faster response time as well as higher retention time. Besides, depending on the substituent on the azobenzene moieties (CH3, H, or CF3) and the tethering alkyl chain length, the speed at which the carriers are trapped (affecting switching response) and the stability of the carriers that are trapped (affecting memory retention) can be modulated to improve the device performance. The structural characterization and electronic characteristics of these devices will be detailed.

  17. Structure dependence of photochromism and thermochromism of azobenzene-functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Two novel azobenzene-functionalized polythiophenes, poly[4-((4-(phenylazophenoxybutyl-3-thienylacetate] (P4 and the copolymer of 3-hexylthiophene and 4-((4-(phenylazophenoxybutyl-3-thienylacetate (COP64 have been synthesized. The structure dependence of photoluminescence features and thermochromic behaviors of both azobenzene-functionalized polymers was investigated. The results show that polymer structure has a strong influence on the conformation and optical properties of the resulting polythiophene derivatives. The photochemical control of photoluminescence property was achieved with homopolymer P4 using photoactive azobenzene side chains.

  18. Synthetic polyester from algae oil.

    Science.gov (United States)

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nonlinear optical properties of chiral polyesters: a joint experimental and theoretical study

    Science.gov (United States)

    Biju, Philip; Sreekumar, K.

    2003-10-01

    A series of polyesters containing donor-acceptor π-conjugated polar segments (4,4'-azobenzene dicarbonyl chloride) and chiral building units [L(+)-diethyl tartrate] in the main chain were synthesized and characterized by spectroscopic (IR, UV-Vis, 1H NMR, 13C NMR), thermal (TG/DTG, DSC), and optical (refractive index, optical rotation techniques). Chiral order was induced with a preferred helical sense to attain noncentrosymmetric ordering of dipoles (polar order) in macroscopic dimensions by chemical synthesis (chemical poling). A comprehensive attempt has been made to correlate the polar order of the polymer chains with the chiral order arising out of a preferred helical sense of the chains. This has been achieved by adopting four different theoretical models and comparing the results with the experimentally observed values of the second order polarizability tensor β. The models used are (1) Logarithmic Law of Mixing (LLM), (2) the Extended Boundary Condition Method (EBCM), (3) The Random Field Ising Model (RFIM) and (4) Semiempirical Computational Model (SCM). The results of the theoretical predictions are compared with the experimentally determined values of β.

  20. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35

    OpenAIRE

    Akutsu, Yukie; Nakajima-Kambe, Toshiaki; Nomura, Nobuhiko; Nakahara, Tadaatsu

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR este...

  1. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol

    International Nuclear Information System (INIS)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M.; Carvalho, R.F.

    2010-01-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  2. Corrosion Behavior of Primid Solidified Polyester Powder Coating in Marine Environment

    Directory of Open Access Journals (Sweden)

    ZHOU He-rong

    2017-04-01

    Full Text Available The corrosion behavior of primid-curing solidified polyester powder coating defects in marine environment was investigated by CASS test, immersion test, electrochemical impedance spectroscopy (EIS and scanning Kelvin probe (SKP. The results show that the primid-curing polyester powder coating has a small amount of blisters along the scratch edge, the maximu single side corrosion width is less than 0.5mm, and the surface adhesion is 0 after 240 hours' CASS test. The EIS map in 0.6mol/L NaCl solution exhibits that the corrosion rate of aluminu alloy is decreased with increasing immersion time and gradually stable. The scanning Kelvin spectrum reveals that the corrosion of the metal under the coating of the polyester powder is extended from scratch to the coating, the anode and the cathode are alternately changed, which leads to the expansion of the corrosion area.

  3. Synthesis and Properties of 2'-Deoxyuridine Analogues Bearing Various Azobenzene Derivatives at the C5 Position

    Directory of Open Access Journals (Sweden)

    Shohei Mori

    2015-03-01

    Full Text Available Nucleic acids that change their properties upon photo-irradiation could be powerful materials for molecular sensing with high spatiotemporal resolution. Recently, we reported a photo-isomeric nucleoside bearing azobenzene at the C5 position of 2'-deoxyuridine (dUAz, whose hybridization ability could be reversibly controlled by the appropriate wavelength of light. In this paper, we synthesized and evaluated dUAz analogues that have various para-substitutions on the azobenzene moiety. Spectroscopic measurements and HPLC analyses revealed that the para-substitutions of the azobenzene moiety strongly affect the photo-isomerization ability and thermal stability of the cis-form. The results suggest that proper substitution of the azobenzene moiety can improve the properties of dUAz as a light-responsive nucleic acid probe.

  4. Synthesis and photoisomerization of fullerene- and oligo(phenylene ethynylene)-azobenzene derivatives.

    Science.gov (United States)

    Shirai, Yasuhiro; Sasaki, Takashi; Guerrero, Jason M; Yu, Byung-Chan; Hodge, Phillip; Tour, James M

    2008-01-01

    The presence of fullerenes and oligo(phenylene ethynylene)s (OPEs) in azobenzene derivatives have a large effect on the photoisomerization behavior of the molecules. Fullerenes reduce the photoisomerization yield for cis isomers, and the OPEs, when directly attached to the azobenzenes, have a similar yet smaller effect when compared with the fullerenes. While these effects have not been previously considered for fullerene--and OPE-azobenzene derivatives, they were clearly detected in our work using NMR and UV-vis spectroscopy methods. The intramolecular electronic energy transfer between the fullerene and azobenzene moiety was examined in two cases in which separation of the two functional groups was small, as in 1, or large, as in 2. Almost no photoisomerization was observed for 1, while significant photoisomerization was observed for 2, apparently due to the effective isolation and blocking of electronic communication between the two functional groups.

  5. Precise Actuation of Bilayer Photomechanical Films Coated with Molecular Azobenzene Chromophores.

    Science.gov (United States)

    Liu, Ziyi; Tang, Rong; Xu, Dandan; Liu, Jian; Yu, Haifeng

    2015-06-01

    Bilayer photomechanical films are fabricated by depositing one layer of molecular azobenzene chromophores onto flexible low-density polyethylene substrates. The photoinduced bending and unbending behavior of five azobenzene derivatives including azobenzene, 4-hydroxy-azobenzene, 4-((4-hydroxyphenyl)diazenyl)bezoitrile, 4-((4-methoxyph-enyl)diazenyl)phenol, and 4-(phenyldiazenyl)phenol is systematically studied by considering the incident light intensity and the thickness of the coated chromophore layers. Precise control of photoinduced curling of the bilayer film is successfully achieved upon irradiation with two beams of UV light, and the curled films can be recovered by thermal relaxation in the dark. The easily fabricated bilayer films show fast photomechanical response, strong photoinduced stress, and stability similar to crosslinked polymeric films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Science.gov (United States)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  7. Synthesis and Properties of 2'-Deoxyuridine Analogues Bearing Various Azobenzene Derivatives at the C5 Position

    OpenAIRE

    Mori, Shohei; Morihiro, Kunihiko; Kasahara, Yuuya; Tsunoda, Shin-ichi; Obika, Satoshi

    2015-01-01

    Nucleic acids that change their properties upon photo-irradiation could be powerful materials for molecular sensing with high spatiotemporal resolution. Recently, we reported a photo-isomeric nucleoside bearing azobenzene at the C5 position of 2'-deoxyuridine (dUAz), whose hybridization ability could be reversibly controlled by the appropriate wavelength of light. In this paper, we synthesized and evaluated dUAz analogues that have various para-substitutions on the azobenzene moiety. Spectro...

  8. Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives.

    Science.gov (United States)

    Jiang, Hao; Chen, Xin; Pan, Xiujuan; Zou, Gang; Zhang, Qijin

    2012-05-14

    Herein, we report a novel model that combines supramolecular chemistry and the LB technique for the chirality regulation of the PDA films. The helical packing of PCDA molecules and the chiroptical properties of the resulting PDA LB films can be easily modulated by different azobenzene derivatives. Moreover, the effect of the photo-isomerization of azobenzene chromophores on the helical formation of PCDA assemblies is investigated in detail. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. (Citric acid–co–polycaprolactone triol) polyester

    Science.gov (United States)

    Thomas, Lynda V.; Nair, Prabha D.

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. PMID:23507730

  10. [Polypropylene-polyester prostheses. Experimental studies].

    Science.gov (United States)

    Staniszewska, J

    1980-01-01

    Polypropylene-polyester prostheses invented by the Research and Development Center of the Textile Industry in łódź are composed of two knitted polyester layers with perpendicular columns arrangement laminated by polypropylene. The prostheses were implanted in 10 pigs into the sternum and shoulder blade, the abdominal wall and peritoneal cavity. The autopsies of the animals were made 90 to 180 days after the operation. Both in bone and soft tissues, the prostheses healed up without local or general complications. The results obtained in surgical post-operative, macroscopic and microscopic examinations prove that the polypropylene-polyester prostheses fulfill the basic conditions for biomaterials. The different moulders of these materials may be used as temporary or permanent implants.

  11. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  12. Liants Polyethers et Polyesters dans les Propergols Composites (Polyether and Polyester binders in Composite Propellants),

    Science.gov (United States)

    1977-03-01

    ticul6 avec los 6poxydes et los sels do chrome pour former un 61astomare. Une 16g~re modification do cc systame est obtenue par r6action du R45M avec um...une amilioration de l’allongement sans modification do 1𔄀nergic du liant (Tableau XI). 4.4.2 Propergols polyesters a partir de R4SM/ACIID Les propri...qu’aprbs 56 jours de vieillissement . 8. L’effet d’un polyester d’aziridine (PEA) employ6 a la place du polyester d’amine (N8C) am~liore tr~s peu les

  13. Binary Supramolecular Gel of Achiral Azobenzene with a Chaperone Gelator: Chirality Transfer, Tuned Morphology, and Chiroptical Property.

    Science.gov (United States)

    Ji, Lukang; Ouyang, Guanghui; Liu, Minghua

    2017-10-31

    Binary supramolecular gels based on achiral azobenzene derivatives and a chiral chaperone gelator, long-alkyl-chain-substituted L-Histidine (abbreviated as LHC18) that could assist many nongelling acids in forming gels, were investigated in order to fabricate the chiroptical gel materials in a simple way. It was found that although the carboxylic acid-terminated achiral azobenzene derivatives could not form gels in any solvents, when mixed with LHC18 they formed the co-gels and self-assembled into various morphologies ranging from nanotubes and loose nanotubes to nanosheets, depending on the substituent groups on the azobenzene moiety. The ether linkage and the number of carboxylic acid groups attached to the azobenzene moiety played important roles. Upon gel formation, the localized molecular chirality in LHC18 could be transferred to the azobenzene moiety. Combined with the trans-cis isomerization of the azobenzene, optically and chiroptically reversible gels were generated. It was found that the gel based on azobenzene with two carboxylic acid groups and ether linkages showed clear optical reversibility but less chiroptical reversibility, whereas the gel based on azobenzene with one carboxylic acid and an ether linkage showed both optical and chiroptical reversibility. Thus, new insights into the relationship among the molecular structures of the azobenzene, self-assembled nanostructures in the gel and the optical and chiroptical reversibility were disclosed.

  14. Holographic recording in thiophene-based polyester

    DEFF Research Database (Denmark)

    Matharu, Avtar Singh; Chambers-Asman, David; Jeeva, Shehzad

    2008-01-01

    The synthesis and optical data storage properties of a side-chain thiophene-phenyl azopolyester ThPhAzoP.ol is reported. The polyester is derived from diphenyl tetradecanedioate and a thiophenebased liquid crystalline diol which exhibits a short-lived enantiotropic SmA phase (Cryst 177.7 SmA 180.......4 I). The polyester ThPhAzoPol exhibits amorphous (Tg, 78.6 DC), crystalline and liquid crystalline character as evidenced by differential scanning calorimetry and thermal polarising microscopy. A grainy texture, which is thermally reversible, with increasing birefringence on cooling from...

  15. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  16. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    Science.gov (United States)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  17. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  18. Small azobenzene derivatives active against bacteria and fungi.

    Science.gov (United States)

    Piotto, Stefano; Concilio, Simona; Sessa, Lucia; Porta, Amalia; Calabrese, Elena Concetta; Zanfardino, Anna; Varcamonti, Mario; Iannelli, Pio

    2013-10-01

    ATP synthase and protein kinase (PKs) are prime targets for drug discovery in a variety of diseases. It is well known that numerous stilbenes are capable to interact and inhibit ATP synthase and PKs. This work focuses on a series of azobenzene based molecules having high structural similarity with antimicrobial stilbenes. An investigation was carried out analyzing the potential toxicity of a large set of molecules by means of computational analysis. A small selection of potential low toxic molecules have been therefore synthesized, characterized and finally microbiologically tested. The synthesized compounds show potent bactericidal activity against Gram+ and a fungus, and are capable of inhibiting biofilm formation. Finally, the compounds demonstrated a thermal stability that makes them potential candidates for incorporation in polymer matrix for application as biomedical devices and food packaging. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Tracking of azobenzene isomerization by X-ray emission spectroscopy.

    Science.gov (United States)

    Ebadi, H

    2014-09-11

    Cis-trans isomerizations are among the fundamental processes in photochemistry. In azobenzene or its derivatives this dynamics is, due to its reversibility, one of the reactions widely used in photostimulation of molecular motors or in molecular electronics. Though intensively investigated in the optical regime, no detailed study exists in the X-ray regime so far. Because the X-ray emission spectroscopy echoes the electronic structure sensitive to the geometry, this theoretical report based on the density functional theory and its time-dependent version presents different nitrogen K-edge X-ray emission spectra for cis and trans isomers with close interrelation to their electron configuration. Considering the spectrum along the isomerization path, these structural signatures can be utilized to probe the isomerization dynamics in the excited molecule. The scheme can further be generalized to the element specific photoreactions.

  20. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-24

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  1. Azobenzene-based supramolecular polymers for processing MWCNTs.

    Science.gov (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  2. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    aging are: salability, stiffness, flexibility, barrier properties, heat resistance and transparency, but it is well known ..... polyester and thus decreasing the acid value. The acid values are the maximum and minimum .... reaction, the hydroxyl value decreases due to the consump- tion of oligomers and EG by an acid. The extent of ...

  3. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Saturated polyester resin, derived from the glycolysis of polyethyleneterephthalate (PET) was examined as an effective way for PET recycling. The glycolyzed PET (GPET) was reacted with the mixture of phthalic anhydride and ethylene glycol (EG) with varied compositions and their reaction kinetic were studied. During ...

  4. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  5. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  6. Toward efficient photomodulation of conjugated polymer emission: optimizing differential energy transfer in azobenzene-substituted PPV derivatives.

    Science.gov (United States)

    Grimes, Amy F; Call, Scott E; Vicente, Diego A; English, Douglas S; Harbron, Elizabeth J

    2006-10-05

    We present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives. To optimize the efficiency of photoinduced intensity modulation, it is important to understand the molecular nature of quenching by both trans- and cis-azobenzene side chains. Here we investigate the photophysical origins of quenching by the two isomers using steady-state and time-resolved fluorescence spectroscopy. We present results from the azobenzene-modified PPV derivative poly(2-methoxy-5-((10-(4-(phenylazo)phenoxy)decyl)oxy)-1,4-phenylenevinylene) (MPA-10-PPV) and two new related polymers, a copolymer lacking half of the azobenzene side chains and an analogue of MPA-10-PPV with a tert-butyl-substituted azobenzene. These studies reveal that steric interactions influence the extent of PPV emission quenching by trans-azobenzene but do not affect the efficient quenching by cis-azobenzene. The difference in dynamic quenching efficiencies between trans- and cis-azobenzene isomers is consistent with fluorescence resonance energy transfer. These results show that it is possible to control the efficiency of photoswitchable fluorescence modulation through specific structural variations designed to encourage or block quenching by trans-azobenzene. This is a promising approach to providing useful general guidelines for designing photomodulated PPV derivatives.

  7. Electrochemical modification of gold electrodes with azobenzene derivatives by diazonium reduction.

    Science.gov (United States)

    Kibena, Elo; Marandi, Margus; Mäeorg, Uno; Venarusso, Luna B; Maia, Gilberto; Matisen, Leonard; Kasikov, Aarne; Sammelselg, Väino; Tammeveski, Kaido

    2013-04-02

    An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X-ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi-reversible voltammogram of the Fe(CN)6 (3-/4-) redox couple on bare Au and a sigmoidal shape for the GBC- and FBK-modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)6 (3-/4-) response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)6 (3-/4-) redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge-transfer rates to the Fe(CN)6 (3-) probe for the GBC- and FBK-modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermodynamics and mesoscopic organisation in Langmuir monolayers of an azobenzene derivative.

    Science.gov (United States)

    Ignés-Mullol, J

    2010-12-15

    We have carried out the analysis of liquid crystalline Langmuir monolayers at the air-water interface composed of the amphiphilic azobenzene derivative 8Az5COOH. By varying the temperature and the isomeric (trans-cis) composition, the monolayer behaviour has been studied in comparison with a shorter homologue, 8Az3COOH, by measuring the surface pressure-area isotherms along with Brewster angle microscopy (BAM). Our data with the pure trans isomer enable a posterior thermodynamic analysis, which was not feasible with the shorter homologue. For the mixed trans-cis monolayers, BAM observations reveal a phase segregation with trans enriched domains surrounded by a cis enriched matrix. Line tension between the two phases is lower than in the shorter homologue. The organisation of the rodlike molecules inside the trans domains results in highly symmetric textures that make the quantitative analysis of the BAM images possible, and a better understanding of the microscopic structure of the monolayer can be achieved. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Effect of silicone finishes on the burning behavior of polyester

    Science.gov (United States)

    Boyon, Julien Xavier Eric

    Polyester fibers are widely used as filling in home applications such as pillows or comforters. Silicone finishes can be used to reduce friction between fibers during processing or as softeners to impart a pleasant down like hand on the fibers. However, it has been reported that these added silicone-based finishes may have a negative effect on the burning behavior of polyester. This research examined the possible mechanisms that can modify the response of polyester fibers when subjected to a flame source. In this study, a spunbond needled polyester nonwoven substrate was treated with different commercial silicone-based finishes. A vertical flame test was used to compare the effect of silicone finishes on the burning behavior of polyester to the inherent burning behavior of untreated polyester. Thermogravimetric analyses (TGA) were performed on spunbond polyester fabric samples to investigate the influence of silicone finishes on the thermal degradation of polyester in air. Residues from TGA were examined using Scanning Electron Microscopy coupled with elemental analysis. Vertical flammability testing showed that even at a low level, the application of silicone-based finishes on a polyester substrate resulted in a dramatic increase of the flame propagation by preventing its inherent response to heat. Thermograms suggested that the silicone finishes had little or no effect on the thermal degradation of polyester substrates.

  10. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  11. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.

    Science.gov (United States)

    Zumstein, Michael Thomas; Rechsteiner, Daniela; Roduner, Nicolas; Perz, Veronika; Ribitsch, Doris; Guebitz, Georg M; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2017-07-05

    Biodegradable polyesters have a large potential to replace persistent polymers in numerous applications and to thereby reduce the accumulation of plastics in the environment. Ester hydrolysis by extracellular carboxylesterases is considered the rate-limiting step in polyester biodegradation. In this work, we systematically investigated the effects of polyester and carboxylesterase structure on the hydrolysis of nanometer-thin polyester films using a quartz-crystal microbalance with dissipation monitoring. Hydrolyzability increased with increasing polyester-chain flexibility as evidenced from differences in the hydrolysis rates and extents of aliphatic polyesters varying in the length of their dicarboxylic acid unit and of poly(butylene adipate-co-terephthalate) (PBAT) polyesters varying in their terephthalate-to-adipate ratio by Rhizopus oryzae lipase and Fusarium solani cutinase. Nanoscale nonuniformities in the PBAT films affected enzymatic hydrolysis and were likely caused by domains with elevated terephthalate contents that impaired enzymatic hydrolysis. Yet, the cutinase completely hydrolyzed all PBAT films, including films with a terephthalate-to-adipate molar ratio of one, under environmentally relevant conditions (pH 6, 20 °C). A comparative analysis of the hydrolysis of two model polyesters by eight different carboxylesterases revealed increasing hydrolysis with increasing accessibility of the enzyme active site. Therefore, this work highlights the importance of both polyester and carboxylesterase structure to enzymatic polyester hydrolysis.

  12. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  13. Studies on Wicking Behaviour of Polyester Fabric

    Directory of Open Access Journals (Sweden)

    Arobindo Chatterjee

    2014-01-01

    Full Text Available This paper aims to investigate vertical wicking properties of polyester fabric based on change in sample direction and change in tension. Also experimental results are compared with theoretical results. Polyester fabric made out of spun yarn with four types of variation in pick density was used. Theoretical values of vertical wicking were calculated by using Lucas-Washburn equation and experimental results were recorded using strip test method. Maximum height reached experimentally in both warp way and weft way is more than that of the theoretical values. The maximum height attained by fabric experimentally in weft is more as compared to warp way. Vertical wicking increases with increase in tension. This paper is focused on wicking which plays a vital role in determining comfort and moisture transport behavior of fabric.

  14. Bio-based polyesters from cyclic monomers derived from carbohydrates

    OpenAIRE

    Lavilla Aguilar, Cristina

    2013-01-01

    Premi extraordinai de doctorat 2013-2014 Polyesters are extremely versatile polymers which can be used in a wide variety of applications ranging from high performance materials to recyclable and degradable polymers. The preparation of polyesters from renewable feedstock is currently receiving increasing attention in both industrial and academic research. This Thesis is specifically addressed to the development of aliphatic and aromatic polyesters with enhanced properties made from carbohyd...

  15. Komposit Hibrid Polyester Berpenguat Serbuk Batang Dan Serat Sabut Kelapa

    OpenAIRE

    Lumintang, Romels C. A; Soenoko, Rudy; Wahyudi, Slamet

    2011-01-01

    Sawdust coconut trunks of palm trees and fiber coconut coir are two waste materials from the processing of coconuts and coconut tree trunks sawmill waste are plentiful materials can be utilized for producing composites using polyester resins. Both each properties materials as follow polyester resin: liquid in the open air conditions, sawdust coconut and coconut coir fiber properties is lightweight and fragile nature of the polyester adhesive used as a binder (binder) between fiber coconut coi...

  16. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    Science.gov (United States)

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light.

  17. Synthesis and Light Induced Characteristics of Siloxane Substituted Azobenzene: An Application for Optical Storage Device

    Directory of Open Access Journals (Sweden)

    A. R. Yuvaraj

    2016-01-01

    Full Text Available The light induced behaviour of siloxane substituted azobenzene compounds in the presence of alkylene spacers is reported for the first time. Firstly, these photosensitive compounds were synthesized and elucidated the molecular structure by spectral analysis such as NMR, FTIR, and UV/Vis. Photoisomerization effect was evaluated in solution and also in nematic phase. The photosaturation occurred exactly at 29 seconds, whereas thermal back relaxation was observed ranging from 19.8 to 23.8 hours. Long duration of the thermal back relaxation is due to the presence of sterically hindered siloxane group substituted to the azobenzene molecules. Decrease in the duration of cis-trans isomerization was found when the number of alkylene spacers was increased. These siloxane based azobenzene derivatives are useful for the fabrication of optical storage device and molecular switches.

  18. Effects of high pressure on azobenzene and hydrazobenzene probed by Raman spectroscopy.

    Science.gov (United States)

    Dong, Zhaohui; Seemann, Natashia M; Lu, Ning; Song, Yang

    2011-12-22

    In this study, two hydrazine derivatives, azobenzene and hydrazobenzene, were compressed in a diamond anvil cell at room temperature up to 28 GPa followed by decompression. In situ Raman spectroscopy was employed to monitor the pressure-induced structural evolutions. Azobenzene was found to undergo a phase transition at ~10 GPa. Further compression to 18 GPa resulted in an irreversible breakdown of the molecular structure. Although hydrazobenzene exhibited a structural transition at a similar pressure of 10 GPa, it was found to sustain a compression pressure as high as 28 GPa without chemical reactions. The transition sequence of hydrazobenzene upon compression and decompression was thus entirely reversible in the pressure region studied, in strong contrast to that of azobenzene. The high-pressure structures of these two molecules were examined based on the spectroscopic data, and their drastically different high-pressure behaviors were analyzed and interpreted with the aid of ab initio molecular orbital calculations.

  19. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh; Löf, David; Hvilsted, Søren

    2016-01-01

    A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA....... This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV...

  20. Photoresponsive Amphiphilic Macrocycles Containing Main-Chain Azobenzene Polymers.

    Science.gov (United States)

    Sun, Yadong; Wang, Zhao; Li, Yiwen; Zhang, Zhengbiao; Zhang, Wei; Pan, Xiangqiang; Zhou, Nianchen; Zhu, Xiulin

    2015-07-01

    Herein, the first example of photosensitive cyclic amphiphilic homopolymers consisting of multiple biphenyl azobenzene chromophores in the cyclic main chain tethered with hydrophilic tetraethylene glycol monomethyl ether units is presented. The synthetic approach involves sequentially performed thermal catalyzed "click" step-growth polymerization in bulk, and Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) intramolecular cyclization from α-alkyne/ω-azide linear precursors. It is observed that such amphiphilic macrocycles exhibit increased glass transition temperatures (Tg ), slightly faster trans-cis-trans photoisomerization, and enhanced fluorescence emission intensity compared with the corresponding linear polymers. In addition, the cyclic amphiphilic homopolymers self-assemble into spherical nanoparticles with smaller sizes which possess slower photoresponsive behaviors in a tetrahydrofuran/water mixture compared with those of the linear ones. All these interesting observations suggest that the cyclic topology has a great influence on the physical properties and self-assembly behavior of these photoresponsive amphiphilic macrocycles in general. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Ochrobactrum intermedium ANKI, a nitrogen-fixing bacterium able to decolorize azobenzene].

    Science.gov (United States)

    Vakkerov-Kouzova, N D

    2007-01-01

    Morphological and biochemical properties of the nitrogen-fixing strain Ochrobactrum intermedium ANKI, intensely growing on media with azo compounds, and its resistance to various common xenobiotics were investigated. The kinetics of azobenzene conversion by O. intermedium ANKI was studied. Under cometabolism conditions, up to 40 mg of azobenzene per liter of medium were decolorized within one week. It was shown that the strain possessed molybdenum-dependent nitrogenase activity, and its nitrogenase system was sensitive to oxygen and fixed nitrogen in the medium.

  2. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    Science.gov (United States)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  3. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors.

    Science.gov (United States)

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z→E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host π-system, resulting in increased repulsion between the lone electron pairs in the N=N bond.

  4. Experimental and theoretical investigations of spectroscopic properties of azobenzene derivatives in solution.

    Science.gov (United States)

    Zaleśny, Robert; Matczyszyn, Katarzyna; Kaczmarek, Anna; Bartkowiak, Wojciech; Cysewski, Piotr

    2007-07-01

    The UV-Vis spectra of series of polymethylmethacrylate (PMMA) copolymers with attached trans-azobenzene derivatives were measured in 1,1,2-trichloroethane. In order to gain some insight into the recorded spectra, the quantum chemical calculations were performed for the substituted azobenzenes using both configuration interaction with single excitations method (CIS) as well as density functional theory (DFT) with B3LYP and PBE0 functionals. The calculations were performed in solvent. In particular, we found that the PBE0 excitation energies are in very good agreement with the experimental data.

  5. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  6. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    Science.gov (United States)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  7. Polymeric blends from post-consumer PET and polyester becoming of glycerol and phthalic acid

    International Nuclear Information System (INIS)

    Miranda, C.S.; Brioude, M.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Preparation of physical mixture or polymer blends is a very important method to obtain a final product with excellent balance of properties, where one component can compensate for the poor property of another, and is often a modified low cost compared to development and synthesis of a new polymer. PET has become a major waste of post-consumer plastics and aiming to remedy this problem, this work aims to obtain blends from recycled PET and polyesters derived from glycerol and phthalic acid. The material with higher proportion of PET showed better thermal properties, observed by TGA and DSC, with a similar profile of pure PET. In XRD analysis showed a semicrystalline, while the SEM is a smooth surface on all materials, characteristic of pure polyester. The ratio of 50% its surface showed a probable immiscibility of polymers. (author)

  8. Microfibrillated Lignocellulose Enables the Suspension-Polymerisation of Unsaturated Polyester Resin for Novel Composite Applications

    Directory of Open Access Journals (Sweden)

    Yutao Yan

    2016-07-01

    Full Text Available A new route towards embedding fibrillated cellulose in a non-polar thermoset matrix without any use of organic solvent or chemical surface modification is presented. It is shown that microfibrillated lignocellulose made from cellulose with high residual lignin content is capable of stabilising an emulsion of unsaturated polyester resin in water due to its amphiphilic surface-chemical character. Upon polymerisation of the resin, thermoset microspheres embedded in a microfibrillated cellulose network are formed. The porous network structure persists after conventional drying in an oven, yielding a mechanically stable porous material. In an application experiment, the porous material was milled into a fine powder and added to the polyester matrix of a glass fibre-reinforced composite. This resulted in a significant improvement in fracture toughness of the composite, whereas a reduction of bending strength and stiffness was observed in parallel.

  9. Synthesis and photoisomerization study of new aza-crown macrocyclic tweezer tethered through an azobenzene linker: The first report on supramolecular interaction of azobenzene moiety with C60

    Science.gov (United States)

    Ghanbari, Bahram; Mahdavian, Mahsa; García-Deibe, A. M.

    2017-09-01

    In the present communication, three bimacrocyclic tweezers linked through azobenzene moiety, Ln (n = 1-3) were synthesized in a multistep route and characterized by x-ray crystallography, IR, 1H and 13C NMR, UV-vis spectroscopy as well as CHN microanalysis. UV-visible spectroscopy established that the irradiation of L1 and L3 with UV light promoted the trans to cis isomerization. Irradiating the reaction mixtures with Hg lamp, significant supramolecular interactions between L1 and L3 with C60 were also found in terms of the association constants calculated by UV-visible spectroscopy, denoting on more pronounced interaction with C60 that in the absence of UV light. The molecular structures of L1-L3 calculated by using DFT method suggested a novel unprecedented interaction between the HOMO's of azobenzene moiety on the tweezer instead of the aromatic groups with C60.

  10. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    Science.gov (United States)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  11. Thermotropic liquid crystalline polyesters derived from bis-(4 ...

    Indian Academy of Sciences (India)

    Administrator

    More importantly, all these polyesters exhibited very large mesophase stability. Keywords. Liquid crystalline polyesters; thermotropic; interfacial polycondensation; rigid diol; dicarboxylic acid chloride. 1. Introduction. In the recent past, a branch of polymer chemistry, i.e., synthesis of liquid crystalline polymers (LCPs) has re-.

  12. Thermal, electrical, mechanical and fluidity properties of polyester ...

    Indian Academy of Sciences (India)

    Bariş Şimşek

    2018-04-13

    Apr 13, 2018 ... Design of experiment; electrical resistivity; polyester-reinforced concrete composites; thermal conductivity; product design. 1. Introduction. In recent years, polyesters have been widely used in resin systems to provide extraordinary mechanical [1], corrosion and water resistance properties to composite ...

  13. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Polyester fabric is treated with DCDMS solution by two methods: dipping the fabric directly in DCDMS solution for different intervals and dipping the fabric in DCDMS solution after its exposure into RF plasma chamber for different durations at optimized exposure power conditions. The physical properties of polyester fabric ...

  14. Aromatic Polyester-Polysiloxane Block Copolymers: Multiphase Transparent Damping Materials.

    Science.gov (United States)

    1986-10-02

    45 Direct Esterification............49 Transeterification.............51 Methods Involving Diacid Chlorides . . . . 53 Lactone Polymerization...include plasticizers and interme- diates for polyurethane elastomers, foams, and spandex fibers. Unsaturated polyesters are the most comon polymers...initiators, is 45 thus a vinyl copolymerization between the unsaturated polyester and the solvent monomer. Further details concern- ing unsaturated

  15. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  16. Kinetics of the photochromic reaction in a polymer containing azobenzene groups

    Czech Academy of Sciences Publication Activity Database

    Mancheva, I.; Zhivkov, I.; Nešpůrek, Stanislav

    2005-01-01

    Roč. 7, č. 1 (2005), s. 253-256 ISSN 1454-4164 R&D Projects: GA MŠk 1P04OCD14.30 Grant - others:Bulgarian Ministry of Education and Science(BG) x-1322 Keywords : photochromism * azobenzene * relaxation properties Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.138, year: 2005

  17. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes

    NARCIS (Netherlands)

    Kuiper, JM; Engberts, JBFN

    2004-01-01

    Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the

  18. Photosensitive Cationic Azobenzene Surfactants: Thermodynamics of Hydration and the Complex Formation with Poly(methacrylic acid).

    Science.gov (United States)

    Montagna, Maria; Guskova, Olga

    2018-01-09

    In this computational work, we investigate the photosensitive cationic surfactants with the trimethylammonium or polyamine hydrophilic head and the azobenzene-containing hydrophobic tail. The azobenzene-based molecules are known to undergo a reversible trans-cis-trans isomerization reaction when subjected to UV-visible light irradiation. Combining the density functional theory and the all-atom molecular dynamics simulations, the structural and the hydration properties of the trans- and the cis-isomers and their interaction with the oppositely charged poly(methacrylic acid) in aqueous solution are investigated. We establish and quantify the correlations of the molecular structure and the isomerization state of the surfactants and their hydrophilicity/hydrophobicity and the self-assembling altered by light. For this reason, we compare the hydration free energies of the trans- and the cis-isomers. Moreover, the investigations of the interaction strength between the azobenzene molecules and the polyanion provide additional elucidations of the recent experimental and theoretical studies on the light triggered reversible deformation behavior of the microgels and the polymer brushes loaded with azobenzene surfactants.

  19. Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents (Postprint)

    Science.gov (United States)

    2017-12-06

    5) in acetic acid yielded 6, a protected precursor containing two azobenzene units. Finally, the azoCBODA monomer (7) was obtained by deprotection of...Bunsenges. Phys. Chem. 1980, 84, 680−690. (6) Eisenbach, C. D. Isomerization of aromatic azo chromophores in poly( ethyl acrylate) networks and

  20. Photo-induced deformations in azobenzene-containing side-chain polymers: molecular dynamics study

    Directory of Open Access Journals (Sweden)

    J.Ilnytskyi

    2006-01-01

    Full Text Available We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization. The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azobenzene containing elastomers. During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field.

  1. Submolecular Plasticization Induced by Photons in Azobenzene Materials.

    Science.gov (United States)

    Vapaavuori, Jaana; Laventure, Audrey; Bazuin, C Geraldine; Lebel, Olivier; Pellerin, Christian

    2015-10-28

    We demonstrate experimentally for the first time that the illumination of azobenzene derivatives leads to changes in molecular environment similar to those observed on heating but that are highly heterogeneous at the submolecular scale. This localized photoplasticization, which can be associated with a free volume gradient, helps to understand the puzzling phenomenon of photoinduced macroscopic material flow and photoexpansion upon illumination far below the glass transition temperature (T(g)). The findings stem from the correlation of infrared (IR) spectral band shifts measured upon illumination with those measured at controlled temperatures for two amorphous DR1-functionalized azo derivatives, a polymer, pDR1A, and a molecular glass, gDR1. This new approach reveals that IR spectroscopy can be used as an efficient label-free molecular-scale thermometer that allows the assignment of an effective temperature (T(eff)) to each moiety in these compounds when irradiated. While no band shift is observed upon illumination for the vibrational modes assigned to backbone moieties of pDR1A and gDR1 and a small band shift is found for the spacer moiety, dramatic band shifts are recorded for the azo moiety, corresponding to an increase in T(eff) of up to nearly 200 °C and a molecular environment that is equivalent to thermal heating well above the bulk T(g) of the material. An irradiated azo-containing material thus combines characteristic properties of amorphous materials both below and above its bulk T(g). The direct measurement of T(eff) is a powerful probe of the local environment at the submolecular scale, paving the way toward better rationalization of photoexpansion and the athermal malleability of azo-containing materials upon illumination below their T(g).

  2. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  3. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    Science.gov (United States)

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Threshold collision-induced dissociation and theoretical study of protonated azobenzene

    Science.gov (United States)

    Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.

    2017-10-01

    Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.

  5. Processing parameters optimisation of nonwoven kenaf reinforced acrylic based polyester composites

    Science.gov (United States)

    Salim, M. S.; Rasyid, M. F. Ahmad; Taib, R. Mat; Ishak, Z. A. Mohd

    2017-12-01

    The present work studies the dependence of mechanical properties of kenaf fibre (KF) reinforced acrylic based polyester composites on the processing parameters. Prior to moulding, non-woven kenaf fibre (NWKF) with areal density of 1200 g/m2 was impregnated by acrylic based polyester resin using an impregnation line followed by a post-drying step. The flexural properties of the composites were investigated with respect to changes in impregnation and moulding conditions based on Design of Experiment (DOE) of Response Surface Methodology (RSM). RSM through Central Composite Design (CCD) was applied to develop a model of flexural properties with respect to the combination of processing variables. The mathematical regression models of the flexural properties were derived from the analysis of variance (ANOVA) to determine the model significance. All processing variables in linear terms exhibit significant effect on the flexural strength of the composites. Optimisation of the independent variables to maximise the flexural properties was estimated and verified.

  6. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    International Nuclear Information System (INIS)

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  7. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  8. Evaluation of Polybutylate-Coated Braided Polyester (Ethibond) Sutures for Levator-Advancement Blepharoptosis Repair

    Science.gov (United States)

    Yulish, Michael; Pikkel, Joseph

    2012-01-01

    Purpose. To evaluate the efficacy and safety of polybutylate-coated braided polyester (Ethibond* 5-0) suture for levator aponeurosis suturing to the anterior tarsal surface in involutional blepharoptosis repair surgery. Methods. Ten consecutive patients (16 eyes) with acquired blepharoptosis which resulted from levator aponeurosis dehiscence with good levator function had gone through surgery and were followed up for, at least, one year. Results. There was no significant change between postoperative MRD1 measurements. No serious complications, such as infection of the sutures, inflammation, granuloma formation or ptosis recurrence, were registered. Conclusion. Polybutylate-coated braided polyester (Ethibond* 5-0) suture is a safe and effective material for involutional blepharoptosis repair surgery. PMID:24558592

  9. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35.

    Science.gov (United States)

    Akutsu, Y; Nakajima-Kambe, T; Nomura, N; Nakahara, T

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR esterase was a monomer with a molecular mass of about 62,000 Da. This enzyme, which is a kind of esterase, degraded solid polyester PUR, with diethylene glycol and adipic acid released as the degradation products. The optimum pH for this enzyme was 6.5, and the optimum temperature was 45 degrees C. PUR degradation by the PUR esterase was strongly inhibited by the addition of 0.04% deoxy-BIGCHAP. On the other hand, deoxy-BIGCHAP did not inhibit the activity when p-nitrophenyl acetate, a water-soluble compound, was used as a substrate. These observations indicated that this enzyme degrades PUR in a two-step reaction: hydrophobic adsorption to the PUR surface and hydrolysis of the ester bond of PUR.

  10. Dynamic mechanical and thermal behavior of novel liquid-crystalline polybutadiene-diols with azobenzene groups in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Beneš, Hynek; Valentová, H.; Krakovský, I.; Rabie, F.

    2013-01-01

    Roč. 57, č. 5 (2013), s. 1297-1310 ISSN 0148-6055 Institutional support: RVO:61389013 Keywords : mesophase * azobenzene mesogens * thermal behavior Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.276, year: 2013

  11. Controlled Sol-Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger.

    Science.gov (United States)

    Wang, Caihong; Hashimoto, Kei; Tamate, Ryota; Kokubo, Hisashi; Watanabe, Masayoshi

    2018-01-02

    Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.

    Science.gov (United States)

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-06-13

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self-assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...... with vinylester resin. It is found that the treatment increased the density of oxygen-containing polar functional groups at the composite surfaces, the polar component of the surface energy, and adhesive strength with a vinylester resin. The treatment effect highly depended on the temperatures of the electrodes...

  14. Protoenzymes: the case of hyperbranched polyesters

    Science.gov (United States)

    Mamajanov, Irena; Cody, George D.

    2017-11-01

    Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. Elastic Compositions Based on Polyurethane/ Aliphatic Polyesters

    International Nuclear Information System (INIS)

    Motawie, A.M.; Mazroua, A.M.; Sadek, E.M.; Emam, A.S.; Ramadan, A.M.

    2004-01-01

    Aliphatic polyesters were prepared by melt condensation reaction of a dicarboxylic acid such as adipic and sebacic with different types of diol compounds in 1: 1.1 molar ratio. Ethylene glycol, di-, trio, tetra ethylene glycol and poly( ethylene glycol) with different molecular weights 1000, 4000, 6000 as well as the prepared hydroxy natural rubber were used as diol compounds. Polyurethane, with NCO/OH ratio equal 4, was synthesized from the reaction of toluene diisocyanate with poly(ethylene glycol) 1 000. The prepared polyurethane was mixed with different weight percentages of the prepared aliphatic polyesters. The film samples were tested mechanically, electrically and chemically. The results show that the weight percentage 10% of the added polyadipate or poly sebacate glycols improves flexibility, electrical volume resistivity, dielectric constant and dielectric loss of unmodified rigid polyurethane film sample as well as reduces its swelling by aromatic solvents. All the above mentioned properties improve by increasing the hydrocarbon chain length of the glycol portion in the glycol used and the number of methylene in the aliphatic dicarboxylic acid. Compositions based on hydroxy natural rubber impart better properties than those based on ethylene glycols

  16. Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

    OpenAIRE

    Haiying Guo; Tifeng Jiao; Xihai Shen; Qingrui Zhang; Adan Li; Faming Gao

    2014-01-01

    In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in mol...

  17. Adsorption of proteins from plasma at polyester non-wovens.

    Science.gov (United States)

    Klomp, A J; Engbers, G H; Mol, J; Terlingen, J G; Feijen, J

    1999-07-01

    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma-non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency glow discharge (RFGD) treated poly(ethylene terephthalate) non-woven (NW-PET) and two commercial surface-modified non-wovens were contacted with human plasma. Protein desorption by sodium dodecyl sulphate (SDS) was evaluated by X-ray photoelectron spectroscopy (XPS). The desorbed proteins were characterized by gel electrophoresis and immunoblotting. Compared to the commercial surface-modified non-wovens, unmodified and RFGD-treated NW-PETs adsorbed a relatively high amount of protein. Significantly more protein was removed from the hydrophobic NW-PET by SDS than from the hydrophilic RFGD-treated non-wovens. RFGD treatment of NW-PET reduces the reversibility of protein adsorption. Less albumin and fibrinogen were removed from the RFGD-treated non-wovens than from NW-PET. In addition, a large amount of histidine-rich glycoprotein was removed from RFGD-treated non-wovens, but not from NW-PET. The different behaviour of RFGFD-treated non-wovens towards protein adsorption is probably caused by differences in the chemical reactivity of the non-woven surfaces.

  18. Experimental ultrasonic characterization of polyester-based materials for cultural heritage applications.

    Science.gov (United States)

    Arciniegas, Andres; Martinez, Loic; Briand, Arnaud; Prieto, Sophie; Serfaty, Stéphane; Wilkie-Chancellier, Nicolas

    2017-11-01

    For several years, the Réunion des musées nationaux - Grand-Palais has produced polyester resin reproductions in order to replace marble sculptures that have weakened by outdoor exposure. These objects are made of a complex multilayered polyester composite material including reinforcements to ensure the mechanical strength of the final structure and mineral fillers that allow to imitate the original aesthetics. However, the final structure also weakens because of constant outdoor exposure and ageing. This observation leads today to conduct research related to the structural health monitoring of reproductions for preventive conservation of cultural heritage. This paper presents a nondestructive technique to study the properties of the composite material used to produce reproductions of marble sculptures. Firstly, classical ultrasonic contact measurements were performed to estimate bulk properties and Rayleigh wave velocity. Secondly, experimental Rayleigh wave was measured using contact and laser vibrometry methods. The results show the potential of using ultrasonic surface wave propagation and laser vibrometry method to develop a minimum contact technique to study these polyester-based materials. The maximum relative uncertainty with respect to the expected theoretical Rayleigh wave velocity was close to 12%. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    Science.gov (United States)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  20. Preparation and properties of aromatic polyester/TiO{sub 2} nanocomposites from polyethylene terephthalate

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonardo Moreira dos; Carone, Carlos Leonardo Pandolfo; Einloft, Sandra Mara Oliveira; Ligabue, Rosane Angelica, E-mail: rligabue@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Programa de Graduacao em Engenharia e Tecnologia de Materiais

    2016-01-15

    The development of polyester based materials with enhanced properties as well as the use of post- consumer plastics as raw material has been an increasing market demand. This work aims the synthesis and characterization of aromatic polyesters/titanium dioxide nanocomposites from PET and using TiO{sub 2} (0, 1, 3 and 5% w/w) as filler by in situ polymerization. The results obtained by DSC, XRD and FTIR analyzes evidenced an interaction between the OH groups on the TiO{sub 2} surface with the ester groups of the polymer leading to decrease of the polymer crystallinity and of hydrophilicity. By SEM images was possible to note a homogeneous distribution of the filler into polymer matrix with 1%w/w TiO{sub 2} (average particle size of 199 nm), however for larger amounts of filler (3 and 5% TiO{sub 2}) revealed the aggregates formation. The results showed an improvement of thermal properties and hardness of the nanocomposites containing TiO{sub 2} nanoparticles compared to pristine polyester. (author)

  1. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  2. Thermotropic liquid crystalline polyesters derived from 2-chloro ...

    Indian Academy of Sciences (India)

    NAGESH MANURKAR

    2017-08-24

    -hydroxy benzoyloxy]-. 2-chloro-1,4-benzene (BHBOCB) and aliphatic dicarboxylic acid chlorides by interfacial polycondensation methodology is presented. Synthesised polyesters consist of bis[4-hydroxy ...

  3. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  4. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  5. Amino alcohol-based degradable poly(ester amide) elastomers

    NARCIS (Netherlands)

    C.J. Bettinger (Christopher); J.P. Bruggeman (Joost); J.T. Borenstein (Jeffrey); R.S. Langer (Robert)

    2008-01-01

    textabstractCurrently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited

  6. Reduction of polyester resin shrinkage by means of epoxy resin

    International Nuclear Information System (INIS)

    Pietrzak, M.; Brzostowski, A.

    1981-01-01

    An attempt was made to decrease the shrinkage of unsaturated polyester resin, taking place during radiation-induced curing, by the addition of epoxy resin. In order to combine chemically both resins, the epoxy component was modified with cinnamic and acrylic acids. A composition of 90 parts of polyester resin, 10 parts of epoxy resin modified with cinnamic acid, and 150 parts of a silica filler showed a volume shrinkage of 1.2%. (author)

  7. Light propagation through photoinduced chiral structures in azobenzene-containing polymers

    DEFF Research Database (Denmark)

    Nedelchev, L; Nikolova, L; Todorov, T

    2001-01-01

    We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e(o) of the exc......We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e......(o) of the exciting light. In amorphous azopolymers, light induces a macroscopic chiral structure comprising the whole illuminated region. The pitch depends on the value of e(o): no chirality is induced if e(o) = 1 (circular polarization). In liquid-crystalline azopolymers circularly polarized light induces...... the formation of many microscopic spirals, which makes the material equivalent to the classical optically active media....

  8. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    Science.gov (United States)

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density functional theory calculations on azobenzene derivatives: a comparative study of functional group effect.

    Science.gov (United States)

    Piyanzina, Irina; Minisini, Benoit; Tayurskii, Dmitrii; Bardeau, Jean-François

    2015-02-01

    Density functional theory (DFT) calculations have been used to investigate the structural properties, dipole moments, polarizabilities, Gibbs energies, hardness, electronegativity, HOMO/LUMO energies, and chemical potentials of trans and cis configurations of eight para-substituted azobenzene derivatives. All properties have been obtained using the B3LYP functional and 6-31++G(d,p) basis set. The planar structures have been obtained for all optimized trans configurations. The energy difference between trans and cis configurations for considered derivatives was found to be between 64.2-73.1 kJ/mole. It has been obtained that the p-aminodiazo-benzene (ADAB) has the difference in the dipole moments between trans and cis forms higher than for trans and cis azobenzene.

  10. Collisions induced dissociation and Ab initio study of azobenzene derivatives bond structure and electronic configuration

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    2015-05-01

    Collision induced dissociation (CID) and ab initio calculations were utilized to study a few derivatives of azobenzene molecule and their product ions. High level computational methods along with large basis set size yield values in close agreement with the experimental results. Möller-Plesset and coupled-cluster theory including perturbative triple excitations, CCSD(T), method were performed to obtain a high accuracy estimation of the bond dissociation energy value. The electron affinities have been studied experimentally using the photoelectron spectroscopy method as well as theoretically using ab inito calculations. For the trans-2,2',6,6' tetra-fluoro azobenzene the bond dissociation has been experimentally determined to be 1.88 eV and the vertical detachment energy is 1.78 eV.

  11. Synthesis, Self-Assembly and Photoresponsive Liquid Crystals Based on Azobenzene Derivatives.

    Science.gov (United States)

    Wang, Hongyan; Han, Yi; Yuan, Wei; Wu, Mengjiao; Chen, Yulan

    2018-02-17

    A new class of rod-coil-rod molecules with an azobenzene core were synthesized. They were found to form robust organogels in several kinds of organic solvents. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), FT-IR spectroscopy, UV-vis absorption spectroscopy, 1H NMR, and X-ray diffraction (XRD) revealed that in these organogels, the molecules self-assembled into nanofiber network with an H-type aggregation mode under the joint effect of Pi-Pi stacking, intermolecular hydrogen bonding, and van der Waals forces. Interestingly, the incorporation of the azobenzene mesogene into the rigid core led to photo-isomerizable liquid crystal materials, which exhibited fast responsiveness to light and temperature, along with the trans-cis transition stimulated by UV light and heating. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoorientation of azobenzene side groups in a liquid-crystalline polybutadiene-based polymer

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Zakrevskyy, Y.; Stumpe, J.; Nešpůrek, Stanislav; Sedláková, Zdeňka

    2008-01-01

    Roč. 30, č. 8 (2008), s. 1335-1342 ISSN 0925-3467 R&D Projects: GA AV ČR IAA4112401; GA MŠk OC 138 Grant - others:German Bundesministerium für Bildung und Forschung(DE) CZE 03/016 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene * liquid crystalline polymer * polybutadiene Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.714, year: 2008

  13. Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group.

    Science.gov (United States)

    Mertz, Eric; Beil, James B; Zimmerman, Steven C

    2003-08-21

    [reaction: see text] (Trifluoroacetyl)azobenzene dyes were previously employed as amine reporter groups (chemosensors) in a dendrimer-based monomolecular imprinting system. Kinetic and binding studies with a range of amines and diamines show that the highly selective signaling observed for alkane diamines by these imprinted dendrimers arises from a kinetic effect due to intramolecular general base-catalyzed carbinolamine formation with the dye itself. The relationship between diamine structure and carbinolamine stability and rate of formation is described.

  14. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...... that nitrogen-containing functional groups were uniformly attached after the treatments. The roughness of the GFRP surfaces increased after the plasma treatment, but the ultrasonic irradiation did not enhance surface roughening.......A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...

  15. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics.

    Science.gov (United States)

    Yang, Yu-Ying; Grammel, Markus; Raghavan, Anuradha S; Charron, Guillaume; Hang, Howard C

    2010-11-24

    The advances in bioorthogonal ligation methods have provided new opportunities for proteomic analysis of newly synthesized proteins, posttranslational modifications, and specific enzyme families using azide/alkyne-functionalized chemical reporters and activity-based probes. Efficient enrichment and elution of azide/alkyne-labeled proteins with selectively cleavable affinity tags are essential for protein identification and quantification applications. Here, we report the synthesis and comparative analysis of Na₂S₂O₄-cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. We demonstrated that ortho-hydroxyl substituent is required for efficient azobenzene-bond cleavage and show that these cleavable affinity tags can be used to identify newly synthesized proteins in bacteria targeted by amino acid chemical reporters as well as their sites of modification on endogenously expressed proteins. The azobenzene-based affinity tags are compatible with in-gel, in-solution, and on-bead enrichment strategies and should afford useful tools for diverse bioorthogonal proteomic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Smectites intercalated with azobenzene and aminoazobenzene: Structure changes at nanoscale induced by UV light

    Science.gov (United States)

    Koteja, Anna; Szczerba, Marek; Matusik, Jakub

    2017-12-01

    The photoactive azobenzenes were intercalated into montmorillonite and beidellite in order to obtain a functional material responsive to UV radiation. The smectite modification involved two steps: (1) intercalation with alkylammonium salts, differing in alkyl chain length, and (2) co-intercalation with azobenzene or aminoazobenzene. The structure and chemistry of the obtained materials were thoroughly characterize with the means of XRD, FTIR, DTA/TG, UV-Vis methods and CHN elemental analysis. The mechanisms interpretation was supported with the molecular dynamics simulations. Photoresponse of the obtained materials was monitored through the observation of the basal spacing shifts upon UV radiation. The results proved that both the type of alkylammonium salt and the host mineral influenced heavily the efficiency of subsequent azobenzene intercalation as well as its photoactive behaviour. The evident and regular photoinduced basal spacing shifts were visible when the density of intercalated salts was low. This was achieved in the BId derivatives due to the low layer charge of the mineral. Also the shorter alkyl chain of the co-intercalated salt promoted larger photoresponses.

  17. Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules

    Science.gov (United States)

    Li, Juan; Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Nisic, Filippo; Anh, Tuan Le; Meggendorfer, Felix; Palma, Carlos-Andres; Dragonetti, Claudia; Barth, Johannes V.; Finley, Jonathan J.; Margapoti, Emanuela

    2014-12-01

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS2 placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS2—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS2 layers. When the MoS2 nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ˜3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  18. Synthesis and characterization of dicyclopalladated complexes of azobenzene derivatives by experimental and computational methods.

    Science.gov (United States)

    Babić, Darko; Curić, Manda; Molcanov, Kresimir; Ilc, Gregor; Plavec, Janez

    2008-11-17

    A series of doubly cyclopalladated complexes of azobenzene and its unsymmetrical substituted derivatives, namely, {LPdCl(mu-AZB)LPdCl}, where AZB is azobenzene, 4-methylazobenzene, 4-aminoazobenzene, or 4-(dimethylamino)-4'-nitroazobenzene, while L is N,N-dimethylformamide, dimethylsulfoxide, or pyridine, have been prepared. Their structural and spectroscopic properties were determined by X-ray diffraction analysis as well as by (1)H NMR, IR, UV-vis, and fluorimetric studies. Experimental results were rationalized by quantum chemical calculations. Crystal structures of several complexes have been resolved, and for the first time, it was demonstrated that the cyclopalladation may take place at the azobenzene aromatic ring having the strong electron-withdrawing substituent at the para position. In all cases, the metalated carbon and N,N-dimethylformamide or dimethylsulfoxide ligands are mutually trans, whereas the pyridine ligands are in the cis arrangement. cis/trans isomerism in the isolated compounds is explained by comparing the calculated energies of isomeric structures. All of the complexes absorb strongly in the visible region, and according to time-dependent density functional theory calculations, most of the absorptions can be attributed to intraligand pi --> pi* or metal-to-ligand charge-transfer transitions. The fluorescence emission was observed for the complexes with 4-aminoazobenzene or 4-(dimethylamino)-4'-nitroazobenzene. The aromaticity of palladacycles is evaluated by several aromaticity indices and related to relevant experimental findings.

  19. Tuning the optical emission of MoS{sub 2} nanosheets using proximal photoswitchable azobenzene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany); Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Anh, Tuan Le; Meggendorfer, Felix; Finley, Jonathan J.; Margapoti, Emanuela, E-mail: emanuela.margapoti@wsi.tum.de [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Nisic, Filippo; Dragonetti, Claudia [Dipartimento di Chimica, Università degli Studi di Milano and UdR dell' INSTM di Milano, Via Golgi 19, I-20133 Milano (Italy); Palma, Carlos-Andres; Barth, Johannes V. [Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany)

    2014-12-15

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS{sub 2} placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS{sub 2}—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS{sub 2} layers. When the MoS{sub 2} nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ∼3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  20. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  1. Application of eco-friendly antimicrobial finish butea monosperma leaves on fabric properties of polyester and cotton/polyester

    International Nuclear Information System (INIS)

    Sadaf, S.; Saeed, M.; Kalsoom, S.; Saeed, M.

    2017-01-01

    The study was aimed to check the effect of eco-friendly antimicrobial finish on 100% polyester and 50/50 cotton/polyester woven fabrics. The leaves' extract of Butea monosperma was used as an eco-friendly antimicrobial finish. The fabric was first desized, scoured, bleached and washed then antimicrobial finish was applied by using pad dry cure method. The aesthetic, comfort and mechanical fabrics properties were checked before and after applying antimicrobial finish. Under aesthetic property stiffness and smoothness appearance was checked, under comfort related property absorbency and air permeability was checked and under mechanical property tear and tensile strength was checked. The antimicrobial finish was checked by using ASTEM E2149 Shake Flask method. The AATCC and ISO standard testing methods were used for checking fabric properties. One way ANOVA statistical test was applied for analysis of results. Antimicrobial finish has increased aesthetic (stiffness, smoothness appearance), comfort (absorbency, air permeability) and mechanical (tensile and tear strengths) properties of polyester and cotton/polyester fabrics. The antimicrobial finish was effective on both 100% polyester and 50/50 cotton/polyester fabrics up to 25 washes. This study is beneficial to medical industry, paramedical staff, sports wears, home furnishing as well as common people. (author)

  2. Microbial Observatory (ISS-MO): Indoor microbiome study of the International Space Station surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — Presented here is the environmental microbiome study of the International Space Station surfaces. The environmental samples were collected with the polyester wipes...

  3. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules. ...... candidates for azo components used in materials for data storage....

  4. Unfolding of cytochrome C upon interaction with azobenzene-modified copolymers.

    Science.gov (United States)

    Sun, Jing; Ruchmann, Juliette; Pallier, A; Jullien, L; Desmadril, M; Tribet, Christophe

    2012-11-12

    Hydrophilic or amphiphilic macromolecules are common organic matrices used to encapsulate and protect fragile drugs such as proteins. Polymer cargoes are in addition designed for remote control of protein delivery, upon imparting the macromolecules with stimuli-responsive properties, such as light-triggered polarity switches. The effect of interaction between polymers and proteins on the stability of the proteins is, however, rarely investigated. Here we studied the unfolding/folding equilibrium of cytochrome c (cyt c) under its oxidized or reduced forms, in the presence of various amphiphilic copolymers (by circular dichroism and intrinsic fluorescence measurements). As models of stimuli-responsive amphiphilic chains, we considered poly(acrylic acid) derivatives, modified to contain hydrophobic, light-responsive azobenzene moieties. These copolymers are, thus, capable to develop both ionic (under their sodium forms at pH > 8) and hydrophobic associations with the basic protein cyt c (isoelectric point of 10.0). In aqueous buffer upon increasing urea concentrations, cyt c underwent unfolding, at [urea] of 9-10 M, which was analyzed under the framework of the equilibrium between two states (native-unfolded). In the presence of polymers, the native folding of cyt c was preserved at low concentrations of urea (typically azobenzene moieties in the copolymers and the disappearance of destabilization at ionic strength higher than 150 mM. In addition, stability was similar to that of an isolated cyt c, in the presence of a neutral chain bearing acryloyl(oligoethyleneoxide) units instead of the ionized sodium acrylate moieties. DSC measurements showed that in the presence of polymers, cyt c is thermally unfolded in aqueous buffer at temperatures lowered by >20 °C as compared to thermal unfolding in the absence of polymers. Upon exposure to UV light, properties of the polymers chains were perturbed in situ, upon cis/trans isomerization of the azobenzene groups. In polymers

  5. Photoinduced Trans-to-cis Phase Transition of Polycrystalline Azobenzene at Low Irradiance Occurs in the Solid State.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Freppon, Daniel; Men, Long; Vela, Javier; Smith, Emily A; Petrich, Jacob W

    2017-09-20

    The ability to produce large-scale, reversible structural changes in a variety of materials by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost two decades. Because photoexcitation of trans-azobenzene produces the cis-isomer in solution, it has generally been inferred that the macroscopic structural changes occurring in materials are also initiated by a similar large-amplitude trans-to-cis isomerization. This work provides the first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene, and is consistent with the previously hypothesized nature of the trigger in the photoactuated mechanisms of the materials in question. It is also demonstrated that under low irradiance, trans-to-cis isomerization occurs in the solid (not via a pre-melted phase); and the presence of the cis-isomer thus lowers the melting point of the sample, providing a liquid phase. A variety of experimental techniques were employed, including X-ray diffraction measurements of polycrystalline azobenzene during exposure to laser irradiation and fluorescence measurements of the solid sample. A practical consequence of this work is that it establishes trans-azobenzene as an easily obtainable and well-defined control for monitoring photoinduced structural changes in X-ray diffraction experiments, using easily accessible laser wavelengths. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New poly(ester urea) derived from L-leucine: Electrospun scaffolds loaded with antibacterial drugs and enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, Angélica; Valle, Luis J. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Tugushi, David; Katsarava, Ramaz [Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 13 km. David Aghmashenebeli Alley, Tblisi 0131, Georgia (United States); Puiggalí, Jordi, E-mail: Jordi.Puiggali@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain)

    2015-01-01

    Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. - Highlights: • Electrospun scaffolds from a biodegradable poly(ester urea) have been prepared. • Scaffolds were effectively loaded with bactericide agents. • Enzymatic degradability of the L-leucine derived poly(ester urea) was demonstrated. • Enzymes that accelerate degradation were incorporated in the electrospun fibers. • Cell adhesion/proliferation assays demonstrated

  7. An Undergraduate Experiment in Polyester (PET) Synthesis

    Science.gov (United States)

    Cammidge, Andrew N.

    1999-02-01

    The most important polyester manufactured industrially is PET (polyethyleneterephthalate). We describe an experiment that conveniently mimics the industrial synthesis in the undergraduate laboratory. The first step of the reaction is a base-catalyzed transesterification between ethane diol and dimethylterephthalate. Methanol is distilled off to drive the reaction to completion. Excess ethane diol is employed to suppress formation of higher oligomers. The intermediate (bis-(2-hydroxyethyl)terephthalate) is isolated by crystallization and filtration and characterized by 1H NMR spectroscopy. In the second step the monomer is heated (with and without acid catalyst) to form polymer. Samples are removed at intervals and their physical properties are recorded as they cool. These properties are used to qualitatively monitor polymerization. This experiment reinforces some fundamental chemical concepts and introduces the students to new laboratory procedures. The students perform a distillation and apply their knowledge of the reaction equilibrium to calculate the volume of distillate (methanol) expected. The reversible nature of esterification reactions is emphasized during the polymerization step (acid-catalyzed), where the process is driven towards polymer formation by the removal (evaporation) of ethane diol.

  8. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    Science.gov (United States)

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  9. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol; Producao de poliesteres a partir da mistura de acido ftalico, tereftalico e glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M., E-mail: adrianaequfba@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Carvalho, R.F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Ambiental Urbana

    2010-07-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  10. Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET

    OpenAIRE

    Munirah Abdullah, Nurul; Ahmad, Ishak

    2012-01-01

    Coconut fibers were used as reinforcement for unsaturated polyester resin from recycled PET that has been prepared using glycolysis and polyesterification reaction. Various concentrations of alkali, silane, and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. Morphological and mechanical properties of the composite have also been investigated to study the effect of fiber surface treatment. The influence of water uptake on the sorption characte...

  11. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  12. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  13. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  14. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  15. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid.

    Science.gov (United States)

    Wershaw, R L; Rutherford, D W; Rostad, C E; Garbarino, J R; Ferrer, Imma; Kennedy, K R; Momplaisir, Georges-Marie; Grange, Andrew

    2003-05-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound.

  16. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid

    Science.gov (United States)

    Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.

    2003-01-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.

  17. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.

    Science.gov (United States)

    Kamiya, Yukiko; Takagi, Toshiki; Ooi, Hideaki; Ito, Hiroshi; Liang, Xingguo; Asanuma, Hiroyuki

    2015-04-17

    In the present study, we demonstrate photoregulation of gene expression in a cell-free translation system from a T7 promoter containing two azobenzene derivatives at specific positions. As photoswitches, we prepared azobenzene-4'-carboxlyic acid (Azo) and 2,6-dimethylazobenzene-4'-carboxylic acid (DM-Azo), which were isomerized from trans to cis upon irradiation with UV light (λ azobenzene-4'-carobxylic acid (S-DM-Azo), which were cis-isomerized by irradiation with 400 nm visible light. Expression of green fluorescent protein from a promoter modified with S-Azo or S-DM-Azo could be induced by harmless visible light whereas that from a promoter modified with Azo or DM-Azo was induced only by UV light (340-360 nm). Thus, efficient photoregulation of green fluorescent protein production was achieved in a cell-free translation system with visible light without photodamage.

  18. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye.

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials.

  19. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials. PMID:23835605

  20. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  1. Grafting and polymerisation processes induced by electron beams for antistatic treatment and hydrophilation of polyester textiles with polyethylene glycol dimethacrylates

    International Nuclear Information System (INIS)

    Clauss, B.

    1986-01-01

    According to dosimetric measurements on various textiles, the penetration behaviour of accelerated electrons in textile substrates corresponds to that found for homogeneous foils. A clear relationship is given between depth of penetration and degree of ionisation. Infrared spectroscopic investigation of the homopolymerisation of polyethylene glycol dimethacrylates induced by radiation makes it clear that cross-linked polymers are formed if the dose is increased. This effect can be supported by the addition of multi-functional acrylates. The measurement of bending stiffness proved to be a useful method for distinguishing between homopolymers and grafted polymers. It was found during comparative measurements on glass fibre and polyester weaves that methacrylates can only be changed to polyesters at a high dose (100 kGy). In the treatment of polyester textiles induced by electron beams, the length of the ethylene glycol chain in the monomer proved to be an important factor. With increasing length of chain, better degrees of fixing, better antistatic effects and better cross-linking properties are found. The limit is reached at a chain length of 12. The appropriate monomer (polyethylene glycol-600-dimethacrylate) gives surfaces resistances of 10 11 ohms. The spread of a drop of water on the textile surface occurs in less than 2 seconds. The antistatic effect of the polymer is based on water adsorption at the textile surface. (orig.) [de

  2. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    Science.gov (United States)

    Cao, Jun; Liu, Li-Hong; Fang, Wei-Hai; Xie, Zhi-Zhong; Zhang, Yong

    2013-04-01

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH3OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S1 relaxation of the photo-induced E → Z process is only mildly affected by the solvent effect, the relatively slower S1 relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S0 dynamics from the conical intersection between S1 and S0 (CI_E) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S1 state, while the S0 dynamics from the conical intersection between S1 and S0 (CI_Z) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  3. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-09-19

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to...), entitled Certain Polyester Staple Fiber From Korea and Taiwan: Investigation Nos. 731-TA-825 and 826...

  4. Aliphatic long-chain C20 polyesters from olefin metathesis.

    Science.gov (United States)

    Trzaskowski, Justyna; Quinzler, Dorothee; Bährle, Christian; Mecking, Stefan

    2011-09-01

    Self-metathesis of undecenoic acid with [(PCy3)2Cl2Ru=CHPh] (2), followed by exhaustive hydrogenation yielded pure 1,20-eicosanedioic acid (5) (>99%) free of side-products from isomerization. Polycondensation with eicosane-1,20-diol (6), formed by reduction of the diol, yielded polyester 20,20 (Tm = 108 °C). By comparison, the known ADMET polymerization of undec-10-enyl undec-10-enoate (7), and subsequent exhaustive polymer-analogous hydrogenation yielded a polyester (poly-8) with irregular structure of the ester groups in the polymer chain (-O(C=O)- vs. -C(=O)O-) (Tm = 103 °C). Hydrogenation of secondary dispersions of poly-7 yielded aqueous dispersions of the long-chain aliphatic polyester poly-8. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Obtaining polyester from glycerin for synthesis of polyurethanes

    International Nuclear Information System (INIS)

    Breves, Rodolfo A.; Ghesti, Grace F.; Sales, Maria J.A.

    2014-01-01

    The use of renewable resources has been increasing, due to the development of materials that have viable applications that are environmentally friendly. In this paper, a polyester was synthesized from glycerin, with the addition of adipic acid in a molar ratio of 1: 1.5, with dilauryl tin catalyst, which was added in proportions of 1 to 3% obtained PUs from castor oil (Ricinus communis) and MDI (diphenyl methane diisocyanate). The materials were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance 1 H NMR, thermogravimetry (TG) and derivative thermogravimetry (DTG). The reaction for obtaining the polyester was confirmed by FTIR, the absorption band between 1708-1730 cm -1 and 1 H NMR, in the region 1.4 to 1.8 ppm and 2.2 to 2.6 ppm. The thermal decomposition of polyester occurred with temperature above 300 ° C. PUs showed similar thermal stability. (author)

  6. Synthesis and characterization of sulfonated polyesters derived from glycerol

    International Nuclear Information System (INIS)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S.; Fiuza, R.P.

    2010-01-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  7. Tandem synthesis of alternating polyesters from renewable resources.

    Science.gov (United States)

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M

    2011-12-13

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters.

  8. Proof for the concerted inversion mechanism in the trans-->cis isomerization of azobenzene using hydrogen bonding to induce isomer locking.

    Science.gov (United States)

    Bandara, H M Dhammika; Friss, Tracey R; Enriquez, Miriam M; Isley, William; Incarvito, Christopher; Frank, Harry A; Gascon, Jose; Burdette, Shawn C

    2010-07-16

    Azobenzene undergoes reversible cistrans photoisomerization upon irradiation. Substituents often change the isomerization behavior of azobenzene, but not always in a predictive manner. The synthesis and properties of three azobenzene derivatives, AzoAMP-1, -2, and -3, are reported. AzoAMP-1 (2,2'-bis[N-(2-pyridyl)methyl]diaminoazobenzene), which possesses two aminomethylpyridine groups ortho to the azo group, exhibits minimal trans-->cis photoisomerization and extremely rapid cis-->trans thermal recovery. AzoAMP-1 adopts a planar conformation in the solid state and is much more emissive (Phi(fl) = 0.003) than azobenzene when frozen in a matrix of 1:1 diethylether/ethanol at 77 K. Two strong intramolecular hydrogen bonds between anilino protons and pyridyl and azo nitrogen atoms are responsible for these unusual properties. Computational data predict AzoAMP-1 should not isomerize following S(2)azobenzene. Confirmation that the AzoAMP-1 and -2 retain excited state photochemistry analogous to azobenzene was provided by ultrafast transient absorption spectroscopy of both compounds in the visible spectral region. The isomerization of azobenzene occurs via a concerted inversion mechanism where both aryl rings must adopt a collinear arrangement prior to inversion. The hydrogen bonding in AzoAMP-1 prevents both aryl rings from adopting this conformation. To further probe the mechanism of isomerization, AzoAMP-3, which has only one anilinomethylpyridine substituent for hydrogen bonding, was prepared and characterized. AzoAMP-3 does not isomerize and exhibits emission (Phi(fl) = 0.0008) at 77 K. The hydrogen bonding motif in AzoAMP-1 and AzoAMP-3 provides the first example where inhibiting the concerted inversion pathway in an azobenzene prevents isomerization. These molecules provide important supporting evidence for the spectroscopic and computational studies aimed at elucidating the isomerization mechanism in azobenzene.

  9. trans-cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability.

    Science.gov (United States)

    Sakamoto, Ryota; Kume, Shoko; Sugimoto, Manabu; Nishihara, Hiroshi

    2009-01-01

    Azobenzene derivatives modified with dithiolato-bipyridine platinum(II) complexes were synthesized, revealing their highly extended photoresponses to the long wavelength region as well as unique photocontrollable tristability. The absorptions of trans-1 and trans-2 with one azobenzene group on the dithiolene and bipyridine ligands, respectively, cover the range from 300 to 700 nm. These absorptions are ascribed, by means of time-dependent (TD)DFT calculations, to transitions from dithiolene(pi) to bipyridine(pi*), namely, interligand charge transfer (CT), pi-pi*, and n-pi* transitions of the azobenzene unit, and pi-pi* transitions of the bipyridine ligand. In addition, only trans-1 shows distinctive electronic bands, assignable to transitions from the dithiolene(pi) to azobenzene(pi*), defined as intraligand CT. Complex 1 shows photoisomerization behavior opposite to that of azobenzene: trans-to-cis and cis-to-trans conversions proceed with 405 and 312 nm irradiation, which correspond to excitation with the intraligand CT, and pi-pi* bands of the azobenzene and bipyridine units, respectively. In contrast, complex 2 shows photoisomerization similar to that of azobenzene: trans-to-cis and cis-to-trans transformations occur with 365 and 405 nm irradiation, respectively. Irradiation at 578 nm, corresponding to excitation of the interligand CT transitions, results in cis-to-trans conversion of both 1 and 2, which is the longest wavelength ever reported to effect the photoisomerization of the azobenzene group. The absorption and photochromism of 4, which has azobenzene groups on both the dithiolato and bipyridine ligands, have characteristics quite similar to those of 1 and 2, which furnishes 4 with photocontrollable tristability in a single molecule using light at 365, 405, and 578 nm. We also clarified that 1 and 2 have high photoisomerization efficiencies, and good thermal stability of the cis forms. Complexes 3 and 5 have almost the identical photoresponse to those

  10. Correlation between substituent constants and hyperpolarizabilities for di-substituted trans-azobenzenes.

    Science.gov (United States)

    Lin, Tsung-Yi; Chaudhari, Ajay; Lee, Shyi-Long

    2013-02-01

    Nonlinear optical properties of a series of disubstituted trans-azobenzenes were studied. The structures were fully optimized by B3LYP/6-31+G* and both static polarizabilities and hyperpolarizabilities were then calculated by the derivative method. In order to show the relationships between dipole moments, (hyper)polarizabilities and the structures, three kinds of substituent constants were applied to correlate with both ground state dipole moment and hyperpolarizabilities. Both physical properties have a satisfactory correlation with substituent constants Σσ(+/-) and bond length alternation. Overall, the electronic excitation contribution to the hyperpolarizabilities is rationalized in terms of the two-level model.

  11. Gel formation and photoactive properties of azobenzene-containing polymer in liquid crystal mixture

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2010-01-01

    Roč. 288, 14-15 (2010), 1375-1384 ISSN 0303-402X R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA MŠk(CZ) OC10006 Grant - others:EU(XE) COST D35 WG 0013-05 Institutional research plan: CEZ:AV0Z10100520 Keywords : gel * azobenzene-containing polymer * photoisomerization * nematic phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.443, year: 2010

  12. Evidence of two distinct mechanisms driving photoinduced matter motion in thin films containing azobenzene derivatives.

    Science.gov (United States)

    Fabbri, F; Garrot, D; Lahlil, K; Boilot, J P; Lassailly, Y; Peretti, J

    2011-02-17

    Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern. The intensity-driven mechanism is found to critically depend on the polymer matrix while the polarization-driven mechanism occurs with almost the same efficiency in different materials. Depending on the relationship between the polarization and intensity patterns, the two processes may either compete or cooperate giving rise to a nontrivial directional mass transport process.

  13. Second-order nonlinear optical properties of mexylaminotriazine-functionalized glass-forming azobenzene derivatives

    Science.gov (United States)

    Umezawa, Hirohito; Jackson, Matthew; Lebel, Olivier; Nunzi, Jean-Michel; Sabat, Ribal Georges

    2016-10-01

    The second-order nonlinear optical coefficients of thin films of mexylaminotriazine-functionalized azobenzene molecular glass derivatives were measured using second harmonic generation. The thin films were poled using a custom corona poling set-up and the second harmonic light from a pulsed 1064-nm laser was detected. Four out of the six tested compounds showed optical nonlinearity and a maximum coefficient of 75 pm/V was obtained. The time dependence of the nonlinear coefficients was studied under ambient light and under dark; the second harmonic generation intensity stayed constant for thiazole-containing derivatives while a significant decay was measured for the other compounds.

  14. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  15. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  16. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  17. Water/oil repellent property of polyester fabrics after supercritical carbon dioxide finishing

    Directory of Open Access Journals (Sweden)

    Xu Yan-Yan

    2015-01-01

    Full Text Available The strong permeability and driving force of supercritical carbon dioxide renders it an ideal medium for fabrics finishing. This paper is to use supercritical carbon dioxide medium with a solution of organic fluorine to fabricate water/oil repellent polyester fabrics. A series of characterization methods including Fourier transform infrared spectrometry, energy dispersive spectrometry, and scanning electron microscopy were carried out to evaluate the fabrics finishing. Fourier transform infrared spectrometry showed that the transmittance peak appeared at 1202.4 and 1147.4 cm-1, indicating the presence of -CF2- group on the surface of polyester fabrics. The results of energy dispersive spectrometer and scanning electron microscopy showed that the fluorine was evenly distributed on the fibers surface. In addition, a series of physical properties were detected, including contact angel, air permeability, breaking strength, and wearing resistance. The average water and hexadecane contact angles were 147.58° and 143.78°, respectively. Compared with the initial fabrics, the treated one has little change in air permeability, while its strength increased greatly. The treated fabrics gained good water/oil repellent properties while keeping good air permeability and improving mechanical property.

  18. MECHANICAL AND THERMAL PROPERTIES OF COMPOSITES FROM UNSATURATED POLYESTER FILLED WITH OIL PALM ASH

    Directory of Open Access Journals (Sweden)

    M.S. Ibrahim

    2012-06-01

    Full Text Available Oil palm ash (OPA is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA composites. The effect of different volume fractions, i.e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA and differential scanning calorimetric (DSC. Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM analysis were the extension of mechanical and thermal tests.

  19. Resolution of water in crude oil emulsion by some novel aromatic amine polyesters

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2015-09-01

    Full Text Available In this work, three aromatic amines (p-toluidine, p-nitroaniline and p-chloroaniline were chosen as bases for the repatriation of some nonionic polyesters. These amines were ethoxylated with different total number of ethylene oxide units 6, 12, 18. The prepared ethoxylated amine diols were polyesterified with maleic anhydride and polypropylene oxide polyethylene oxide block copolymers in polyesterification reaction. The demulsification efficiency of these demulsifiers was investigated using the bottle test. The effects of the molecular weight, concentration, asphaltene content, water content, Hydrophile Lipophile Balance (HLB and temperature on the demulsification efficiency were investigated. The surface active properties were correlated with their demulsification efficiency. It was found that, NAE18D gave the best result in the demulsification process. The demulsification efficiency was discussed on the light of surface active properties, interfacial tension and the factors affecting the demulsification. The surface-active properties of the prepared demulsifiers were measured at 60 °C.

  20. Effects of high-energy (MeV) ion implantation of polyester films

    International Nuclear Information System (INIS)

    Ueno, Keiji; Matsumoto, Yasuyo; Nishimiya, Nobuyuki; Noshiro, Mitsuru; Satou, Mamoru

    1991-01-01

    The effects of high-energy ion beam irradiation on polyester (PET) films using a 3 MeV tandem-type ion beam accelerator were studied. O, Ni, Pt, and Au as ion species were irradiated at 10 14 -10 15 ions/cm 2 on 50 μm thick PET films. Physical properties and molecular structure changes were studied by the surface resistivity measurements and RBS. The surface resistivity decreases with an increase in irradiation dose. At 10 15 ions/cm 2 irradiation, the surface resistivity is 10 8 Ω/□. According to RBS and XPS analyses, some carbon and oxygen atoms in the PET are replaced by implanted ions and the -C=O bonds are destroyed easily by the ion beam. (orig.)

  1. Technology of Glow Discharge Plasma to Improve Color Intensity on Polyester Fabric

    International Nuclear Information System (INIS)

    Kaelani, Zubaidi A.

    2000-01-01

    The surface modification have been studied onto polyester fiber toimprove color intensity of the dyed fabrics. The modifications carried byetching using glow discharge plasma under condition of 0.04 Torr, using 10Watt at 13.56 MHz. Both surface of original and modified fibers were analyzedby means of scanning electron microscope (SEM), and then both of fibers weredyed with disperse dyes and measured using color measurement apparatus tocompare the color shading, color intensity, and the brightness of the fibers.The color shading of modified fibers have small difference of original fiber,and the color intensity of modified fibers have much higher than originalfibers, while the brightness of the modified fibers tend to decrease. By themeasurements, can be concluded that the surface modifications by glowdischarge plasma are able to improve color deepness of the fabrics, and haveanother advantageous to the character of fabrics. (author)

  2. Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A gliding arc is a plasma that can be operated at atmospheric pressure and applied for plasma surface treatment for adhesion improvement. In the present work, glass-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding arc discharge with an air flow to improve...... adhesion with a vinylester adhesive. The treatment improved wettability and increased the polar component of the surface energy and the density of oxygen-containing polar functional groups at the surfaces. Double cantilever beam specimens were prepared for fracture mechanics characterisation (fracture...... resistance as a function of nominal mode mixity) of the laminate adhesive interface. It was found that gliding arc treatment significantly increases the interfacial fracture energy and fracture resistance in comparison with a standard peel ply treatment, although the mixed mode fracture energy of the gliding...

  3. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    approximately from 20 up to 80 mJm2 with ultrasonic irradiation. The plasma treatment with ultrasonic irradiation also introduced oxygen- and nitrogen-containing functional groups at the GFRP surface. These changes would improve the adhesion properties of the GFRP plates....... of around 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unchanged after the plasma treatment without ultrasonic irradiation, but drastically increased......Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  4. Synthesis and characterization of gelatin based polyester urethane ...

    Indian Academy of Sciences (India)

    Unknown

    Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. 1. Introduction. The development of tissue engineering devices and cell- based artificial organs requires a large number of cells to be cultured for the replacement of the damaged tissue. Porous biodegradable polymeric scaffolds would be ideal.

  5. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  6. Synthesis and characterization of gelatin based polyester urethane ...

    Indian Academy of Sciences (India)

    Unknown

    After 48 h, the culture plates were analysed under microscope for cell growth pattern as well as their adhesion and spreading. 3. Results and discussion. 3.1 Synthesis of gelatin based polyester urethane scaffold. The main objective of this investigation was to design and synthesize some novel biodegradable polyurethane.

  7. Blends of Amphiphilic, Hyperbranched Polyesters and Different Polyolefins

    NARCIS (Netherlands)

    Schmaljohann, D.; Pötschke, P.; Hässler, R.; Voit, B.I.; Froehling, P.E.; Mostert, B.; Loontjens, J.A.

    1999-01-01

    A hyperbranched polyester based on 3,5-dihydroxybenzoic acid was completely modified with dodecanoyl chloride to result in an amphiphilic, globular polymer, which has a polar core and a nonpolar outer sphere with the ability both to incorporate an organic dye and to interact with a nonpolar matrix.

  8. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  9. Synthesis and characterization of polyesters from renewable cardol ...

    African Journals Online (AJOL)

    The preparation and thermal characteristics of new polyesters from cardol, a renewable monomer obtained as a by-product of the cashew industry, are reported. Cardol - a diol component of the natural product cashew nut shell liquid (CNSL) was isolated and reacted with adipoyl chloride and terephthaloyl chloride in a 1:1 ...

  10. Production of Microbial Polyesters: Fermentation and Downstream Processes

    NARCIS (Netherlands)

    Kessler, B.; Weusthuis, R.A.; Witholt, B.; Eggink, G.

    2001-01-01

    Poly(3-hydroxyalkanoates) (PHAs) constitute a large and versatile family of polyesters produced by various bacteria. PHAs are receiving considerable attention because of their potential as renewable and biodegradable plastics, and as a source of chiral synthons since the monomers are chiral.

  11. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Abstract. Polyester fabric is treated with DCDMS solution by two methods: dipping the fabric directly in DCDMS solution for different intervals and dipping the fabric in. DCDMS solution after its exposure into RF plasma chamber for different durations at optimized exposure power conditions. The physical properties of ...

  12. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    ... accomplish the intended physical or technical effect and does not exceed any limitations prescribed in this.... Reinforcements: Asbestos Glass fiber Polyester fiber produced by the condensation of one or more of the acids... following extractives limitations: (1) Net chloroform-soluble extractives not to exceed 0.1 milligram per...

  13. Drilling analysis of coir–fibre-reinforced polyester composites

    Indian Academy of Sciences (India)

    Administrator

    mized for studying drilling characteristics of coir–polyester composites using the Taguchi approach. A drill bit diameter of 6 mm, spindle speed of 600 ... epoxy resin and made suggestions for low-load applica- tions. They assessed only the limited .... the multi-channel charge amplifier. A Rapid-I machine vision system from ...

  14. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Plasma treatment of polyester fabric to impart the water repellency property∗. C J JAHAGIRDAR and L B TIWARI1. Applied Physics Division, Institute of Chemical Technology, University of Mumbai,. Matunga, Mumbai 400 019, India. 1Present address: B/18, B-304, Gulshan, Gokuldham, Goregaon (East), Mumbai 400 063,.

  15. Adsorption of proteins from plasma at polyester non-wovens

    NARCIS (Netherlands)

    Klomp, A.J.A.; Klomp, A.J.A.; Engbers, G.H.M.; Mol, J.; Terlingen, J.G.A.; Terlingen, J.G.A.; Feijen, Jan

    1999-01-01

    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma–non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency

  16. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these

  17. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    Science.gov (United States)

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  18. Molecular design of ¿super¿ hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water

    NARCIS (Netherlands)

    Kobayashi, Hideki; Friggeri, A.; Koumoto, Kazuya; Amaike, Masato; Shinkai, Seiji; Reinhoudt, David

    2002-01-01

    As an attempt to rationally design aqueous organogelators, a bolaamphiphilic azobenzene derivative (1) bearing two sugar groups was synthesized. Compound 1 formed a gel in water even at concentrations as low as 0.05 wt % (0.65 mM). Spectroscopic studies and electron-micrographic observations have

  19. Role of Solvent and Effect of Substituent on Azobenzene Isomerization by Using Room-Temperature Ionic Liquids as Reaction Media.

    Science.gov (United States)

    Angelini, Guido; Canilho, Nadia; Emo, Mélanie; Kingsley, Molly; Gasbarri, Carla

    2015-08-07

    The effects of a para substituent, as the electron-donating -OCH3 and -OtBu groups and the electron-withdrawing -Br and -F atoms, on azobenzene isomerization have been investigated in a series of imidazolium ionic liquids (BMIM PF6, BMIM BF4, BMIM Tf2N, EMIM Tf2N, BM2IM Tf2N, and HMIM Tf2N). The thermal cis-trans conversion tends to be improved in the presence of the substituent, as pointed out by the first-order rate constants measured at 25 °C. Both the rotation and the inversion mechanisms occur in BMIM Tf2N, EMIM Tf2N, and HMIM Tf2N, as highlighted by typical V-shape Hammett plots, but only rotation takes place in BMIM PF6, BMIM BF4, and BM2IM Tf2N. The possible interactions between the cation and the anion of the solvent and both the isomers of the azobenzene derivatives have been studied by small-wide-angle X-ray scattering (SWAXS). The calculated cis population in the photostationary state and the hardness parameter η of the trans isomer show that azobenzene and F-azobenzene are the less reactive molecules for the trans-cis conversion in all the investigated ionic liquids.

  20. Light and Temperature as Dual Stimuli Lead to Self-Assembly of Hyperbranched Azobenzene-Terminated Poly(N-isopropylacrylamide

    Directory of Open Access Journals (Sweden)

    Wenyan Huang

    2016-05-01

    Full Text Available Hyperbranched poly(N-isopropylacrylamides (HBPNIPAMs end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC3H7, HBPNIPAM-Azo-OCH3, HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH were successfully synthesized by atom transfer radical polymerization (ATRP of N-isopropylacrylamide using different azobenzene-functional initiators. All HBPNIPAMs showed a similar highly branched structure, similar content of azobenzene chromophores, and similar absolute weight/average molecular weight. The different azobenzene structures at the end of the HBPNIPAMs exhibited reversible trans-cis-trans isomerization behavior under alternating UV and Vis irradiation, which lowered the critical solution temperature (LCST due to different self-assembling behaviors. The spherical aggregates of HBPNIPAM-Azo-OC3H7 and HBPNIPAM-Azo-OCH3 containing hydrophobic para substituents either changed to bigger nanorods or increased in number, leading to a change in LCST of −2.0 and −1.0 °C, respectively, after UV irradiation. However, the unimolecular aggregates of HBPNIPAM-Azo were unchanged, while the unstable multimolecular particles of HBPNIPAM-Azo-COOH end-capped with strongly polar carboxyl groups partly dissociated to form a greater number of unimolecular aggregates and led to an LCST increase of 1.0 °C.

  1. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools

    Science.gov (United States)

    Xu, Xuan; Luan, Feng; Liu, Huitao; Cheng, Jianbo; Zhang, Xiaoyun

    2011-12-01

    The maximum absorption wavelength ( λmax) of a large data set of 191 azobenzene dyes was predicted by quantitative structure-property relationship (QSPR) tools. The λmax was correlated with the 4 molecular descriptors calculated from the structure of the dyes alone. The multiple linear regression method (MLR) and the non-linear radial basis function neural network (RBFNN) method were applied to develop the models. The statistical parameters provided by the MLR model were R2 = 0.893, Radj2=0.893, qLOO2=0.884, F = 1214.871, RMS = 11.6430 for the training set; and R2 = 0.849, Radj2=0.845, qext2=0.846, F = 207.812, RMS = 14.0919 for the external test set. The RBFNN model gave even improved statistical results: R2 = 0.920, Radj2=0.919, qLOO2=0.898, F = 1664.074, RMS = 9.9215 for the training set, and R2 = 0.895, Radj2=0.892, qext2=0.895, F = 314.256, RMS = 11.6427 for the external test set. This theoretical method provides a simple, precise and an alternative method to obtain λmax of azobenzene dyes.

  2. Optoelectronic properties of four azobenzene-based iminopyridine ligands for photovoltaic application

    Directory of Open Access Journals (Sweden)

    Aziz El alamy

    2017-11-01

    Full Text Available Because of organic π-conjugated materials’ optoelectronic properties and potential applications in a wide range of electronic and optoelectronic devices, such as organic solar cells, these materials, including both polymers and oligomers, have been widely studied in recent years. This work reposts a theoretical study using the DFT method on four azobenzene-based iminopyridines. The theoretical ground-state geometry, electronic structure and optoelectronic parameters (highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO energy levels, open-circuit voltage (Voc and oscillator strengths (O.S of the studied molecules were obtained using the density functional theory (DFT and time-dependent (TDDFT approaches. The effects of the structure length and substituents on the geometric and optoelectronic properties of these materials are discussed to investigate the relationship between the molecular structure and the optoelectronic properties. The results of this study are consistent with the experimental ones and suggest that these materials as good candidates for use in photovoltaic devices. Keywords: π-conjugated materials, azobenzene, optoelectronic properties, DFT calculations, HOMO-LUMO gap

  3. Two-dimensional networks of an azobenzene derivative: bi-pyridine mediation and photo regulation

    Science.gov (United States)

    Zhang, Xuemei; Wang, Shuai; Shen, Yongtao; Guo, Yuanyuan; Zeng, Qingdao; Wang, Chen

    2012-07-01

    Two-dimensional photosensitive supramolecular assemblies based on an azobenzene derivative and bi-pyridine are built up and investigated using scanning tunneling microscopy (STM). In order to probe the photo-induced self-assembled behavior of these two molecules, irradiation experiments with different wavelengths are designed and performed. Our STM results show that the constructed H-bonded networks can be reversibly regulated under irradiation with UV light and visible light.Two-dimensional photosensitive supramolecular assemblies based on an azobenzene derivative and bi-pyridine are built up and investigated using scanning tunneling microscopy (STM). In order to probe the photo-induced self-assembled behavior of these two molecules, irradiation experiments with different wavelengths are designed and performed. Our STM results show that the constructed H-bonded networks can be reversibly regulated under irradiation with UV light and visible light. Electronic supplementary information (ESI) available: UV-Vis spectra and additional STM images. See DOI: 10.1039/c2nr31186k

  4. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups.

    Science.gov (United States)

    Cojocaru, Corneliu; Airinei, Anton; Fifere, Nicusor

    2013-01-01

    The molecular orbital calculations have been carried out to investigate the structure and stability of (E) / (Z) isomers of some azobenzene derivatives containing maleimide groups. A special attention has been devoted to the compound (E)-1, (E)-1-(4-(phenyldiazenyl)phenyl)-1H-pyrrole-2,5-dione, for which the available crystallographic experimental data have been used to validate the modeling structures computed at the theoretical levels AM1, PM3, RHF/6-31+G(d,p) and B3LYP/6-31+G(d,p). To this end, the discrepancy between experimental and calculated structural parameters has been ascertained in terms of root-mean-square deviation (RMSD). The quantum calculations at the level RHF/6-31+G(d,p) yield the most accurate results on (E)-1 structure giving a deviation error from crystallographic data of about 5.00% for bond lengths and 0.97% for interatomic angles. The theoretical electronic absorption spectra of azobenzene derivatives of concern have been computed by means of configuration-interaction method (CI) at the level of semi-empirical Hamiltonians (AM1 and PM3). Likewise, the molecular energy spectra, electrostatic potential and some quantitative structure activity relationship (QSAR) properties of studied molecules have been computed and discussed in the paper.

  5. Synthesis and characterization of photoactive azobenzene-based chromophores containing a bulky cholesteryl moiety

    Science.gov (United States)

    Yang, Po-Chih; Lu, Ya-Ling; Li, Chung-Yuan

    2012-05-01

    This study describes the synthesis of a series of azobenzene-based chromophores bearing pendent bulky cholesteryl groups, using esterification reactions. The chromophores were composed of liquid crystalline mesophases with six or eleven methylene segments as spacers, and with electron-donating (sbnd OCH3) and electron-withdrawing (sbnd NO2) terminal groups. The target compounds were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimetry, polarizing optical microscopy, absorption, and photoluminescence spectroscopies. All the azobenzene derivatives with six or eleven methylene segments revealed chiral nematic phases. We investigated the effects of these photochromic compounds' structures on E/Z photoisomerization under UV irradiation. Chromophores containing the electron-withdrawing nitro-group (sbnd NO2) underwent a faster rate of Z to E isomerization in darkness than the electron-donating (sbnd OCH3) groups did; the isomerization process proceeded via a rotation mechanism. Self-assembled aggregates of C6 solution exhibited enhanced fluorescence in THF/water mixtures at 10% water fraction.

  6. A mononuclear uranium(IV) single-molecule magnet with an azobenzene radical ligand

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Maria A.; Coutinho, Joana T.; Santos, Isabel C.; Marcalo, Joaquim; Almeida, Manuel; Pereira, Laura C.J. [C" 2TN, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela (Portugal); Baldovi, Jose J.; Gaita-Arino, Alejandro; Coronado, Eugenio [Instituto de Ciencia Molecular, Universitat de Valencia, Paterna (Spain)

    2015-12-01

    A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe_2NPh)_3-tacn}U{sup IV}(η{sup 2}-N{sub 2}Ph{sub 2{sup .}})] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U{sup III}{(SiMe_2NPh)_3-tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and {sup 1}H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U{sup IV} compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  8. In-Situ sonosynthesis of Hedgehog-like nickel nanoparticles on polyester fabric producing magnetic properties.

    Science.gov (United States)

    Afshari, Sepideh; Montazer, Majid

    2018-04-01

    Recently, nano finishing of textiles is increasingly attracted many researchers to create new features on the products. Here a new fabric is introduced through simultaneous aminolysis and hydrolysis of polyester along with in-situ sonosynthesis of hedgehog shaped nickel nanoparticles on the fabric with magnetic properties. To do this, nickel sulfate, hydrazine hydrate, sodium hydroxide and polyvinylpyrrolidone (PVP) were used as a precursor, reducing agent, alkali and stabilizer respectively. Nickel sulfate was reduced to nickel nanoparticles with hydrazine hydrate at the adjusted pH with NaOH in the presence of PVP at 75 °C for 2 h. The polyester fabric was aminolyzed and hydrolyzed produced various functional groups on the fabric surface assisted nucleation and stabilization of nickel nanoparticles. The morphology, crystal phase, magnetic properties and chemical structure of the treated fabrics were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and energy dispersive X-ray spectroscopy (EDX). The optimized sample treated with 3.19 (mL) hydrazine hydrate, 3.99 (mL) sodium hydroxide and 0.41 (g) nickel sulfate showed reasonable saturation magnetization value of 4.5 emu g -1 . The treated fabrics showed no antibacterial and antifungal behavior indicating the safety of the products. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid-liquid patterning.

    Science.gov (United States)

    Norikane, Yasuo; Uchida, Emi; Tanaka, Satoko; Fujiwara, Kyoko; Koyama, Emiko; Azumi, Reiko; Akiyama, Haruhisa; Kihara, Hideyuki; Yoshida, Masaru

    2014-10-03

    The direct and reversible transformation of matter between the solid and liquid phases by light at constant temperature is of great interest because of its potential applications in various manufacturing settings. We report a simple molecular design strategy for the phase transitions: azobenzenes having para-dialkoxy groups with a methyl group at the meta-position. The photolithography processes were demonstrated using the azobenzene as a photoresist in a single process combining development and etching of a copper substrate.

  10. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    Science.gov (United States)

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  12. Transcaval Access for TAVR Across a Polyester Aortic Graft

    Science.gov (United States)

    Lederman, Robert J.; O’Neill, William W.; Greenbaum, Adam B.

    2015-01-01

    Transcaval access to the aorta allows transcatheter aortic valve replacement in patients without other good access options. The resulting aortocaval fistula is closed with a nitinol cardiac occluder device. There is no experience traversing a synthetic aortic graft to perform transcaval access and closure. We describe a patient who underwent successful traversal of a polyester aortic graft using radiofrequency energy applied from the tip of a guidewire, to allow retrograde transcatheter aortic valve replacement from a femoral vein, along with details of our technique. The patient did well and was discharged home after 3 days. There was residual aortocaval fistulous flow immediately after implantation of a polyester-seeded nitinol muscular ventricular septal defect occluder device, but this fistula spontaneously occluded within one month. PMID:25510917

  13. Charpy Impact Tests of Polyester Composites Reinforced with PALF Fibers

    Science.gov (United States)

    Glória, Gabriel O.; Altoé, Giulio R.; Gomes, Maycon A.; Vieira, Carlos Maurício F.; Teles, Maria Carolina A.; Margem, Frederico M.; Daniel, Glênio; Monteiro, Sergio N.

    With the society's demand for new environmentally friendly materials, new alternatives, such as the PALF fiber, are being developed to replace synthetic fibers which are harmful to the environment. However, there is limited information about the impact resistance of polyester composites incorporated with PALF fibers. Therefore, the aim of this work was to analyze the absorbed impact energy of these composites. Impact specimens with up 30% in volume of PALF fibers were fabricated. The fibers were press molded with a orthophtalic polyester resin mixed with the proper hardener and set to cure for 24 hours at room temperature and pressured in the mold up to 5 tons. Specimens were test in a charpy pendulum. The results showed increase in the absorbed impact energy with higher amount of incorporated fiber. This performance can be explained by the difficult of rupture imposed the type of cracks resulting from fiber/matrix interaction.

  14. Tensile Strength of Polyester Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Daniel, Glenio; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    The environmental concern is creating pressure for the substitution of high energy consumption materials for natural and sustainable ones. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as flexibility and toughness. So there is a growing worldwide interest in the use of these fibers. Fique fiber extracted from fique plant, presents some significant characteristic, but until now only few studies on fique fiber were performed. This work aims to make the analysis of the tensile strength of polyester composites reinforced with fique fibers. The fibers were incorporated into the polyester matrix with volume fraction from 0 to 30%. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  15. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    Science.gov (United States)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  16. Optimum conditions for radiation curing of polyester/epoxy compositions

    International Nuclear Information System (INIS)

    Brzostowski, A.; Pietrzak, M.

    1982-01-01

    The effects of dose rate of γ 60 Co radiation, heat removal conditions and construction of polyester-epoxy compositions on the curing conditions of the latter were investigated. It was found that the optimum dose rate was within 0.1x10 4 Gy/h and 0.6x10 4 Gy/h for the following composition: 100 parts by weight of polyester resin, 10 to 15 parts by weight of an unsaturated epoxy resin and 100 parts by weight of silicon dioxide. The mixture was well cooled during the curing process. Curing is completed after the absorption of a dose from 0.3x10 4 Gy to 0.45x10 4 Gy. (author)

  17. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    Science.gov (United States)

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  18. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures.

    Science.gov (United States)

    Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D

    2013-12-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.

  19. Procedure for the fabrication of a cross-linked polyester material

    International Nuclear Information System (INIS)

    D'Alelio, G.F.

    1972-01-01

    The procedures are described for the production of a cross-linked polyester material by means of the irradiation of a radiosensitive polyester with a dose of over 0.5 megarad and under 8 megarads high energy, ionising radiation, corresponding to at least 100,000 ev. The polyester is of the telomerised diacrylpolyester type, and may be in a mixture containing about 1% of a coplymerisable aliphatic monomer, or about 30-90% of an unsaturated aliphatic alkyd resin. (JIW)

  20. A study on influence of borax to polyester insulators

    OpenAIRE

    ERSOY, Aysel; KUNTMAN, Ayten

    2014-01-01

    In this study the effect of borax on polyester insulators is investigated by evaluating the tracking and erosion resistance using the inclined plane test. The test procedure follows the ASTM D2303 standard. During the test, 50 Hz current was acquired from the ground electrode allowing a sampling rate of 48000 samples per second. The effect of borax concentration on the glass transition and the degradation temperature is studied by employing differential scanning calorimetry (DSC) an...

  1. Molecular glasses of azobenzene for holographic data storage applications

    Science.gov (United States)

    Zarins, Elmars; Balodis, Karlis; Ruduss, Armands; Kokars, Valdis; Ozols, Andris; Augustovs, Peteris; Saharovs, Dmitrijs

    2018-05-01

    A series of D-N=N-A type molecular glasses where the electron acceptor part (A) contains several electron withdrawing substituents, but the electron donating part (D) of the glassy azochromophores contains amorphous phase promoting non-conjugated bulky triphenyl or hydroxyl groups have been synthesized and investigated. Results showed that the azodye physical properties depend not only on the incorporated electron withdrawing substituents but are also influenced by the bonding type of covalently attached bulky moieties. Synthesized glassy azocompounds showed glass transition temperatures up to 106 °C and thermal stability up to 312 °C. The ability to form holographic gratings in spin-cast thin films of the glassy azodyes was investigated using 532 nm and 633 nm lasers obtaining diffraction efficiency up to 57%, self-diffraction efficiency up to 15% and photosensitivity as high as 3.7 J/(cm2%). Surface relief grating (SRG) depths reached 1.1 μm and in some cases even exceeded the thickness of the films.

  2. Acetalised Galactarate Polyesters: Interplay between Chemical Structure and Polymerisation Kinetics

    Directory of Open Access Journals (Sweden)

    Ionela Gavrila

    2018-02-01

    Full Text Available In spite of the progress that has made so far in the recent years regarding the synthesis of bio-based polymers and in particular polyesters, only few references address the optimisation of these new reactions with respect to conversion and reaction time. Related to this aspect, we here describe the transesterification reaction of two different acetalised galactarate esters with a model aliphatic diol, 1,6-hexanediol. The kinetics of these two apparently similar reactions is compared, with a focus on the conversion while varying the concentration of a di-butyltin oxide catalyst (DBTO, respectively, the used N2 flow-rate. During the first stage of polymerisation, the molecular weight of the end-products is more than doubled when using a 250 mL/min flow as opposed to an almost static N2 pressure. Additionally, the resulted pre-polymers are subjected to further polycondensation and the comparison between the obtained polyesters is extended to their thermal, mechanical and dielectrical characterisation. The influence of the acetal groups on the stability of the polyesters in acidic conditions concludes the study.

  3. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  4. Pattern of liquid crystalline droplets induced by two beam interference in azobenzene derivative

    Science.gov (United States)

    Czajkowski, Maciej; Dradrach, Klaudia; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-10-01

    A pattern of liquid crystalline droplets dispersed in the isotropic liquid can be formed during illumination by two interfering laser beams in certain range of the temperature and the light intensity. Azobenzene derivative substituted by long alkyl and alkoxy chains exhibiting smectic phases has been used for the study. The pattern can be reversibly erased and rewritten by shutting down and opening of the interfering beams. Polarized microscope images have shown the formation of numerous liquid crystalline droplets at bright regions of the interference fringes. Influence of the temperature and the light intensity has been studied by measuring the diffraction efficiency dynamics. Photothermal and photoorientational mechanisms of the formation of liquid crystalline droplets pattern have been proposed and discussed.

  5. Building photoswitchable 3,4'-AMPB peptides: Probing chemical ligation methods with reducible azobenzene thioesters

    Directory of Open Access Journals (Sweden)

    Gehad Zeyat

    2012-06-01

    Full Text Available Photoswitchable peptides were synthesized by using cysteine- and auxiliary-based native chemical ligation reactions. For this purpose, the two regioisomeric azobenzene building blocks 3,4'-AMPB thioester 1b and 4,4'-AMPB thioester 2b were employed in the ligation reactions. While 4,4'-AMPB requires the 4,5,6-trimethoxy-2-mercaptobenzyl auxiliary to minimize reduction of the diazene unit, 3,4'-AMPB can be used in combination with the 4,5,6-trimethoxy-2-mercaptobenzyl auxiliary as well as the Nα-2-mercaptoethyl auxiliary. Thus, 3,4'-AMPB derivatives/peptides proved to be significantly less prone to reduction by aliphatic and aromatic thiols than were the 4,4'-AMPB compounds.

  6. Theoretical design of visible light driven azobenzene-based photo-switching molecules

    Science.gov (United States)

    Pang, Juan; Tian, Ziqi; Ma, Jing

    2014-10-01

    The preparation of switchable azobenzene derivatives driven by visible light is desirable for applications in biomolecular systems. o-R-substituted 4,4‧-diacetamidoazobenzene derivatives (Rdbnd H, CH3, OCH3 or OH) were investigated by using both density functional theory (DFT) and reactive molecular dynamics simulations. DFT calculations demonstrated that the nonplanar azo trans geometric structure, which caused by bulky groups tetra substituted in the ortho-position, is the key factor to enable the trans → cis transition with visible light. Furthermore, 100 independent reactive MD simulations demonstrated that 71% trans isomers of tetra o-OCH3-substituted 4,4‧-diacetamidoazobenzene translated to cis, in good agreement with the experimental data.

  7. Dielectric investigations under irradiation of photo chromic copolymers with azobenzene moieties in the side group

    International Nuclear Information System (INIS)

    Turky, G.; Stumpe, J.; Schonhals, A.

    2005-01-01

    Photo chromic polymers are promising materials for optical switching and image storage because the orientation of mesogens in thin films of these materials can be modified by light. Real time dielectric spectroscopy is applied to study the time dependence of the light induced trans/cis-isomerization process for polymethacrylate copolymer system. For the investigated azobenzene group it was found that the dipole moment of the Z state is greater than that of E state. Therefore normalized . increases with increasing irradiation time (E/Z isomerization) at different considered wavelengths. A steady state is reached after about 10000 s. The effect of irradiation reduces at longer and shorter wavelengths. Stretched exponential equation was used to describe the effect of irradiation time on the normalized permittivity

  8. Experimental and Computational study of azobenzene and 2,2',6,6'-tetrafluoroazobenzene cation.

    Science.gov (United States)

    Rezaee, Mohammadreza; Armentrout, Peter B.

    The electronic structure of the protonated azobenzene and it its derivative 2,2',6,6'-tetrafluoroazobenzene were studied using ab initio methods and the bond strength were measured utilizing the collision induced dissociation experiment. Several highly accurate multi-level schemes such as different variations of the Complete Basis Set (CBS) method and the Gaussian (G-n) theory along with DFT study employed to accurately compute the energies of the neutral and the parent cation as well as the fragment ions. The transition state were studied and the dissociation path was identified using B3LYP method along with aug-cc-pVTZ as the basis set. Thermochemical properties such as proton affinity, gas phase basicity and the bond dissociation energies were calculated. Molecular electrostatic potential analysis was performed to identify the charge distribution inside the molecule to study the effects of the protonation reaction. Newton HPC Program, University of Tennessee.

  9. Azobenzene-Based Gel Coated Fibre Bragg Grating Sensor for Moisture Measurement

    Directory of Open Access Journals (Sweden)

    Mohammed Moniruzzaman

    2016-01-01

    Full Text Available A fibre Bragg grating sensor is coated with a novel polymer gel in order to investigate its suitability for nondestructive measurement of moisture in materials that can potentially lose their integrity due to moisture ingress. Absorption and desorption of moisture lead to swelling/shrinkage of an azobenzene-based gel, which induces a strain in the Bragg grating resulting in wavelength shifts. The results demonstrated that the amount of wavelength shift is linearly dependent on the amount of water ingress by the gel. The performance of the proposed optical fibre moisture sensor was found to be repeatable with no detectable hysteresis and has the potential to offer a low-cost route for monitoring moisture content.

  10. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application.

    Science.gov (United States)

    Feng, Wei; Luo, Wen; Feng, Yiyu

    2012-10-21

    The ability to tune the microstructures, bandgap, conductance, chemical environment and thermal storage of carbon nanomaterials such as carbon nanotubes, graphene and fullerenes by optical modulation or response is important to design and fabricate advanced optoelectronic nanodevices. This review is focused on optical control and regulation of structures, properties, interface and interaction of a new generation of photo-responsive carbon nanomaterials/azobenzene moieties (Carbon-AZO) hybrids. The optical switching properties of Carbon-AZO hybrids resulting from the photo-isomerization between trans and cis isomers are highlighted and discussed in terms of photo-energy conversion devices including switches, sensors, detectors, fuels and storage. A wide range of advanced energy conversion devices using Carbon-AZO hybrids can be developed in the future by the optimization of the chemical structure, steric conformation, electrostatic environment and functionalization of specific molecules.

  11. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  12. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Science.gov (United States)

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  13. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  14. Drop Weight Impact Studies of Woven Fibers Reinforced Modified Polyester Composites

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2014-02-01

    Full Text Available Low velocity impact tests were conducted on modified unsaturated polyester reinforced with four different woven fabrics using hand-layup method to investigate the effect of fiber type and fiber combinations. The time-load curves were analysed and scanning electron microscopy was used to observe the surface of the impacted composite laminates. The results indicated that all the composites had ductility index (DI of above two for the test conducted at impact energy of 27J with the monolithic composite of Kevlar having the highest DI. The damage modes observed were mainly matrix cracks and fiber breakages. Hybridization of the fibers in the matrix was observed to minimize these damages.

  15. Preparation and properties of copper/polyaniline/polyester composite electromagnetic shielding fabric

    Directory of Open Access Journals (Sweden)

    Jing YU

    2016-04-01

    Full Text Available Conductive polyaniline and polyester composite fabric(PANI/PET is prepared by in-situ polymerization, and after it is activated by hyperbranched polyamidomine/Ag+, Cu is uniformly deposited on its surface by electroless copper plating, finally Cu/PANI/PET composite fabric is obtained. Scanning electron microscope, X-ray diffraction and electromagnetic shielding effectiveness are used to analyze the samples. The results show that using PANI as the middle layer can reduce the average grain size apparently and improve the thermal stability and the friction resistance, and the electromagnetic shielding effectiveness of Cu/PANI/PET can reach 130 dB in the frequency range of 300 kHz~3 GHz.

  16. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  17. Photoorientation in thin aligned layers of side-group liquid crystalline copolysiloxane doped with azobenzene and stilbene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wolarz, E.; Fischer, Th.; Stumpe, J

    2003-01-31

    Optically anisotropic films of side-group liquid crystalline copolysiloxane doped with photochromic azobenzene and stilbene derivatives were prepared by using standard liquid crystal cells of 4 {mu}m in thickness. The films were irradiated with high power density laser light with the electric field vector creating an angle equal to 45 deg. with the initial optical axis of the samples. As a result of irradiation, the photoorientation of the photochromic molecules, and the cooperative reorientation of the copolysiloxane side groups occurred. In the case of the copolymer layers containing azobenzene, the optical axis was turned by an angle of 45 deg. during sufficiently long irradiation. The angle of reorientation and the degree of anisotropy were determined for the irradiated areas of the samples.

  18. Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives

    Science.gov (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Zhou, Jingxin; Gao, Faming

    2013-04-01

    In this paper, new azobenzene imide derivatives with different substituent groups were designed and synthesized. Their gelation behaviors in 21 solvents were tested as novel low-molecular-mass organic gelators. It was shown that the alkyl substituent chains and headgroups of azobenzene residues in gelators played a crucial role in the gelation behavior of all compounds in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle, lamella, and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between amide groups and conformations of methyl chains. The present work may give some insight to the design and character of new organogelators and soft materials with special molecular structures.

  19. Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2014-01-01

    Full Text Available In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from lamella, wrinkle, to belt with change of solvents. Spectral studies indicated that there existed different H-bond formation and hydrophobic force, depending on different substituent chains in molecular skeletons. The present work may also give new perspectives for designing new binary organogelators and soft materials.

  20. Photo-optical properties of amorphous and crystalline films of azobenzene-containing photochromes with bent-shaped molecular structure

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Hamplová, Věra; Bubnov, A.; Novotná, V.; Kašpar, M.; Piryazev, A.; Anokhin, D.; Ivanov, D.

    2016-01-01

    Roč. 316, Feb (2016), s. 75-87 ISSN 1010-6030 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007 Institutional support: RVO:68378271 Keywords : bent-shaped azobenzene-containing compounds * E–Z isomerization * thin films * photoinduced phase transition * photoorientation Subject RIV: CC - Organic Chemistry Impact factor: 2.625, year: 2016

  1. Photoorientation phenomena and structural properties of photochromic liquid crystalline azobenzene-containing polymethacrylate films with different spacer lengths

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Piryazev, A.; Anokhin, D.V.; Ivanov, D.A.; Sinitsyna, O.; Hamplová, Věra; Kašpar, Miroslav; Bubnov, Alexej M.

    2017-01-01

    Roč. 218, č. 16 (2017), s. 1-10, č. článku 1700127. ISSN 1022-1352 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305 Institutional support: RVO:68378271 Keywords : photoorientation phenomena * azobenzene * photo-optical properties * liquid crystal * photochromic materials Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.500, year: 2016

  2. Radiation hardening lacquer binding agent based on a polyester resin with at least 3.5 double links pr. 1000 molecular weight units

    International Nuclear Information System (INIS)

    Crimlisk, D.J.; Wright, A.; Groves, T.E.

    1976-01-01

    The binding agent is suitable for hardening by electrons with an energy of between 100,000 and 500,000eV. It consists mainly of a solution of a polyester resin with at least 3.5 double links per 1000 mol, in an olefine-unsaturated monomer. The molecular weight of the polyester is between 800 and 1100 and the ratio of the number of double links in the monomer to that in the resin (degree of unsaturation) is in the range 0.75-2.0, or more specifically, between 1 and 1.5. Cellulose acetate/butyrate (CAB) and/or a butylated melamine/formaldehyde resin may be added to improve the surface properties. Likewise from 0.1 to 0.5% polyethylene wax may be added to give a better surface finish and hardness. (JIW)

  3. Development of conductive coated polyester film as RPC electrodes using screen printing

    Science.gov (United States)

    Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.; Verma, P.; Datar, V. M.

    2009-05-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12-10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ˜800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ˜18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ˜ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  4. Development of conductive coated polyester film as RPC electrodes using screen printing

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.; Datar, V.M.

    2009-01-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12 -10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ∼800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ∼18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ∼ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing

  5. Molecular characteristics of a fluorescent chemosensor for the recognition of ferric ion based on photoresponsive azobenzene derivative

    Science.gov (United States)

    Chi, Zhen; Ran, Xia; Shi, Lili; Lou, Jie; Kuang, Yanmin; Guo, Lijun

    2017-01-01

    Metal ion recognition is of great significance in biological and environmental detection. So far, there is very few research related to the ferric ion sensing based on photoresponsive azobenzene derivatives. In this work, we report a highly selective fluorescent "turn-off" sensor for Fe3 + ions and the molecular sensing characteristics based on an azobenzene derivative, N-(3,4,5-octanoxyphenyl)-N‧-4-[(4-hydroxyphenyl)azophenyl]1,3,4-oxadiazole (AOB-t8). The binding association constant was determined to be 6.07 × 103 M- 1 in ethanol and the stoichiometry ratio of 2:2 was obtained from Job's plot and MS spectra. The AOB-t8 might be likely to form the dimer structure through the chelation of ferric ion with the azobenzene moiety. Meanwhile, it was found that the photoisomerization property of AOB-t8 was regulated by the binding with Fe3 +. With the chelation of Fe3 +, the regulated molecular rigidity and the perturbed of electronic state and molecular geometry was suggested to be responsible for the accelerated isomerization of AOB-t8 to UV irradiation and the increased fluorescence lifetime of both trans- and cis-AOB-t8-Fe(III). Moreover, the reversible sensing of AOB-t8 was successfully observed by releasing the iron ion from AOB-t8-Fe(III) with the addition of citric acid.

  6. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    Science.gov (United States)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  7. Kwik Bond Polymers(R) high friction surface treatment.

    Science.gov (United States)

    2015-12-01

    High friction surface treatment (HFST) was applied to two on-ramps in the Seattle urban area to improve : friction resistance. The ramps were high accident locations. The system applied was polyester resin binder and : calcined bauxite aggregate. Tes...

  8. Synthesis of Functionalized Aliphatic Polyesters by the ``Click'' Copper-Catalyzed Alkyne—Azide Cycloaddition

    Science.gov (United States)

    Lecomte, Philippe; Riva, Raphael; Jerome, Christine

    The functionalization of aliphatic polyesters by the copper-mediated azide—alkyne Huisgen's cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The implementation of this reaction requires the synthesis of aliphatic polyesters bearing pendant alkynes and azides, which can be carried out either by polycondensation or by ring-opening polymerization.

  9. Biobased, thermoreversibly crosslinked polyesters : A styrene-free alternative to currently employed resins

    NARCIS (Netherlands)

    Beljaars, Martijn

    2017-01-01

    Polyester resins are often used due to their superior chemical and mechanical properties. However, most commercial resins contain high amounts of the toxic chemical styrene. This thesis describes the search for a human-friendly alternative to polyester resins. In this work, mostly biobased (obtained

  10. 76 FR 11268 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-03-01

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade... staple fiber from Korea and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted... whether revocation of the antidumping duty orders on certain polyester staple fiber from Korea and Taiwan...

  11. Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties

    NARCIS (Netherlands)

    Thiyagarajan, S.; Vogelzang, W.; Knoop, J.R.I.; Frissen, A.E.; Haveren, van J.; Es, van D.S.

    2014-01-01

    In this study we present the application of different isomers of furandicarboxylic acid, or FDCA, obtained from agro-residues, in polyester synthesis. New polyesters based on 2,4-FDCA and 3,4-FDCA isomers with (linear) diols were thoroughly characterised and compared with their as-synthesised

  12. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried o...

  13. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jun; Liu Lihong; Fang Weihai [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie Zhizhong [Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang Yong [Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030 (United States)

    2013-04-07

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH{sub 3}OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S{sub 1} relaxation of the photo-induced E{yields}Z process is only mildly affected by the solvent effect, the relatively slower S{sub 1} relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub E}) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S{sub 1} state, while the S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub Z}) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  14. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  15. Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica

    Directory of Open Access Journals (Sweden)

    Caroline Gamerith

    2017-05-01

    Full Text Available To study hydrolysis of aromatic and aliphatic polyesters cutinase 1 from Thermobifida cellulosilytica (Thc_Cut1 was expressed in P. pastoris. No significant differences between the expression of native Thc_Cut1 and of two glycosylation site knock out mutants (Thc_Cut1_koAsn and Thc_Cut1_koST concerning the total extracellular protein concentration and volumetric activity were observed. Hydrolysis of poly(ethylene terephthalate (PET was shown for all three enzymes based on quantification of released products by HPLC and similar concentrations of released terephthalic acid (TPA and mono(2-hydroxyethyl terephthalate (MHET were detected for all enzymes. Both tested aliphatic polyesters poly(butylene succinate (PBS and poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV were hydrolyzed by Thc_Cut1 and Thc_Cut1_koST, although PBS was hydrolyzed to significantly higher extent than PHBV. These findings were also confirmed via quartz crystal microbalance (QCM analysis; for PHBV only a small mass change was observed while the mass of PBS thin films decreased by 93% upon enzymatic hydrolysis with Thc_Cut1. Although both enzymes led to similar concentrations of released products upon hydrolysis of PET and PHBV, Thc_Cut1_koST was found to be significantly more active on PBS than the native Thc_Cut1. Hydrolysis of PBS films by Thc_Cut1 and Thc_Cut1_koST was followed by weight loss and scanning electron microscopy (SEM. Within 96 h of hydrolysis up to 92 and 41% of weight loss were detected with Thc_Cut1_koST and Thc_Cut1, respectively. Furthermore, SEM characterization of PBS films clearly showed that enzyme tretment resulted in morphological changes of the film surface.

  16. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  17. Karakterstik Serapan Suara Komposit Polyester Berpenguat Serat Tapis Kelapa

    OpenAIRE

    Astika, I Made; Dwijana, I Gusti Komang

    2016-01-01

    The purpose of this study is to investigate of sound absorption of coconut filter fiber composites. The research material made with coconut filter fiber as reinforcement and matrix resin unsaturated polyester (UPRs) type Yukalac BQTN 157 with 1% hardener types MEKPO (Methyl Ethyl Ketone Peroxide) and fiber treatment by  0,5% KMnO4. Production methods is poltrusion and the variations of fiber volume fraction are 20, 25 and 30% and fiber length are 5, 10 and 15 mm. Testing of sound absorpt...

  18. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    International Nuclear Information System (INIS)

    Jurkin, Tanja; Pucic, Irina

    2006-01-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction

  19. Laparoscopic incisional hernia repair: Polyester versus Polytetraflouroethylene mesh

    Directory of Open Access Journals (Sweden)

    Adil Bangash

    2012-01-01

    Full Text Available Aims and Objectives: To compare the frequency of complications of laparoscopic repair of incisional hernia between polyester and Polytetraflouroethylene meshes. Materials and Methods: This study was conducted as part of an Interventional multicentre trial at the Rehman Medical Institute Peshawar, Peshawar Institute of Medical Sciences and Pakistan Institute of Medical Science Islamabad from the 1 st of October, 2008 till 30 th September, 2011. The frequency of complications was calculated as the measure of comparing two commercially available meshes for the laparoscopic repair of incisional hernia using the Intrperitoneal placement of mesh (IPOM technique. These patients were admitted via the out-patient department and their demographic data was collected on a proforma. The size of the defect was evaluated clinically or radiologically and if >10cm were excluded from the study. Forty five patients were alternately placed in either group and group I comprised patients with a ventral hernia that was repaired with composite polyester mesh (Parietex R whereas the other group was also repaired laparoscopically but repaired with a Polytetraflouroethylene (Dual R mesh. All data was collected on the individual proforma of each patient and was loaded on the SPSS R version 13.0. Results: The BMI (body mass index in both groups was similar ( P = 1.41. The mean hospital stay was higher in the Polytetraflouroethylene (PTFE mesh group but the values were not significant ( P = 1.12. No peri-operative death was observed in either group. Five patients (11.11% from group I were re-admitted with varying complaints and were diagnosed as having sub-acute intestinal obstruction ( P = 0.04. A higher but insignificant recurrence rate was observed in the polyester group over a one year period of follow up. Four patients (8.8% that were diagnosed with recurrences in group I. Instead the PTFE group had a lower recurrence ( P = 0.91. Conclusion: The frequency of recurrence

  20. Bending Mechanical Behavior of Polyester Matrix Reinforced with Fique Fiber

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Barcelos, Mariana; Gomes, André; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally correct composites, made from natural fibers, are among the most investigated and applied today. In this paper, we investigate the mechanical behavior of polyester matrix composites reinforced with continuous fique fibers, through bending tensile tests. Specimens containing 0, 10, 20 and 30% in volume of fique fiber were aligned along the entire length of a mold to create plates of these composites, those plates were cut following the ASTM standard to obtained bending tests specimens. The test was conducted in a Instron Machine and the fractured specimens were analyzed by SEM, the results showed the increase in the materials tensile properties with the increase of fiber amount.

  1. Study of mechanical properties and fracture mechanisms of synthetic fibers nylon-and-polyester type, used in engineering products

    International Nuclear Information System (INIS)

    Cardoso, Sergio Gomes

    2009-01-01

    Fibers are groups formed by molecular-chain-oriented filaments. Fibers play a fundamental role in human being's daily life and they can be found in several forms and geometries, such as filaments, yarns, beams, rope, fabric, composite, coatings, others. They are used in various segments such as civil, mechanical, electrical, electronics, military, naval, nautical, aviation, health, medicine, environment, communications, safety, space, others. Fibers are divided into two distinct classes: natural and chemical ones, which cover synthetic and man-made sub-classes. They can be produced from several materials, such as wool, cotton, rayon, flax, silk, rock, nylon, polyester, polyethylene, poly-propylene, aramid, glass, carbon, steel, ceramic, others. Globally, the participation of chemical fibers corresponds to approximately 59,9%, and the synthetic fiber polyester, the most used one, represents approximately 63% of the world market. Vital needs have led to the development of multi-function fibers and the focus has changed in the last 10 years with the use of nano technology for environmental responsibility and smart fibers. The study of mechanical properties and fracture mechanisms of fibers is of great relevance for characterization and understanding of causes as consequence of failures. For such reason, it was selected technical fabrics made of high performance synthetic fiber nylon-and-polyester type, used in engineered products such as tires, belts, hoses and pneumatic springs, which have been analyzed in each processing phase. Fiber samples were extracted after each processing phase to be analyzed, by traction destructive tests and scanning electron microscopy. The results of analysis of mechanical properties showed loss of resistance to temperature and multi axial stress during fiber processing phase. Through microscopy tests, it was possible to find contamination, surface stains, plastic deformations, scaling, variations in the fracture faces of the filaments and

  2. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Science.gov (United States)

    Neukirch, Amanda J.; Park, Jinhee; Zobac, Vladmir; Wang, Hong; Jelinek, Pavel; Prezhdo, Oleg V.; Zhou, Hong-Cai; Lewis, James P.

    2015-04-01

    Recently, we used a local orbital density functional theory code called FIREBALL, to study the photoisomerization process in azobenzene derivatives for solar energy materials. Azobenzene functional groups undergo photoisomerization upon light irradiation or application of heat. Zhou et al (2012 J. Am. Chem. Soc. 134 99-102) showed that these azobenzenes can then be introduced into metal-organic frameworks via an organic linker in order to create a reversible switch for CO2 adsorption. In this manuscript, we examined how the addition of organic linkers (isophthalic acid) changes the relaxation times, isomerization mechanism, and quantum yield for both the cis↔trans pathways. We then tuned these properties by substituting functional groups, finding an increase in quantum yield as well as improved optical properties.

  3. Thermal Cyclic Resistance Polyester Resin Composites Reinforce Fiber Nut Shell

    Science.gov (United States)

    Fahmi, Hendriwan

    2017-12-01

    The purpose of study is to determine the effect of fiber length and thermal cyclic of the bending strength of polyester resin composite reinforced by fibers nut shell. The materials used in this study is a nut shell fibers with fiber length of 1 cm, 2 cm and 3 cm and polyester resin with composition 70-30%wt. Fiber nut shell treated soaking in NaOH 30% for 30 minutes, then rinse with clean water so that the fiber free of alkali and then dried. Furthermore, the composite is heated in an oven to a temperature of 100°C for 1 hour and then cooled in the open with a variety of thermal cyclic 30, 40, and 50 times. Bending properties of composites known through the testing process using a three-point bending test equipment universal testing machine. The test results show that the bending strength bending highest in fiber length of 3 cm with 30 treatment cycles of thermal to the value of 53.325 MPa, while the lowest occurred in bending strength fiber length of 1 cm with no cycles of thermal treatment to the value of 30.675 MPa.

  4. Properties of injection-molded thermoplastic polyester denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi

    2014-02-01

    This study investigated the properties of injection-molded thermoplastic polyester denture base resins. Two injection-molded thermoplastic polyester denture base resins (polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer) were tested. Specimens of each denture base material were fabricated for flexural properties testing, Charpy impact testing and shear bond testing (n = 10). The flexural strength at the proportional limit, elastic modulus, Charpy impact strength and the shear bond strength of the two denture base materials were estimated. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin. The properties of the injection-molded thermoplastic denture base resins composed of polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer were different from each other. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin.

  5. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A non-equilibrium quenched plasma is prepared using a gliding-arc discharge generated between diverging electrodes and extended by a gas flow. It can be operated at atmospheric pressure and applied to plasma surface treatment to improve adhesion properties of material surfaces. In this work, glass......-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen......-containing polar functional groups on the surfaces. Double cantilever beam specimens were prepared for fracture mechanic characterization of the laminate adhesive interface. It was found that gliding-arc treatment significantly increases the fracture resistance in comparison with a standard peel-ply treatment....

  6. Photoresponsive SAMs on gold fabricated from azobenzene-functionalised asparagusic acid derivatives.

    Science.gov (United States)

    Siemeling, Ulrich; Bruhn, Clemens; Bretthauer, Frauke; Borg, Marta; Träger, Frank; Vogel, Florian; Azzam, Waleed; Badin, Mihaela; Strunskus, Thomas; Wöll, Christof

    2009-10-28

    We have prepared a range of azobenzene derivatives equipped with an asparagusic acid-based 1,2-dithiolane headgroup suitable for chemisorption on solid gold substrates. The formation of self-assembled monolayers (SAMs) of the amide cyclo-S2C3H5-4-C(O)NH-p-C6H4-N=N-Ph (1) and the ester cyclo-S2C3H5-4-C(O)O-p-C6H4-N=N-Ph (2) on gold was monitored in situ and in real time by optical second harmonic generation (SHG). The structure and composition of these SAMs was investigated by a range of ex situ methods, viz. ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared reflection absorption spectroscopy (FTIRRAS). Reversible, but moderate, photoswitchability was observed for these one-component SAMs by ellipsometry and dynamic contact angle measurements. Use of a second 1,2-dithiolane component for lateral dilution of the photoactive terminal groups resulted in a much more pronounced photoresponse.

  7. Collision induced dissociation study of azobenzene and its derivatives: computational and experimental results

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    2015-03-01

    Experimental and computational investigation have been performed in order to study the bond dissociation energy of azobenzene and its derivatives using collision induced dissociation method as well as other energy and structural characteristics. The results have been verified by comparing with results obtained from computational quantum chemistry. We used different density functional methods as well as the Möller-Plesset perturbation theory and the coupled cluster methods to explore geometric, electronic and the spectral properties of the sample molecules. Geometries were calculated and optimized using the 6-311 + + G(2d,2p) basis set and the B3LYP level of theory and these optimized structures have been subjected to the frequency calculations to obtain thermochemical properties by means of different density functional, Möller-Plesset, and coupled cluster theories to obtain a high accuracy estimation of the bond dissociation energy value. The results from experiments and the results obtained from computational thermochemistry are in close agreement. Physics and Astronomy Department

  8. J-aggregates in matrix stabilized two-dimensional azobenzene derivatives.

    Science.gov (United States)

    Shankar, B Vijai; Patnaik, Archita

    2006-10-01

    A two-component film technique at the air-water interface has been used for fabricating matrix stabilized azobenzene J-aggregates. Langmuir monolayers of (E)-1-(3-chloro-4-(alkyloxy)phenyl)-2-phenyldiazene (CnCD, n=8,10,12) have been prepared with stearic acid (STA) as the two-dimensional matrix. Miscibility studies at a molecular level, explored from the monolayer pressure-area isotherms revealed a phase separation of the CnCD from the stearic acid matrix at a compression pressure of 10 mN/m. A 43-nm strong red shift in the 350 nm pi-pi * absorption feature implied formation of highly ordered J-aggregates of CnCDs in conformity with atomic force microscopy and micro-Raman spectral characteristics. While a one-component CnCD failed to form a 2D monolayer, the STA supported CnCD binary system crossed a mixed monolayer phase followed by compression, leading to the formation of matrix stabilized CnCD J-aggregates.

  9. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene

    Science.gov (United States)

    Zhang, Cai-Cai; Li, Sheng-Hua; Zhang, Cui-Fang; Liu, Yu

    2016-11-01

    A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M-1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.

  10. Photoinduced formation of an azobenzene-based CD-active supramolecular cyclic dimer.

    Science.gov (United States)

    Sogawa, Hiromitsu; Terada, Kayo; Miyagi, Yu; Shiotsuki, Masashi; Inai, Yoshihito; Masuda, Toshio; Sanda, Fumio

    2015-04-27

    A series of new photo-responsive amino acid-derived azobenzenedicarboxylic acid derivatives (S)-1 a-e were synthesized. Compound (S)-1 a in the trans form exhibited no circular dichroism (CD) signal in DMF under ambient conditions, whereas intense Cotton effects were observed upon UV irradiation, indicating the formation of a chiral supramolecular structure in the cis form. The CD signals disappeared when trifluoroacetic acid (TFA) was added to the solution. The ester counterpart [(S)-1 a'] showed no CD signal. Hydrogen bonding between the carboxy groups seemed necessary for constructing the supramolecular structure. The kinetic studies of cis to trans isomerization of (S)-1 a demonstrated that the formation of a chiral supramolecule enhances the stability of the cis-azobenzene structure. The ESI mass spectrum of stilbenedicarboxylic acid (S)-4, an analogue of (S)-1 b, confirmed the formation of a dimer. A theoretical CD study revealed that (S)-1 a in the cis form should be present as a cyclic chiral dimer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths

    Directory of Open Access Journals (Sweden)

    Tai-Chieh Huang

    2015-09-01

    Full Text Available The laser-initiated thermal (optothermal switching of cholesteric liquid crystals (CLCs is characterized by using different azobenzene (Azo derivatives and laser wavelengths. Under 405-nm laser irradiation, Azo-doped CLCs undergo phase transition from cholesteric to isotropic. No cis-to-trans photoisomerization occurs when the 405-nm laser irradiation is blocked because only a single laser is used. The fast response of Azo-doped CLCs under the on–off switching of the 405-nm laser occurs because of the optothermal effect of the system. The 660-nm laser, which cannot be used as irradiation to generate the trans–cis photoisomerization of Azo, is used in Anthraquinone (AQ-Azo-doped CLCs to examine the optothermal effect of doped Azo. The results show that the LC-like Azo derivative bearing two methyl groups ortho to the Azo moiety (A4 can greatly lower the clearing temperature and generate large amount of heat in AQ-A4-doped CLCs.

  12. Photoisomerization of amphiphilic azobenzene derivatives in Langmuir Blodgett films prepared as polyion complexes, using ionic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shembekar, Vishakha R. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Contractor, A.Q. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Major, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Talwar, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India)]. E-mail: chsstia@phy.iitb.ac.in.z

    2006-07-03

    Polyion complexation in mixed Langmuir and Langmuir Blodgett (LB) films of photochromic amphiphilic azobenzene carboxylic acids, 11-[4-(4-hexylphenyl)azo] phenoxyundecanoic acid, 11-(4-phenylazo)phenoxyundecanoic acid, and diamine grafted poly(methylmethaacrylate) polymers has been studied. Monolayer behaviour of the pure components and mixed films was studied through pressure-area isotherms and LB films were characterized by spectroscopic, X-ray diffraction and Atomic force microscopy techniques. Aggregation (H-type), often observed in LB films of pure amphiphilic azo acids, was partly avoided in the mixed LB films as indicated by absorption spectral studies. Photoisomerization of the polyion complexed LB films was also studied. The results altogether demonstrate that amine grafted polymer enter into a polyion complexation with azo acid carboxylate group. LB films could be obtained by transfer of the composite monolayers and these LB films exhibited different levels of aggregation of the azo acids. Reversible photoisomerization was observed in LB films with unaggregated azo acid.

  13. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  14. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  15. The biomechanical evaluation of polyester as a tension band for the internal fixation of patellar fractures.

    LENUS (Irish Health Repository)

    McGreal, G

    2012-02-03

    We use a braided polyester suture in place of cerclage wire in tension band fixations. The objective of this study was to test the biomechanical properties of this technique. Sixteen cadaveric patellae were fractured and repaired by modified tension band fixation. Eight were fixed using eighteen gauge stainless steel wire as a tension band and eight using braided polyester. All specimens were subjected to tensile testing. Polyester was 75.0% as strong as wire. For dynamic testing, the patellae of seven cadaveric knees were fractured and then fixed with polyester tension bands. These were mounted in a device capable of extending the knees from 90 degrees to neutral against an applied force. None of the fixations failed. Three of the specimens fixed using 18 gauge stainless steel wire were compared with three fixed using polyester over 2000 cycles of knee flexion and extension. Polyester performed as well as wire. We conclude that polyester is an acceptable alternative to wire in tension band fixation.

  16. The Comfort Properties of Two Differential-Shrinkage Polyester Warp Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Chen Qing

    2016-06-01

    Full Text Available Single-layered warp knitted fabrics were produced by the 60D/36F (containing 36 filaments polyester yarn with differential shrinkage (DS property in this study. Due to the differential shrinkage property, the fabric becomes curly and bulkier, simulating cotton fabric in terms of its appearance and fabric handle. The performance and appearance of these DS polyester warp knitted fabrics were evaluated objectively and subjectively. The testing results demonstrated that the DS polyester warp knitted fabric had better abrasion property, worse pilling resistance due to the mechanical property of polyester yarn when compared with 100% cotton warp knitted fabric. Meanwhile, lower water vapour permeability and air resistance were found for DS polyester warp knitted fabric resulting from the dense structure of yarn shrinkage after heat-moisture treatment. Besides, the fabric handle was evaluated by Kawabata evaluation system and subject to trial under dry and wet fabric condition. DS polyester warp knitted fabrics provide better recovery under low stress mechanical pressure. The subjective evaluation result shows that the warp knitted fabrics made of DS polyester had similar handle against cotton warp knitted fabric in terms of prickle, smooth, comfort and dry feeling in both dry and wet testing conditions.

  17. Recent Advances in the Design of Water Based-Flame Retardant Coatings for Polyester and Polyester-Cotton Blends

    Directory of Open Access Journals (Sweden)

    Jenny Alongi

    2016-10-01

    Full Text Available Over the last ten years a new trend of research activities regarding the flame retardancy of polymeric materials has arisen. Indeed, the continuous search for new flame retardant systems able to replace the traditional approaches has encouraged alternative solutions, mainly centred on nanotechnology. In this context, the deposition of nanostructured coatings on fabrics appears to be the most appealing and performance suitable approach. To this aim, different strategies can be exploited: from the deposition of a single monolayer consisting of inorganic nanoparticles (single-step adsorption to the building-up of more complex architectures derived from layer by layer assembly (multi-step adsorption. The present paper aims to review the application of such systems in the field of polyester and polyester-cotton blend fabrics. The results collated by the authors are discussed and compared with those published in the literature on the basis of the different deposition methods adopted. A critical analysis of the advantages and disadvantages exhibited by these approaches is also presented.

  18. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  19. Study of the properties and biodegradability of polyester/starch blends submitted to microbial attack

    International Nuclear Information System (INIS)

    Vinhas, Gloria M.; Almeida, Yeda M.B. de; Lima, Maria Alice Gomes de Andrade; Santos, Livia Almeida

    2007-01-01

    This work deals with the biodegradation of blends of poly(beta-hydroxybutyrate)/starch and poly(beta-hydroxybutyrate-cohydroxyvalerate)/ starch. The blends were obtained by evaporation of the solvent in the mixture of the polymers in chloroform. Tests were carried out in presence of micro-organisms which acted as biodegradation agents. The blends were consumed as carbon substrate and the production of CO 2 was evaluated in the process. In addition, the polyesters' mechanical properties were reduced by the incorporation of starch in its structure. ( 1 H) NMR and infrared spectroscopy detected some characteristic polyester degradation groups in the polyesters' chemical structure, thus confirming the alteration suffered by it. (author)

  20. Distinguishing the parallel and vertical orientations and optic axis characteristics determination of azobenzene mesogen by conoscopic polarized microscopy.

    Science.gov (United States)

    Liu, J; Wang, M; Dong, M; Gao, L; Tian, J

    2011-11-01

    Orientational behaviours under the action of linearly polarized light and circularly polarized light of a side-chain azobenzene containing polymer were studied by conoscopic polarized microscopy. The results suggest that the linearly polarized light (473 nm, 20 mW cm(-2)) results in an in-plane orientation of the azobenzene groups. The irradiation with circularly polarized light (473 nm, 20 mW cm(-2)) leads to a tilt orientation (out-of-plane) of the azobenzene groups with the long axis of mesogens aligned along the propagation direction of the actinic light. Characteristic features of the in-plane and out-of-plane orientated films were obtained from their interference figures. The in-plane orientated film shows an interference cross consisting of a broad fuzzy bar, and the cross-centre lies in the centre of view field. In-plane orientated film also yields a flash figure upon a less than 10° rotation of the sample under polarized microscopy. The interference figures yielded from the out-of-plane orientated films consist of narrow bar cross. The locations of those interference figures depend on the oblique angle of the irradiation light. A method for distinguishing the in-plane orientation of the mesogens from the vertically out-of-plane orientation is demonstrated, which is based on comparing the bar width of their interference figures, and by whether they can produce a flash figure upon a small angle rotation of the film. The liquid crystalline film is identified as positive and uniaxial anisotropy after annealing of the perpendicularly irradiated film. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  1. Characterization of ZnO coated polyester fabrics for UV protection

    Science.gov (United States)

    Broasca, G.; Borcia, G.; Dumitrascu, N.; Vrinceanu, N.

    2013-08-01

    The textile industry aims to develop fabrics adapted to environmental conditions, in particular to UV radiation. Taking into account the demand for such materials, we prepare an inorganic-organic material, based on ZnO microparticles impregnation of polyester textiles, to perform combined UV-protection properties and high hydrophobicity. Scanning electron microscopy, UV reflectance, Impedance Spectroscopy, contact angle, air permeability, resistance to vapor transfer and tensile strength measurement are used for analysis of the surface and volume properties, related to the performance of the material under environmental conditions, as UV radiation, water and water vapors. The impregnation method ensures a good homogeneity and dispersion of ZnO microparticles into the textile polymeric matrix. The optimum level of impregnation of the fabrics is established to 3-5% ZnO, yielding stable properties, without overloading the fabric. The response of the coated polymer indicates better absorbing the UV radiation and dissipating the surface charge, time stability against UV and higher hydrophobic character, without modification of the mechanical properties, offering enhanced performance and comfort under environmental conditions.

  2. Biocompatibility of Poly(ester amide (PEA Microfibrils in Ocular Tissues

    Directory of Open Access Journals (Sweden)

    Martina Kropp

    2014-01-01

    Full Text Available Drug delivery systems (DDS are able to deliver, over long periods of time, therapeutic concentrations of drugs requiring frequent administration. Two classes of DDS are available, biodegradable and non-biodegradable. The larger non-biodegradable implants ensure long-term delivery, but require surgical interventions. Biodegradable biomaterials are smaller, injectable implants, but degrade hydrolytically and release drugs in non-zero order kinetics, which is inefficient for long-term sustained drug release. Biodegradable poly(ester amides (PEAs may overcome these difficulties. To assess their ocular biocompatibility and long-term behavior, PEA fibrils were analyzed in vitro and in vivo. In vitro, incubation in vitreous humor changes to PEA structure, suggests degradation by surface erosion, enabling drug release with zero order kinetics. Clinical and histological analysis of PEA fibrils implanted subconjunctivally and intravitreally showed the absence of an inflammatory response or other pathological tissue alteration. This study shows that PEA fibrils are biocompatible with ocular environment and degrade by surface erosion.

  3. Degradation Mechanisms of Poly(ester urethane) Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Alexander S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos National Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.

  4. SYNTHESIS AND CHARACTERIZATION OF BIO-BASED POLYESTER POLYOL

    Directory of Open Access Journals (Sweden)

    MİTHAT ÇELEBİ

    2016-11-01

    Full Text Available Polyurethanes are versatile polymeric materials and are usually synthesised by isocyanate reactions with polyols. Due to the variety of isocyanates and polyols, particularly polyols, polyurethanes can be easily tailored for wide applications, such as rigid and flexible foams, coatings, adhesives, and elastomers. Considerable efforts have been recently devoted to developing bio-based substitutes for petroleum-based polyuretahanes due to increasing concerns over the depletion of petroleum resources, environment, and sustainability. Polyester polyols based on aliphatic and aromatic dicarboxylic acids are one of the most important materials in polymer technologies. Large volume of plants oils are used as renewable resources to produce various chemicals which are industrially important to make soaps, cosmetic products, surfactants, lubricants, diluents, plasticizers, inks, agrochemicals, composite materials, food industry. This study introduces synthesis and properties of bio-based polyols from different renewable feedstocks including vegetable oils and derivatives. A comparison of bio-based polyol properties with their petroleum-based analogues were investigated.

  5. Radiation curable coatings from palm oil acrylated polyester prepolymer

    International Nuclear Information System (INIS)

    Azam Ali, M.; Ooi, T.L.; Salmiah, A.; Ishiaku, U.S.; Mohd Ishak, Z.A.

    2002-01-01

    Radiation (ultra-violet, UV) curable coatings were prepared by using palm oil acrylated polyester prepolymer (PEPP-1) in combination with different reactive diluents in the presence of photoinitiator Irgacure 184 (Irg184). The effects of viscosity of coating materials, radiation dose and curing behavior were investigated. The UV cured polymeric films properties such as pendulum hardness, wettability (contact angle), gel ,content, swelling character, tensile strength, elongation at break, and deformation stability were then determined. The optimum formulations were also coated on wood substrates after which the gloss and hardness of the cured film on the wood substrate were measured. Some formulations showed promising coatings properties and has a good potential application for the wood coating industry. (Author)

  6. Study of the indoor decontamination using nanocoated woven polyester fabric

    Science.gov (United States)

    Memon, Hafeezullah; Kumari, Naveeta; Jatoi, Abdul Wahab; Khoso, Nazakat Ali

    2017-11-01

    This research primarily deals with the photocatalytic degradation of methanol in indoor air using nanocoated indoor textiles used for curtains as household textiles. The woven polyester was coated by titanium dioxide by sol gel method, using silicon-based binder. The characterization of the coating has been done using scanning electron microscopy (SEM) image analysis, energy dispersive analysis using X-ray (EDAX) and Fourier transform infrared spectroscopy (FTIR). The DIY instrument providing the similar environment as of indoor was designed to assess the performance of the degradation of formaldehyde under UV light. The photocatalytic degradation rate was measured using the absorption value of the solutions obtained in the result of liquid chromatography of test solution and reagent solution. Different amount of dosages (1-3 %) and different time period of coatings (half hour to 3 h) have been evaluated for optimization.

  7. Application of polyester derived from biomass in petroleum asphalt cement

    Directory of Open Access Journals (Sweden)

    Fernando de Araújo

    Full Text Available Abstract This study evaluated the effects of the incorporation of a new additive to asphalt cement oil (CAP. A polyol product was obtained through the oxypropylation reaction of sugarcane bagasse. This polyol was polymerised with pyromellitic anhydride in order to obtain a polyester (BCP to test its suitability in terms of the material properties to be applied as additives. FTIR spectra of the polymerised material (BCP confirmed the occurrence of chemical modification due to the appearance of a new band at 1750 cm-1, characteristic of ester groups. The TGA data showed that the BCP product had higher thermal stability than the polyol. According to the softening point and elastic recovery tests, the incorporation of 11% and 16% w/w BCP in conventional CAP met the specifications of regulatory standards.

  8. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies.

    Science.gov (United States)

    Li, Shan; Xu, Yanyi; Yu, Jiayi; Becker, Matthew L

    2017-10-01

    Additive manufacturing has the potential to revolutionize regenerative medicine, but the harsh thermal or photochemical conditions during the 3D printing process limit the inclusion of drugs, growth factors and other biologics within the resulting scaffolds. Functionalization strategies that enable specific placement of bioactive species on the surface of 3D printed structures following the printing process afford a promising approach to sidestep the harsh conditions and incorporate these valuable bioactive molecules with precise control over concentration. Herein, resorbable polymer scaffolds were prepared from propargyl functionalized L-phenylalanine-based poly(ester urea)s (PEUs). Osteogenic growth peptide (OGP) or bone morphogenic protein-2 (BMP-2) peptides were immobilized on PEU scaffolds through surface available propargyl groups via copper-catalyzed azide alkyne cycloaddition (CuAAC) post 3D printing. The presence of either OGP or BMP-2 significantly enhanced hMSCs osteogenic differentiation compared to unfunctionalized scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Kekuatan Lentur Komposit Polyester Berpenguat Serat Tapis Kelapa

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2015-07-01

    Full Text Available Penelitian ini bertujuan untuk menyelidiki sifat mekanis yaitu kekuatan lentur dari kompositpolyester yang diperkuat dengan serat tapis kelapa. Di masa depan komposit ini dapatdigunakan untuk menggantikan kayu, bambu dan gipsun yang harganya mahal dan tidaktahan air. Komposit dibuat dengan memanfaatkan serat sabut kelapa dan matriks resinUnsaturated-Polyester (UPRs jenis Yucalac 157 BQTN, campuran 1% hardener jenis MEKPO(Methyl Ethyl Ketone Peroxide dan perendaman serat dalam larutan alkali KMnO4 0,5%.Metode produksi yang digunakan adalah press hand lay up dengan orientasi serat acak.Desain komposit dengan variasi fraksi volume serat 20, 25 dan 30% dan variasi panjang serat5, 10 dan 15 mm. Hasil penelitian menunjukkan bahwa semakin besar fraksi volume danpanjang serat dalam komposit maka kekuatan lentur semakin tinggi. Mode patahan yangteramati adalah patah getas, debonding, pullout dan crack deflection.Kata kunci: komposit, serat tapis kelapa, kekuatan lentur, mode patahan The purpose of this study is to investigate the mechanical properties i.e. flexural strength ofcomposites coconut filter fiber. In the future this material can be used to replace the wood,bamboo and gipsun which are high price and lower water resistance.The research material made with coconut filter fiber as reinforcement and matrix resinunsaturated polyester (UPRs type Yukalac BQTN 157, with 1% hardener types MEKPO(Methyl Ethyl Ketone Peroxide and fiber treatment by 0.5% KMnO4. Production methods arepress hand lay-up and the variations of fiber volume fraction are 20, 25 and 30% and fiberlength are 5, 10 and 15 mm. Testing of mechanical properties is flexural test (ASTM - D790The results of research show that the longer of fiber and the bigger of fiber volume fraction,the higher of flexural strength are obtained. The fracture mode are overload, debonding ,pullout and crack deflectionKeywords : composites, coconut filter fiber, flexural strength, fracture mode

  10. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  11. Effect of structural parameters on burning behavior of polyester fabrics having flame retardancy property

    Science.gov (United States)

    Çeven, E. K.; Günaydın, G. K.

    2017-10-01

    The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.

  12. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  13. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  14. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Science.gov (United States)

    2013-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... Administration, International Trade Administration, Department of Commerce. SUMMARY: The Department of Commerce.../CVD Operations, Office 1, Import Administration, International Trade Administration, U.S. Department...

  15. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Czech Academy of Sciences Publication Activity Database

    Neukirch, A.J.; Park, J.; Zobač, Vladimír; Wang, H.; Jelínek, Pavel; Prezhdo, O.V.; Zhou, H.-C.; Lewis, J.P.

    2015-01-01

    Roč. 27, č. 13 (2015), s. 134208 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : photoisomerization * azobenzene * metal-organic frameworks * molecular switches Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  16. Synthesis of 2-aryl-2H-benzotrizoles from azobenzenes and N-sulfonyl azides through sequential rhodium-catalyzed amidation and oxidation in one pot.

    Science.gov (United States)

    Ryu, Taekyu; Min, Jiae; Choi, Wonseok; Jeon, Woo Hyung; Lee, Phil Ho

    2014-06-06

    An efficient synthetic method of 2-aryl-2H-benzotriazoles from nonprefunctionalized azobenzenes and N-sulfonyl azides via sequential Rh-catalyzed amidation (C-N bond formation) and oxidation (N-N bond formation) with PhI(OAc)2 in one pot is reported.

  17. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    Science.gov (United States)

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds.

  18. Synthesis and thermal behavior of telechelic poly(butadiene)diols with azobenzene-based liquid-crystalline units in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Látalová, Petra

    2010-01-01

    Roč. 64, č. 4 (2010), s. 315-326 ISSN 0170-0839 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene mesogens * radical addition * poly(butadiene)diols Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.215, year: 2010

  19. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was

  20. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .1. Synthesis and characterization of the monomers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    New azobenzene-based (az.b.) monomers with CO2H (acid) or N(CH3)(2) (basic) substituents were synthesized. For some of these compounds new synthetic routes had to be developed, especially for the az.b. monomers with a CO2H substituent (azoacids) where their synthesis, purification and (thermal)

  1. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  2. New UV-curable acrylated polyester prepolymers from palm oil based products

    International Nuclear Information System (INIS)

    Mohd Azam Ali; Ooi, T.L.; Salmiah Ahmad; Umaru, S.I.; Mohd Ishak, Z.A.

    1999-01-01

    Acrylated polyester prepolymers (PEPP-1 and PEPP-2) were synthesized from palm oil and its products. UV-curing and characteristic properties of UV-cured films of synthesized polyester resins were studied. The characteristic properties studied include pendulum hardness, gel content, FT-IR analysis, tensile strength and elongation at break. The materials have good potential for the production of radiation curable coating applications

  3. Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites

    OpenAIRE

    Seyhan, Abdullah Tuğrul; Gojny, Florian H.; Tanoğlu, Metin; Schulte, Karl

    2007-01-01

    Carbon nanotubes (CNTs) have outstanding mechanical, thermal and electrical properties. As a result, particular interest has been recently given in exploiting these properties by incorporating carbon nanotubes into some form of matrix. Although unsaturated polyesters with styrene have widespread use in the industrial applications, surprisingly there is no study in the literature about CNT/thermoset polyester nanocomposite systems. In the present paper, we underline some important issues and l...

  4. Biobased, thermoreversibly crosslinked polyesters: A styrene-free alternative to currently employed resins

    OpenAIRE

    Beljaars, Martijn

    2017-01-01

    Polyester resins are often used due to their superior chemical and mechanical properties. However, most commercial resins contain high amounts of the toxic chemical styrene. This thesis describes the search for a human-friendly alternative to polyester resins. In this work, mostly biobased (obtained from renewable sources) chemicals are used to end up with a green compound. However, just "going green" does not solve the problem of waste generated at the end of product life, in order to addres...

  5. A route to quantitative 13C NMR analysis of multicomponent polyesters

    DEFF Research Database (Denmark)

    Hvilsted, S.

    1991-01-01

    A protocol for quantitative sequential 13C NMR analysis is developed for polyesters composed of trimethylol propane (TMP), neopentyl glycol (NPG), and adipic and isophthalic acids. TMP centred, structural models with methyl adipate and isophthalate branches in all possible combinations are synthe......A protocol for quantitative sequential 13C NMR analysis is developed for polyesters composed of trimethylol propane (TMP), neopentyl glycol (NPG), and adipic and isophthalic acids. TMP centred, structural models with methyl adipate and isophthalate branches in all possible combinations...

  6. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amides

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2014-04-01

    Full Text Available Poly(alkylene dicarboxylates constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amides derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  7. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    Science.gov (United States)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  8. Phase diagrams in blends of poly(3-hydroxybutyric acid with various aliphatic polyesters

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Phase behavior with immiscibility, miscibility, crystalline morphology, and kinetic analysis in blends of poly(3-hydroxybutyric acid (PHB with aliphatic polyesters such as poly(butylene adipate (PBA, poly(ethylene adipate (PEA, poly(trimethylene adipate (PTA, or poly(ethylene succinate (PESu, respectively, were explored mainly using differential scanning calorimeter (DSC and polarized-light optical microscopy (POM. Immiscibility phase behavior with reversible upper-critical-solution-temperature (UCST is common in the PHB/polyester blends. The polyester/polyester blend of PHB/PTA is partially miscible with no UCST in melt and amorphous glassy states within a composition range of PTA less than 50 wt%. The miscible crystalline/crystalline blend exhibits ring-banded spherulites at Tc = 50~100°C, with inter-ring spacing dependent on Tc. All immiscible or partially miscible PHB/polyester blends, by contrast, exhibit disrupted ringbanded spherulites or discrete spherical phase domains upon cooling from UCST to crystallization. The blends of PHB with all other aliphatic polyesters, such as PESu, PEA, PBA, etc. are only partially miscible or immiscible with an upper critical solution temperature (UCST at 180~221°C depending on blend composition. UCST with reversibility was verified.

  9. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System.

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-04

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  10. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-01

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  11. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-04-27

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  12. Development of a readily recyclable sound insulation material made of polyester fibers. Application of the PET fibers from plastic bottles; Recycle kanona jidoshayo polyester sei kyuon zairyo no kaihatsu. Shiyozumi pet bottle zai no insulator zai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K.; Watanabe, K.; Sugawara, H.; Minemura, Y. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have developed new polyester sound-absorbing materials made of fine and modified-cross-section polyester fabric. They provide noticeably higher sound-absorbing performance than traditional materials. Another feature of the new materials is their excellent recyclability since they are made of polyester. Application of the new materials to the dash silencer and the floor carpeting produced a great improvement in sound-insulation performance with less weight. 2 refs., 7 figs.

  13. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.

    Science.gov (United States)

    Das, Sekhar

    2017-09-15

    Hybrid composites were prepared with jute fabric and un-shredded newspaper in polyester resin matrix. The experiment was designed 1:2 weights ratio jute and unshredded newspaper to have 42 (w/w)% fibre content hybrid composites and two different sequences jute/paper/jute and paper/jute/paper of waste newspaper and jute fabric arrangement. Reinforcing material is characterized by chemically, X-ray diffraction methods, Fourier transform infrared spectroscopy and tensile testing. The tensile, flexural and interlaminar shear strength and fracture surface morphology of composites were evaluated and compared. It was found that tensile and flexural properties of the hybrid composite are higher than that of pure paper-based composite but less than pure woven jute composite. The hybridization effect of woven jute fabric and layering pattern effect on mechanical properties of newspaper/woven jute fabric hybrid composites were studied. The test results of composites were analyzed by one-way ANOVA (α=0.05), it showed significant differences among the groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. X-ray Tomographic Imaging of Tensile Deformation Modes of Electrospun Biodegradable Polyester Fibers

    Directory of Open Access Journals (Sweden)

    Jekaterina Maksimcuka

    2017-12-01

    Full Text Available Electrospinning allows the production of fibrous networks for tissue engineering, drug delivery, and wound healing in health care. It enables the production of constructs with large surface area and a fibrous morphology that closely resembles the extracellular matrix of many tissues. A fibrous structure not only promotes cell attachment and tissue formation but could also lead to very interesting mechanical properties. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB is a biodegradable polyester that exhibits a large (>400% elongation before failure. In this study, synchrotron X-ray phase contrast imaging was performed during tensile deformation to failure on a non-woven fiber mat of P(3HB-co-4HB fibers. Significant reorientation of the fibers in the straining direction was observed, followed by localized necking and eventual failure. From an original average fiber diameter of 4.3 µm, a bimodal distribution of fiber diameter (modal diameters of 1.9 and 3.7 µm formed after tensile deformation. Extensive localized necking (thinning of fibers between (thicker fiber–fiber contacts was found to be the cause for non-uniform thinning of the fibers, a phenomenon that is expected but has not been observed in 3D previously. The data presented here have implications not only in tissue regeneration but for fibrous materials in general.

  15. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications.

    Science.gov (United States)

    Robinson, Joshua W; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  16. Loop-mediated isothermal amplification in disposable polyester-toner microdevices.

    Science.gov (United States)

    de Oliveira, Kezia Gomes; Borba, Juliane Cristina; Bailão, Alexandre Melo; de Almeida Soares, Célia Maria; Carrilho, Emanuel; Duarte, Gabriela Rodrigues Mendes

    2017-10-01

    In recent years, isothermal DNA amplification methods have emerged as an alternative in molecular diagnostics due to its ease of operation. The purpose of using isothermal amplification is to simplify the diagnostics work by i) eliminating heating cycles, ii) reducing equipment costs, and iii) providing rapid and accurate results in laboratories with limited resources. Here we show a simple and fast method for E. coli detection in disposable polyester-toner (PeT) microdevice. The amplification by LAMP of the malB gene from E. coli was carried out in a microchamber with 5-μL capacity and the reaction was thermally controlled with a thermoblock at 66 °C for 60 min. The passivation of the surface of PeT channels with BSA improved the efficiency of the LAMP reaction. The detection of amplified LAMP fragments was performed directly on-chip by visual detection and validated with off-chip detection to compare results. Visualization of amplicons directly in the microchip yielded positive reactions as low as 10 double-stranded DNA copies. Separation by gel electrophoresis was able to detect amplicons in reactions that initiated only with one copy of double-stranded DNA. We demonstrate that LAMP in PeT microchip is an important tool for molecular diagnostics at the point-of-care. Copyright © 2017. Published by Elsevier Inc.

  17. On-chip immunoassay of a cardiac biomarker in serum using a polyester-toner microchip.

    Science.gov (United States)

    Kim, Ah Rahn; Kim, Joo Yeon; Choi, Kihwan; Chung, Doo Soo

    2013-05-15

    An on-chip immunoassay to detect C-reactive protein (CRP) was performed using a polyester-toner (PT) microchip. CRP is a highly conserved plasma protein responding to inflammation and is used for clinical purposes to diagnose an inflammatory state. For rapid analysis and specific interactions in immunoassays, extensive studies using microfluidic chips have been carried out. Recently, a simple technique to fabricate a disposable PT microchip by a direct printing process was developed and several applications were introduced. One major drawback of the PT microchip, however, is the poor separation performance due to the quality of the microfluidic structures. This problem for a PT microchip can be overcome using a cleavable tag immunoassay, which requires minimal separation performance. After analytes are conjugated onto antibodies which are immobilized on the surface of microbeads placed on the PT microchip, a second group of fluorescently tagged antibodies are added and complexed with the analytes. The tag is then cleaved and the solution containing the cleaved tag is analyzed by electrophoresis. The time needed for the complete analysis to be carried out on a PT microchip was less than 35 min. The dynamic range of the CRP in 10-fold diluted serum was 0.3-100 mg/L and the limit of detection was 0.3 mg/L, which demonstrated the possibility of a quantitative analysis of CRP in serum in clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    Science.gov (United States)

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  19. Multilevel fluidic flow control in a rotationally-driven polyester film microdevice created using laser print, cut and laminate.

    Science.gov (United States)

    Ouyang, Yiwen; Li, Jingyi; Phaneuf, Christopher; Riehl, Paul S; Forest, Craig; Begley, Matthew; Haverstick, Doris M; Landers, James P

    2016-01-21

    This paper presents a simple and cost-effective polyester toner microchip fabricated with laser print and cut lithography (PCL) to use with a battery-powered centrifugal platform for fluid handling. The combination of the PCL microfluidic disc and centrifugal platform: (1) allows parallel aliquoting of two different reagents of four different volumes ranging from nL to μL with an accuracy comparable to a piston-driven air pipette; (2) incorporates a reciprocating mixing unit driven by a surface-tension pump for further dilution of reagents, and (3) is amenable to larger scale integration of assay multiplexing (including all valves and mixers) without substantially increasing fabrication cost and time. For a proof of principle, a 10 min colorimetric assay for the quantitation of the protein level in the human blood plasma samples is demonstrated on chip with a limit of detection of ∼5 mg mL(-1) and coefficient of variance of ∼7%.

  20. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test...

  1. Optimum Drafting Conditions Of Polyester And Viscose Blend Yarns

    Directory of Open Access Journals (Sweden)

    Hatamvand Mohammad

    2017-09-01

    Full Text Available In this study, we used an experimental design to investigate the influence of the total draft, break draft, distance between the aprons (Clips and production roller pressure on yarn quality in order to obtain optimum drafting conditions for polyester and viscose (PES/CV blend yarns in ring spinning frame. We used PES fibers (1.4 dtex × 38 mm long and CV fibers (1.6 dtex × 38 mm long to spin a 20 Tex blend yarn of PES (70%/CV (30% blend ratio. When the break draft, adjustment of distance between of aprons and roller pressure is not reasonable, controlling and leading of the fibers is not sufficient for proper orientation of the fibers in the yarn structure to produce a high quality yarn. Experimental results and statistical analysis show that the best yarn quality will be obtained under drafting conditions total draft of 38, 1.2 break draft, 2.8 mm distance between of aprons and maximum pressure of the production top roller (18daN.

  2. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    Science.gov (United States)

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-07

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  3. Tearing resistance of some co-polyester sheets

    International Nuclear Information System (INIS)

    Kim, Ho Sung; Karger-Kocsis, Jozsef

    2004-01-01

    A three-zone model consisting of initial, evolutionary and stabilised plastic zones for tearing resistance was proposed for polymer sheets. An analysis with the model, based on the essential work of fracture (EWF) approach, was demonstrated to be capable for predicting specific total work of fracture along the tear path across all the plastic zones although accuracy of specific essential work of fracture is subject to improvement. Photo-elastic images were used for identification of plastic deformation sizes and profiles. Fracture mode change during loading was described in relation with the three zones. Tearing fracture behaviour of extruded mono- and bi-layer sheets of different types of amorphous co-polyesters and different thicknesses was investigated. Thick material exhibited higher specific total work of tear fracture than thin mono-layer sheet in the case of amorphous polyethylene terephthalate (PET). This finding was explained in terms of plastic zone size formed along the tear path, i.e., thick material underwent larger plastic deformation than thin material. When PET and polyethylene terephthalate glycol (PETG) were laminated with each other, specific total work of fracture of the bi-layer sheets was not noticeably improved over that of the constituent materials

  4. Properties of aliphatic hyperbranched polyesters in dilute solutions

    Directory of Open Access Journals (Sweden)

    JASNA VUKOVIC

    2007-12-01

    Full Text Available The results of an investigation of the influence of the synthesis procedure, number of pseudo generations and degree of branching of hydroxy-functional aliphatic hyperbranched polyesters (AHBP on the values of limiting viscosity number, [η], hydrodynamic radius, Rη, molar mass and polydispersity index, Q, are presented in this paper. Two series of AHBP, synthesized from 2,2-bis(hydroxylmethylpropionic acid and di-trimethylolpropane using a pseudo-one-step and a one-step procedure were investigated. The obtained results show that the values of [η] and Rη for all examined samples are the highest in a 0.7 mass % solution of LiCl in N,N-dimethylacetamide (LiCl/DMAc, which indicates that this solvent is the best from the investigated ones. The values of [η] in N-methyl-2-pyrrolidinone (NMP increased up to the sixth pseudo generation, after which a slight decrease occurred as the consequence of the presence of side-reaction products, formed during the synthesis. The appearance of these side-reaction products was also confirmed from the characteristic the GPC chromatograms. For the samples of AHBP synthesized using the pseudo-one-step procedure, a good linear dependence between log [η] and log Mw was obtained up to the fifth pseudo generation, when LiCl/DMAc, NMP and DMAc were used as solvents. The values of the “shrinking” factor, g’, were calculated for all investigated AHBPs.

  5. Microstructure Changes in Polyester Polyurethane upon Thermal and Humid Aging

    Directory of Open Access Journals (Sweden)

    Qiang Tian

    2016-05-01

    Full Text Available The microstructure of compression molded Estane 5703 films exposed to 11%, 45%, and 80% relative humidity and 70 °C for 1 and 2 months has been studied by small-angle neutron scattering (SANS, Fourier transform infrared spectroscopy (FTIR, gel permeation chromatography (GPC, and differential scanning calorimetry (DSC. Scattering data indicated increase of the interdomain distance and domain size with a higher humidity and longer aging time. GPC data showed a progressive shortening of polyurethane chains with increasing humidity and aging time. The shortening of the polyurethane chains caused a drop of the glass transition temperature of soft segments, and promoted crystallization of the soft segments during long-time storage of the aged samples at room temperature. FTIR showed a substantial increase in the number of inter-urethane H-bonds in the aged samples. This correlates with the increase of the hard domain size and the degree of phase separation as measured by SANS. The data collected reveals that the reduced steric hindrance caused by hydrolysis of ester links in polybutylene adipate residues promotes the organization of hard segments into domains, leading to the increase of domain size and distance, as well as phase segregation in aged Estane. These findings provide insight into the effects of humidity and thermal aging on the microstructure of aged polyester urethane from molecular to nanoscale level.

  6. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  7. Recent Advances in 3D Printing of Aliphatic Polyesters

    Science.gov (United States)

    Frone, Adriana Nicoleta; Brandabur, Călin

    2017-01-01

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed. PMID:29295559

  8. Recent Advances in 3D Printing of Aliphatic Polyesters

    Directory of Open Access Journals (Sweden)

    Ioana Chiulan

    2017-12-01

    Full Text Available 3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid (PLA and polyhydroxyalkanoates (PHA, two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  9. EMI shielding based on MWCNTs/polyester composites

    Science.gov (United States)

    Seng, Lee Yeng; Wee, F. H.; Rahim, H. A.; Malek, F.; You, K. Y.; Liyana, Z.; Jamlos, M. A.; Ezanuddin, A. A. M.

    2018-02-01

    This paper presents the dielectric properties and shielding effectiveness (SE) of multi-walled carbon nanotubes and polyester (MWCNTs/PE) composite. A rectangular waveguide transmission line technique was used to measure dielectric properties, ɛ r, SE of MWCNTs (1-20 weight percentage, wt%) and PE composite in microwave frequency region from 8.2 to 18 GHz. It was observed that the increase of MWCNTs resulted in the increase of dielectric properties, loss tangent, and conductivity. MWCNTs/PE composite samples with high conductivity had led to greater SE. The results show SE of the composites increased as the amount of the MWCNTs increased. The average values of electromagnetic interference SE of the MWCNTs/PE samples with 1 wt% MWCNTs and 20 wt.% MWCNTs were 3 and 35.2 dB, respectively. Simulated and measured results of shielding effectiveness had been compared with various of MWCNTs/PE composite over the entire frequency range with a 3 mm thickness. From the results, observed that the MWCNTs/PE composite has potential use as EMI shielding materials.

  10. Recent Advances in 3D Printing of Aliphatic Polyesters.

    Science.gov (United States)

    Chiulan, Ioana; Frone, Adriana Nicoleta; Brandabur, Călin; Panaitescu, Denis Mihaela

    2017-12-24

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  11. New hydrophilic polyesters and related polymers as bioerodible polymeric matrices.

    Science.gov (United States)

    Chiellini, E; Solaro, R; Bemporad, L; D'Antone, S; Giannasi, D; Leonardi, G

    1995-01-01

    A survey is reported on our activity performed in the last few years on the preparation of new synthetic and semisynthetic polymeric materials endowed with bioerodible-biodegradable characteristics and designed for applications in the practice of controlled release of active principles of pharmaceutical and agrochemical significance. The presentation of the results will be arranged into the following sections: (1) hydroxyl containing polyesters, that comprise polymerization products based on racemic and optically active glyceric acid, or attained by polyaddition reactions among cyclic anhydrides, including also carbon dioxide, with monoglycidyl ethers of reversibly protected polyols. In this class are also presented the related polyhydroxylated systems obtained by selective grafting functional epoxides on cyclodextrins. (2) Bioerodible carboxyl containing polymeric systems as derived from the alternating copolymerization of maleic anhydride with alkyl vinyl ethers followed by partial esterification of maleic anhydride groups. (3) Linear and cross-linked functional polymers of synthetic and semisynthetic origin with hydrogel forming capability. Typical examples of their applications in the release of drugs and phytodrugs are also presented.

  12. Polymeric blends from post-consumer PET and polyester becoming of glycerol and phthalic acid; Misturas polimericas a partir do PET pos-consumo e poliesteres derivados do gliceraol e acido ftalico

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C.S.; Brioude, M.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M., E-mail: cleidienesm@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais

    2010-07-01

    Preparation of physical mixture or polymer blends is a very important method to obtain a final product with excellent balance of properties, where one component can compensate for the poor property of another, and is often a modified low cost compared to development and synthesis of a new polymer. PET has become a major waste of post-consumer plastics and aiming to remedy this problem, this work aims to obtain blends from recycled PET and polyesters derived from glycerol and phthalic acid. The material with higher proportion of PET showed better thermal properties, observed by TGA and DSC, with a similar profile of pure PET. In XRD analysis showed a semicrystalline, while the SEM is a smooth surface on all materials, characteristic of pure polyester. The ratio of 50% its surface showed a probable immiscibility of polymers. (author)

  13. Stabilization of Nanosized TiO2 Particles on Knitted Cotton/Polyester Fabric by Citric Acid for Self-cleaning and Discoloration of Reactive Black 5 from Waste Water

    Directory of Open Access Journals (Sweden)

    Majid montazer

    2012-11-01

    Full Text Available Cotton/polyester knitted fabrics as a major production of textile industry was treated with titanium dioxide nanosized particles. The treated fabric with nanosized TiO2 became whiter with a good self-cleaning property. Also the discoloration of Reactive Black 5 dye was studied and reported. The stabilization of TiO2 on cotton/polyester knitted fabrics by citric acid (CA with sodium hypophosphate (SHP as a catalyst was also investigated. These samples showed a good self-cleaning property through discoloration of C.I. Direct Red 80. In addition, using CA in the presence of SHP, helped to stabilize the TiO2 nanosized particles on the fabric surface even after 10 washing cycles. The images of scanning electron microscopy and X-Ray mapping, EDX analyses confirmed the presence of TiO2 nanoparticles on the fabric surfaces even after 10 washing cycles.

  14. Composite Preparation of Wood Dust-Polyester-Coconut Choir Fiber Mixture for Particle Board

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono; Padmono; Betty, Angesti

    2002-01-01

    Experiment on the use of γ-ray of Co 60 radiation has been used for curing of composite which made of wood dust, unsaturated polyester resin and coconut coir mixture. Composite was prepared by mixing of wood dust, polyester and coconut coir at a various mixture composition. Concentration of polyesters were 50, 55 and 60 % by weight based on saw dust and polyester mixture. Irradiation was conducted using 27,6 kCi acti vity Co 60 at a dose rate of 5 kGy/hrs and dose of 8, 10 and 12 kGy. Composite was also prepared conventionally by using peroxide catalyst. Parameters observed were density, pencil hardness and compression strength Experimental results showed that optimum condition wus achieved at irradiation dose of 12 kGy, polyester concentration of 60 % and coconut coir fiber of 4 %. In this condition, the density, hardness and compression strength were 1,115 g/cm 3, 5 Hand 6,815 kN/cm2 respectively. Density, hardness of composite prepared by radiation were almost the same whereas the compression strength was higher than that of composite prepared by conventional method

  15. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  16. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    Science.gov (United States)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  18. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    Science.gov (United States)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  19. Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release.

    Science.gov (United States)

    Liu, Guo-Feng; Ji, Wei; Wang, Wan-Lin; Feng, Chuan-Liang

    2015-01-14

    A multiresponsive hydrogel system coassembled from phenylalanine derivative gelator (LPF2) and azobenzene (Azo) derivative (PPI) is constructed, which can respond to temperature, pH, host-guest interaction, and photoirradiation. A set of techniques including circular dichroism, Fourier transform infrared spectroscopy, (1)H NMR, and X-ray powder diffraction confirm that the hydrogel is formed through hydrogen bonds between amide moieties/pyridine and carbonyl groups, enduing the coassembled hydrogel with multiresponsive properties that make it possible to control cell encapsulation and release in three-dimensional environments under multistimulus, for example, UV irradiation. This study brings a novel approach to develop multistimuli-responsive hydrogels by coassembly of various responsive components for biomedical interest, for example, the controlled delivery of various therapeutic biological agents.

  20. Structure and Reactivity of Half-Sandwich Rh(+3) and Ir(+3) Carbene Complexes. Catalytic Metathesis of Azobenzene Derivatives.

    Science.gov (United States)

    Tindall, Daniel J; Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2018-02-07

    Traditional rhodium carbene chemistry relies on the controlled decomposition of diazo derivatives with [Rh 2 (OAc) 4 ] or related dinuclear Rh(+2) complexes, whereas the use of other rhodium sources is much less developed. It is now shown that half-sandwich carbene species derived from [Cp*MX 2 ] 2 (M = Rh, Ir; X = Cl, Br, I, Cp* = pentamethylcyclopentadienyl) also exhibit favorable application profiles. Interestingly, the anionic ligand X proved to be a critical determinant of reactivity in the case of cyclopropanation, epoxide formation and the previously unknown catalytic metathesis of azobenzene derivatives, whereas the nature of X does not play any significant role in -OH insertion reactions. This perplexing disparity can be explained on the basis of spectral and crystallographic data of a representative set of carbene complexes of this type, which could be isolated despite their pronounced electrophilicity. Specifically, the donor/acceptor carbene 10a derived from ArC(═N 2 )COOMe and [Cp*RhCl 2 ] 2 undergoes spontaneous 1,2-migratory insertion of the emerging carbene unit into the Rh-Cl bond with formation of the C-metalated rhodium enolate 11. In contrast, the analogous complexes 10b,c derived from [Cp*RhX 2 ] 2 (X = Br, I) as well as the iridium species 13 and 14 derived from [Cp*IrCl 2 ] 2 are sufficiently stable and allow true carbene reactivity to be harnessed. These complexes are competent intermediates for the catalytic metathesis of azobenzene derivatives, which provides access to α-imino esters that would be difficult to make otherwise. Rather than involving metal nitrenes, the reaction proceeds via aza-ylides that evolve into diaziridines; a metastable compound of this type has been fully characterized.